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ABSTRACT
QUIC is a new transport protocol combining the reliability and
congestion control features of TCP with the security features of
TLS. One of the main challenges with QUIC is to guarantee that any
of its implementation follows the IETF specification. This challenge
is particularly appealing as the specification is written in textual
language, and hence may contain ambiguities. In a recent work,
McMillan and Zuck proposed a formal representation of part of
draft-18 of the IETF specification. They also showed that this
representation made it possible to efficiently generate tests to stress
four implementations of QUIC. Our first contribution is to complete
and extend the formal representation from draft-18 to draft-29.
Our second contribution is to test seven implementations of both
QUIC client and server. Our last contribution is to show that our
tool can highlight ambiguities in the QUIC specification, for which
we suggest paths to corrections.

CCS CONCEPTS
• Networks→ Formal specifications; • Software and its engi-
neering → Software testing and debugging.
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1 INTRODUCTION
QUIC is a new network protocol intended to make the Internet faster,
more secure and more flexible. It is designed to replace the entire
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TCP/TLS/HTTP stack and is built above UDP. QUIC is now widely
adopted and many other applications are made compatible with
the protocol. This includes, for example, MQTT[15] or DNS[11]. As
QUIC is getting deployed, ensuring that QUIC implementations meet
the set of requirements defined by the QUIC specification is critical.
This specification is an English text document describing the proto-
col. It is discussed by the Internet Engineering Task Force (IETF)
and is split across several Request For Comments (RFC) documents.
The main document is RFC9000, containing more than 250 MUST
statements indicating properties that must be met by all imple-
mentations [13]. As RFCs lack a formal definition, they can lead to
ambiguities of understanding [25].

Several approaches have been proposed to verify that QUIC im-
plementations follow the specification requirements. The most com-
mon approach, called interoperability testing, manually generates
sets of tests from the requirements and then compares QUIC imple-
mentations with respect to those sets. This approach has been used
in theQUIC-Tracker test suite [22] and theQUIC Interop Runner [23].
Albeit such approach sounds appealing, it is limited by the capacity
to manually produce interesting test suites from the requirements.
Another approach [8] is to produce a mathematical model for the
protocol and its requirements, and then use formal verification to
automatically assess correctness. This approach is sound and pre-
cise. However, as it is limited to models only, it does not guarantee
that subsequent implementations fulfil the requirements.

In a series of recent work [18, 19], a trade off between the two
approaches has been proposed. The authors implemented a for-
mal language to specify protocols requirements called Ivy. Any
specification written in Ivy automatically generates various and
well-distributed test cases that can be exercised on QUIC implemen-
tation. In their work, the authors verified several requirements of
draft-18 of the QUIC specification. However, many requirements
were left unimplemented, e.g. the management of the transport
errors by QUIC implementations.

Our three contributions are summarized as follows.

(1) We contribute to the formal specification of QUIC in Ivy by
implementing a significant part of draft-29 requirements,
one of the latest versions of the QUIC specification. This com-
prises new requirements and requirements in draft-18 the
authors did not model. We also update the existing require-
ments to the new specification. We modify Ivy to support
wider variables, i.e. larger than 8 bytes, allowing the tool to
explore more parts of the specification.

https://doi.org/10.1145/3488660.3493803
https://doi.org/10.1145/3488660.3493803
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(2) We automate the use of the resulting Ivy model. We use the
generated tests against seven server implementations and
seven client implementations. This demonstrates that the
tool can be used beyond the four original implementations
tested by the authors.

(3) We discuss the results we obtained and identify different
types of errors in each implementation. The diversity of the
results highlights contradictions and ambiguities in the QUIC
specification. These findings can be used to improve the
QUIC specification. We also highlight a significant disparity
in the test results and hence a difference in maturity of the
protocol implementations. We provide hypothesises on the
causes of the tests failures.

