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Abstract—Multipath TCP enables smartphones to simulta-
neously use both WiFi and LTE to exchange data over a
single connection. This provides bandwidth aggregation and more
importantly reduces the handover delay when switching from one
network to another. This is very important for delay sensitive
applications such as the growing voice activated apps. On
smartphones, user experience is always a compromise between
network performance and energy consumption. However, the
Multipath TCP implementation in the Linux kernel was mainly
tuned for bandwidth aggregation and often wakes up the cellular
interface by creating a path without sending data on it.

In this paper, we propose, implement and evaluate MultiMob,
a solution providing fast handover with low cellular usage for
interactive applications. MultiMob relies on three principles.
First, it delays the utilization of the LTE network. Second, it
allows the mobile to inform the server of its currently preferred
wireless network. Third, MultiMob extends the Multipath TCP
handshake to enable immediate retransmissions to speedup
handover. We implement MultiMob on Android 6 smartphones
and evaluate its benefits by using both microbenchmarks and
in the field measurements. Our results show that MultiMob
provides similar latency as the standard Linux implementation
while significantly lowering the cellular usage.

I. INTRODUCTION

Mobile devices such as smartphones are now an integral part
of our digital life. Mobile data traffic continues to grow [1].
The performance of the WiFi and cellular networks have
significantly increased over the last years. Compared with
3G, LTE provides both higher bandwidth and lower latency
while WiFi reaches Gbps and more. These high bandwidth
and low-latency networks encouraged the deployment of new
applications. Mobile video benefited a lot from the bandwidth
improvements. On the other hand, the lower latency enabled a
new family of voice activated applications [21]. The user uses
his/her voice instead of buttons to interact with the application
that sends voice samples to the cloud. For such applications,
latency is key and many protocols have been tuned during the
last years to reduce it [4], [33].

For most smartphone users, the WiFi and cellular networks
are not equivalent. WiFi has two major advantages compared
to cellular networks. First, using WiFi consumes less en-
ergy [20], [26]. Second, most service providers charge for
cellular data while most WiFi networks are free or charged on
a flat-rate basis. For these reasons, many smartphones owners

only use their cellular interface for voice calls and when there
is no WiFi network available [7].

Multipath TCP is a recent TCP extension [16] that was
designed with these smartphones in mind. Pluntke et al. [32]
and then Raiciu et al. [35] first discussed the expected benefits
of Multipath TCP on such mobiles devices. Later, Paasch et al.
implemented handover features [30] in the Linux kernel [29].
Lim et al. showed the importance of taking energy consump-
tion into account [23].

Industry has already adopted Multipath TCP on smart-
phones with two major deployments [3]. Apple uses Multipath
TCP for its Siri voice activated application since 2013 and
enables Multipath TCP for any application on iOS11 [7]. This
is the largest deployment of Multipath TCP today [3] with
about 700 million devices. There is another major deployment
in Korea. In this country, high-end Android smartphones use
Multipath TCP through network-operated SOCKS proxies to
achieve Gbps [37].

Many authors studied and tuned the bandwidth aggregation
capabilities of Multipath TCP [36], [22], [18], [27], [11],
[6] in mobile networks. Although popular in the scientific
literature, this is not the main use case for Multipath TCP
on mobiles [7]. Smartphones rarely exchange large files [9]
that would benefit from bandwidth aggregation. Measurement
studies [13], [9] show that smartphones mainly use either short
or long-lived intermittent TCP connections. Apple recently
opened Multipath TCP on iOS11 mainly to provide seamless
handovers and support interactive applications [7].

We first describe the current state-of-the-art of Multipath
TCP on smartphones in Section II. We then propose Mul-
tiMob, a series of improvements that adapt Multipath TCP
to the requirements of today’s smartphone applications. More
precisely, MultiMob provides a good compromise between
latency and cellular usage.

A MultiMob server replies on the subflow used by the
smartphone (§ III-A). If a smartphone sends a request over a
cellular subflow because its WiFi subflow performs badly, the
server should send its reply over the same subflow.

MultiMob minimizes cellular usage and unused subflows
(§ III-B). Like iOS11 [7], MultiMob prefers to use the WiFi
interface over the cellular one. MultiMob replaces the make-
before-break strategy of the Multipath TCP implementation on
Linux by break-before-make. With this strategy, the cellular∗ FNRS Research Fellow



interface is only used after a failure of the WiFi one.
MultiMob limits handover delays (§ III-C). The

break-before-make strategy minimizes energy consumption
but at the expense of increased handover delays. MultiMob
reduces those delays by extending the Multipath TCP protocol
to carry data during the subflow handshake.

