
A Cooperative Approach to
Interdomain Traffic Engineering

Bruno Quoitin and Olivier Bonaventure
Department of Computer Science and Engineering

Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
Email : (quoitin,bonaventure)@info.ucl.ac.be

Abstract— For performance or cost reasons, Autonomous Sys-
tems (AS) often need to control the flow of their incoming
interdomain traffic. Controlling its incoming traffic is a difficult
task since it often implies influencing ASes on the path. The
current BGP-based techniques that an AS can use for this
purpose are primitive. Moreover, their effect is often difficult
to predict.

In this paper, we propose to solve this problem by using Virtual
Peerings. A Virtual Peering is an IP tunnel between a border
router of a source AS and a border router of a destination AS.
This tunnel is established upon request from the destination AS.
These tunnels can be negociated by using backward compatible
modifications to the Border Gateway Protocol (BGP)

By using Virtual Peerings, the source and destination ASes
can achieve various traffic engineering objectives such as traffic-
balancing or reducing the latency. A key advantage of our
solution is that it does not require cooperation of the intermediate
ASes and that it can be incrementally deployed in today’s
Internet. We then show by simulations that in a load-balancing
scenario, a multi-homed AS only needs to request a few dozens
of Virtual Peerings to balance its incoming traffic.

I. INTRODUCTION

The Internet was created as a best effort experimental
network and was mainly used by researchers and students.
During the last years, it has evolved to become a major
worldwide network that is used to carry various types of
mission critical traffic. The Internet is divided in Autonomous
Systems (ASes) that exchange routing information with the
Border Gateway Protocol (BGP) [1], [2]. As of this writing,
there are about 17,000 ASes. About 12,000 of those ASes are
stub ASes and the remainder are transit ASes. A stub AS is
an AS that does not allow transit traffic to cross its network.

Given the cost and importance of their interdomain traffic,
ASes often need to optimise the flow of their interdomain
traffic [3], either for performance reasons (e.g. using low delay
paths) or cost reasons (e.g. using the cheapest provider). Con-
tent providers are net producers of packets and thus they need
to control the flow of their outgoing packets. For this, they can
tune the configuration of their border routers to fully control
the selection of their outbound routes [4], [5]. Access providers
such as Asynchronous Digital Line Subscriber (ADSL) or Ca-
ble TV (CATV) providers or campus and enterprise networks
are packet consumers. Thus, they often need to control the flow
of their incoming traffic [4], [3]. Unfortunately, controlling the
incoming traffic is more complex as the path followed by the
incoming packets depends on the outcome of the BGP decision

process on all the transit routers between each source and the
destination AS. The current techniques used by such ASes to
control their incoming traffic, namely as AS-Path prepending,
selective announcements, the advertisement of more specific
prefixes or the use of BGP communities [4] suffer from several
drawbacks. They are often coarse grained and it is difficult for
an AS to predict the impact of one BGP change to its incoming
traffic [6], [4], [7]. Some of those hacks increase the size of
the BGP routing tables.

In this paper, we propose a cooperative approach to allow
an AS to control its incoming traffic in a deterministic manner.
Our approach relies on the establishment of Virtual Peerings.
A Virtual Peering allows a destination AS to request a source
AS to send its packets via a chosen ingress router in the
destination AS. Our solution can be used by ASes willing
to load-balance their incoming traffic or use low-latency or
high-bandwidth paths. We focus on stub ASes such as content-
providers, enterprise networks and broadband access providers
that produce and sink most of the traffic in the Internet.
Though our solution can also be used in the case of transit
ASes, controlling the incoming traffic in large transit ASes is
a different problem that is outside the scope of this paper.

Our solution slightly modifies the BGP protocol. To ensure
that those modifications can be deployed incrementally, we do
not require transit ASes to support our extensions. The only
affected routers are located within the cooperating source and
destination. This is a key contribution of our solution.

The remainder of this paper is organised as follows. In
section II, we briefly describe our proposed architecture. In
section III, we detail the establishment of the Virtual Peer-
ings and the required modifications to BGP. We present one
possible applications of Virtual Peerings in section IV. Then,
we evaluate the performance of our scheme by considering
traffic-balancing as one possible traffic engineering objective.
Section V shows, by means of simulations that it is possible for
a stub AS to load-balance its incoming traffic by establishing
only a fen tens of Virtual Peerings. Finally, we compare our
approach with related work in section VI.

II. VIRTUAL PEERINGS

Today, a common method used by ASes to engineer the flow
of their interdomain traffic is to establish peerings with other
ASes [8]. Those peerings are established either through direct
private links between the two ASes or over an interconnection

point. An eBGP session is used over the peering link to
advertise the prefixes that are reachable via each AS. BGP
peerings are established manually by changing the routers
configurations by hand. However, manual operations are error-
prone and slow. In addition, the time of establishment of a new
peering is often on the order of magnitude of several days or
weeks.

We propose to solve these problems with Virtual Peerings,
which automate the establishment of BGP peerings between
cooperating ASes and extend them to non-adjacent ASes.
Virtual Peerings allow an AS to control the ingress point used
by a non-adjacent AS. Therefore, Virtual Peerings represent
a deterministic solution to the control of an AS’s incoming
traffic. Virtual Peerings are established by cooperating ASes
based on the current traffic load or another property. We expect
that the establishments and removals of Virtual Peerings will
occur on a timescale of at least a few hours.

