
The Case for Pluginized Routing Protocols
Thomas Wirtgen, Cyril Dénos, Quentin De Coninck∗, Mathieu Jadin†, Olivier Bonaventure

ICTEAM, UCLouvain, Louvain-la-Neuve, Belgium
Email: firstname.lastname@uclouvain.be

Abstract—Routing protocols such as BGP and OSPF are key
components of Internet Service Provider (ISP) networks. These
protocols and the operator’s requirements evolve over time, but
it often takes many years for network operators to convince
their different router vendors and the IETF to extend routing
protocols. Some network operators, notably in enterprise and
datacenters have adopted Software Defined Networking (SDN)
with its centralised control to be more agile. We propose a new
approach to implement routing protocols that enables network
operators to innovate while still using distributed routing proto-
cols and thus keeping all their benefits compared to centralised
routing approaches. We extend a routing protocol with a virtual
machine that is capable of executing plugins. These plugins extend
the protocol or modify its underlying algorithms through a simple
API to meet the specific requirements of operators. We modify
the OSPF and BGP implementations provided by FRRouting and
demonstrate the applicability of our approach with several use
cases.

I. INTRODUCTION

During the last decades, the requirements imposed on en-
terprise and ISP networks have changed drastically. The first
enterprise networks simply provided a “best effort” service
and were not attached to a public network. Today’s enterprise
networks need to support Quality of Service [13] and include
security feature to protect them from attacks originating from
the Internet. ISP networks also face similar problems, but at a
much larger scale [31], [10]. Internet traffic continues to grow
quickly and ISP networks need to scale to sustain the load.
To cope with these changing requirements, network operators
are forced to innovate.

Innovation is defined by the Merriam-Webster dictionary as
the introduction of something new. As an extension, we can
define network innovation as the introduction of new features
inside an enterprise or ISP networks. The introduction of a
new feature is often done in three phases: design, implement
and deploy. During the design phase, the network operators
propose new abstract solutions and evaluate them. One of the
proposed solutions is then implemented before being deployed
it in the network after successful tests in labs.

The Software Defined Networks (SDN) [39] accelerate
innovation in networks by using centralised controllers that
program flow-tables on the network switches and routers.
Thanks to these centralised controllers, researchers and net-
work operators can implement a wide range of services that
are difficult to support with traditional routing protocols (see

∗ Quentin De Coninck is a F.R.S.-FNRS Research Fellow.
† Mathieu Jadin is supported by a grant from F.R.S.-FNRS FRIA.

the references cited by Kreutz at al. [36] for a long list of
examples). Some companies rely on SDN for parts of their
network [33], but SDN has not replaced traditional routing
protocols like BGP and OSPF/IS-IS.

In practice, deploying a new service inside a large ISP
network can be difficult. Such a network is rarely composed
of homogeneous routers produced by the same manufacturer.
Most networks gather different types of routers from different
vendors [10], [18]. The characteristics of a software-based
virtual router used in a datacenter are different from those
of an access router that connects a remote branch office or a
backbone router that support hundreds of terabits/sec of traffic.
Still, these different routers support the same packet format
(IP) and implement the same standardised routing protocols
(OSPF [41], BGP [47]). This standardisation ensures inter-
operability among routers from different vendors. However,
it can also delay innovation as router vendors usually only
implement features that have been standardised.

To illustrate the difficulty of deploying extensions to routing
protocols, let us look back at the evolution of several BGP and
OSPF extensions whose deployment has been documented.

The BGP communities [48] play an important role in scaling
BGP routing policies by enabling network operators to tag
routes and then apply the same policies to the routes that
carry a given tag. Various use cases of this attribute have been
documented [12], [23], [49]. This BGP attribute was designed
when BGP used AS numbers encoded as a 16-bits integer and
the high-order bits of the BGP communities contain an AS
number. As BGP evolved to support 32-bits AS numbers [54],
it became necessary to support wider BGP communities. Since
2009, the new ISPs receiving 32 bits AS numbers by default
were unable to define their own BGP communities according
to the existing standard [48]. Several encoding for BGP com-
munities that support 32-bit AS numbers were proposed since
2002 [1], [46]. Unfortunately, discussions did not converge
within the IETF and it took more than fifteen years to finally
agree on the BGP Large Communities specification [29]. The
redaction of this document took less than year, probably a
record for the IETF and implementations were released in the
following two years 1. The first ISP that received a 32-bits AS
number in 2009 had thus to wait more than a decade to be
able to use its assigned BGP communities.

Another example is the BGP extensions to support the traffic
engineering performance metrics [22]. The development of

1See http://largebgpcommunities.net/implementations/ for a detailed de-
scription of these implementations.978-1-7281-2700-2/19/$31.00 2019 c© IEEE

these extensions started in 2013 [58]. Six years later, it is
now supported by only two vendors 2. There are still ongoing
discussions within the IETF and it remains difficult for ISPs
to deploy this extension unless they exclusively use routers
from the two vendors that support this extension.

A third example is the so-called add-path BGP extension
[55] that enables a router to send several paths towards the
same prefix over a single BGP session. The first discussions
for this extension started in 2002 [56] and the IETF approved
it in 2016. The first implementations 3 were reported in 2011
and then mainly in 2014.

A fourth example is the OSPFv3 LSA extensions [37] that
extend the LSA format by encoding the existing OSPFv3 LSA
information in Type-Length-Value (TLV). Thanks to these
TLVs, it becomes easier to use OSPFv3 to flood other types
of information than those covered by the standardised LSAs.
The first discussions on this extension started in 2013 and only
two implementations have been confirmed 4.

These examples show that while standardised routing pro-
tocols have clear benefits in terms of interoperability, it often
takes half a decade or more before network operators can
deploy new network services that require protocol extensions.
Large companies like Facebook have reacted by implementing
their own proprietary routing protocol [28], but there are no
indications of its adoption outside Facebook.

In this paper, we propose a compromise between the flex-
ibility of SDN where network operators can implement their
own code and the benefits of distributed routing protocols.
We focus on OSPF and BGP, but the solution that we
propose is applicable to other routing protocols with some
implementation effort. More precisely, we propose three main
contributions in this paper.

• First, we propose in Section II to organise the implemen-
tations of routing protocols so that a network operator
can extend the implementations used on her routers to
support new protocol features.

• Second, we demonstrate that such an architecture can
be implemented in the OSPF and BGP daemons of
FRRouting.

• Third, we demonstrate in Section III, several use cases
showing the benefits of our proposed implementation
architecture.

We conclude the paper in Section V with a discussion of
the benefits and drawbacks of our proposed approach.

II. PLUGINIZING A ROUTING PROTOCOL

In this section, we propose a new technique to extend
and enhance routing protocols and their implementations. To-
day’s commercial and open-source implementations of routing
protocols act as black boxes. From a high-level viewpoint,

2See https://trac.ietf.org/trac/idr/wiki/draft-ietf-idr-te-pm-bgp\
%20implementations.

3See https://trac.ietf.org/trac/idr/wiki/draft-ietf-idr-add-paths\
%20implementations.

