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SUMMARY

The diffi culty of renumbering a network—i.e., adding and removing an Internet Protocol (IP) prefi x due to a provider 
change or a network merger—is a real issue for most network administrators. In this paper, we propose a set of 
macros that can be used in confi guration fi les. These allow network administrators to write generic confi gurations 
that are independent of the public IPv6 prefi xes allocated to their network. We explain how to apply our macros to 
key confi guration fi les, namely fi rewall access lists, Domain Name Service and Dynamic Host Confi guration Protocol, 
and how to use this mechanism in a full renumbering process. Copyright © 2009 John Wiley & Sons, Ltd.

1. INTRODUCTION

The current Internet Protocol (IPv4) was designed in the 1970s. At that time, IP addresses were divided 
into classes, and organisations willing to connect to the Internet had to obtain an address block from the 
Internet Assigned Numbers Authority. In the late 1980s, class-based addresses combined with the growth 
of the Internet caused two main problems [1]. First, the sizes of class A, class B and class C addresses 
were too rigid. Second, projections in the early 1990s indicated that the 32- bit Internet address space 
would become an increasingly limiting resource. The fi rst problem was solved by the introduction of 
Classless Interdomain Routing (CIDR) [1], which supports variable-size subnets. To face the second 
problem, the development of IP next generation, now known as IPv6, began [2]. Compared to IPv4, the 
main benefi t of IPv6 is its 128-bit address space.

From a scalability viewpoint, a key element of an addressing architecture is how address blocks are 
allocated. With IPv4, address blocks were initially allocated on a fi rst-come, fi rst-served basis. Two types 
of address blocks were the defi ned: Provider Independent (PI) and Provider Aggregatable (PA). PI 
address blocks are assigned by routing registries to Internet service providers (ISPs) and large customers 
only. PA address blocks are assigned by ISPs, from their PA block, to smaller customers. When a PI 
address block is allocated to an organisation, the organisation can use this address block while being 
connected to any provider. On the other hand, an organisation that received a PA address block from 
provider X cannot switch to provider Y without renumbering, i.e., updating all its IP addresses.

With IPv6, the initial address allocation plans [3] were strongly in favour of mainly allocating PA 
address blocks to avoid overloading the Border Gateway Protocol (BGP) routing tables and, thus, to 
permit routing scalability. The fi rst policies used by Regional Internet Registries (RIR) basically assumed 
that IPv6 addresses would only be allocated to ISPs [4]. Today, small customers are lobbying to force the 
RIRs also to allocate PI address blocks to them [5]. Their main motivation is that, unfortunately, practical 
experience has shown that it is very diffi cult for a customer network to renumber when it needs to change 
provider. To successfully renumber and so to avoid provider lock-in, sites must indeed be able to update 
all confi guration fi les in which IPv6 addresses appear. Typical examples include Domain Name Service 
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(DNS) confi gurations, router confi gurations, fi rewall access lists and Dynamic Host Confi guation Proto-
col (DHCP) confi gurations. Although this problem had been identifi ed in the mid 1990s [6], the proce-
dures that should be followed today for renumbering [7,8] require many manual operations and are 
therefore still complex, lengthy and error prone.

Besides, it can be considered that an IPv6 site will have to renumber one or several times during its 
existence. This can be a consequence of a network growth or merger, or, as claimed earlier, due to a pro-
vider change. From this perspective, the fact that many networks have not yet started their transition to 
IPv6 can be seen as an opportunity to write down confi gurations in such a way as to make further 
renumbering easier.

In this paper, we tackle the renumbering issue by showing that it is possible to partially automate the 
process. To do so, we split the problem into an addition and removal problem and defi ne macros allow-
ing confi gurations to be written that are independent of the currently available prefi xes in the site. Later, 
each time a prefi x change occurs, the actual confi guration fi les are regenerated according to the available 
prefi xes. This technique is mainly targeted at networks that aim at frequent renumbering but can be 
applied in a larger scope.

The remainder of this paper is organised as follows. Section 2 explains how a network can be simply 
prepared once for future renumbering through several case studies. Section 3 describes how, in a pre-
pared network, a prefi x can be added or removed. Finally, Section 4 concludes the work.