A Virtual Peering is a peering built on a dynamically es-
tablished uni-directionnal IP tunnel between two cooperating,
but non-adjacent, ASes. This tunnel is used by the source AS
to send packets to the destination AS via a chosen ingress
router in the destination AS. For this purpose, we propose to
place, inside each cooperating AS, a Virtual Peering Controller
(VPC) that will be responsible for the establishment and
maintenance of Virtual Peerings. A VPC can for example be
a dedicated workstation or a stand-alone BGP router.

Various types of IP tunnels can be used to carry the packets
on the Virtual Peerings. The simplest solution is to use IP-
in-IP encapsulation or Generic Routing Encapsulation (GRE)
tunnels. Those solutions have a low overhead (20 bytes for
IP-in-IP and 24 bytes for GRE) and are supported by most
routers. Two other possible types of tunnels are Layer Two
Tunneling Protocol (L2TP) and IPSec in tunnel mode. L2TP is
often used to provide Virtual Private Network (VPN) services,
but its overhead is larger than GRE. The main advantage of
IPSec would be its authentication and encryption facilities that
could be used to protect the Virtual Peering.

In the past, IP tunnels have often been criticised because of
the cost of encapsulating/decapsulating packets and the risk
of fragmentation. We would like to point out that those are
not operational problems anymore. High-end routers are now
capable of supporting line rate encapsulation and decapsu-
lation, either on the normal interfaces or by using special
interfaces [9]. Second, with Packet over SONET/SDH links
that are widely deployed by ISPs, the MTU is less stringent as
it was earlier. Furthermore, almost all TCP implementations
support PathMTU discovery and the tunnel head-end could
also perform PathMTU discovery on the tunnel itself.

Another common type of tunnels used by ISPs are MPLS
tunnels. For Virtual Peerings, MPLS would offer a lower
overhead as well as fast restoration, bandwidth reservation
and traffic engineering capabilities. Unfortunately, those ad-
vantages come at a price: the transit domains must support
MPLS and must allow other domains to use RSVP-TE to
establish MPLS tunnels through their own network. While
many large ISPs use MPLS inside their network , they are

often reluctant to let their customers or peers send RSVP-TE
messages to establish MPLS LPSs through their network.

To understand the operation and the usefulness of Virtual
Peerings, let us consider the simple network shown in Fig. 1.
In this network, assume that ASD would like to balance over
its providers the traffic received from the two sources AS1 and
AS2. As the two sources are attached to the same provider,
neither AS-Path prepending nor redistribution communities [7]
would allow ASD to control its incoming traffic.

VPC

ASD

VPC

AS1

VPC

AS2

P1

P2

P3P1.1

P2.1

Fig. 1. Sketch of the approach

As the access router of ASD is attached to two providers,
P1 and P2, another solution is possible. When a provider
establishes a link with one of its customers, it usually allocates
two IP addresses on this link from one of its own CIDR blocks.
The first one is for its own router and the second one is for the
router on the customer side. A consequence of this common
practice is that the access router of ASD can be reached via
two distinct IP addresses: P1.1 and P2.1. As P1.1 belongs
to the CIDR block advertised by P1, any packet sent on the
Internet with P1.1 as destination will reach ASD via P1.
Based on this finding, ASD can balance its incoming traffic
provided that it can convince AS1 (resp. AS2) to send all the
packets whose destination belongs to ASD inside an IP tunnel
that terminates at P2.1 (resp. P1.1). This tunnel can be
established without any cooperation from the transit providers.
It is entirely controlled by AS1 (resp. AS2) and ASD.

III. ARCHITECTURE AND PROTOCOL

Multiple components are involved in the establishment and
operation of a Virtual Peering, as shown in Fig. 2. First,
the two autonomous systems that will establish the Virtual
Peering: the Requester AS (RAS) and the Source AS (SAS).
The RAS is the AS that is willing to control its incoming
traffic. One of its router will terminate the tunnel that will
originate in one router of the SAS. Both the RAS and the
SAS can be networks composed of several BGP routers. There
must be at least one Virtual Peering Controller (VPC) in each
SAS and RAS. The VPCs are responsible for monitoring the
network and establishing the required Virtual Peerings. In
order to monitor the traffic, VPCs are linked to a measurement
infrastructure such as [10] In addition, VPCs will have an
iBGP session with all the routers in their domain. VPCs can
be dedicated workstations or stand alone BGP routers. Due
to their central position in an AS, it would be natural to
implement the VPC features on BGP route-reflectors.

AS X

AS Z

R12R11

R21*

R22*

5.0.0.0/8

10.0.0.0/8

10.0.0.125.0.0.11 1.0.0.0/8

AS Y
15.0.0.0/8

5.0.0.21
15.0.0.22

15.0.0.23

R23

2.0.0.0/8

VPC

VPC

SAS (stub)

RAS (stub)

1.1.1.9

2.0.4.17

Initial traffic flow

Final traffic flow

Fig. 2. Interdomain network topology

To initiate the establishment of Virtual Peerings and to ex-
change the parameters between the involved VPCs, a protocol
is required. Instead of defining a new signalling protocol, we
propose to rely on the already deployed BGP protocol as a
mean to exchange Virtual Peerings requests. The reason for
this choice is that such a protocol requires few modifications to
BGP and that it can be deployed incrementally. Our extensions
solve the following issues. First, the VPC in an RAS must
learn the IP address of the VPC in the SAS. Second, the
VPC in an RAS needs a secure mean of requesting from a
VPC in a remote AS the establishment and removal of Virtual
Peerings. Then, the VPC in the SAS must communicate with
the border routers of its AS in order to setup the requested
tunnels. Finally, routes must be distributed inside the SAS in
order to advertise the tunnels.