2 OVERVIEW OF THE IVY MODEL FOR QUIC
A formal Ivy model of the protocol is defined as a set of components
linked by the relationship between their input/output. Such model
represents an abstraction of the specification entities as a whole.
Each component represents a part or a layer of the QUIC stack.
This includes, for example, the frame layer 1○ or the packet layer
2○ presented in Figure 1. The shim component 3○ is used to send
and receive packets over the network. For each received packet,
the shim calls the packet_event action. It is an Ivy procedure
containing all the requirements directly linked to the QUIC packet
specification and raises an error if a requirement is violated. It
checks, for instance, that the packet number always increases. The
frames are also handled similarly with their corresponding action.
In Figure 1, one can see that the set of requirements is linked to the
packet component 2○.

In their original work, the authors model most of the QUIC spec-
ification requirements of draft-18 except for the Retry, Version
Negotiation and 0-RTT packets and one frame type, the RETIRE_C-
ONNECTION_ID. The transport error codes were not implemented
either. A limitation of the methodology is that quantitative-time re-
quirements cannot be modelled. This includes all the requirements
for congestion control and recovery.

We now summarize our contributions to the Ivy model of QUIC’s
specification. Our first contribution is to update this model to
draft-29 of the protocol, in order to implement its new require-
ments. For instance, we updated the shim to the new wire format.
We chose draft-29 as it was the latest version of the QUIC specifi-
cation when starting this work, and remained widely supported by
implementations during our study.

Our second contribution is to extend the model with additional
requirements for existing and new transport parameters. As an
example, the preferred_address transport parameter was not
entirely defined in the original work, lacking a check for forbidden
migration. We also add the transport error codes management tests.
For this, we create a different model which deliberately does not
follow a given QUIC requirement in order to generate illegal frames
and packets. They are used to check whether an implementation
reacts as expected, i.e. returning a specific transport error code,
when receiving these frames and packets. Testing this feature is
important since one can use the error code as an indication to fall
back on TCP. Finally, we modify Ivy to support Connection IDs
(CIDs) up to 16 bytes, increasing the domain of values that can

be tested and thus the coverage of our test tool. It allows testing
more implementations without modifying their source code to cope
with this restriction. It allows us to relax the limitation of CIDs
from exactly 8 bytes to any length up to 16 bytes. Due to space
constraints, our Ivy specification is available online [4].1

In Figure 2, we estimate the coverage of requirements that can
be handled with our Ivy model. We distinguish five categories. The
first one contains requirements that cannot be verified because they
refer to internal state, lack of formal definition or cannot be mod-
elled in Ivy due to the technique limitations. The second category
contains requirements defined in the original work that we updated
to draft-29. The third category contains requirements for which
we implemented a complete model in the tool. The fourth category
contains requirements for which we implemented a partial model,
i.e. requirements for which only a part can be verified. Finally, the
last category contains requirements that we leave as future work.
We will now detail how these requirements are verified.

The extent of our additional coverage is thus defined by the third
and fourth category of requirements. For some new requirements,
new tests were created such as for requirements on transport er-
ror codes. For each tested error, we added a specific test variant
exercising it.
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Figure 1: The QUIC frame component (resp. QUIC packet
component) randomly generates frames (resp. packets) meet-
ing its requirements, selects and transmits some to the next
component. The shim is the interface between the model ab-
stract representation and the network concrete wire format.

3 GENERATING TEST CASES
Our objective is to test various implementations of a QUIC server
and client. This is done by generating tests, i.e. sequences of frames
and packets, from the formal Ivy model of the specification. The
series of tests are generated following the Network-Centric Composi-
tional Testing [18] methodology. This approach starts from a formal
representation of the requirements given in the specification, that
we described in Section 2, and generates traces, i.e. sequences of
frames and packets, which are sent to tested implementations.

The tests are distinguished by the type of frames they can gen-
erate and by the distributions of those frames in the sent packets.
The tester can manually put weights on the different frame types
to influence their distributions. The weights have a default value
1https://github.com/ElNiak/QUIC-Ivy/tree/quic_29/doc/examples/quic

https://github.com/ElNiak/QUIC-Ivy/tree/quic_29/doc/examples/quic
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Figure 2: Tool coverage of requirements in the QUIC specification

of 1. A higher (resp. lower) weight will increase (resp. reduce) the
relative probability of the associated type of frame to be generated.
For the distributions, Ivy uses a Monte Carlo sampling method [24]
relying on these weights.