2. PREPARING CONFIGURATIONS FOR PREFIX CHANGES

An IPv6 site wishing to prepare for an easy addition or removal of its public prefi xes has to be confi gured 
in an appropriate way. This confi guration is made up of two parts. Firstly, in addition to its public IPv6 
prefi x or prefi xes, we propose that the site also uses internally a ULA (Unique Local Addresses [9]) prefi x. 
The ULA prefi x is used to provide stable IPv6 addresses at least to all nodes containing a confi guration 
fi le that would be affected by a prefi x change (routers, servers, fi rewalls, middleboxes, etc.). Most regular 
IPv6 hosts either use autoconfi guration or DHCPv6 and thus do not contain confi guration fi les that must 
be updated. These stable ULAs are of course only reachable inside the site. Secondly, all the confi gura-
tion fi les are prepared for the changes. Basically, we introduce macros into the confi guration fi les that 
allow automatic generation of updated confi guration fi les containing the actual IPv6 prefi xes whenever 
a prefi x is added or removed. Actually, a renumbering event contains a period during which both prefi xes 
coexist, the new prefi x being preferred to the former one for new connections. Once most connections 
have switched to the new prefi x, the former one is removed. Networks in which some long-lived con-
nections must survive the renumbering are beyond the scope of this paper and should consider using 
protocols such as Host Identity Protocol.

Owing to space limitations, we concentrate on the confi guration of the services that cause most prob-
lems [9,10] when an IPv6 network needs to be renumbered, namely DNS, fi rewalls, DHCP and Neighbour 
Discovery. For each of these services, we obtained ISP and campus network confi guration fi les from 
Japan, China and Belgium. Similar solutions can be developed for other services. Both IPv4 and IPv6 
confi gurations were used: IPv6 since it is the target of our mechanism and IPv4 since it large real confi gu-
rations to be obtained that are not yet available in IPv6. We succeeded in rewriting all these confi gurations 
using our macros and without changing their semantics. For this purpose, we developed a toolbox called 
Macro based Prefi x Updater (MPU), which can be downloaded from our website (http://inl.info.ucl.ac.be/
MPU). The only requirement for our solution is that the confi guration of each service can be generated 
from an ASCII fi le.

2.1 Macro defi nitions

Adding (or removing) an IPv6 prefi x from the confi guration fi les used by a site is more complex 
than simply performing search and duplicate (or remove) in all confi guration fi les. For example, DNS 
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confi guration fi les will contain IPv6 addresses in both standard and reverse form. Other examples are 
fi rewalls where access lists can contain rules that are applicable to some prefi xes but not all of them. 
Furthermore, multi-homed sites may have different policies concerning their public prefi x allocation. For 
instance, a corporate network attached to one research and two commercial ISPs may use all prefi xes 
inside its research lab while the confi guration of its data centres will only use the prefi xes allocated by 
the commercial ISPs. To cope with these issues, we propose fl exible macros that are used to replace all 
prefi xes in the confi guration fi les.

The simplest statement in our macros is written as

[[<expression1> $$ <expression2>]<separator>]

This means that the string between the inner square brackets has to be repeated for each prefi x after 
having replaced $$ by the prefi x. The separator (<sep>) is placed between each repetition; typical 
values for it are a colon, semicolon or a new line. For example, ‘[[address $$:a::1],]’ in a network 
using the prefi xes 2001:db8:1::/48 and 2001:db8:8::/48 would be converted to ‘address 
2001:db8:1:a::1,address 2001:db8:8:a::1’.

Besides, some confi gurations may need to apply a function on prefi xes such as DNS using the reverse 
IP notation. For this reason, a function can be defi ned as follows:

[[<expr>$ [<function_name>:]$<expr>]<sep>]

For example, [[zone “$reverse:$.ip6.int” {...}]] can be used to defi ne a reverse DNS 
zone for each prefi x of a site. Other functions are defi ned later for lifetimes. MPU can easily be extended 
with new functions.