In Sect. IV, we collect measurements in a Mininet envi-
ronment to assess MultiMob characteristics. In Sect. V, we
evaluate MultiMob with real smartphones. Finally, Sect. VI
concludes this paper. An extended technical report of this work
is available [10].

II. STATE OF THE ART AND MOTIVATION

Multipath TCP [16] was designed with multihomed devices
such as smartphones in mind. It enables them to exchange
data belonging to a single connection over different network
paths. It is described in details in [16], [36]. We briefly
summarize its main features here. A Multipath TCP connection
is in fact a combination of different TCP connections, called
subflows in [16], that are grouped together. A Multipath TCP
connection is established by using a three-way handshake
as a regular TCP connection, except that the SYN packet
contains the MP_CAPABLE option. This option negotiates
the utilization of Multipath TCP and allows the client and
server to exchange keys. Each Multipath TCP connection is
identified by a token that is derived from the keys exchanged
during the initial handshake [16]. Data can be exchanged
over the initial subflow and both the client and the server
can create additional subflows to use other paths or perform
handovers. Those additional subflows must be established by
using a four-way handshake with SYN packets that contain the
MP_JOIN option. This option includes a token that identifies
the corresponding Multipath TCP connection. Data can be
transmitted over any of the available subflows. Multipath TCP
uses two levels of sequence numbers. The standard TCP
sequence and acknowledgement numbers are used in the TCP
header to handle data sequencing and retransmissions on a
per-subflow basis. Furthermore, Multipath TCP uses the Data
Sequence Number (DSN) that tracks the position of the data in
the bytestream. The DSN is placed inside the Data Sequence
Signal TCP Option that also carries DSN acknowledgements.
Thanks to this DSN, Multipath TCP can transmit data over one
subflow and later retransmit it over another subflow because
the initial one failed or became unresponsive. Reinjecting data
over a different subflow is key to support handovers [36], [30].

There are two main implementations of Multipath TCP
on mobile nodes: Apple’s implementation on iOS [7] and
the open-source Linux implementation [29]. We focus on the
latter because it fully implements the protocol and can be
easily modified. Besides supporting all the features described
in [16], it includes several heuristics that are important for
performance [36] without impacting interoperability.

A first component of the Multipath TCP implementation in
the Linux kernel is the path manager. It determines when addi-
tional subflows must be created. The initial subflow is always
established on the interface that points to the current default

route. On a client, the default fullmesh path manager [29]
creates new subflows immediately after the creation of the
initial one and each time a new IP address is assigned to the
client or learned from the server. This path manager does not
initiate subflows from the server because it expects that the
client’s firewall will block incoming TCP connections.

A second component is the packet scheduler. It decides on
which established subflow the next packet will be sent. The
default scheduler extracts the smoothed round-trip-time of
all the subflows whose congestion window is not full and
selects the one having the lowest smoothed round-trip-time
(RTT). Other schedulers more adapted to heterogeneous paths
have been proposed [25], [28], [15].

Multipath TCP [16] also supports backup subflows. When
a subflow is established, it is possible to set a bit in the
MP_JOIN option to indicate that this subflow should not
be selected by the scheduler to exchange data unless all
non-backup subflows have failed. We observed that Siri in
iOS11 [7] also sets the backup bit on the cellular subflow to
discourage the utilization of the cellular interface to transport
data. In the Linux Multipath TCP implementation, a subflow
is considered to be in a potentially failed state once its
retransmission timer expires. This subflow transitions to the
active state as soon as new data is acknowledged on the
subflow. The default scheduler uses a backup subflow if all
the regular subflows are in the potentially failed state.

A. Multipath TCP on Smartphones

Before tuning Multipath TCP on smartphones, it is impor-
tant to understand how they interact with the network. We
summarize in this section some of the lessons we learned based
on discussions with network operators and previous works.

Smartphone applications rarely perform bulk transfers
Multipath TCP was designed to aggregate bandwidth and
many articles evaluated whether Multipath TCP reaches that
objective [31], [6], [11], [34]. However, smartphones rarely
exchange very long files [14], [9]. Most of the connections
carry a few KB. Many connections also experience large idle
times [8]. While not being an issue from TCP perspective,
from an energy viewpoint, it can consume energy if the radio
needs to remain active to support it.