A. Advertisement of VPC addresses

The Virtual Peering Controller Advertisement (VPCA) is
used to advertise the IP addresses of the VPCs that serve the
SAS. Indeed, to request the establishment of a Virtual Peering
with the SAS, the RAS needs to know the IP address of the
SAS’s VPC. If a small number of ASes want to use Virtual
Peerings, these addresses could be distributed in an offline
manner, by e-mail or by other means. However, as the number
of participants grows, an automatic solution will be required.

We propose to distribute the SAS’s VPC IP address inside
the BGP Update messages originated by the SAS. The VPC IP
address is encoded in a transitive extended community value.
The extended community attribute is an optional attribute
supported by all BGP implementations. It is already used to
encode various types of optional information [11]. We define
the Virtual Peerings extended community that contains the IP
address of the VPC that is responsible for the associated prefix
and a set of bit flags indicating the types of tunnels that can be
used to establish a Virtual Peering. For redundancy reasons,
an AS could use several VPCs. In this case, it simply attaches
several Virtual Peerings extended communities to the BGP

routes that it originates.
In the example of Fig. 2, the BGP routes towards the

prefix 1.0.0.0/8 advertised by the RAS will contain the
IP address 1.1.1.9 in the Virtual Peering community. The
BGP routes advertised by the SAS for prefix 2.0.0.0/8
will contain 2.0.4.17, the IP address of the SAS’s VPC.

B. Establishment and removal of Virtual Peerings

To request the establishment of Virtual Peerings, some
messages must be exchanged between the RAS’s VPC and
the SAS’s VPC. Instead of defining a new signalling protocol
from scratch to establish the Virtual Peerings, we use a multi-
hop eBGP session between the two VPCs. We do not describe
the details of establishing a BGP session in this paper, but refer
the reader to the BGP specifications [12]. This session is used
by the RAS’s VPC to send messages to the SAS’s VPC. We
call this session the Virtual Peering Session in the remainder
of this paper. The messages exchanged over a Virtual Peering
Session are not propagated to other BGP routers.

Two types of BGP messages are exchanged over a Virtual
Peering Session: Virtual Peering Establishment and Virtual
Peering Removal. A Virtual Peering Establishment (VPE) is
a BGP Update message sent in order to request the estab-
lishment of a Virtual Peering or to change the parameters
of an existing Virtual Peering. The VPEs sent by the RAS’s
VPC over the Virtual Peering session must contain both the
destination prefixes (1.0.0.0/8 in the case of Fig. 2) and
the information required to establish the tunnels including the
tunnel tail-end. This information can be encoded by using the
tunnel SAFI proposed in [13]. This proposal defines a new
type of address family that allows to attach tunnel information
to the advertised prefixes. The encoding proposed in [13]
allows to specify the parameters for different types of tunnels.
For example, a tunnel route indicating a GRE tunnel can
contain the required key and the session ID while a tunnel
route indicating an L2TPv3 tunnel will contain the required
cookie. Furthermore, several types of tunnels can be attached
to each tunnel route. When advertising tunnel routes, a VPC
may request distinct Virtual Peerings by advertising different
prefixes with different associated tunnel tail-ends.

A Virtual Peering Removal (VPR) is a BGP Withdraw
message sent in order to shutdown an existing Virtual Peering.
The VPRs sent by the RAS’s VPC only contain the prefix for
which the Virtual Peering must be shutdown and concern the
same address family. When a VPR is received by a VPC, it
contacts the tunnel head-ends to shutdown the tunnels for the
given prefix.

C. Distribution of Virtual Peering routes within the domain

The Virtual Peering Tunnel Route (VPTR) is a normal BGP
Update message that the VPC sends to the border routers in
order to distribute the tunnel routes received in a VPE. The
VPTRs are sent over the genuine iBGP sessions that the VPC
has established with the border routers. Each VPTR contains a
prefix, a tunnel tail-end and the type of tunnel requested. The
VPTR uses a different address family, so that both the normal

IPv4 addresses and the tunnel routes can be advertised over a
single BGP session.

The selection of the best border routers to serve as the
Virtual Peering head-end in the SAS could depend on how
the SAS wants to optimise its interdomain traffic. In practice,
this decision will be taken by the VPC. Two approaches are
possible. In the first approach, the VPC itself can learn the
eBGP routes known by each border router. Since it has an
iBGP session with each border router, this is easy. The VPC
can then measure the quality of each eBGP route based on
predefined criteria by requesting each border router to perform
latency and bandwidth measurement using a technique such as
[14]. For instance, it can measure the latency of the routes or
the maximum bandwidth available along the route. Based on
the result of the measurement, the VPC can then select a single
border router.

The second approach consists in establishing multiple tun-
nels. The VPC must then select multiple border routers that
will serve as tunnel head-ends. This approach is interesting if
the SAS has multiple peerings with its providers, located at
very distant places. In this case, it can be interesting to setup
tunnels departing at each of these peerings in order to favour
hot-potato routing.