Finally, we introduce colours permitting the discrimination of prefi xes to use in each macro. For this 
purpose, each prefi x is associated with one or several colours. For example, consider a network having 
both research and commercial prefi xes. The research prefi xes are tagged with the rd colour while the 
commercial prefi xes are tagged with the comm colour. Assume that part of a confi guration fi le should 
only be applied to research prefi xes. Colours can thus be used to restrict the duplication of this part only 
to research prefi xes. For instance, a statement starting with ‘[comm,rd;rd[...’ means that two colour 
sets (separated by semicolons) are defi ned. The fi rst one contains prefi xes of colour rd or comm and set 
2 contains the prefi xes having colour rd. Given these sets, the statement can use the patterns $1$ and 
$2$ to respectively relate to prefi x set 1 or 2. As a result, the statement is fi rst duplicated for each prefi x 
of set 1 replacing $1$ by the corresponding prefi x, then it is done for set 2. If, at one given moment, the 
network has one research prefi x 2001:db8:3::/48 and one commercial prefi x 2001:db8:7::/48, 
the following fi rewall pseudo-rule can be written to express that all packets from commercial or research 
prefi x to the host with suffi x ::9 using research prefi x have to be dropped;

[comm,rd;rd[if packet from $1$::/48 to $2$::9, then drop]]

For the sake of simplicity, an empty colour set is equivalent to all prefi xes and no colour defi ned 
between dollars is equivalent to declare set 1. In ‘[[address $$:a::1],]’, it thus means that set 1 is 
made of all prefi xes and that this rule will be duplicated for each prefi x of set 1, ‘$$’ being replaced by 
the prefi x value.

In the following, we detail how macros can be applied to DNS (Section 2.2), fi rewalls (Section 2.3) and 
some other services (Section 2.4).

2.2 The Domain Name Service (DNS)

For the DNS, our case study are BIND confi guration fi les. BIND server confi guration is a set of statement 
blocks containing options, a sample being given in Figure 1. Addresses appear either in a statement defi -
nition (server and zone in Figure 1) or within an option (e.g., acl, query-source or masters). If 
an address appears in a statement defi nition (e.g., at line 6 in Fig. 1), the entire statement has to be dupli-
cated for each prefi x. In options, addresses are mostly used in lists, e.g., at line 1 or 13 in Figure 1. In this 
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case, each address has simply to be duplicated for each prefi x. However, some BIND options require a 
single address as a parameter: query-source[-v6], [alt-]transfer-source[-v6] and notify-source[-v6]. These 
defi ne the source addresses that must be used for specifi c operations. A better way to deal with it would 
be to rely on the host’s address selection mechanism [11] and thus not to use these options. If for any 
reason they must be used, a solution to express it with our macros is to use a colour bound to one prefi x, 
the preferred one.

The information requested and contained in DNS replies is called a Resource Record (RR). RRs are stored 
in zone fi les as tuples <name> [<TTL>] <type> <value> . Sample RRs are given in Figure 3. Zones 
are declared in the confi guration fi le (lines 10–16 in Figure 1) specifying the fi les where RRs are stored. 
A zone is named by what it defi nes, i.e., the domain name for direct resolution and the address prefi x 
for reverse resolution. In BIND, addresses used for a reverse zone are inverted as seen on line 15 of 
Figure 1.

Using our macros, the confi guration of Figure 1 can be abstracted as shown in Figure 2 to become 
independent of the global prefi xes. At line 4 of this confi guration, it is shown how an option taking only 

1 acl "internals" { 2001:db8:1::/48; fd12:3:4::/48; } 
2 options { 
3    notify no; 
4    query-source address 2001:db8:1:a::d; 
5 };
6 server 2001:db8:1:7::a { request-ixfr no; }; 
7 view "local" { 
8  match-clients { internals; }; 
9  recursion yes; 

10  zone "mydomain.net" { 
11   type slave; 
12   file "db.net.mydomain"; 
13   masters { 2001:db8:1::a; }; 
14  }; 
15 zone "1.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa" { ... 
16  }; 
17 };