Many subflows do not carry data The fullmesh path
manager immediately creates subflows on all active interfaces.
However, most of these subflows are useless, i.e., no data
is sent over them [9]. With the default scheduler, if the
initial subflow exhibits a lower RTT than the additional ones,
Multipath TCP will only use the initial one. Previous works
also indicate than Multipath TCP can perform worse than TCP
on short flows in heterogeneous networks [18], [27].

Mismatch with user expectations Most users favor WiFi
over cellular for both monetary and power consumption rea-
sons [20], [7]. They expect that their smartphone will use WiFi
whenever it works well and will switch to cellular only if it
brings some benefits. However, the packet scheduling decision
is taken by the sender of the packet. In practice, smartphones
mainly receive data [14], [9], meaning that most of the



scheduling decisions are taken by remote servers. Because
the measured round-trip-time is the only metric, the server
scheduling decision can go against the user expectations.

Backup subflows consume energy One way to minimize
the utilization of the cellular network is to always establish
the cellular subflow as a backup subflow [16], [23]. While
useful in mobility scenarios, there is no point to create backup
subflows if the primary one does not face any connectivity
issue. Indeed, energy consumption is a major concern for
mobile devices [7], [5], [2]. However, opening a subflow on the
cellular interface without using it is expensive from an energy
consumption viewpoint [11], the WiFi interface consuming at
least five times less than the LTE one [26]. In the remaining
of this paper, we use the LTE model proposed by Huang et
al. [20] to estimate the cellular power consumption (we expect
similar results with other models [26]). In the model used [20],
opening one cellular subflow on a smartphone is equivalent to
lighting up the screen 100% during the RRC_CONNECTED
period, which lasts around 11 s. Opening preventively the
cellular subflow as proposed in [30] is thus very expensive
from an energy consumption viewpoint. Siri in iOS11 still
creates cellular subflows at the beginning of the connection.

Related Works Lim et al. [24] proposed eMPTCP that
delays the use of the cellular below a given threshold of
bytes transfered and opens the cellular subflow if the WiFi
bandwidth is not sufficient. While working with bulk transfers,
interactive applications can transmit very few bytes and do not
need large bandwidths. Sinky et al. [38] proposes to rely on
the signal strength of the WiFi network to tune the congestion
window to trigger seamless WiFi handover with bulk transfer.
However, it was only tested under NS3-DCE environment and
not with actual devices. Han et al. [17] proposes to disable the
cellular when the WiFi is sufficient with delay-tolerant traffic.
However, interactive traffic is delay-sensitive.

III. TUNING MULTIPATH TCP

We explain how MultiMob improves Linux Multipath TCP.
We first add to the server’s packet scheduler a heuristic that
enables it to infer the wireless conditions that affect the client
subflows. Second, we implement an oracle that monitors the
network and opens cellular subflows only when needed. Third,
we extend the Multipath TCP protocol so that a client can
retransmit data inside the SYN that is used to create an
additional subflow during a handover.

A. Towards Global Scheduling

When a Multipath TCP connection is composed of 2 or
more subflows, each of the communicating hosts indepen-
dently selects the best subflow to transmit each data. The
Linux implementation selects the available subflow with the
lowest round-trip-time (RTT). This scheduler works well in
a variety of environments [31]. However, selecting subflows
only on the basis of their RTT is not always the best solution.
Consider a smartphone user that moves while using the Siri
application. This application regularly sends small bursts of
data and the server returns responses. If the smartphone detects

that the WiFi starts to be lossy, it will start to send data
over the cellular subflow. However, the server is not aware
of the movement of the smartphone and its packet scheduler
still sends responses over the WiFi subflow because it has
the lowest RTT. The server will only switch to the cellular
subflow after the expiration of its retransmission timer, which
potentially wastes hundreds of milliseconds.

To solve this problem, MultiMob includes a packet sched-
uler that uses the most recent data sent by the smartphone as
a hint to select the most suitable subflow. On the smartphone,
MultiMob uses a priority scheduler that favors WiFi and only
uses cellular when the WiFi subflow experiences retransmis-
sions. The server-side scheduler maintains for each subflow
the timestamp of the last original packet received over this
subflow. A packet is considered to be original if it contains
new data (based on its DSN) or if it successfully concludes
a subflow establishment. Similarly, an acknowledgement is
considered to be original if its Data ACK advances the lower
edge of the sending window. The MultiMob scheduler first
removes from consideration the potentially failed subflows and
the ones where this data has already been transmitted. Then it
iterates over all remaining subflows to identify the one having
the most recent original reception. If the congestion window
of this subflow is not full, it is selected.