4See https://trac.ietf.org/trac/ospf/wiki/draft-ietf-ospf-ospfv3-extend\
%20implementations

Fig. 1. Current routing protocol implementations.

an implementation of a routing protocol can be represented
as in Figure 1. The implementation is modelled as a Finite
State Machine (FSM) that exchanges routing messages with
other routers. The RFCs describe in details how and when
protocol implementations should send and react to specific
packets. This FSM can be configured through the command
line interface, SNMP MIBs or Netconf and compute routing
tables that are pushed in the FIB. With this blackbox model,
any extension to the protocol requires a replacement of the
FSM.

We envision a different implementation model. From a high
level viewpoint, our model is represented in Figure 2. We
introduce three main modifications compared to the blackbox
model. First, the protocol implementation provides a simple
API that contains a set of functions that expose the protocol
state. For example, an OSPF implementation typically includes
functions to add or remove LSAs from the link state database,
a BGP implementation includes functions to parse and encode
BGP messages. Our second modification is that we allow
the FSM that implements the protocol to be extended by
adding one or more states, adding one or more transitions
or replacing existing transitions. Figure 2 shows the FSM that
enables the core part of the routing protocol in black and two
extensions in red and blue. Our third modification is that we
introduce plugins. A plugin is some executable code which
can be executed inside a routing protocol implementation. A
plugin can use the functions provided by the protocol API and
extend the finite state machine. These plugins enable network
operators to design their own extensions to routing protocols
and deploy them in their networks without having to wait for
their standardisation and adoption by multiple router vendors.

In SDN networks, operators can implement new services
as software running on a centralised controller that interacts
with the network devices through the Openflow protocol [39].
SDN controllers support different programming languages and
a range of services have been implemented on them [36]. A
network operator who wants to deploy a new service as a
plugin would like to implement it once and deploy it on all
routers inside her network.

The proposed deployment model has several important
consequences on the implementation of our plugins. First, it

Fig. 2. Our proposed routing protocol implementations can be extended by
using plugins that modify the FSM and use the API.

must be possible to execute a plugin on different types of
routers that use different CPU models. This implies that either
a plugin will be written using a programming language which
can be interpreted by the protocol implementation or that it
will be compiled into bytecode which is supported by a Virtual
Machine that is included in the protocol implementation.
Second, OSPF and BGP daemons are always active and it
should be possible to extend them without restarting them.
Third, since a plugin runs inside the OSPF/BGP daemon,
there is a risk that an incorrect plugin could jeopardise the
protocol state or even crash it. To cope with these three
requirements, we compile the plugins into eBPF bytecode that
is executed by a virtual machine that we include in the protocol
implementation.

We provide more details on how we extended one imple-
mentation of BGP and OSPF to support plugins in the next
sections. We first describe the key points of our solution in
Section II-A. We detail the management of the memory in
Section II-B. We then provide the details related to the OSPF
and BGP daemons in Sections II-C and II-D.

A. Pluginizing FRRouting

To demonstrate the feasibility of this approach, we apply it
to the OSPF and BGP daemons of FRRouting5. FRRouting
(FRR) is an IP routing protocol suite for Linux and Unix
platforms which includes protocol daemons for BGP, IS-IS,
LDP, OSPF, PIM, and RIP. It was forked from Quagga and is
actively maintained. We used FRRouting version 6.

To alter the behaviour of both OSPF and BGP, we rely on
a user-space implementation of the eBPF [17] virtual machine
called uBPF [32] that we linked to the FRRouting daemons.
The main advantage of this virtual machine is that it supports
the same bytecode as the eBPF virtual machine that is included
in the Linux kernel. It can thus benefit from the different tools
that have been written to compile bytecode for the Linux
kernel. The uBPF VM can load executable eBPF bytecodes
and either interpret them or compile them to x86 assembly
with its own JIT compiler. Like the eBPF VM of the Linux
kernel, it includes a verifier that checks the validity of the
loaded bytecode. The uBPF verifier checks (1) all instructions
are valid opcodes, (2) there is an exit instruction, (3) there

5See https://frrouting.org

is no forbidden operations such as division by zero, writes
to read-only registers or invalid jumps, and (4) the memory
accesses remain either in its stack or a provided memory area.

Now that the routing daemon includes the uBPF virtual
machine, we need to discuss how the daemon must be
restructured to enable it to be extended by using plugins.
An implementation is organised as a series of functions that
process and send packets as well as compute routing tables.
These functions are the concrete implementation of specific
states of the FSM protocol in a programming language such as
C. Henceforth, to enable the modification of the protocol, we
use these functions and make them pluginizable. These serve
as insertion points where a network operator can decide to
attach plugins compiled in eBPF.

More precisely, one plugin is associated with one routing
function and is subdivided in three different parts, called
anchors, offering a fine granularity on the code injection
location. Consider the original function f . The anchors are
illustrated in Figure 3 and are defined as follows.

• PRE: the eBPF code is executed just before running the
body of the function f . This anchor can for example
be used to load required data inside the plugin or for
monitoring purposes. For example, the PRE anchor can
monitor the FSM state transition to track the progress of
the protocol. Any number of bytecode can be attached in
this mode. They are then executed in a non-deterministic
order, but they always terminate before the actual call of
the function f . Bytecodes attached at PRE anchors only
have read-only access to the routing daemon variables. If
no eBPF code is present, this insertion point resumes to
a no-op.

• REPLACE: the eBPF bytecode is executed instead of
the original code of the function f . Only one bytecode
can be attached in this mode, and the absence of injected
code reduces the REPLACE mode to the original imple-
mentation of the function f . This implies that a network
operator can dynamically replace one of the functions of
the underlying implementation in deployed routers. Byte-
codes in REPLACE anchors have read and write accesses
to the routing daemon variables. This enable plugins to
change main protocol algorithm such as the shortest path
computation in the OSPF protocol by including custom
network metrics. REPLACE can also be used to suggest
new protocol features by redefining the definition of BGP
import and export filters. BGP implementations typically
propose a domain specific language (DSL) to design
filters, but lack flexibility when designing complex filters.
Traditional routing protocols implementations cannot rely
on other type of information that the DSL proposes.
eBPF can overcome this limitation since it has access to
the arguments of the protocol function containing more
information than DSL might propose.

• POST: this mode is similar to the PRE one, except that
the eBPF code is executed just after running the body of
the function f , just before returning to the function it was
called from. Bytecodes attached at POST anchors only

have read-only access to the routing daemon variables. As
PRE function, the POST anchor can be used to monitor
the time taken by protocol functions such as compute
time in the Dijkstra algorithm in OSPF. In this case, both
PRE and POST are required to track the time when the
function starts and ends.

Fig. 3. Insertion points for eBPF Plugins inside routing functions.

Each pluginizable function has a name that uniquely iden-
tifies it. Such convention allows network administrators to
easily attach and remove their eBPF scripts in a key-value
data structure. Furthermore, such human-readable identifiers
provide a convenient interface to dynamically change the
plugins attached to the routing daemon without rebooting it.
This latter method is effectively too restrictive, because routing
sessions and routing tables must then be recomputed from
scratch.