Figure 1. A sample of BIND confi guration fi le

1 acl "internals" { [[$$::/48;]] fd12:3:4::/48; } 
2 options { 
3    notify no; 
4    [main[query-source address $$:a::d;]] 
5    ... 
6 };
7 [[server $$:7::a { request-ixfr no; };]] 
8 view "local" { 
9  match-clients { internals; }; 

10  recursion yes; 
11  zone "mydomain.net" { 
12   type slave; 
13   file "db.net.mydomain"; 
14   masters { [main[$$::a;]] }; 
15  }; 
16 [[ zone "$reverse:$.ip6.arpa" { ... 
17  }; ]] 
18 };

Figure 2. The generic version of the BIND confi guration fi le of Figure 1
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one IP address can be transformed under the assumption that the main colour is bound to one prefi x. 
Line 16 uses the reverse function to transform the prefi x for reverse DNS zones.

A sample of direct (or reverse) RRs that can be found in zone fi les is shown at lines 2–3 (or 4–5) of 
Figure 3. In direct zone fi les, names are mapped to IP addresses. When a new prefi x is added, the RRs 
have therefore to be duplicated. In reverse zone fi les, RRs map an address suffi x to a name. Those fi les 
do not need to be changed when a new prefi x is added. Only their declaration statement in the server 
confi guration (lines 15–16 in Figure 1) needs to be duplicated.

RRs can also contain a TTL when they are not using the default one (defi ned for the whole zone fi le), 
for instance 7200 and 86400 (24 hours) in Figure 3. This TTL gives to the DNS client the lifetime during 
which it can still use this record without sending a new request, typically a few days. When a new prefi x 
is added, no special care has to be taken with this parameter. However, when a prefi x has to be removed, 
the RRs associated with this prefi x will remain in client caches for TTL time. This issue, briefl y mentioned 
in some renumbering discussions [7,8], concerns only direct RRs since clients will still try to connect to 
hosts using addresses that no longer belong to them. There are two opposite solutions to this issue. First, 
the direct RRs could be removed DNS TTL-seconds before the actual removal of the corresponding prefi x. 
This can only be applied if another prefi x is routable in the network. Another solution is to set the TTL 
to zero TTL-seconds before prefi x removal time and then to remove the RRs at the time of removal. This 
solution may lead though the DNS server to receive a large number of requests during the zero-TTL 
period. Of course, a trade-off should be chosen between these two solutions. Such a trade-off could be 
to decrease the TTL in several steps, e.g., to divide the starting TTL by two TTL-seconds before prefi x 
removal, to divide it once more by two new-TTL-seconds before prefi x removal, and so on until the TTL 
reaches a threshold at which it is set to zero.

In practice, in Figure 3, the only RRs that need a change for a generic confi guration is the third one 
which would become:

3 | [[www $ttl:$ IN AAAA $$:a:9]]

End-hosts may also have entries in the DNS server. If so, their entries do not necessarily need to be 
updated using our tool when a new prefi x is known. Indeed, some of them may need to use a different 
IP suffi x for each prefi x received, e.g., if they are using Cryptographically Generated Addresses (CGA) 
[12] or privacy extensions [13]. In this case, DNS records cannot be updated by simply replacing the 
former prefi x by the new one. Dynamic updates [14] must be used by such end-hosts to update their 
own RRs.

In 2000, A6 records were proposed at IETF [15] to support renumbering. They rely on address chaining 
to obtain an IP address from a name. Each part of the address was placed in a separate RR, making site 
renumbering much easier. Unfortunately, A6 has been deprecated in favour of AAAA because of the 
potential overweight of the chaining [16].

2.3 Firewalls

Other services that need to be carefully updated when a network is renumbered are the fi rewalls and 
the access lists used on routers. Intuitively, when a prefi x is removed, the rules matching the prefi x (e.g., 

1 ns1       IN CNAME nameserver 
2 www   IN AAAA fd12:3:4:a:9 
3 www 7200   IN AAAA 2001:db8:1:a:9 
4 7 . 1 . b . a . 3 . a . d . 0 . c . 7 . b . e . 7 . 9 . d . 1 . c . 0 . 0 . 0  IN  PTR  abcd.mydomain.net.
5 9 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . a . 0 . 0 . 0  86400  IN  PTR  www.mydomain.net.  