Thanks to this scheduler, the server can quickly detect
the most suitable subflow while taking into account subflow
backup preferences. For an interactive application like Siri
that sends small requests, the server will always reply on the
subflow that was last used by the client.

B. Break-Before-Make

In the Linux kernel implementation, when a Multipath
TCP connection starts, the fullmesh path manager opens
the connection over the primary interface and then creates
subflows over the other ones. If the cellular interface is
configured as a backup interface, data packets will only be sent
over this interface once the WiFi interface fails. This make-
before-break approach minimizes the amount of data sent over
the cellular interface. Unfortunately, it does not minimize the
energy consumption. There is no significant difference from
an energy consumption viewpoint between a cellular interface
that transmits only SYN/FIN or several data packets.

MultiMob opts for break-before-make and creates subflows
over the backup interface after having detected failures on
the primary interface. With break-before-make, the key issue
from a performance viewpoint becomes how quickly can the
smartphone detect that a wireless interface works badly and
new backup subflows must be created. MultiMob detects those
failures through a Multipath TCP oracle implemented as a
kernel module. The oracle relies on the assumption that if
a network interface experiences connectivity issues, subflows
using it will experience retransmissions and losses, even if
they belong to different connections. To track those events,
our oracle maintains a monitoring table of netpaths. A netpath
is a tuple (IPsrc, IPdst, network interface). We aggregate the
information on a per layer-3 flow basis to reduce the size of the



monitoring table. This structure is well adapted to deployments
with SOCKS proxies such as [37] where all Multipath TCP
connections are terminated on the proxy.

Our oracle computes every Ts seconds statistics based on
the subflows associated to a given netpath. Our current imple-
mentation collects three metrics: smoothed loss rate (sloss),
smoothed retransmissions rate (sretrans) and maximum RTO.
Those statistics are computed based on the per-subflow state
maintained by the kernel. It also takes into account Tail Loss
Probes [12]. When the TLP timer fires, we enter FACK mode
and the packet at the head of the write queue is marked as lost.
The smoothed rates are computed by using Volume-weighted
Exponential Moving Averages (V-EMA) used by Android to
estimate the loss rate of WiFi beacons. These V-EMA reduce
to the three following equations

vali+1 =
prodi+1

voli+1
(1)

prodi+1 = α(valnew· volnew) + (1− α)prodi (2)

voli+1 = α· volnew + (1− α)voli (3)

where valnew is the new value of the studied metric (e.g., lost
sent packets during the last Ts period), volnew is the volume
of this new value (e.g., total number of packets sent during last
Ts period), prodi is the product at iteration i, voli the volume
at iteration i and vali the value at iteration i. prod0 = vol0 =
val0 = 0 and no value is computed if volnew is 0. α ∈ [0, 1]
is a parameter experimentally set to 0.5 as in Android.

The MultiMob oracle sets thresholds to detect underper-
forming netpaths. Once a threshold is crossed, MultiMob
triggers the creation of backup subflows for all connections
associated to the underperforming netpath. It also marks the
subflows associated with that netpath as potentially failed.
Since the oracle is part of the kernel, it can query the state of
all established Multipath TCP connections and trigger backup
subflows creation once a problem is detected.

The last scenario that we consider is a client-initiated down-
load. During such a download, the server pushes data towards
the client. If a subflow fails, the client stops receiving data,
but it is difficult for the Multipath TCP stack to distinguish
between losses in the network and the server application
becoming idle for any reason. We modify Multipath TCP so
that the server can indicate to the client that a data transfer
is not yet finished. This can work with existing applications.
We define two signals. The first one is sent in the Multipath
TCP DSN option. We modify one of the unused bits of the
DSN option that we call the MP_IDLE bit. This bit is set by
server when it sends a data packet that empties its send buffer.
Otherwise, the MP_IDLE bit of the DSN option is reset. Since
this bit is included in the DSS option, it is sent reliably to
the client. A receiver should not expect a connection to be
idle unless it has received a DSN option with the MP_IDLE
bit set. We also define a new experimental Multipath TCP
option that carries the current value of the RTO. The client
sends an empty RTO option from time to time and the server
returns the same option containing its current retransmission

timer. The client uses this information to set its idle timer
at max(500 msec, RTOServer). This timer runs while the
MP_IDLE flag of the last received data is reset. It is reset
every time a packet is received on the subflow and stopped if
the last data packet had the MP_IDLE flag set. If the timer
expires, the oracle triggers the creation of backup subflows.