By influencing the distributions of frames and packets and letting
the solver choose them rather than spelling out the exact frames
and packets that are sent, our approach guarantees that the gener-
ated frames and packets are valid, i.e. they follow the specification
requirements.

Each test has a set of parameters that include the destination IP
address and port, and the transport parameters sent.

When executing a test with Ivy, a sequence of frames and packets
are generated and sent to the implementation under test. The test
stops when a requirement is not true (failing test), or when the
connection closed as expected, i.e. when all the data is successfully
sent (passing test).

Apart from setting the type of generated frames and the input
parameters of the test, one can also add new requirements to the
formal specification of QUIC. By moving some of these require-
ments from the general model to the tests, one has more flexibility
in the tests. For example, one could fix the version of QUIC used
in the base formal specification but this is inconvenient when one
wants to change the version in different tests, for instance for ver-
sion negotiation. Other requirements can be used to create illegal
packets. In this case we add requirements such that the model is not
conforming anymore to the QUIC specification. As the solver guar-
antees that the generated frames and packets follow these added
requirements it will produce non-conform frames/packets.

3.1 Example
We illustrate how a test is created with an example where we
generate sequences of frames and packets. As explained in Section 3,
each test is based on our formal specification of QUIC. We first
manually fix the input parameters of the test. In this case, we set
the IP addresses and the port used during the test. The tested
implementation is a server.

1 # T e s t e r a d d r e s s
2 paramete r c l i e n t _ a d d r : i p . addr = 0 x7 f 000001
3 paramete r c l i e n t _ p o r t : i p . po r t = 4987
4 # T e s t e d imp l emen t a t i o n a d d r e s s
5 paramete r s e r v e r _ a dd r : i p . addr = 0 x7 f 000001
6 paramete r s e r v e r _ p o r t : i p . po r t = 4443

Then, we choose the set of frames generated and the distribution
of these frames in the packets. In the following example, we decide
to generate ACK, STREAM, CRYPTO and PATH_RESPONSE frames. Then
we set the relativeweight for the PATH_RESPONSE to five. It increases
the relative probability to generate this frame. This ensures that
the path validation during migration has a high chance of passing.

1 # Al low g e n e r a t i o n o f a f rame
2 expo r t frame . ack . hand le

3 expo r t frame . s t ream . hand le
4 expo r t frame . c ryp t o . hand le
5 expo r t frame . pa th_ r e sponse . hand le
6 # R e l a t i v e we i gh t ( a l l o t h e r w e i g h t s = 1 )
7 a t t r i b u t e frame . pa th_ r e sponse . hand le . weight = " 5 "

Finally, we also add specific requirements to the generated frames
and packets by refining events already present in the model (i.e.
packet_event). A requirement is indicated in Ivy with the key-
word require and is followed by a condition. Below, we find a
simple example where we randomly generate an Initial packet
(packet_event) with an invalid "Token" field, in this case we expect
a non-zero length token (cf. line 6).

1 # A c t i o n a l r e a d y p r e s e n t i n t h e model
2 b e f o r e pa cke t _ ev en t ( s r c : ip , d s t : ip , pkt : q u i c _p a ck e t ) {
3 i f _ g en e r a t i n g { # Wrong f i e l d g e n e r a t i o n
4 # App l i e d on l y on g e n e r a t e d p a c k e t
5 # [ . . . ] new f e a t u r e s
6 r e q u i r e ~ ( pkt . token . end = 0 ) ;
7 } ;
8 # new f e a t u r e ( f o r c o n f i g u r a t i o n pu r p o s e )
9 r e q u i r e pkt . long −> pkt . p v e r s i on = 0 x f f 0 0 0 0 1 d
10 }

As this situation is a non-conform one, we expect to receive a
PROTOCOL_VIOLATION error code in a CONNECTION_CLOSE frame or
no connection at all. This can be modelled with the special instruc-
tion _finalize allowing to check whether some requirements are
eventually fulfilled.