Figure 3. Some sample BIND RRs
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‘from prefi x A, drop’) must be entirely removed, while in the case of rules excluding the prefi x (e.g., ‘not 
from prefi x A nor prefi x B, drop’), only the conditions related to the prefi x must be removed. When a 
new prefi x is added, the same principles are applied, i.e., the entire rule is duplicated if the rule matches 
the prefi x and only the condition is duplicated if the prefi x is excluded.

In this section, we focus on fi rewall confi gurations that can be written as a list of rules made of a con-
junction of conditions and a target (allow or deny). In practice, all commonly used fi rewall implementa-
tions fi t this model. We verifi ed this on real network confi gurations using Netfi ler/iptables, Cisco IOS access 
lists and JunOS fi rewalls. If a fi rewall language allows disjunctions, these can be easily transformed by 
splitting them into two rules as shown in Table 1. Like Cheswick et al. [17], we use a table notation to 
represent fi rewall rules for the sake of readability.

Formally, a fi ltering rule can be expressed either as rules of type (1) or type (2). In these rules, Ci is a 
condition unrelated to IP addresses and PA is a condition matching an address or address block from 
prefi x A. The target defi nes the actions to be performed when the rule is matched; in practice common 
targets are allow or deny.

 Either  targetC Pi
A

i

∩∩ ⇒  (1)

 or  targetC Pi
A

i

∩∩ ¬ ⇒  (2)

If a new prefi x, B, is added, rule (1) can be rewritten as follows:

 C P P
C P

C P
i

A B
i

Ai

i
Bi

i

∩ ∪
∩

∩

∩
∩

∩ ( ) ⇒ ≡
⇒

⇒






target

target

target
 (3)

This means that a rule containing a condition that matches a prefi x must be entirely duplicated for 
each prefi x. On the other hand, rule (2) can be rewritten as

 C P P C P Pi
A B

i

i
A B

i

∩ ∪ ∩ ∩∩ ∩¬ ⇒ ≡ ¬ ¬ ⇒( ) target target  (4)

which means that a rule containing a condition excluding a prefi x must have only the condition dupli-
cated for each prefi x. For instance, consider a network owning prefi x 2001:db8:1::/48 that uses the 
fi ltering rules listed in Table 2.1 If this network obtains a second prefi x, 2001:db8:abc::/48, the fi rst 
fi ve rules would be updated as shown in Table 3. According to property (3), rule 1 gives two rules: 1a 
and 1b. On the other hand, using (4), rule 4 only has more conditions when a prefi x is added.

# Action Source address Port Destination address Port

1 allow 2001:db8:1::/48 | 
2001:db8:e::/48

* 2001:db8:a:4::1 http

2a allow 2001:db8:1::/48 * 2001:db8:a:4::1 http
2b allow 2001:db8:e::/48 * 2001:db8:a:4::1 http

Table 1. In this example, rule 1 is semantically equivalent to rules 2a and 2b. It allows http packets 
from either 2001:db8:1::/48 or 2001:db8:e::/48 prefi x to a specifi c IP address

1In this table, ‘!’ indicates a negation.
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The last rule (rule 6) contains several conditions related to IP address. When a prefi x is added, such a 
rule can be converted in two ways: either as shown in Table 4 or in Table 5. The fi rst consists in duplicat-
ing the rule considering each prefi x independently. It does not allow packets to be sent from one prefi x 
to the other. The second considers each prefi x pair for building rules. In Table 5, this allows packets to 
be sent from one prefi x to another. If the rule target were ‘deny’, the second option should be chosen to 
prevent a host from bypassing the rule by sending packets from one prefi x to the other. The choice 
between these two is dependent on the policy of the network and has to be made by an administrator. 
The second solution should be chosen unless administrators decide to deny cross-prefi x connections 
within the network. Both can be expressed with our macros.