An eBPF plugin is composed of one or more bytecodes that
are attached to a specific insertion point. These bytecodes are
called pluglets and a plugin can thus contain several pluglets.
A given implementation might expose many pluginizable
functions. A plugin is defined in a description file listing each
ELF file containing the eBPF bytecode and its corresponding
function with its insertion point. The network administrator
can load it through a command line interface (CLI). Several
plugins can co-exist within a routing daemon. To be executed,
pluglets require a VM. The current uBPF implementation
provides an API to create a VM containing the loaded eBPF
bytecode to execute it. However, such VM can only contain
one bytecode at a time. Furthermore, with uBPF there is no
API to update the code attached to a VM. The code replace-
ment is nevertheless a required feature to dynamically update
plugins, which is important for routing protocol daemons that
never terminate. To solve these problems, we extend the API to
manage multiple plugins. In fact, we create a specific uBPF
machine which is in charge of only one pluglet. Several of
these VMs can be attached to a routing daemon at a given
time. These multiple VMs are stored into a map, each being
associated to a plugin. This map is, of course, accessible
through our extended uBPF API inside the routing daemon.

B. Memory Management

One of the motivations of using VMs is their isolation from
the routing daemon they are attached to. In addition, the eBPF
instruction set is quite small and simple, making it easier
to control their operations. However, plugins may require
more information from the implementation than the initial
arguments provided to the VM. To exchange information with
the routing daemon, FRRouting registers a set of functions
that are made accessible to the uBPF VM, and therefore
the plugins. As both pluglets and FRRouting are written in
C language, plugins could theoretically access any memory
location within the routing daemon. In practice, this could
create stability problems if badly written eBPF code tries to
access invalid memory locations. Furthermore, it would make
plugins very dependent on the FRRouting internals that may
change over time. To ensure the stability of the executable
that combines the routing daemon and the eBPF plugins, we
leverage the uBPF VM to control the memory that a given
plugin can access. This is done through different techniques.

First, the routing daemon exposes through an API a set of
getter and setter functions to access the main data structures
(packets, LSDB for OSPF, RIB for BGP, etc.) maintained by
the routing daemon. These functions are part of the modified
routing daemon. They also verify the validity of their input
parameters.

Second, the different pluglets composing a given plugin may
need to collaborate together by exchanging information. Each
pluglet is supported by one instance of the uBPF VM and has
its own stack. To address this requirement, FRRouting keeps
a dedicated context for each plugin. Thanks to this context,
we can associate a plugin specific heap that is shared among
the different pluglets that compose a plugin. These pluglets
can allocate and free memory in their shared heap by using
functions that are similar to malloc(3) and free(3). This
is illustrated in Figure 4. As we want to keep control on the
memory used by the plugins, we do not directly expose the
associated functions of the C library. Rather, we reimplement
some of them like memcpy(3), malloc(3) and free(3)
and expose them to the uBPF VMs. In addition, the API of
the routing daemon provides functions for pluglets to map an
area of the plugin heap to a plugin specific identifier. Such
mechanisms enable collaborative pluglets to retrieve a precise
memory area while providing isolation between plugins.

C. Pluginizing the OSPF Daemon

The previous sections describe the generic techniques that
are required to add plugins to a routing daemon. In addition,
the routing daemon also needs to expose specific OSPF
functions that the plugins can use. We briefly describe these
OSPF functions and the insertion points in this section.

The insertion points of an OSPF daemon are the protocol
functions where eBPF plugins can be attached. These insertion
points depend on the features that eBPF plugins need to sup-
port. Our current prototype includes several insertion points.
We briefly describe some of them. The SPF_CALC insertion
point corresponds to the function that computes the shortest

Fig. 4. The two pluglets of the left plugin share the same heap while the
pluglet of the right plugin uses a separate heap.

paths. The OSPF_SPF_NEXT insertion point corresponds to
a function which is part of the SPF calculation process that
implements Section 16.1 of the OSPF specification [42].
The HELLO_SEND insertion point corresponds to the function
that sends Hello packets. The LSA_FLOOD insertion point
corresponds to the function that floods the received LSAs.
The ISM_CHANGE_STATE insertion point corresponds to the
function that is called when an interface changes the state of
its Interface State Machine.

The OSPF API also exposes some functions to the plugins.
First, we expose functions used to get/set some OSPF
internal structures. For example the get_ospf_area
function is used to get a copy of an OSPF area structure
from OSPF while get_ospf_area can be used to set an
OSPF area structure to a desired value. Such functions are
provided for most of the important structure maintained by
OSPF. We also expose functions from the implementation
that can be useful for plugins. Examples of such
functions are plugin_ospf_flood_through_area
that allows to flood an LSA through an area and
plugin_ospf_lsa_install that allows to install
an LSA in the router’s LSDB.

D. Pluginizing the BGP Daemon

The BGP daemon is also extended similarly. We add
insertion points on functions receiving BGP messages from
neighbours, on filters and inside the decision process. We also
expose specific functions to the plugins that are executed by
the uBPF VM.

Our BGP API exposes two types of functions to the
eBPF plugins. First, there are functions to access/modify
some elements of the data structures maintained by the
BGP daemon. For example, get_cmp_prefixes is used
to retrieve two prefixes received during the BGP decision
process. The first one is a prefix received from the remote
peer when it has sent a BGP Update message. The sec-
ond prefix is one prefix already present in the Adj-Loc-
RIB. The get_attr_from_prefix returns the attribute
structure related to the prefix sent by a remote peer. The

as_path_from_prefix function returns the AS path re-
lated to a prefix while the get_attr_from_path_info
returns all the attributes of the prefix passed as argument. The
get_community_from_path_info extracts the BGP
community structure associated with a given path.

Our BGP API also includes functions that manipulate
and compare BGP messages or their attributes. These func-
tions are typically used by the BGP decision process and
will be used for one of our use cases. Example func-
tions include aspath_cmp that compares two AS paths,
aspath_count_hops that returns the number of ASes
contained in a given path, similar functions for the MED or
other BGP attributes or the peer_sort which determines
where a peer is an eBGP or an iBGP neighbour.

III. USE CASES

In this section, we describe four examples showing how
network operators and researchers can leverage the proposed
plugins to extend a routing protocol.

First, we demonstrate in Section III-A that we can use
plugins to extract and expose internal protocol information
for monitoring. Second, we show in Section III-B plugins
changing the protocol packet format and its interpretation in
the OSPF route computation. Third, we show in Section III-C
plugins describing more expressive BGP filters. Fourth, we
demonstrate in Section III-D that plugins can also modify the
BGP decision process.

A. Monitoring routing protocols

One of the most popular use cases for eBPF in the Linux
kernel is to monitor various events that occur inside the kernel
in an efficient and non-intrusive manner. Similarly, we added
monitoring facilities to the BGP and OSPF implementations
in FRRouting.