1 expo r t a c t i o n _ f i n a l i z e = {
2 r e q u i r e i s _ p r o t o c o l _ v i o l a t i o n | ~ handshake_done ;
3 }

We now give some details on tests made to stress the implemen-
tations of the server and the client. Observe that the main reason to
make a distinction between those two entities is that some parame-
ters of the client and of the server are incompatible. As an example,
the preferred_address transport parameter is only available at
the server side. Moreover, the generation of some frame such as
the HANDSHAKE_DONE is forbidden to the client.

3.2 Server implementations tests
We have generated 23 tests to stress seven implementations of QUIC
servers. Some of those tests are briefly described in Table 1.

The majority of the separate tests files concerns transport er-
ror codes. We developed 16 error code tests as each requirement
requires a separate test file. As illustrated in Section 3.1, testing a
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specific property requires a separate test. The other tests differ by
the generated frames.
quic_server_test_stream
Generated
frames: STREAM, ACK, PATH_RESPONSE, CRYPTO

Test
output:

Requests /index.html. Stops once the response stream is closed.
Graceful connection closure is expected. Multiple connection mi-
gration are allowed. Several bidirectional streams are opened to
test the streams mechanics.

quic_server_test_unknown
Generated
frames: STREAM, ACK, PATH_RESPONSE, CRYPTO, UNKNOWN

Test
output:

Verifies handling of UNKNOWN frame types by the implementa-
tion in application encryption level. The test expects to receive a
FRAME_ENCODING_ERROR

quic_server_test_unknown_tp
Generated
frames: STREAM, ACK, PATH_RESPONSE, CRYPTO

Test
output:

Verifies handling of UNKNOWN transport parameters by the im-
plementation. The implementation is expected to ignore the TP and
to continue the connection.
Table 1: Server tests description

Let us illustrate the approach on the quic_server_test_stream
test. In this test, we generate STREAM frames until the number of
requests is reached or until the maximal data defined during the
handshake is exceeded. Each time a generation or reception of a
packet occurs, the whole specification will be tested. Moreover, as
soon as one of the requirements is not satisfied, the test fails.

3.3 Client implementations tests
We implemented 14 tests to stress seven clients’ implementations.
Most of these tests are similar to their server counterpart. Due to
space limitations, we only detail in Table 2 two errors handling
tests specific to the client’s implementation.

For the first test, we set the "Length" field of the token to zero,
which is not allowed by the specification. For the second one, we
verify that the preferred_address transport parameter contains
zero-length connection ID and the tested implementation throws a
TRANSPORT_PARAMETER_ERROR.

We do not test connection migration. Indeed, as it is triggered
by the client, testing such feature requires to change manually the
tested implementation, which we decided not to do in this work.

quic_client_test_new_token_error
Generated
frames: STREAM, ACK, HANDSHAKE_DONE, CRYPTO, NEW_TOKEN

Test
output:

NEW_TOKEN frames with length field set to 0 are sent and the test
expects to receive a PROTOCOL_VIOLATION transport error in
return.

quic_client_test_prefadd_error
Generated
frames: STREAM, ACK, HANDSHAKE_DONE, CRYPTO

Test
output:

The preferred_address transport parameter is set with a zero
length CID field and the test expects to receive a TRANS-
PORT_PARAMETER_ERROR in return.
Table 2: Client tests description

4 TESTED IMPLEMENTATIONS
We selected several implementations written using different pro-
gramming languages. These implementations often use different
TLS implementations. Some of them are mature implementations

while others are newer. Some are intended for production while
some for research and specification feedback purposes. We found
them through the QUIC Working Group wiki page listing known
QUIC implementations [10].

Implementation Language SLOC Company Version
picoquic [2] C 84k Private Octopus ad23e6c
picotls [14] H2O 47327f8
lsquic [12] C 129k LiteSpeed Tech. v2.29.4
boringssl [9] Google a2278d4
quic-go [17] Go 73k - v0.20.0
quinn [1] Rust 41k - 0.7.0

aioquic [16] Python 19k - 0.9.3
quiche [3] Rust 58k Cloudflare 0.7.0
quant [6] C 18k NetApp 29
mvfst [7] C++ 105k Facebook 36111c1
Table 3: Tested implementations and their versions

5 RESULTS
We run 100 iterations of each test on each implementation. This
is to allow diverse behaviour to be captured and evaluated by the
tool. Each iteration generates different packets traces following
the random generation approach described in Section 3. Each test
was run on the loopback interface of a single machine, for which
we assume this link to be perfect. The results obtained against
QUIC servers are summarised in Table 4. Those for QUIC clients are
summarised in Table 5. In these two tables, each column contains the
results of one QUIC implementation. Each row contains the results
of a test. The success rate in each cell represents the percentage of
test runs satisfying all the specification requirements.