Thus, using the macro defi nitions described earlier in this section, the initial fi rewall of Table 2 
could be written as Table 6 in order to make it prefi x independent without changing its semantics. 

# Action Source address Port Destination address Port

1 allow * * 2001:db8:1:a::d dns
2 allow * * 2001:db8:1:7::a dns
3 deny ! 2001:db8:1:a::d 

& ! 2001:db8:1:7::a
dns * *

4 allow * * ! 2001:db8:1:5::/64 ssh
5 deny * * 2001:db8:1::/48 telnet
6 allow 2001:db8:1::/48 * 2001:db8:1:a::4 smtp

[.  .  .]

Table 2. A sample fi rewall table in a network owning the prefi x 2001:db8:1::/48

1a allow * * 2001:db8:1:a::d dns
1b allow * * 2001:db8:abc:a::d dns
2a allow * * 2001:db8:1:7::a dns
2b allow * * 2001:db8:abc:7::a dns
3 deny ! 2001:db8:1:a::d dns * *

& ! 2001:db8:abc:a::d
& ! 2001:db8:1:7::a
& ! 2001:db8:abc:7::a

4 allow * * ! 2001:db8:1:5::/64 ssh
& ! 2001:db8:abc:5::/64

5a deny * * 2001:db8:1::/48 telnet
5b deny * * 2001:db8:abc::/48 telnet

Table 3. The fi rst fi ve rules of Table 2 if a prefi x (2001:db8:abc::/48) has been added to 
the network

6a allow 2001:db8:1::/48 * 2001:db8:1:a::4 smtp
6b allow 2001:db8:abc::/48 * 2001:db8:abc:a::4 smtp

Table 4. A fi rst way of rewriting rule 6 of Table 2 when a new prefi x is added. It does not allow a 
packet to be sent from one prefi x to the other

6a′ allow 2001:db8:1::/48 * 2001:db8:1:a::4 smtp
6b′ allow 2001:db8:1::/48 * 2001:db8:abc:a::4 smtp
6c′ allow 2001:db8:abc::/48 * 2001:db8:1:a::4 smtp
6d′ allow 2001:db8:abc::/48 * 2001:db8:abc:a::4 smtp

Table 5. A second way of rewriting rule 6 of Table 2 when a new prefi x is added. The rule is 
duplicated for each prefi x pair
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In rules 3 and 4, the ‘&’ (and) sign between closing brackets is the separator. Rule 6 uses a semi-
colon between the opening brackets; this expression means that both set 1 and set 2 correspond to 
all prefi xes. As a result, if n is the number of prefi xes, this rule is fi rst duplicated n times replacing 
$1$ by each prefi x and then each duplicated rule is duplicated once more n times replacing $2$ by 
each prefi x.

2.4 Other confi gurations

Both DHCP and Router Advertisements (RA) are used to permit end-hosts connected on a LAN to obtain 
and use IP addresses. In practice, the router running DHCPv6 server (DHCPs) or Router Advertisement 
daemon (RAd) is often the egress router of the LAN. RAd is used for stateless IPv6 address confi guration 
[18]. It fl oods on the LAN the prefi xes that can be used by the end-hosts as well as their preferred and 
valid lifetimes. On the other hand, DHCPv6 [19] is used as a server-based address confi guration. When it 
receives an address request, it replies with one or several addresses and their preferred and valid lifetime. 
The preferred lifetime is the remaining time during which this address should be preferred by the host, i.e., 
should be used for any connection. The valid lifetime is the time left during which this address can be 
used. When the valid lifetime expires, the address must stop being used by the host. When an address is 
not preferred anymore but still valid, it becomes deprecated. In this state, it cannot be used for new connec-
tions but can still be used for already established ones.