C. Immediate reinjections

The break-before-make approach described in the previous
section is beneficial from an energy viewpoint. However, a
mobile typically detects the failure of a wireless interface
by the expiration of its retransmission timer or TLP probe.
This unacknowledged data can only be retransmitted over
another interface once a subflow has been established over this
interface. Multipath TCP [16] requires a four-way handshake
before allowing the transmission of data from the server. This
handshake has two purposes. First, it creates state on the
endpoints (and possibly on the intermediate middleboxes).
Second, the client and the server authenticate each other.
This authentication is performed by using the keys exchanged
during the initial handshake. Both the client and the server
exchange HMACs computed over these keys and random
numbers exchanged in the SYN and SYN+ACK (see Fig. 1a).
Unfortunately, this handshake delays the reinjection of the lost
data since the client cannot send data before having received
the fourth ACK [16].

To reduce this delay, we modify Multipath TCP to support
the transmission of data inside SYN or SYN+ACK pack-
ets. For this, we define two new Multipath TCP options:
FAST_JOIN_IN (FJI) and FAST_JOIN_OUT (FJO). This
is different than TCP Fast Open [33] because a new subflow
is established between hosts that already share state for one
Multipath TCP connection.

A naive approach would be to simply place data inside the
SYN and require the server to accept this data immediately.
Unfortunately, this solution would cause security problems
because this SYN is not authenticated. The MP_JOIN option
that it carries contains only the 32 bits token that identifies the
connection and a random number that is used to authenticate
the server (Fig. 1a). This token is not sufficient to authenticate
the client because a passive listener could have observed it
during the establishment of a previous subflow for the same
connection, e.g., on an open WiFi network.

The FJO option described on Fig. 1b solves this problem
and allows the client to carry authenticated data in the ini-
tial SYN. Our FJO option contains three fields. The token
identifies the Multipath TCP connection as in the MP_JOIN
option. The Data Sequence Number (DSN) indicates the
sequence number of the data contained in the SYN payload.
The third field is a HMAC computed over the connection
keys exchanged during the initial handshake and the DSN.
This last field ensures that the initiator of the subflow is
one of the connection hosts. To prevent replay attacks, our
implementation only accepts one SYN containing the FJO
option for a given DSN. To cope with lost acknowledgments,
if EDSN is the next expected DSN on the server and SDSN



(a) Multipath TCP uses a four-way handshake that lasts two round-
trip-times to create an additional subflows with JOIN.

(b) With FAST_JOIN, the client can immediately send data inside
the SYN packet.

Fig. 1: Time-sequence diagrams for the establishment of additional subflows.

Fig. 2: State machine of a simple interactive application.

the DSN contained in the FAST_JOIN SYN, the server allows
SDSN to be in the range [EDSN − rcv_wnd,EDSN ]
where rcv_wnd is its receive window. Once the SYN has
been acknowledged, the server can immediately start to send
data to the client.

The FJO option is useful when the mobile client sends
data to a server. However, there are situations where the
server pushes data towards the client. A typical example
are streaming applications where the server pushes data at
a regular rate. When the oracle running on the mobile client
detects losses or the absence of data, it may want to quickly
establish a subflow without having data to send to the server.
This case is covered with the FJI option [10] (not shown
for space limitations). This option is very similar to the FJO
option, except that it contains the current Data ACK instead
of a DSN, with the HMAC computed over this Data ACK.
With this new option, the server can authenticate the client
immediately and send data upon reception of the SYN. By
using the FJI option, the data transfer can resume after 1
RTT, instead of 2 RTTs with normal join.

IV. EMULATIONS

We evaluate in this section the performance of MultiMob
in Mininet environments [19] in a scenario with two disjoint
paths between the client and the server. Emulations are based
on Multipath TCP v0.91 in Linux 4.1.

a) Studied Traffic: Siri is a famous example of interactive
traffic. However, it is not open-source and only runs on
iOS devices. To evaluate the interactions between a simple
interactive application and Multipath TCP, we use a simplified
model based on an analysis of the behavior of Siri. Our model
is a three-states process shown in Fig. 2. The client maintains
a counter: sent. In the sending burst state, the client sends
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Fig. 3: Maximum delay to return an answer to simplified
interactive requests. Each scenario ran 25 times. Losses begin
to occur when the client is in inter-user interaction wait state,
i.e., between request bursts.