To illustrate the monitoring capabilities of our proposed
plugins, we have designed and implemented both a BGP
and an OSPF monitoring daemons that interact with plugins
running on the routing daemons and exports statistics using
IPFIX [9]. Those statistics are aggregated by the daemons and
exported to an IPFIX collector.

To monitor the BGP routing daemon, we implemented
several BGP plugins that are attached at PRE anchors at
several insertion points. Some of these plugins monitor specific
BGP messages. For example, our plugin monitoring the Open
messages, used to start a BGP session, is composed of 50
lines of C code and uses 16 external calls. Similar plugins
are provided for the Keepalive and Update messages. Besides
monitoring the received BGP messages, one plugin also mea-
sures the time required to run the BGP decision process. We
have also implemented plugins that track specific IP prefixes or
analyse the received AS Paths to enable the operator to provide
more detailed statistics. Finally, we built plugins in charge
of both monitoring withdrawn and rejected routes. The last
one provides the reason of the reject decided by BGP import
filters. We study the performance impact of these plugins in
Section III-C.

We also implemented similar plugins to monitor OSPF.
These plugins are inserted at the PRE and POST anchors of
different insertion points. With plugins shorter than 10 lines
of code, we can monitor things such as the execution time of
the SPF calculation process, the number of Hello packets sent
or the LSAs flooded by a router.

B. More flexible OSPF route computation

One of the benefits of our proposed plugins is that it is
possible to extend the routing protocol. As an illustration, we
implement a new type of OSPF LSA and update the shortest
path computation algorithm. This idea is similar to the flexible
IGP algorithm that is currently being discussed within the
IETF [44]. We do not adopt the syntax proposed in the IETF
drafts, but the idea is similar.

We first define a new OSPF LSA (type 13). This LSA is
similar to the normal router LSA (type 1), except that we
associate an additional metric (as an integer) to each link. We
use this additional metric to represent the colour of each link.
This plugin is implemented by using about 100 lines of code
and is inserted in the SPF_CALC insertion points. This LSA
is then flooded inside the network.

Our second plugin is attached at the OSPF_SPF_NEXT
insertion point at REPLACE anchor. It modifies the
ospf_spf_next() function which implements Section
16.1 of the OSPF specification [42]. In this function, the LSDB
is represented as a directed graph. The ospf_spf_next()
function examines the links in the LSAs of the first vertex
from the candidates list. Then it updates the list of candidates
with any vertices that are not already on the list. If a lower-
cost path is found to a vertex already present in the candidate
list, it stores the new cost. We rewrite this function as an eBPF
plugin to support colour constraints. For each router LSA that
is examined, we check if there is a corresponding (same router-
ID) LSA of type 13 in the LSDB. If yes, we check for each
link the colour of the link. If it is green, we continue normally,
if it is red, we ignore the link. This plugin is implemented in
about 160 lines of C code.

As an illustration of the utilisation of this new LSA, we
simulated the network topology shown in Figure 5. In this
network, all the links have a cost of 100. With the standard
Dijkstra algorithm, router R1 uses its direct link to reach both
R2 and R3. With our type 13 LSA, R1 advertises a different
colour (red) for the directed link between itself and R3. This
LSA is flooded in the network and our second plugin running
on the different routers computes the routing tables without
considering the red link. In this configuration, R1’s routing
table forwards packets destined to R3 via R2. On the other
hand, R3 continues to use its direct link to reach R1.

To evaluate the performance of these OSPF plugins, we
loaded the OSPF router with the topology of the GTS Central
Europe network from the Internet Topology Zoo [35]. It
contains about 150 nodes and the same number of edges. This
is one of the largest topologies from this public dataset which
makes it a good candidate to evaluate this plugin overhead.

Fig. 5. Simple OSPF network.

We used this experimental setup to evaluate the memory and
CPU consumption of our plugins. For this, we consider three
different versions of the OSPF daemon: (i) the vanilla OSPF
daemon from FRRouting version 6, (ii) our flexible OSPF
daemon but without any plugin and (iii) our flexible OSPF
daemon with two plugins installed (the two plugins that
allow changing the Dijkstra computation using our new type
of LSA). Looking at the memory consumption, we observe
that without plugins, our flexible OSPF daemon consumes
4.93 MBytes of memory while the vanilla one only consumes
4.85 MBytes. This difference is due to the additional data
structures required to support the management of plugins. With
the two plugins loaded, the memory consumption grows to
5.23 MBytes. The difference between the flexible OSPF with-
out plugins and the one with plugins is due to several reasons.
First, a 64 KBytes heap is dedicated to each plugin when it
starts. This heap remains allocated for the future executions
of the plugin. Second, the bytecodes of the plugins consume
between 1 and 10 KBytes per plugin. Third, when bytecodes
are injected, the implementation stores some more metadata
related to it and the uBPF VM also maintains data related to
the VM state. All this together leads to about 300 KBytes of
overhead for two plugins. This seems reasonable for today’s
routers.

To evaluate the CPU cost of the plugins, we focus on the
computation of the shortest paths, which is the most important
algorithm used by an OSPF daemon. To measure the CPU time
required to compute the shortest path, we rely on the following
experiment. We start the router under test, let it download the
entire LSDB from its neighbour and measure the time required
to compute the shortest path after the full transfer of the LSDB.
Figure 6 provides the CPU times measured over 50 different
runs with four variants of our flexible OSPF daemon. Our
baseline is the vanilla OSPF daemon which takes on average
5.34 msec to compute the shortest paths. Our flexible OSPF
daemon takes roughly 5.49 msec without plugins and slightly
more with the monitoring plugins.

The eBPF plugins can either be interpreted or compiled by
the JIT compiler of the uBPF VM. The plugin that supports our
Type 13 LSA inside the shortest path computation is composed
of about 160 lines of C code. It is executed for each node/edge
visited during the shortest path computation. When this plugin

vanilla pluginized
no plugins

pluginized
monitor SPF
interpreted

pluginized
modify SPF
interpreted

pluginized
modify SPF

jitted

5.0

5.5

6.0

6.5

7.0

7.5

8.0

tim
e

(m
s)

SPF time

Fig. 6. SPF execution times over 50 runs on the emulated 150 nodes GTS
Central Europe topology.

TABLE I
DATA ABOUT EBPF PLUGINS FOR THE DECISION PROCESS.

eBPF
Function

API
Calls

eBPF
Insts LoC

Local Pref 21 85 51
As Path 19 91 52

MED
Check 25 147 58

IGP
Weight 76 338 134

Router
ID cmp 26 110 54

is interpreted, the shortest path computation increases up to
7.3 msec. However, once the plugin is compiled by the JIT,
the shortest path computation time drops to 5.66 msec and
thus the overhead remains small compared to vanilla OSPF.

C. More flexible BGP filters

FRRouting, like most BGP implementations, support a
range of import and export filters. A network operator can
define access-lists that defined the list of prefixes which are
accepted/rejected. It is also possible to specify a prefix-list
which can also match on the prefix length. FRRouting also
supports filters that match on the AS-Path and route-maps
which can match on other attributes such as BGP Communi-
ties, the origin of a route, the peer that announced a route. Such
filters are widely used by network operators [14] and some
router configurations contain thousands or tens of thousands
of lines of configuration files to specify them.