Upon reception of a VPTR each border router determines
whether it has a best eBGP route to reach the tunnel tail-end
in its BGP routing table. In that case, the border can serve as
a tunnel head-end for the packets sent towards this prefix. For
instance, in the example of Fig. 2, R22 has learned an eBGP
route towards the prefix of the tail-end router, 10.0.0.0/8.
Once the tunnel is established, the border router advertises via
iBGP a new route indicating that it can reach the destination
prefix. This route has a higher value of its local-pref
attribute to force other iBGP neighbours to prefer it over routes
received outside of the Virtual Peering. The AS-Path of this
advertisement contains the AS-Path of the route that the border
router uses to reach the tunnel tail-end. If there are no eBGP
routes to reach the tunnel tail-end (this may be due to BGP
policies), the border router will not serve as a tunnel head-end
for the packets sent towards this prefix.

We assume that in a typical IP network, only a fraction
of the border routers will be able to serve as tunnel head-
ends. This could for example depend on the type of interfaces
installed on each router. To allow the VPC to know the
routers that are capable of establishing virtual peering links,
we assume that each router indicates in the IGP link state
packets that it originates the types of tunnels that it supports,
if any. For IS-IS, this can be encoded by using the capability
TLV defined in [15]. Based on its link state database, the VPC
can thus easily determine the capabilities of all the border
routers inside its AS.

D. Security considerations

From a security viewpoint, the Virtual Peerings approach
proposed in this section exhibits two major issues. First,
the VPCA message advertises to the global Internet the IP
addresses of the VPCs attached to a prefix. If an attacker could

modify the content of the Virtual Peerings extended communi-
ties in BGP advertisements passing through a (transit) router,
it could redirect Virtual Peering requests to another machine.
This could lead to traffic redirection attacks. However, it
should be noted that if an attacker is able to modify BGP
messages, many types of attacks are possible with the standard
BGP that is deployed today. In order to avoid this problem,
the best solution is to use one of the BGP extensions proposed
in [16], [17], that allow to authenticate BGP advertisements.
If those extensions cannot be used, a possible solution is to
ensure that the IP address of the VPC belongs to the advertised
prefix.

A second issue is due to the VPEs. When receiving a
VPE, a VPC should be able to verify that the RAS is
authorised to advertise those prefixes and tunnel tail-ends.
Otherwise, an attacker could easily redirect packets sent by
the SAS to its premisses instead of a tail-end in the RAS.
This verification could be based on publicly available address
allocation registries such as ARIN or RIPE. Several major
ISPs, notably in Europe, already use those databases to filter
the routes advertised by their peers and customers. Those
techniques can also be used by VPCs. In the long term, the
BGP security extensions being developed by the IETF [16],
[17] will address this problem.

E. Deployment

Our rationale for designing the protocol described in this
section was to make possible an incremental deployment.
Since the protocol does not require modifications in the
intermediate ASes, two domains can start to use it to negotiate
Virtual Peerings. Moreover, inside a single domain, only a
subset of the border routers must be updated in order to
support the VPTRs. In addition, the VPC can initially be
implemented in a separate workstation and later be deployed
inside a genuine BGP router or route-reflector. Finally, while
the BGP security extensions [16], [17] have not yet been
deployed in the global Internet, it would be easier to use them
between VPCs as there will be fewer VPCs than normal BGP
routers and the VPCs do not redistribute the VPEs received
over the Virtual Peerings sessions to other ASes.

A possible deployment scheme would be to initially start
using Virtual Peerings between a small number of universities
or research labs. Afterwards, the solution can naturally be
deployed by content and access providers as well.

IV. APPLICATIONS OF VIRTUAL PEERINGS

The Virtual Peerings can be used to achieve various types
of traffic engineering objectives such as load balancing, pre-
ferring paths with the lowest delay or the highest bandwidth
or reducing the cost of the traffic. We discuss in this section
one of their utilizations: inbound traffic engineering.

Virtual Peerings can be used to gain a better control on
the inbound traffic of a domain. As explained earlier, the
traffic of a multi-homed stub domain is often imbalanced, a
small number of ASes are responsible for a large fraction of
the received traffic [4], [18], [6]. Virtual Peerings represent

a deterministic solution to the problem of inbound traffic
engineering. When a stub AS is connected to two transit
providers, it may, depending on the BGP configurations of its
providers receive 80 or 90% of its traffic through one provider.
This imbalance may lead to congestion and packet losses on
the access links. To avoid this congestion, stub ASes need to
move some incoming traffic flows between providers to obtain
a better traffic balance.

In order to achieve a good balancing of the inbound traffic,
the stub AS needs to monitor the traffic received on each
access link. This can be done by activating NetFlow on the
border routers’ interfaces and by collecting the traffic statistics
in a dedicated workstation [10]. Then, based on the traffic
statistics combined with an optimisation algorithm, the stub
AS identifies the source ASes that must be moved. For each
source AS concerned, a Virtual Peering is established. Through
the Virtual Peering, the destination requests the source AS to
encapsulate its traffic in a tunnel towards a designated access
link. We show later that this solution is feasible and that with
a limited number of Virtual Peerings, it is possible to reach a
near perfect load balance of the inbound traffic.

V. VIRTUAL PEERINGS FOR TRAFFIC BALANCING

To be useable as a technique to balance the incoming traffic
of a multi-homed stub ISP, it should be possible for a stub to
balance its incoming traffic by establishing a small number of
Virtual Peerings although there are more than 16,000 ASes in
today’s Internet.