a burst of 2500 bytes using packets carrying between 50 and
500 bytes. Then sent is incremented and the client waits in
the inter-burst wait state before going back to sending burst.
Once sent reaches sent_thresh, the client switches to
the inter-user interaction wait state that represents the random
delay between successive user interactions. sent_thres,
inter-burst wait and inter-user interaction wait are empirically
set to 9, 1/3 s and 5 s respectively. We model the server as
a process that returns a 750 bytes response after each burst.
Our simple client application then collects the delay between
each request and the server’s response. Unless stated, all the
measurements in this paper are based on this traffic.

b) MultiMob Scheduler: The primary path exhibits a
RTT of 15 ms and the additional one 25 ms. Both paths have a
bandwidth of 10 Mbps and the router queue sizes are equal to
the bandwidth-delay product. The client opens the connection
over the primary path and then creates a backup subflow
over the additional one. Figure 3 shows that when there are
no losses, the default and MultiMob schedulers running
on the server exhibit quite similar performances. Notice that
because of the default tcp_slow_start_after_idle
set to 1, a request can be answered in two RTTs if its sending
phase generates more packets than the initial congestion
window (10 packets). However, when the primary subflow
fails between two requests, the MultiMob scheduler reduces
the maximal delay experienced by a factor of two. When
the client sends its first request after a loss, it experiences
a RTO before reinjecting the packet on the additional subflow.
However, with the default scheduler, the server does not
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(b) Estimated mean cell power consumption based on model [20].

Fig. 4: Simplified interactive requests with light continuous background traffic. The second interface is set as backup. If any,
the loss event occurs while the client is in inter-user interaction wait state, i.e., between request bursts. Markers shows medians
and error bars 25th and 75th percentiles over 25 runs.

know that the primary subflow failed, and it sends the reply to
the primary lossy subflow and experiences a RTO too before
reinjecting on the additional subflow. Since the MultiMob
server-side scheduler follows the last client decision, it does
not experience the RTO at the server side.

c) Influence of Threshold Value: To assess the benefits
of the oracle and determine the threshold value for sloss, we
rely on simplified interactive requests while a light background
request/response traffic (12 KB/s) is present. Figure 4a shows
the maximal latency to answer a request and Fig. 4b shows
the estimated mean power consumed on the second path. The
energy consumption is estimated by using the packet trace
and the model presented in [20], considering that the cellular
interface is always powered on. Without losses, we observe
similar requests delays, while the backup subflow is not
established with the oracle. When losses occur on the primary
path, the oracle knows that the background traffic experiences
connectivity issues and creates backup subflows for all connec-
tions using that path. Then, the simulated interactive client can
directly use the additional path and does not face RTO. Since
the server uses MultiMob scheduler, it replies on the subflow
used for the request and no RTO occurs. On the contrary, the
interactive connection must face a RTO if there is no oracle
before using the additional path, even if the additional subflow
is always established at the beginning of the connection.
Furthermore, when the link is very flappy (20-30% losses), the
case without the oracle tries to reuse the lossy path once some
ACKs manage to reach the host, while the oracle prevents this
behavior. With the oracle the creation of the additional subflow
depends on the network conditions and the sloss threshold.
When set to a low value, e.g., 10%, delays remain low but
a few losses suffice to open the additional subflow. With
higher values like 40%, the additional path remains closed in
the median case when the primary path experiences 10% of
random losses, but it can experience higher latencies. Based on
those simulations, we experimentally set the sloss threshold
to 25% as a reasonable trade-off between low-latency and
low additional path use. sretrans is set to 50% and the
max RTO threshold is empirically set to 1.5 seconds to avoid
using a subflow that might hurt interactivity because of lack
of retransmission reactiveness.
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Fig. 6: Time-sequence graph of the packets received by a client
during a 20 MB HTTP GET. The primary subflow suffers from
100% losses at 1.5 s. Retransmissions at 6 second are caused
by a burst of duplicate ACKs.

d) Influence of the Oracle Periodicity: The reactivity of
the oracle also depends on the oracle timer Ts. Indeed, as
shown in Fig. 5, the lower Ts, the quicker the reaction of the
oracle to losses and the lower the variability of the detection.
A value of 1 ms allows very quick reaction, but the oracle
might spend a lot of CPU time to update its monitoring table.
In the remaining of the paper, Ts is empirically set to 500 ms
to match sub-second reactivity and low CPU usage on mobiles.

e) Bulk Download and Primary Subflow Loss: The client
downloads a 20 MB file and we add 100% losses on the
primary path after 1.5 s. Fig. 6 shows that after some idle
time, the client detects that it did not receive data and triggers
the creation of a second subflow. The server then starts to use
the new subflow and the data transfer continues.

f) Fast Join Benefits: We evaluate the benefits of using
the FAST_JOIN_OUT option with regular request/response
traffic over an emulated network where the primary path
experiences 100% losses after five seconds. Figure 7 shows
the difference of the delays of the first request following the
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Fig. 8: Walk map for micro-benchmarks.

loss event using normal and fast joins. If the request fits inside
one TCP packet, as for the popular Siri application, the fast
joins provide immediate reinjections when the client sends
data and the response can be received after one RTT.