Although route-maps are the most flexible BGP filters, their
configuration might become cumbersome and complex [14].
Our proposed eBPF plugins enable network operators to write
filters in C code which is much more expressive than the ad-
hoc languages that have been defined by router vendors to
support filters. Furthermore, such eBPF filters could access
to additional information, such as the current state of the
protocol.

The filtering process is supported per peer and per prefix and
defined in a single function inside FRRouting. We added an
insertion point for the eBPF virtual machine inside this func-
tion. However, there are situations where an operator could
want to attach several eBPF plugins to this filtering process.
Given that the order of the application of the filter functions
can be important for the decision of the filter, we allow
the network operator to specify the order in which different
REPLACE plugins will be executed for this filtering function.
These REPLACE functions are actually multiple dummy no-
ops anchors that are executed before actual FRRouting filtering
function.

An eBPF plugin for the filtering function can return three
different results: FILTER_DENY if the filter has decided to
reject the route, FILTER_ACCEPT if the filter has decided to
accept the route and BGP_CONTINUE if the next filter needs
to be applied. The uBPF virtual machine executes the different
BGP plugins in the order specified by the network operator
when it loaded them and stops the processing as soon as one
of them returns FILTER_DENY or FILTER_ACCEPT.

We previously mentioned that a filter could modify protocol
variables. As for traditional filters, the virtual machine enables
an eBPF filter to modify attributes such as the local-preference,
the MED, the AS-PATH (for path prepending for example),
BGP communities, etc. The eBPF filters can also read the
current RIB of the BGP router. This could bring new filter
possibilities based on the RIB content.

Another advantage of eBPF filters is that it becomes easy
to manipulate BGP communities. Many network operators use
BGP communities for a wide range of purposes [12]. Mea-
surements indicate that BGP routers rarely remove the BGP
communities that upstream routers attached. This increases the
size of the BGP routing tables and the memory consumption
on routers and opens a range of operational problems [49].
With eBPF, the programmer defines which communities to
match without maintaining a list of prefixes as current route-
map. An eBPF filter can easily add, delete and compare BGP
Communities since the filter is written in C.

We developed several BGP import filters as eBPF plugins
to illustrate the flexibility of our proposed architecture and
evaluate the performance impact of these new filters. Our first
plugin is used as an import filter. It simply parses the AS-Path
as only accepts the routes advertised by an odd-numbered AS.
This filter only requires 5 lines of C code. We do not expect
that network operators who want to use it in their network, but
we use it as a simple benchmark to evaluate the performance
impact of the eBPF plugins.

Our second eBPF plugin is more useful for network op-
erators. The BGP routing tables in the default-free Internet
continue to grow. Recent data 6 shows that routers of Route-
View project need to carry more than 800k routes. Recent
routers can easily handle such large routing tables, but many
smaller ISPs and enterprise networks still use older routers
that have limited memory. On such routers, it makes sense

6See http://bgp.potaroo.net/.

R1 R

1Gbps

Fig. 7. Network topology used to evaluate the performance of the BGP filters
implemented as eBPF plugins.

to only accept a subset of the routes to avoid overflowing
the available memory. Many ISPs use filters to block IPv4
prefixes that are too long (e.g. /24) [53], [7]. However, these
filters block some legitimate prefixes. Measurement studies
have shown that a small fraction of the ASes that advertise
prefixes are responsible for the pollution of the BGP routing
tables by advertising many more specific prefixes that are
covered by a less-specific one [7]. Some ASes advertise both
a /20 IPv4 prefix and all the /24 subprefix that it contains.
Our second eBPF plugin automatically detects those ASes that
de-aggregate their large prefix and only accepts the first 4
more specific prefixes that are included inside a larger one
that is already included in the router’s RIB. This eBPF plugin
is implemented in 19 lines of C code. When a BGP route is
received, the eBPF plugin verifies whether it is already covered
by a less specific prefix that already includes 4 more specific
prefixes. If so, the route is rejected, otherwise it is accepted.

To evaluate the performance of these two filters, we consider
the simple scenario shown in Figure 7. Router R1 uses
exabgp to inject a BGP routing table 7 containing 200K
entries to router R over an eBGP session. Router R uses
different versions of FRRouting. The machine running router
R is equipped with Intel(R) Core(TM) i3 CPU 540 @ 3.07GHz
running on Linux kernel 5.0.13, 12GB of RAM and 1 Gbps
NIC.

Our baseline for the evaluation of the performance impact
of the eBPF filters is the utilisation of FRRouting without any
filter. We add to FRRouting an eBPF plugin that monitors
the insertion time of each prefix in the router FIB. Thanks to
this plugin, we plot on Figure 8 (dotted blue curve) the time
required to process the BGP updates received from R1. The
green curve shows the time required to process the same BGP
updates with our second eBPF plugin that filters the more
specific prefixes. This filter rejects 13k of the 200k routes
and only increases the processing time by 5.4%. The eBPF
filter that rejects the routes advertised by an odd-numbered
AS processes all the BGP routes in only 12.23 seconds, but
it rejects half of them. Since it rejects many routes, the BGP
daemon has to perform less computation than when there is
no plugin.

The dotted magenta curve on Figure 8 shows the time
required to process all the BGP updates sent by R1 without
any filter but with the 7 eBPF monitoring plugins described
in Section III-A installed.

7For this evaluation, we really on the BGP routing table from
Spotify’s super-smash-brogp project, see https://github.com/spotify/
super-smash-brogp.

0 5 10 15 20 25
Time (seconds)

0

20

40

60

80

100

Pr
oc

es
se

d
Ro

ut
es

 (%
)

Without plugins
Filter: only routes from odd ASes
Filter: limit redundant routes
Monitor activated

Fig. 8. Performance of the BGP filters implemented as eBPF plugins.

D. Pluginizing the BGP Decision Process

Our last use case is the BGP decision process. This is a
key part of the BGP daemon that controls the selection of the
best path towards each destination prefix. Network operators
use various techniques to influence the selection of these best
paths [15], [45], [50]. Some routers can be configured to skip
some steps of the BGP decision process or slightly modify
their behaviour [16]. For example, many BGP implementations
support a configuration parameter to always compare the MED
attribute even between routes that were received from different
peers.

In the FRRouting BGP daemon, the decision process is im-
plemented as a single function (bgp_path_info_cmp). We
refactor the FRRouting code to organise this function such that
it now calls one specific function per step of the BGP decision
process. Each of these steps is then implemented as a separate
function. These functions are all implemented following the
same pattern. They compare a new path with the best one
that is already present in the BGP routing table. If the new
path is strictly better based on the attributes that are compared
in this step of the decision process, then the function returns
BGP_COMP_SPEC_2. If the best current path is strictly better
than the new one, the function returns BGP_COMP_SPEC_1.
If the two paths are equivalent according to the attributes
considered in this step of the decision process, then the return
value of the function returns the next step that needs to be
executed. This makes it possible to fully customise the BGP
decision process, not only replacing one step with another, but
changing the order of the rules of the BGP decision process.