A. Simulation scenario

We use the Internet topology inferred by [19] from real BGP
routing tables gathered from multiple vantage points, mostly in
the Internet core. The topology dates from February 10th, 2004
and contains 16,921 domains and 37,271 interdomain links.
There is at most one link between two different domains and
each link represents the business relationship that exists be-
tween the two domains it connects. The possible relationships
are customer-provider relationship where a customer buys
connectivity from a provider and peer-to-peer relationship
where the connection cost is shared by the two domains.

We use C-BGP [20] and model each domain as a single BGP
router. We translate the business relationships between the
domains into routing policies configured in each routers. These
policies are composed of two parts. The first part enforces
the so-called selective export rule [21] which governs the
provision of transit. One domain will typically provide a full
transit service to its customers, a limited transit service to its
peers but never between its providers or its peers. The second
part of the policies enforces the preference that a domain has
for routes learned over different relations [21]. The routes
learned from customers are preferred over routes learned from
peers which in turn are preferred over routes learned from
providers.

To ensure a good representativity, our simulations are per-
formed for a large number of stubs. We consider 1000 dual-
homed stubs, 1000 3-homed stubs, 295 4-homed stubs, 101

5-homed stubs and 49 6-homed stubs. This corresponds to
29% of the multi-homed stubs in today’s Internet.

To model the traffic distribution in this topology, we assign
traffic on all the sources following a Weibull distribution with
shape parameter � equal to 0.5. With this distribution, about
1000 sources are responsible for 95% of the traffic received
by a stub AS. This fits very well the traffic distribution shown
in [6] and [22] and the references therein.

Based on those traffic distributions, we used C-BGP to
compute the distribution of the incoming traffic on each of the
considered 2445 stub domains. Fig. 3 shows the distributions
of the traffic imbalance among all those stub domains. We
define the traffic imbalance as the traffic volume received by
the most loaded provider divided by the mean traffic volume.
On the y-axis, we show the cumulative fraction of stubs that
have the corresponding imbalance. Fig. 3 shows the traffic
imbalance for stubs that have 2 to 6 providers. We observe
on the first curve that less than 25% of dual-homed stubs
have their inbound traffic well balanced over their providers,
that is with an imbalance smaller than 1.01. Moreover, more
than 35% of dual-homed stubs have an imbalance superior to
1.2, which means that 35% of the dual-homed stubs have one
provider that receives more than 60% of the traffic. Among
stubs that have 3 providers, about 60% have an imbalance
larger than 1.2. Discussions with ISPs reveal that such large
traffic imbalances are common.

 0

 20

 40

 60

 80

 100

 1 1.5 2 2.5 3 3.5 4

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f s
tu

bs

Initial traffic disbalance

2-homed stubs
3-homed stubs
4-homed stubs
5-homed stubs
6-homed stubs

Fig. 3. Initial traffic imbalance

B. Selection of the Virtual Peerings

Searching for a better repartition of the traffic is an optimi-
sation problem which consists in allocating an access link to
each source of traffic. This is a combinatorial problem. Several
techniques can be used to solve this problem. We choose to use
Evolutionary Computing techniques [23] implemented with
the help of the GAUL library [24]. We choose an evolutionary
algorithm to solve this problem because it is possible to extend
it to support multiple objectives [25] and this technique has
already been applied to solve different interdomain traffic
engineering problems [22].

Our evolutionary algorithm (Alg. 1) relies on a population of
individuals, that is, a set of potential solutions that evolves in
time. In our population, an individual represents a particular
assignment of the

�
sources on the � access links of the

destination. An individual is thus an array �������
	�	
	����������� of�
integers ����������� where each ��� is the identifier of the

access link used by source to enter the network. We initialize
the population with individuals that represent the initial BGP
situation, that is, an individual represents the access link used
by the

�
sources. In practice, a stub network does not need to

know the interdomain paths used by each source AS. It can use
NetFlow on its border routers and collect the traffic statistics
[10] to determine which source AS is received over which
access link. Before starting the optimization, the algorithm
slightly perturbates the initial individuals. In this way, we
do not start with a population of identical individuals. The
perturbation of an individual consists in replacing the access
link of a randomly chosen source by a randomly chosen access
link.

Alg. 1 Optimization algorithm
Let

�
be the number of sources

Let � be the number of access links
Let ���!�"�#��$%�'&(be the initial access link used by each source
Let ��)"�*�#��$%�'&(be the traffic volume sent by each source

1: {Initialize population with + � individuals}
2: �-,.�0/21
3: for 3546� to + �87:9

do
4: �(,.�0/;�-,.�=<0>@?-A#BCA#DE�F�G�H���
	!	�	!�I����J�����
5: end for
6: {Evaluate fitness of individuals}
7: D")CBE��?KBCA#D _ L(MNAPO�DRQ*Q _�-,.�S�T�-,.�K�
8: {Main loop, each generation updates the population}
9: while ��UED"O�D"VRBWAPMP,*OX�:�ZY\[^]`_ � � do

10: {Crossover with probability 0.1}
11: a�VR,bQ*Q",*)CD"V _�-,.�S�T�-,.�K�
12: {Mutation of individuals with probability 0.9}
13: >@?-A#BCA#D _�(,.�S�c�(,.�(�
14: {Evaluate fitness of individuals}
15: D")EBC��?(BCA#D _ L(MNAPO�DRQ"Q _�-,.�d�c�(,.�(�
16: {Terminates if a good individual is found}
17: if (e�30f��(,.�Sg 3Ch satisfies termination criterion) then
18: break
19: end if
20: {Select best individuals based on fitness}
21: Q"D*��D*a�A'�T�-,.�(�
22: end while

We fixed the population size, in an empirical manner,
to twice the number of considered sources. The number of
considered sources depends on the traffic volume distribution.
In these results, the algorithm considers as many sources as
required to cover 95% of the total traffic volume. That is,

� 4ibj + sources were taken into account. During the evolution of
the population, we perform mutations and crossovers. In our
algorithm, a mutation consists in changing the access link of

a randomly selected source (see Alg. 2). We refer the reader
to [23] for an explanation of the crossover operation.