V. PERFORMANCE EVALUATION

This section presents the evaluation of MultiMob on Nexus
5 smartphones running Android 6.0.1. For this, we backported
Multipath TCP v0.89 to the Linux 3.4 kernel of Nexus 5
phones. Three configurations are studied: 1) No backup (NBK),
MPTCP with the fullmesh path manager; 2) Backup (BK),
NBK with backup subflows on cellular; and 3) MultiMob, the
proposed solution described in Sect. III. We use two servers.
The first one, configured with the default scheduler, is
used by NBK and BK. The second one, configured with the
MultiMob server-side scheduler, is used by MultiMob. In
this section, we first explore particular use cases with micro-
benchmarks to understand the benefits of MultiMob. We then
compare at a larger scale NBK and BK with MultiMob through
active measurements performed on a set of modified Android
6 smartphones used by real users.

A. Mobility Micro-Benchmarks

To evaluate how MultiMob performs in changing wireless
conditions, we go for a short walk (Figure 8) with two
smartphones. The first uses MultiMob and the other a vanilla
Multipath TCP configuration. Our walk starts at A, close to the
WiFi AP. Starting from C, the WiFi signal becomes weaker
given the distance and the presence of trees and buildings.
Android usually detects the loss of the WiFi signal and tears
down the WiFi network at location D. Starting at location F,
the WiFi signal becomes available again.
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(a) No Backup vs. MultiMob.
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Fig. 9: Evolution of the mean fraction of total packets carried
by the cellular network for the simplified interactive traffic.

Configuration MD (ms) RA CP (mW)
No backup 1112 100 884

Backup 780 100 885
MultiMob 1183 100 657

TABLE I: Aggregated results from simulated interactive
micro-benchmarks. MultiMob shows the mean value over both
runs. MD = Max Delay, RA = Requests Answered, CP = mean
Cell Power consumption.

Simulated Interactive Traffic Our test phones send 100
requests during our 80 s walk from A to D. Figure 9 shows
the instantaneous mean over the test duration of the fraction
of total packets that are carried by the cellular interface for
the two runs. In addition, Tab. I shows aggregated results
related to these tests. With NBK and BK, the cellular subflow
is always created at the beginning of the connection, but no
data packet is sent on the cellular subflow while the WiFi
signal remains good. This is expected for the backup case,
and the larger RTT on the cellular network combined to the
low network load explain the NBK results. When the client
requests start to be lost between locations C and D, the cellular
network is used to recover the connectivity. Since the cellular
subflow was established at the beginning of the connection,
the NBK and BK cases often experience a lower maximal
delay than MultiMob. Since the cellular subflow is already
established, the NBK and BK cases can reinject requests on
the cellular subflow as soon as a RTO occurs on the WiFi
subflow. MultiMob needs first to detect the connectivity loss
with its oracle before establishing the cellular subflow, but
its maximum delay remains similar to those of NBK and
BK cases1. On the opposite, MultiMob consumes less cellular
energy since it delays the utilization of the cellular interface.

Fixed Rate Streaming Traffic For this test, we configure
the smartphones to stream a web radio over HTTP while
performing twice the walk presented in Fig. 8. Our servers
relay the same web radio at a fixed bitrate using Icecast.

1It is actually very dependent of the wireless conditions of a particular run.
The lowest max delay observed for MultiMob over runs was 599 ms.
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Fig. 11: Playing time of the client buffer for the worst case in
Backup vs. MultiMob test. Color indicates on which interface
packet was last received.

Since all the data flows from the server to the client, all the
scheduling decisions are made by the server.