Thanks to the utilisation of eBPF plugins, network operators
can easily tune the BGP decision process of their routers.
Many network operators use BGP communities to tag the
Point of Presence (PoP) or the city where a given route was
learned [12]. We leverage this to implement a variation on
hot-potato routing that uses the geographical distance between
PoPs to prefer one route over the other. Each PoP is encoded
as a BGP community and our eBPF plugin contains a table
with the latitudes and longitudes of all the PoPs of the ISP.
When two routes are compared, the eBPF plugin computes the

R1 R

1Gbps

R2

1Gbps

Fig. 9. Network lab used to evaluate the pluginized BGP decision process.

distance between them based on the geographical coordinates
of the PoPs where they were received and always prefer the
closest one. This eBPF plugin is implemented in 148 lines of
C code.

To evaluate the cost of using eBPF plugins within the BGP
decision process, we reimplement all the steps of the decision
process as plugins. In FRRouting version 6, there are 14
different steps of the decision process. The eBPF plugin that
supports the local-pref attribute requires 51 lines of code.
This is one of the simplest steps of the BGP decision process.
The most complex eBPF plugin is the one that compares
the IGP cost towards the BGP nexthop. This eBPF plugin
is implemented using 134 lines of C code. We do not expect
that network operators will replace all the steps of the BGP
decision process with eBPF plugins, but use this as our worst-
case scenario to evaluate the performance penalty of these
eBPF plugins.

We consider the network show in Figure 9. Router R1 sends
a full BGP routing table containing 200k routes. Once router R
has accepted all the routes announced by R1, router R2 starts
to announce exactly the same routes. Every route sent by R2
must be evaluated by all the steps of the BGP decision process
on router R that eventually prefers the new one because of its
router-id, i.e. the last step of the BGP decision process.

We consider different variants of our modified version
of FRRouting and measure the execution time of the BGP
decision process to fully process routes sent by R2. As for
evaluating filter performances in Section III-C, we use the
same eBPF plugin that monitors the insertion time of each
re-advertised prefix in the router FIB. With the vanilla BGP
daemon, the dotted blue curve of Figure 8 shows that it takes
on average 17.5 seconds to accept all the routes sent by router
R2 and install them in the FIB of router R. If we use our
modified version of FRRouting that supports eBPF plugins but
do not install any of them, router R needs up to 28 seconds
to install all the routes sent by R2 in its FIB. Finally, when
all the steps of the BGP decision process are implemented
as plugins, router R needs almost 34.8 seconds to install the
same number of routes in its FIB. We instrumented our code
to analyse the reason for this high cost of the pluginized BGP
decision process and have identified that the simple linked-list
used by the memory allocator of our prototype was the culprit.
We are currently rewriting this part of the code and expect that
the new memory allocator will improve the performance of the
pluginized BGP decision process.

IV. RELATED WORK

Based on feedback from their customers, router vendors
have implemented various techniques to control the operation

of routing protocols. The Command Line Interface (CLI) is the
classical way for network operators to tune the configuration
of the routing protocols running on their routers. Some also
rely on SNMP MIBs to gather statistics and some simple
configuration tasks [27], [34]. Over the years, router vendors
have added new techniques to enable their customers to inter-
act with the router software. Some vendors provide scripting
facilities [38], [6] and the industry is now heading towards
the utilisation of Yang models [8]. However, these approaches
do not enable network operators or researchers to extend the
underlying protocols.

The eBPF virtual machine has been introduced in the Linux
kernel a few years ago. It is now mainly used for configuration
and monitoring purposes [19]. Looking at the networking use
cases, eBPF is used to provide fast programmable data packet
processing [30], improve firewalls [2], implement network
services [40], support IPv6 extensions [59], extend TCP [52]
or implement Multipath TCP schedulers [20]. We are not
aware of applications of eBPF to routing protocols.

In the late nineties active networks were proposed as a
solution to bring innovation back inside the network that was
perceived as being ossified [51]. Most of the work in this
area focused on the possibility of placing bytecode inside
network layer packets. This bytecode was then executed by
virtual machines running on routers. The idea of placing code
inside packets was not adopted by the industry [5], but P4 [3]
could be considered as a modern variant of this idea. In the
control plane, researchers built upon this idea to propose new
solutions such as the 4D architecture [24], the Routing Control
Platform that centralises routing [4] or Metarouting [25] that
proposed to open the definition of routing protocols using a
declarative language.

Although the eBPF plugins proposed in this paper were
applied to BGP and OSPF, the same technique could be
used with other control plane protocols. There are several
ongoing efforts to develop new routing protocols that could
benefit from such plugins. Some examples include Facebook’s
Open/R routing platform [28] or the protocols that are being
designed within the LSVR, RIFT or BABEL IETF working
groups.

V. DISCUSSION AND NEXT STEPS

We started the paper by explaining that although standard-
ised routing protocols are important from an interoperability
viewpoint in multivendor networks, the need to reach agree-
ments between all these vendors in standardisation bodies
delays the deployment of new protocol extensions which
hinders innovation. To enable network operators who are
responsible for Internet Service Provider networks to innovate
more quickly, we have proposed that routing protocols support
platform independent protocol plugins that extend them. We
have demonstrated how one particular implementation of BGP
and OSPF, namely FRRouting, could be extended to support
these plugins and thus made one step towards the realisation
of our vision. We now discuss several research problems that
need to be solved to fully realise this vision.

How to validate plugins? Network operators, notably in
enterprise and ISP networks, usually test new versions of the
router operating systems in their labs before deploying them
in production networks. These tests are intended to prevent
problems when new versions of the software are deployed in
production. They typically run for days or weeks and are only
used before major upgrades. With protocol plugins, network
operators will operate in a more agile manner. They could
change deployed plugins on a daily basis. However, they
are unlikely to perform manual tests with such plugins. A
better approach would be to use automated tools that leverage
formal methods to validate that the plugins are correct. The
Linux kernel, which also includes an eBPF virtual machine,
solves this problem by strictly limiting the memory area that
eBPF programs can access and the number of instructions
that they execute. The latter limitation is being removed to
support more complex use cases. Researchers have recently
proposed software tools that rely on formal methods to validate
such eBPF code [21]. Pluginized QUIC [11], which applies a
similar idea to extend the QUIC protocol also uses verification
technique to prove than plugins terminate. This is a first step
for the validation of plugins.

How can we increase the performance of plugins? Plugin
performance should be as close as possible to the performance
of native code, but this performance gain should not come at
the expense of the safety guarantees. There are two possible
directions to improve performance. A first approach is to
try to extract as much performance as possible from our
modified eBPF virtual machine that runs in userspace. One of
the current performance bottlenecks is the memory accesses
that are audited by our virtual machine to prevent out-of-
bound memory accesses. These checks consume CPU time
and affect performance. One possibility to reduce them would
be to develop a plugin compiler that ensures that JITed plugins
only access authorised memory areas. Such tools exist for
standard executables [43]. Another approach would be to
replace the eBPF virtual machine with a faster one. Some
processor architectures, such as CHERI-MIPS [57], provide
such memory checks as built-in assembly instructions. The
WebAssembly virtual machine that is being deployed by web
browsers could be another alternative [26].