Alg. 2 Mutate individual �k� � ��	�	!	���� ��J� �
1: {Choose a random access link M }
2: Ml4mVRBCO�n-�k�o�
3: {Choose a random source }
4: p4�VRBCO�n-� � �
5: {The new access link used by source is M }
6: �!��/qM
After each generation of the population, individuals are

evaluated with a fitness function. The fitness function used in
our algorithm (Alg. 3) measures for an individual the deviation
that it causes in term of load balancing. Formally, in order
to measure the fitness of an individual r , the algorithm first
computes the percentage of traffic sut that would be received by
each access link M if the configuration represented by individualr was implemented with Virtual Peerings. Then, the function
computes the L2 distance between the vector �Gs t � �
$ t &Kv and
the equilibrium. The equilibrium represents the case where
each access link receives an equal percentage of traffic

9*w � .
Finally, a selection is performed based on the fitness of

individuals. The individuals that best fit the objective are kept
while others are discarded.

Alg. 3 Compute the fitness of individual �������
	!	�	�������J���
1: {Compute the load vector ��s t � �
$ t &Kv }
2: for Mx4�� to � 7�9

do

3: s t /
y�zI{P| } {.~��
� {y6�F�b{P�W� � {

4: end for
5: {Compute the L2 distance from the equilibrium vector}
6: L(MNAPO�DRQ*Q�/ y �
$ t &Kv8� s�t 7 �v����

C. Results

We used this evolutionary algorithm to determine the Virtual
Peerings that each of our 2445 considered stubs would have
to establish to approach a perfect balance among its access
links by less than 1%. This means that in the case of a
dual-homed stub for instance, the number of tunnels required
causes the most loaded provider to carry at most 50.9% of the
traffic volume. Figure 4 reports the cumulative distribution of
the number of Virtual Peerings established by all those stub
domains to approach of the perfect balance by less than 1%.
We observe that in the case of dual-homed stubs, the objective
is reached with no more than 41 tunnels for 90% of the stubs.
In the case of 3-homed stubs, no more than 42 tunnels are
required to balance the traffic of 90% of the stubs. Finally,
less than 50 tunnels are required to balance the traffic among
the providers of 90% of the 4-homed stubs.

We studied the sensitivity of the technique to the traffic
distribution. We performed the same simulation with a traffic
distribution that follows a Weibull with parameter � 4���	�+�� .

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f s
tu

bs

Number of Virtual Peerings

2-homed stubs
3-homed stubs
4-homed stubs
5-homed stubs
6-homed stubs

Fig. 4. Number of Virtual Peerings to establish

In this case, the situation is really unfavourable : 3000 source
ASes produce 95% of the traffic received by a stub. The results
of this simulation (not shown here due to space limitations)
reveal that the number of Virtual Peerings required to balance
the inbound traffic increases, but remains quite low. With � 4��	�� , a near perfect load balancing was possible with as few
as 43 tunnels for 90% of the stubs. The remaining 10% of
the stubs require between 44 and 94 tunnels. With � 4 ��	�+�� ,
43 tunnels allow a near perfect load balancing of 68% of the
stubs. Up to 80 tunnels are required to cover 90% of the stubs.
The remaining 10% of the stubs still only need not more than
148 tunnels to balance their inbound traffic.

These figures show that an inbound traffic engineering rely-
ing on Virtual Peerings is feasible even with an unfavourable
traffic distribution. Moreover, with Multi-Objective Evolution-
ary Computing [25] it would be possible to determine the
optimal Virtual Peerings that minimise both the imbalance and
the number of tunnels to establish. It would also be possible
to combine load balancing with other objectives such as the
latency reduction but we leave this as further work.

VI. RELATED WORK

Several works published in the literature have discussed
interdomain traffic engineering. However, most of them focus
on outgoing traffic engineering [3], [4], [5], [6], [18]. A few
studies have discussed the performance of various “BGP-
hacks” that are used by ASes to control their incoming traffic.
In [26], we showed by simulations that AS-path prepending,
although a widely used technique, provides a too coarse
and non deterministic control on the incoming traffic. An
alternative approach is to rely on techniques based on special
BGP communities [7], [27]. Those techniques provide a finer
control on the incoming traffic but are difficult to use in
practice.

The idea of “negotiating” interdomain traffic engineering
is also discussed in [28] and [29]. However, those solutions
are limited to neighbouring ASes. Another approach is the
utilisation of endsystem-based overlay networks such as RON

[30]. In those approaches, overlays are established between
endsystems based on collected measurements. To the contrary
of overlays, our approach relies on tunnels that are established
and maintained by the border routers of the source and
destination ASes. Thus, our solution requires fewer tunnels
and no modifications to the endsystems.