Observe that the interpretation of statistical models based on our
results could be biased by the distribution of some errors. Indeed, a
few requirements could be violated for a large number of test itera-
tions. This would lead the test to have a very low success rate while
the implementation could meet all the other requirements verified
by this test. For example, the picoquic implementation fails one
requirement during connection migration. It lowers the success
rate of the stream test to around 50% while only one requirement
is violated.

Rather, these success rates depict an insight of the implementa-
tions maturity. It fulfils our objective of detecting errors in imple-
mentations rather than reasoning statistically. Indeed, the detailed
results express the requirements which are not met, which gives
clues for the debugging.

We will now present the two main categories of problems found.
The first one concerns all problems related to migration and the
second one concerns those related to the transport errors. Note that
due to the page limitation, we did not include all the results but
these will be available in a technical version of the paper.

5.1 Migration issues
For the tests with only legal frames/packets, we do not detect many
different errors. Most of the problems are linked to acknowledge-
ment of acknowledgements and to the path validation process
during a migration.
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stream 79% 6% 56% 95% 18% 12% 97%
max 85% 3% 47% 39% 27% 21% 96%
reset_stream 29% 7% 61% 100% 24% 5% 98%
connection_close 95% 37% 81% 63% 78% 40% 100%
stop_sending 100% 4% 48% 33% 33% 8% 96%
accept_maxdata 77% 12% 50% 68% 43% 21% 96%
unknown 95% 99% 99% 96% 0% 0% 100%
unkown_tp 84% 59% 98% 100% 68% 100% 96%
double_tp_err 0% 0% 100% 100% 0% 3% 100%
tp_err 100% 100% 0% 100% 0% 0% 0%
tp_acticoid_err 100% 0% 0% 0% 0% 100% 0%
no_icid_err 100% 100% 100% 100% 0% 0% 0%
token_err 100% 98% 100% 100% 100% 100% 99%
new_token_err 100% 0% 0% 84% 100% 0% 0%
handshake_done_err 100% 92% 89% 0% 86% 2% 77%
newcid_err 81% 85% 100% 9% 68% 93% 91%
max_limit_err 49% 41% 100% 0% 41% 16% 0%
blocked_err 70% 0% 0% 75% 0% 0% 100%
retirecid_err 87% 0% 86% 85% 0% 0% 0%
stream_limit_err 100% 63% 99% 98% 99% 10% 0%
newcid_length_err 84% 0% 2% 81% 0% 0% 91%
newcid_rtp_err 91% 0% 0% 90% 0% 0% 0%
max_err 0% 90% 100% 0% 0% 0% 0%

Table 4: Server - Successful test ratio
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stream 99% 51% 100% 97% 85% 52% 92%
max 100% 15% 100% 98% 85% 34% 100%
accept_maxdata 100% 93% 100% 97% 95% 82% 83%
unkown 100% 96% 99% 0% 0% 100% 0%
tp_unkown 100% 34% 99% 99% 100% 99% 96%
double_tp_error 0% 100% 100% 0% 0% 0% 0%
tp_error 0% 0% 100% 0% 0% 0% 0%
tp_acticoid_error 0% 0% 0% 0% 100% 0% 0%
no_ocid 0% 100% 100% 0% 0% 0% 0%
tp_prefadd_error 0% 100% 0% 0% 0% 0% 0%
blocked_error 99% 0% 97% 0% 0% 91% 98%
retirecoid_error 99% 99% 100% 0% 0% 0% 98%
new_token_error 98% 94% 96% 1% 0% 87% 100%
limit_max_error 0% 88% 0% 0% 81% 0% 0%

Table 5: Client - Successful test ratio

The first problem never leads to a crash and no major security
issues were detected. We supposed that it is also linked to migra-
tion since this error amplifies when migration is allowed. This is
enhanced when we compare the result of the client tests and the
server tests. This error is less present when the client is tested. As
a reminder, the server tests allow multiple connection migrations
while the client tests disable it.