As for DNS RR, addresses or prefi xes are therefore associated with TTLs, called lifetimes. There are 
two possible approaches for updating them for RAd and DHCPs. The fi rst one is to apply the same pro-
cedure as for DNS, i.e., updating prior to renumbering the lifetime to a shorter one. Another method, 
which does not need early scheduling, is to reduce the prefi x lifetime of end-hosts prior to its expiration. 
For DHCPv6 this can be done by using a DHCP reconfi gure message that triggers the hosts to re-contact 
the server. For RA, it is done by sending new prefi x information. However, RA specifi cation [20] defi nes 
that, in order to avoid DoS, the lifetime reduction updates of unauthenticated prefi xes2 cannot be used 
if there are fewer than 2 hours left.

RAd and DHCPs use similar confi guration fi les. They consist of several global parameters and some 
confi guration blocks: one for each prefi x. These blocks must be duplicated every time a prefi x is added. 
They contain obviously the prefi x value but also the different lifetimes.

Besides these services, some other confi gurations need some changes. The interface addresses of 
routers and servers that use neither RA nor DHCP have to be updated. Such confi guration fi les can be 
very different from one operating system to another. Actually, these are quite simple and similar to 
DHCPs/RAd confi gurations.

2Authentication of RA can be done using the SEND protocol.

# Action Source address Port Destination address Port

1 [[allow * * $$:a::d dns]]
2 [[allow * * $$:7::a dns]]
3 deny [[! $$:a::d ]&] dns * *

& [[! $$:7::a]&]
4 allow * * [[! $$:5::/64]&] ssh
5 [[deny * * $$::/48 telnet
6 [;[allow $1$::/48 * $2$:a::4 smtp]]

[.  .  .]

Table 6. Prefi x-independent fi rewall table having the same semantics as that one of Table 2
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Routing protocols daemons and other strictly local protocols should local addresses [9] use as much 
as possible for their communications. However, even if global addresses are needed, we observed that 
confi guration fi les of most of them are very similar to the ones we previously discussed in this paper.

2.5 On the cost of preparing confi gurations

In pure manual renumbering of confi gurations, each time a prefi x change occurs, all the confi guration 
fi les concerned have to be updated. With the solution discussed in this paper, the renumbering has to 
be prepared only once, prior to any prefi x change. Later, the changes can be automated and should be 
error free. In fact, the confi guration fi les using macros are parsed by MPU, which generates real confi gu-
rations containing all the prefi xes in use. The fi rst preparation of the confi guration fi les can be made by 
converting existing confi gurations to prefi x-independent ones, as has been done for DNS (from Figure 1 
to Figure 2) or for fi rewalls (from Table 2 to Table 6). Prefi x-independent confi gurations can also be 
written directly from scratch when new services are confi gured.

It is pretty diffi cult to evaluate what is the complexity of building these macro-based confi gurations. 
When they are written directly from scratch, we can assume that the additional cost is negligible com-
pared to the cost of writing the full confi gurations. The cost of modifying existing confi gurations seems 
to be fairly light. Actually, most of the process can be automated by using pattern-matching scripts. In 
the signifi cant and large real confi gurations we examined during our analysis on DNS, fi rewalls and 
DHCP confi gurations, we observed ratios of respectively 250/253 (98.8%), 689/750 (91,7%) and 50/50 
(100%) of statements that have been automatically transformed using simple scripts. For the remaining 
ones, we had to take a look in order to interpret them in the right way.

3. PREFIX ADDITION OR REMOVAL PROCEDURE

Section 2 explained how the confi guration fi les should be prepared once, for any prefi x change event. 
Here, we discuss how a prefi x addition or removal should be performed to avoid service outage. In 
practice, a prefi x change cannot be considered as an instantaneous event as different service updates 
must be done in a specifi c order. For instance, a new prefi x should not be assigned to end-hosts while a 
fi rewall is still blocking this prefi x. As a result, a prefi x addition or removal procedure is composed of 
several steps [7]. This is often error-prone and should not be done manually.

The easiest way is probably to rely on a centralised management tool that knows which services 
are running on which nodes and that is able to plan and monitor the renumbering procedure. In 
practice, this tool sends orders to network nodes in accordance with the current state and monitors 
the results.

In order to perform a fi rst validation of our tool, MPU, we used confi gurations we have obtained from 
ISPs and campus networks. For the services we could install in our lab, we deployed them in a network 
using SOAP processes for triggering the prefi x changes. The services restarted correctly and their behav-
iour appeared to be coherent and correct after each update.