Our approach is close to the Detours proposed in [31].
Detours also relies on tunnels established between routers and
assumes that endsystems are able to select the appropriate
detour router. Our solution is completely transparent for the
endsystems and we have shown how BGP can be used to
establish the tunnels between routers.

Our approach has similarities to IPv6 multi-homing so-
lutions (see [32] and references therein). With IPv6 multi-
homing, each endsystem receives several IPv6 addresses, one
per provider of its AS. By selecting the address that it
uses to reach a destination, each host can indirectly select
the interdomain path used. With IPv4, it is impossible to
allocate several IP addresses to each host, but our Virtual
Peering allows to control the flow of the incoming packets
by terminating the tunnel at IP addresses belonging to the
providers’ CIDR blocks.

A systematic analysis of multi-homing is presented in [33].
This paper provides an in-depth analysis of the performance
and reliability improvements that comes from multi-homing.
In [34] a comparison of the relative benefits of overlay routing
and route control in the case of multi-homing is made. In
particular, it shows that route control with multi-homing can
achieve performances that are close to overlay routing.

In [35], a load-balancing system is proposed an evaluated.
It allows to control the traffic in both directions. As it relies
on NAT, we do not consider this system to be applicable
for large stub ASes such as broadband access providers.
The measurement part of [35] could be combined with our
approach. Several commercial multi-homing techniques have
also been proposed recently, but few details are available about
their operation [3], [36].

In addition, there are also proposals to bring drastic changes
to interdomain routing. For instance, [37] considered the use
of a separate protocol to carry control information and [29]
proposes to introduce negotiation between ISPs. Unfortunately,
to be used, those protocols and mechanisms must be supported
by all transit ASes. This requires changes to potentially all
BGP routers in the global Internet. Our approach relies on a
cooperation between the source and the destination AS, but
does not require any change to the transit ASes.

VII. CONCLUSION

Autonomous Systems that are packet consumers, such as
ADSL or CATV providers, often need to control the flow
of their incoming interdomain traffic for cost or performance
reasons. In this paper, we have proposed the utilization of
Virtual Peering to provide a deterministic and incrementally
deployable solution to this problem.

A Virtual Peering is a unidirectional IP tunnel between a
border router chosen by the source AS and a border router

chosen by the destination AS. Our solution to establish a
Virtual Peering relies on three basic principles. First, there
is a Virtual Peering Controller inside each AS and its IP
address is attached as a BGP extended community to all
BGP advertisements originated by the AS. Second, a multi-
hop eBGP session is established between the VPCs of the
source and destination ASes to negotiate Virtual Peerings.
The source AS selects the head-end of the Virtual Peering
based on its own traffic engineering objectives. Third, the
destination AS selects autonomously the tail-end of the Virtual
Peering. A key advantage of our approach is that it can be
incrementally deployed inside cooperating stub ASes and does
not require any change to the transit ASes. Given the size
of the global Internet and the number of BGP routes, this
incremental deployment is a key operational problem that must
be considered.

As an example application of those Virtual Peerings, we
have used a load-balancing problem. Our simulations have
shown that in today’s Internet, about 50% of the multi-homed
stub ASes can balance their incoming traffic by requesting
less than 20 Virtual Peerings. Furthermore, with only 70
Virtual Peerings, the incoming traffic of almost all stubs is
well balanced. Our further work includes the definition of
algorithms to select the optimal Virtual Peerings to meet other
traffic engineering objectives such as reducing the end-to-end
delay or the cost of interdomain traffic received by an AS.

ACKNOWLEDGEMENTS

This work was supported by the Walloon
Government (DGTRE) within the TOTEM project
(http://totem.info.ucl.ac.be). We are grateful to Steve
Uhlig and Cristel Pelsser for their comments and suggestions.

REFERENCES

[1] J. Stewart, BGP4 : interdomain routing in the Internet, Addison Wesley,
1999.

[2] B. Halabi and D. Mc Pherson, Internet Routing Architectures (2nd
Edition), Cisco Press, January 2000.

[3] D. Allen, “NPN: Multihoming and route optimization: Finding the
best way home,” Network Magazine, February 2002, available from
http://www.networkmagazine.com/article/NMG20020206S0004.

[4] B. Quoitin, S. Uhlig, C. Pelsser, L. Swinnen, and O. Bonaventure,
“Interdomain traffic engineering with BGP,” IEEE Communications
Magazine, May 2003.

[5] S. Uhlig and O. Bonaventure, “Designing BGP-based outbound traffic
engineering techniques for stub ASes,” Comput. Commun. Rev., vol. 34,
no. 5, 2004.

[6] N. Feamster, J. Borkenhagen, and J. Rexford, “Guidelines for interdo-
main traffic engineering,” ACM SIGCOMM Computer Communications
Review, October 2003.

[7] B. Quoitin, S. Tandel, S. Uhlig, and O. Bonaventure, “Interdomain
Traffic Engineering with Redistribution Communities,” Computer Com-
munications Journal (Elsevier), vol. 27, pp. 355–363, March 2004.

[8] S. Bartholomew, “The art of peering,” BT Technology Journal, vol. 18,
no. 3, July 2000.

[9] Juniper Networks, “Ip services pics : datasheet,”
http://www.juniper.net/products/modules/100048.html, 2004.