Can we use the same plugin on different implementa-
tions? Network operators often use network equipment from
multiple vendors. For them, it would be ideal if the same
bytecode could be executed on different routers. This is not
yet possible with the current version of our prototype, but
this could become possible in the future provided that: (i)
router vendors agree on including the same virtual machine
in their software and (ii) they expose exactly the same API.
We believe that this could be possible in the long-term. In
different domains, browser vendors have agreed on supporting
the WebAssembly virtual machine in their browsers [26] and
operating systems vendors have agreed on using the POSIX
API. Our next step to reach that goal will be to add the support
for plugins in a different BGP/OSPF implementation and then
align the API of these two implementations to produce plugins

that are implementation dependant. We will then be able to
propose a first plugin API for discussion with other vendors
and within the IETF.

How should future protocols leverage this extensibility?
Most standardised protocols are designed by committees. This
process has advantages and drawbacks. By involving more
people in their design, the new protocols have a higher proba-
bility of meeting the user/operator’s requirements. However,
these committees sometimes tend to over specify and add
new features that require long discussions before reaching an
agreement. The design of an extensible routing protocol could
be done differently. A small committee could start with a small
set of basic functionalities, a virtual machine and a simple
API. Based on these specifications, the community could then
openly develop extensions to meet their specific requirements.
Instead of trying to match all the expressed requirements, the
protocol designers would focus on getting the basic principles
of the core protocol right. If some of these extensions become
popular or require better performance than the one achievable
with virtual machines, they could later be included in a new
version of the protocol.

Software artifacts

To encourage other researchers to reproduce and extend
our results, our patches to FRRouting version 6 and the
scripts required to reproduce our measurements are avail-
able at the GitHub repository https://github.com/twirtgen/
pluginized-frrouting.

ACKNOWLEDGEMENTS

This work was partially supported by FRIA. We thank the
anonymous reviewers and our shepherd, Kamil Sarac, for their
valuable comments. We would also like to thank Job Snijder
for his comments on BGP implementations and the authors of
the FRRouting and the uBPF open-source projects.

REFERENCES

[1] Lange Andrew et al. Flexible bgp communities. Internet draft, draft-
lange-flexible-bgp-communities-03, work in progress, August 2010.

[2] Matteo Bertrone, Sebastiano Miano, Fulvio Risso, and Massimo Tumolo.
Accelerating linux security with ebpf iptables. In Proceedings of the
ACM SIGCOMM 2018 Conference on Posters and Demos, pages 108–
110. ACM, 2018.

[3] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. P4: Programming protocol-independent packet proces-
sors. ACM SIGCOMM Computer Communication Review, 44(3):87–95,
2014.

[4] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford,
Aman Shaikh, and Jacobus van der Merwe. Design and implementation
of a routing control platform. In Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation-Volume 2,
pages 15–28. USENIX Association, 2005.

[5] Ken Calvert. Reflections on network architecture: an active network-
ing perspective. ACM SIGCOMM Computer Communication Review,
36(2):27–30, 2006.

[6] Cisco. Cisco ios scripting with tcl configuration guide.
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ios_tcl/configuration/
12-4t/ios-tcl-12-4t-book/nm-script-tcl.html, 2011.

[7] Luca Cittadini, Wolfgang Muhlbauer, Steve Uhlig, Randy Bush, Pierre
Francois, and Olaf Maennel. Evolution of internet address space
deaggregation: myths and reality. IEEE Journal on Selected Areas in
Communications, 28(8):1238–1249, 2010.

[8] Benoit Claise, Joe Clarke, and Jan Lindblad. Network Programmability
with YANG. Addison-Wesley, 2019.

[9] B. Claise (Ed.), B. Trammell (Ed.), and P. Aitken. Specification of the
IP Flow Information Export (IPFIX) Protocol for the Exchange of Flow
Information. RFC 7011 (Internet Standard), September 2013.

[10] Guy Davies. Designing and Developing Scalable IP Networks. John
Wiley & Sons, 2004.

[11] Quentin De Coninck, François Michel, Maxime Piraux, Florentin Ro-
chet, Thomas Given-Wilson, Axel Legay, Olivier Pereira, and Olivier
Bonaventure. Pluginizing quic. In SIGCOMM’19, pages 59–74. ACM,
2019.

[12] Benoit Donnet and Olivier Bonaventure. On bgp communities. ACM
SIGCOMM Computer Communication Review, 38(2):55–59, 2008.

[13] John William Evans and Clarence Filsfils. Deploying IP and MPLS QoS
for multiservice networks: Theory and practice. Elsevier, 2010.

[14] Nick Feamster and Hari Balakrishnan. Detecting bgp configuration faults
with static analysis. In Proceedings of the 2nd conference on Symposium
on Networked Systems Design & Implementation-Volume 2, pages 43–
56. USENIX Association, 2005.

[15] Nick Feamster, Jay Borkenhagen, and Jennifer Rexford. Guidelines for
interdomain traffic engineering. ACM SIGCOMM Computer Communi-
cation Review, 33(5):19–30, 2003.

[16] Nick Feamster and Jennifer Rexford. Network-wide prediction of bgp
routes. IEEE/ACM Transactions on Networking (TON), 15(2):253–266,
2007.

[17] Matt Fleming. A thorough introduction to ebpf. Linux Weekly News,
December 2017. https://old.lwn.net/Articles/740157/.

[18] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh
Govindan, Ratul Mahajan, and Todd Millstein. A general approach
to network configuration analysis. In 12th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 15), pages
469–483, 2015.

[19] Lorenzo Fontana and David Calavera. Linux Observability with BPF.
O’Reilly, 2019.

[20] Alexander Frömmgen, Amr Rizk, Tobias Erbshäußer, Max Weller, Boris
Koldehofe, Alejandro Buchmann, and Ralf Steinmetz. A programming
model for application-defined multipath tcp scheduling. In Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference, pages 134–146.
ACM, 2017.

[21] Elazar Gershuni et al. Simple and precise static analysis
of untrusted linux kernel extensions. In PLDI’19,
June 2019. https://research.vmware.com/publications/
simple-and-precise-static-analysis-of-untrusted-linux-kernel-extensions.

[22] L. Ginsberg (Ed.), S. Previdi, Q. Wu, J. Tantsura, and C. Filsfils.
BGP - Link State (BGP-LS) Advertisement of IGP Traffic Engineering
Performance Metric Extensions. RFC 8571 (Proposed Standard), March
2019.

[23] Vasileios Giotsas, Georgios Smaragdakis, Christoph Dietzel, Philipp
Richter, Anja Feldmann, and Arthur Berger. Inferring bgp blackholing
activity in the internet. In Proceedings of the 2017 Internet Measurement
Conference, pages 1–14. ACM, 2017.