However the migration problems are more serious. Many secu-
rity considerations are involved in guaranteeing authentication,
confidentiality and integrity of the messages exchanged between
endpoints with the migration in general. Many attacks are linked
to the migration such as the "Peer Address Spoofing", "On-Path

Address Spoofing" or the "Off-Path Packet Forwarding" describe in
the QUIC specification.
5.1.1 Migration issues: Case study I.

We found one problem involving connection migration in the
mvfst implementation. It considers the connection migration as
invalid when it starts just after sending the HANDSHAKE_DONE. Note
that the disable_active_migration transport parameter is not
set according to packet traces. In this test the HANDSHAKE_DONE
frame is acknowledged in a migrated connection.

According to Section 9 of draft-29, an endpoint cannot migrate
before the handshake is confirmed.
The design of QUIC relies on endpoints retaining a stable address
for the duration of the handshake. An endpoint MUST NOT initiate
connection migration before the handshake is confirmed, as defined
in section 4.1.2 of [QUIC-TLS]. .

QUIC specification draft-29 section 9.
From the client point of view, the handshake is confirmed when

it receives the HANDSHAKE_DONE frame.
In this document, the TLS handshake is considered confirmed at the
server when the handshake completes. At the client, the handshake is
considered confirmed when a HANDSHAKE_DONE frame is received. .

QUIC-TLS specification draft-29 section 4.1.2.
From the server point of view, it is confirmed when the TLS

handshake is complete, i.e. when the TLS endpoints exchanged
a "Finished" message and verified the peer’s "Finished" message.
Thus, if a client migrates just after it has received a HANDSHAKE-
_DONE frame, it respects the specification. The server must accept
the migration before it receives an ACK for the HANDSHAKE_DONE.

In this document, the TLS handshake is considered completewhen the
TLS stack has reported that the handshake is complete. This happens
when the TLS stack has both sent a Finished message and verified
the peer’s Finished message. Verifying the peer’s Finished provides
the endpoints with an assurance that previous handshake messages
have not been modified. Note that the handshake does not complete
at both endpoints simultaneously. Consequently, any requirement
that is based on the completion [also confirmation for server] of the
handshake depends on the perspective of the endpoint in question. .

QUIC-TLS specification draft-29 section 4.1.1.
However the mvfst server prevents the migration until it knows

that the client considers the handshake as confirmed, i.e. when
the server receives the ACK for HANDSHAKE_DONE. We suppose that
mvfst wants to be sure that the client has received the HANDSHAKE-
_DONE before allowing it to migrate. In the case where the frame
is acknowledged in the original connection, this problem does not
arise. This is consistent with our hypothesis.
5.1.2 Migration issues: Case study II.

Another problem in the specification highlighted by our model
is that polysemous requirements lead to different valid formal inter-
pretations. This means that they are ambiguous. The best example is
the address of the highest-numbered non-probing packet to which
an endpoint should send its packets. Consider the following state-
ment:
An endpoint only changes the address that it sends packets to in
response to the highest-numbered non-probing packet. This ensures
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that an endpoint does not send packets to an old peer address in the
case that it receives reordered packets .

QUIC specification draft-29 section 9.3.
According to this rule, one should send the packet to the address

of the highest-numbered non-probing packet. A non-probing packet
is a packet containing any other frame than the probing frames
which are PATH_CHALLENGE, PATH_RESPONSE, NEW_CONNECTION_ID,
and PADDING frames. The requirement does not indicate the packet
number space to consider. Thus one valid interpretation is to con-
sider the highest-numbered non-probing packet among all possible
ones. Since migration is allowed only after the handshake com-
pleted, one should probably consider only the application data
space. However it is not written explicitly.