3.1 Related work

Detailed renumbering procedures have been discussed in several IETF documents [7,8] describing 
issues that may be raised by renumbering and existing solutions. They describe constraints that are 
taken into account in this paper, but do not propose any concrete automated confi guration update 
mechanism.

For the distribution of prefi x information within a site, distributed mechanisms could be used such as 
Router Renumbering [21] or those included in full renumbering propositions [22,23]. DHCPv6 using 
Prefi x Delegation [24] could also be used as a centralised mechanism. However, these solutions do not 
enable transmission of information such as colours and distributed ones are probably not suitable for 
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triggering each parts of the update. Finally, the monitoring part has been addressed by Beck et al. using 
the NetSV tool [25].

3.2 Removing a prefi x in use

The removal of a prefi x p is a three-step process: preparation for the removal, deprecation of p and 
defi nitive removal. The preparation consists, as explained earlier, in starting to decrease the TTL of DNS 
direct RRs and the lifetime of prefi xes advertised on LANs. Depreciation corresponds to setting p 
as deprecated so that no host uses it any more for new connections. This has to be done for RAd 
and DHCP confi gurations as well as for static IP confi guration on all network devices. DNS server 
confi gurations also have to be updated not to use p for requests (e.g., via the main colour in Figure 2). 
Finally, direct RRs using p have to be removed from the DNS. These four updates have no precedence 
constraints between them.

The removal of all addresses related to prefi x p in confi guration fi les is the last step of the procedure. 
Before starting this step, it must be ensured that DNS direct RRs concerning p are no longer used. In 
theory, applications should no longer use an address with an expired TTL. In practice, some applications 
and some recursive DNS servers do not observe this TTL at all. As a result, some additional time should 
be allowed before starting this last step to avoid service outage. First, addresses on LAN (via RAd and 
DHCPs) and on statically assigned interfaces have to be removed. As explained in Section 2.4, LAN 
updates may need to wait for some prefi xed lifetime to expire on end-hosts. Once this is done, the last 
removals can be performed, in any order, in DNS server confi gurations, fi rewalls, routing protocols and 
reverse zone DNS records.

3.3 Adding a new prefi x

Adding a new prefi x in a network is simpler than removing it. First of all, fi rewall, routing protocols and 
reverse zone DNS records must be updated to consider the new prefi x. Once routing has converged, 
addresses related to this prefi x can be bound to statically confi gured interfaces. The DNS server can then 
be confi gured to use this new prefi x, followed by LAN confi guration protocols (RA and DHCP). When 
the prefi x is used on LANs (it could take time with DHCP if reconfi gure messages are not used to trigger 
the client to request the DHCP server), direct DNS records must be updated to take the new prefi x into 
account.

4. CONCLUSION

Many network administrators are concerned, or will soon be concerned, by the diffi culty of changing 
their confi guration fi les each time a new IPv6 prefi x is allocated to their network. For this reason, they 
lobby for obtaining provider-independent (PI) IPv6 prefi xes. If this were applied, it would unfortunately 
lead to a risky growth of the BGP IPv6 routing tables [10]. However, the transition of networks to IPv6, 
requiring some confi guration rewriting, can be seen as an opportunity to write confi gurations in a way 
that makes renumbering easier.

In this paper, we proposed an approach that relies on macros to allow text-based confi guration fi les 
to be automatically updated upon the addition or removal of an IPv6 prefi x. Our macros support prefi x 
colouring to discriminate part of the confi gurations based on the prefi x type. We described the procedure 
that should be followed when a prefi x is added or removed. A prototype was implemented in Python 
and applied to real network confi gurations.

The main advantage of our approach is that it can be applied quite easily on a network, without requir-
ing large changes in confi gurations or in the deployed services. Our further work is to continue our 
technique with a management tool for renumbering, thus building an all-in-one toolbox. Finally, the 
opposite approach in which services are aware of the prefi x changes should be considered and analysed 
in comparison with the one proposed in this paper.
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