[24] Albert Greenberg, Gisli Hjalmtysson, David A Maltz, Andy Myers,
Jennifer Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan, and Hui Zhang.
A clean slate 4d approach to network control and management. ACM
SIGCOMM Computer Communication Review, 35(5):41–54, 2005.

[25] Timothy G Griffin and Joäo Luís Sobrinho. Metarouting. ACM
SIGCOMM Computer Communication Review, 35(4):1–12, 2005.

[26] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael
Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien.
Bringing the web up to speed with webassembly. ACM SIGPLAN
Notices, 52(6):185–200, 2017.

[27] J. Haas (Ed.) and S. Hares (Ed.). Definitions of Managed Objects for
BGP-4. RFC 4273 (Proposed Standard), January 2006.

[28] Saif Hasan, Petr Lapukhov, Anuj Madan, and Omar Baldonado. Open/R:
Open routing for modern networks. https://code.fb.com/connectivity/
open-r-open-routing-for-modern-networks/.

[29] J. Heitz (Ed.), J. Snijders (Ed.), K. Patel, I. Bagdonas, and N. Hilliard.
BGP Large Communities Attribute. RFC 8092 (Proposed Standard),
February 2017.

[30] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann,
John Fastabend, Tom Herbert, David Ahern, and David Miller. The
express data path: fast programmable packet processing in the operating
system kernel. In Proceedings of the 14th International Conference
on emerging Networking EXperiments and Technologies, pages 54–66.
ACM, 2018.

[31] Geoff Huston. ISP survival guide: strategies for running a competitive
ISP. John Wiley & Sons, Inc., 1998.

[32] IO Visor Project. Userspace ebpf vm. https://github.com/iovisor/ubpf,
2018.

[33] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou,
Min Zhu, et al. B4: Experience with a globally-deployed software
defined wan. ACM SIGCOMM Computer Communication Review,
43(4):3–14, 2013.

[34] D. Joyal (Ed.), P. Galecki (Ed.), S. Giacalone (Ed.), R. Coltun, and
F. Baker. OSPF Version 2 Management Information Base. RFC 4750
(Proposed Standard), December 2006.

[35] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden, and
Matthew Roughan. The internet topology zoo. IEEE Journal on Selected
Areas in Communications, 29(9):1765–1775, 2011.

[36] Diego Kreutz, Fernando MV Ramos, Paulo Verissimo, Christian Es-
teve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-
defined networking: A comprehensive survey. Proceedings of the IEEE,
103(1):14–76, 2015.

[37] A. Lindem, A. Roy, D. Goethals, V. Reddy Vallem, and F. Baker.
OSPFv3 Link State Advertisement (LSA) Extensibility. RFC 8362
(Proposed Standard), April 2018.

[38] Jonathan Looney and Stacy Smith. Automating Junos Administration:
Doing More with Less. " O’Reilly Media, Inc.", 2016.

[39] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2):69–74, 2008.

[40] Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Massimo Tumolo,
and Mauricio Vásquez Bernal. Creating complex network service with
ebpf: Experience and lessons learned. High Performance Switching and
Routing (HPSR). IEEE, 2018.

[41] J. Moy. OSPF Version 2. RFC 1247 (Draft Standard), July 1991.
Obsoleted by RFC 1583, updated by RFC 1349.

[42] J. Moy. OSPF Version 2. RFC 2328 (Internet Standard), April 1998.
Updated by RFCs 5709, 6549, 6845, 6860, 7474, 8042.

[43] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. Bolt:
a practical binary optimizer for data centers and beyond. In Proceedings
of the 2019 IEEE/ACM International Symposium on Code Generation
and Optimization, pages 2–14. IEEE Press, 2019.

[44] Peter Psenak et al. IGP Flexible Algorithm. Internet draft, draft-ietf-lsr-
flex-algo-02.txt, work in progress, May 2019.

[45] Bruno Quoitin, Cristel Pelsser, Louis Swinnen, Olivier Bonaventure,
and Steve Uhlig. Interdomain traffic engineering with bgp. IEEE
Communications magazine, 41(5):122–128, 2003.

[46] Robert Raszuk et al. BGP Community Container Attribute. Internet
draft, draft-ietf-idr-wide-bgp-communities-05, work in progress, July
2018.

[47] Y. Rekhter (Ed.) and T. Li (Ed.). A Border Gateway Protocol 4 (BGP-4).
RFC 1654 (Proposed Standard), July 1994. Obsoleted by RFC 1771.

[48] S. Sangli, D. Tappan, and Y. Rekhter. BGP Extended Communities
Attribute. RFC 4360 (Proposed Standard), February 2006. Updated by
RFCs 7153, 7606.

[49] Florian Streibelt, Franziska Lichtblau, Robert Beverly, Anja Feldmann,
Cristel Pelsser, Georgios Smaragdakis, and Randy Bush. Bgp communi-
ties: Even more worms in the routing can. In Proceedings of the Internet
Measurement Conference 2018, pages 279–292. ACM, 2018.

[50] Renata Teixeira, Aman Shaikh, Tim Griffin, and Jennifer Rexford.
Dynamics of hot-potato routing in ip networks. ACM SIGMETRICS
Performance Evaluation Review, 32(1):307–319, 2004.

[51] David L Tennenhouse and David J Wetherall. Towards an active net-
work architecture. ACM SIGCOMM Computer Communication Review,
26(2):5–17, 1996.

[52] Viet-Hoang Tran and Olivier Bonaventure. Beyond socket options:
making the linux tcp stack truly extensible. In IFIP Networking’19,
2019.

[53] Gaurab Raj Upadhaya. Best practices for ISPs. http://www.pch.net/
resources/tutorial/ispbcp.

[54] Q. Vohra and E. Chen. BGP Support for Four-Octet Autonomous System
(AS) Number Space. RFC 6793 (Proposed Standard), December 2012.

[55] D. Walton, A. Retana, E. Chen, and J. Scudder. Advertisement of
Multiple Paths in BGP. RFC 7911 (Proposed Standard), July 2016.

[56] Daniel Walton et al. Advertisement of Multiple Paths in BGP. Internet
draft, draft-walton-bgp-add-paths-00, work in progress, May 2002.

[57] Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G Neu-
mann, Robert Norton, and Michael Roe. The cheri capability model:
Revisiting risc in an age of risk. In Computer Architecture (ISCA), 2014
ACM/IEEE 41st International Symposium on, pages 457–468. IEEE,
2014.

[58] Qin Wu et al. BGP attribute for North-Bound Distribution of Traffic

Engineering (TE) performance Metrics. Internet draft, draft-wu-idr-te-
pm-bgp, work in progress, Oct 2013.

[59] Mathieu Xhonneux, Fabien Duchene, and Olivier Bonaventure. Leverag-
ing ebpf for programmable network functions with ipv6 segment routing.
In Proceedings of the 14th International Conference on emerging
Networking EXperiments and Technologies, pages 67–72. ACM, 2018.