Figure 10 shows the time-sequence graph for the NBK vs.
MultiMob test. We observed no stall during those experiments.
However, the NBK case sends data nearly exclusively on the
cellular interface, even when the WiFi network is available.
From the server perspective, the cellular network appears to be
more stable with an often lower estimated RTT than the WiFi
one due to motion. This explains why the default scheduler
prefers the cellular subflow. MultiMob forces the server to
use the WiFi when it is still available. The WiFi to cellular
(between C and D) and the cellular to WiFi (between F and
A) handovers are visible on the MultiMob graph. Furthermore,
notice that MultiMob waits 40 s before opening the cellular
subflow using FJI, when the receive timer detects that no
more data is received after some time without having received
a MP_IDLE. Based on our model [20], NBK consumed 444 J
for the cellular interface during the test (1386 mW), while
MultiMob spent 329 J (1028 mW).

In the BK vs. MultiMob test, the network interface usage
is similar, i.e., WiFi is used when available. Over a dozen
of runs we observed no stall, except for a test that impacted
both Backup and MultiMob. The buffer playing time at client
side for that test is shown on Fig. 11. At 50 s (first C-D pass),
MultiMob faces an half-second stall time, due to the reception
of a packet on the WiFi network while the cellular subflow was
already established. Since packets are acknowledged on the
subflow they came from, the MultiMob server-side scheduler
then tries to reply on the WiFi subflow, but it was meanwhile
lost. After facing a RTO, the server reinjects this reply on

the cellular subflow and the connection continues. The BK
case experienced a 3 s stall time at time 205 s (second C-
D pass). This stall was caused by the default scheduler
that favors the WiFi subflow over the backup subflow on
the cellular interface. Indeed, after 200 s, the WiFi was
underperforming, the server experienced RTOs and reinjected
data on the cellular subflow, but it then came back. When the
WiFi signal eventually disappeared, the RTO value increased
because of previous losses and the RTO expired seconds after
the actual WiFi loss. Again, the BK case opened the cellular
path at the beginning of the connection, while this happened
at 45 s by MultiMob. Furthermore, MultiMob has a smaller
cellular energy consumption with 319 J (994 mW), though the
BK one remains close with 347 J (1083 mW).

B. Measurements with Real Users

This section summarizes active measurements performed on
Nexus 5 devices distributed to a few students and academics
over a period of seven weeks (28th January - 22nd March 2017).
We installed on each smartphone an Android application that
periodically changes the network configuration, either once
during night or after a reboot. Our measurement application
runs in the background and sends data when it detects that
the smartphone moves. Network conditions of tests depend on
the presence of WiFi and/or LTE networks. To observe the
performance of MultiMob to switch from the WiFi network
to the cellular one, we only consider here tests where both
WiFi and cellular interfaces are online at the beginning of the
tests. Notice that WiFi can be lost during some tests.

Figure 12a shows that nearly all simplified interactive re-
quests are answered within one second. Notice that simultane-
ously using two paths for such traffic as with the NBK can lead
to increased response delays because of network heterogeneity
between paths. Figure 12b plots the maximum delay observed
during the tests. For all configurations, the maximum delay ob-
served to answer simplified interactive requests remains within
one second, with rare outliers higher than two seconds. Though
the oracle detection to trigger cellular subflow is the largest
delay component, MultiMob does not impact too much the
request traffic when WiFi is lost. The main difference between
MultiMob and both NBK and BK resides in scenarios where
the WiFi remains alive during the whole test. The energy
consumption computed on the entire traffic collected during
the test is shown in Fig. 12c. Since NBK and BK always open
additional subflows at the beginning of the connection, they
consume energy, even if no real data is sent on that interface.
Background connections initiated by real users can sometimes
increase energy consumption by using the cellular interface.
In contrast, since most of the time MultiMob does not create
additional subflows, its cellular energy consumption is very
low. MultiMob can thus keep low latency for delay-sensitive
applications while limiting energy impact of Multipath TCP.

VI. CONCLUSION

Given that smartphones have both cellular and WiFi in-
terfaces, users expect them to be able to perform seamless
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Fig. 12: Simplified interactive traffic with real users (easier to see with color).

handovers between those two network interfaces. Multipath
TCP enables such seamless handovers since it can use both
cellular and WiFi interfaces for a single connection. Using
both interfaces simultaneously is too expensive from an energy
viewpoint. We propose, implement and evaluate MultiMob,
a set of improvements to the Multipath TCP implementation
and protocol. MultiMob uses break-before-make to minimise
energy consumption. It extends Multipath TCP to support
immediate retransmissions over a different interface. Further-
more, thanks to its scheduler, a server automatically selects
the best performing interface to respond to requests from
a smartphone. Our measurements indicate that MultiMob
improves the performance of Multipath TCP on smartphones
while minimizing energy consumption.

MultiMob is available: http://multipath-tcp.org/multimob
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