Moreover, the same paragraph also contains the following indi-
cation:
Receiving a packet from a new peer address containing a non-probing
frame indicates that the peer has migrated to that address. In response
to such a packet, an endpoint MUST start sending subsequent packets
to the new peer address and MUST initiate path validation (Section
8.2) to verify the peer’s ownership of the unvalidated address.

QUIC specification draft-29 section 9.3.
When this rule is used, responses of non-probing frames are sent to
the new peer address.Whenwe consider the highest-numbered non-
probing packet among all packet number spaces, most implementa-
tions do not pass the requirement. This is the case with picoquic.
However when we consider the highest-numbered non-probing
packet among the application data space, some implementations
failing with the above interpretation do pass the requirement. This
is also the case for picoquic. This result demonstrate that both
chosen interpretations of the requirement, which are valid from
a formal point of view, lead to different results. Even if the most
appropriate interpretation may seem trivial for an implementer, the
ambiguity should be removed.

5.2 Transport error code issues
Concerning the management of the transport error codes, we ob-
served their requirements are not widely respected among the
tested implementations. Various types of errors have been observed.
We faced some implementations that do not implement one of these
requirement. For example, the transport error codes management
is almost completely implemented in some implementations (e.g
quinn) and barely implemented in other ones (e.g. quant) as re-
flected in Table 4. As the application layer may use these error
codes to fall back on a TCP connection, the transport error codes
management is important.

Another type of problem is when implementations use the wrong
encryption level. This is mostly the case for aioquic or quinn.
Those two implementations use the 1-RTT encryption scheme to
return the error. However this encryption level is not allowed at
this time.

Some implementations accept frames restricted to their role, e.g.
a server accepting server-sent frames. For example, the NEW_TOKEN
frame is accepted by servers of picoquic and mvfst, meaning that
they do not check whether the frame can be sent by their peer.
These implementations do not report any PROTOCOL_VIOLATION
error nor a local error.

We also observed some implementations to send error codes
with inaccurate error messages. As an example, when the quic-go
server receives a server-specific frame, such as HANDSHAKE_DONE,
it closes the connection with an error message reporting that this
frame is not allowed because of the encryption level. This is not
accurate in this case.

Some implementations send an inaccurate error code. For in-
stance, the mvfst implementation returns a PROTOCOL_VIOLATION
when receiving a NEW_CONNECTION_ID frame with an invalid field,
while a FRAME_ENCODING_ERROR is expected. Our manual analysis
reported that it detects the problem as the error message reports
the field as invalid.

Some implementations such as quant detect the error locally
without reporting an error. This is not conforming to the specifi-
cation. However, when we analyse a later version of quant, that
problem has been solved as presented in Table 6. We can also ob-
serve that the management of invalid transport parameters is cor-
rectly handled in this version, i.e errors are detected and the correct
transport error codes are sent.

quant 29 quantmaster
double_tp_error 3% 100%
tp_error 0% 100%
tp_acticoid_error 100% 100%
no_icid_error 0% 100%

Table 6: Quant transport parameter: before/after

CONCLUSION AND FUTUREWORK
In this paper, we applied the Ivy modelization framework to QUIC
and produced a model verifying a large part of the requirements
of the QUIC specification. The model contains new and updated
requirements from the original work. We automated the use of
the model in a series of tests against QUIC clients and servers. We
showed the diversity of results we obtained with our tool and the
variety of errors encountered. In addition, the results we obtained
illustrate the ability of the tool to highlight ambiguities in the speci-
fication and generate executions following different interpretations
of these ambiguities. This shall be exploited to improve the IETF
specification of QUIC.

We see several directions for future work. One is to update
our model to the RFC9000 specification. The differences between
draft-29 and RFC9000 are minor and thus we expect this work to
be relatively small. The RFC defines additional security consider-
ations and transport error codes, adds a new subsection on flow
control performance and removes one regarding the QUIC connec-
tion life cycle. Only a few MUST requirements were added. The
second one is to model the features of QUIC that are missing in our
Ivy model, such as the Retry and Version Negotiation packets.
The third one is to consider extensions of QUIC such as Multipath
QUIC [5], Forward Erasure Correction (FEC) [20], the Unreliable
Datagram extension [21].
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