[10] G. Varghese and C. Estan, “The Measurement Manifesto,” ACM
SIGCOMM Computer Communications Review, vol. 34, pp. 9–14, 2004.

[11] Srihari R. Sangli, Daniel Tappan, and Yakov Rekhter, “BGP Ex-
tended Communities Attribute,” Internet draft, draft-ietf-idr-bgp-ext-
communities-06, work in progress, August 2003.

[12] Y. Rekhter and T. Li, “A Border Gateway Protocol 4 (BGP-4),” Internet
draft, draft-ietf-idr-bgp4-26.txt, work in progress, October 2004.

[13] Gargi Nalawade, Ruchi Kapoor, and Dan Tappan, “Tunnel SAFI,”
Internet Draft, draft-nalawade-kapoor-tunnel-safi-01, work in progress,
October 2003.

[14] CISCO Systems, “CISCO IOS Service Assurance Agent,”
http://www.cisco.com/warp/public/cc/pd/iosw/prodlit/saang_ds.pdf,
2004.

[15] J. Vasseur, S. Previdi, and M. Shand, “IS-IS extensions for advertising
router capabilities,” Internet draft, draft-vasseur-isis-caps-00.txt, work in
progress, February 2004.

[16] Russ White, “Securing BGP Through Secure Origin BGP,” The Internet
Protocol Journal, vol. 6, pp. 15–22, June 2003.

[17] S. Kent, C. Lynn, and K. Seo, “Secure Border Gateway Protocol (S-
BGP),” IEEE Journal on Selected Areas in Communications, vol. 18,
no. 4, pp. 582–592, April 2000.

[18] S. Uhlig and O. Bonaventure, “Implications of Interdomain Traffic
Characteristics on Traffic Engineering,” in European Transactions on
Telecommunications, special issue on traffic engineering, 2002.

[19] L. Subramanian, S. Agarwal, J. Rexford, and R. Katz, “Characterizing
the Internet Hierarchy from Multiple Vantage Points,” in INFOCOM
2002, June 2002.

[20] B. Quoitin, “C-BGP, an efficient BGP simulator,” http://cbgp.
info.ucl.ac.be, September 2003.

[21] L. Gao, “On Inferring Autonomous System Relationships in the
Internet,” IEEE Global Internet, November 2000.

[22] S. Uhlig, O. Bonaventure, and B. Quoitin, “Interdomain Traffic Engi-
neering with minimal BGP configurations,” in Proceedings of the 18th
International Teletraffic Congress, ITC, September 2003.

[23] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing,
Springer-Verlag, 2003.

[24] S. Adcock, “GAUL, the Genetic Algorithm Utility Library,” http:
//gaul.sourceforge.net, 2004.

[25] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms,
John Wiley & Sons, June 2001.

[26] O. Bonaventure, P. Trimintzios, G. Pavlou, B. Quoitin (Eds.), A. Az-
corra, M. Bagnulo, P. Flegkas, A. Garcia-Martinez, P. Georgatsos,
L. Georgiadis, C. Jacquenet, L. Swinnen, S. Tandel, and S. Uhlig,
“Internet Traffic Engineering,” Chapter of COST263 final report,
Springer-Verlag, October 2003.

[27] S. Agarwal and T. Griffin, “BGP Proxy Community Community,”
Internet draft, draft-agarwal-bgp-proxy-community-00, work in progress,
January 2004.

[28] Jared Winick, Sugih Jamin, and Jennifer Rexford, “Traffic Engineering
Between Neighboring Domains,” Tech. Rep., June 2002.

[29] R. Mahajan, D. Wetherall, and T. Anderson, “Negociation-Based Rout-
ing Between Neighboring ISPs,” in Proceedings of the 2nd Symposium
on Networked Systems Design and Implementation, April 2005.

[30] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
overlay networks,” in Proceedings of the eighteenth ACM symposium
on Operating systems principles, 2001, pp. 131–145.

[31] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell,
A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and J. Zahorjan,
“Detour: Informed internet routing and transport,” IEEE Micro, vol. 19,
no. 1, pp. 50–59, 1999.

[32] C. de Launois, O. Bonaventure, and M. Lobelle, “The NAROS Approach
for IPv6 Multi-homing with Traffic Engineering,” in Proceedings of
QoFIS, LNCS 2811, Springer-Verlag, October 2003, pp. 112–121.

[33] A. Akella, B. Maggs, A. Seshan, A. Shaikh, and R. Sitaraman, “A
Measurement-based Analysis of Multihoming,” in Proceedings of ACM
SIGCOMM, Karlsruhe, Germany, August 2003.

[34] A. Akella, J. Pang, B. Maggs, S. Seshan, and A. Shaikh, “A Comparison
of Overlay Routing and Multihoming Route Control,” in Proceedings
of ACM SIGCOMM, Portland, OR, August 2004.

[35] F. Guo, J. Chen, W. Li, and T. Chiueh, “Experiences in Building
a Multihoming Load Balancing System,” in Proceedings of IEEE
INFOCOM, March 2004.

[36] Cisco Systems, “Cisco Optimized Edge Routing,” Tech. Rep., May
2004.

[37] S. Agarwal, C. Chuah, and R. Katz, “OPCA: Robust Interdomain Policy
Routing and Traffic Control,” in Proceedings of the 6th International
Conference on Open Architecture and Network Programming, IEEE
OpenArch, April 2003.

