
UNIVERSITÉ CATHOLIQUE DE LOUVAIN

FACULTÉ DES SCIENCES APPLIQUÉES

DÉPARTEMENT D’INGÉNIERIE INFORMATIQUE

Assessment software development for
distributed firewalls

Promoteur :
Prof. Olivier BONAVENTURE

Mémoire présenté en vue de l’obtention du
grade d’Ingénieur Civil en Informatique
par Damien LEROY

Louvain-la-Neuve
Année académique 2005–2006

Acknowledgements

Prof. Olivier Bonaventure, my supervisor
for suggesting such an interesting research topic,
for being a very helpful supervisor with lots of good advice, ideas and supports
all through the project,
for the main proofreading.

M. Freddy Gridelet (LS/SGSI/SISY) and M. Pierre Reinbold (FSA/INGI),
for supplying some real firewall configurations.

Gregory Culpin and Sébastien Barré, some friends
for more proofreading.

– i –

Contents

Introduction 1

1 Distributed firewalls: overview and problem statement 3
1.1 Firewall overview . 3

1.1.1 Simple firewalls . 3
1.1.2 Distributed firewalls . 4
1.1.3 Packet filtering implementations . 7

1.2 Thesis specifications . 8
1.2.1 Global objectives . 8
1.2.2 Hypothesis . 9
1.2.3 Steps . 9

1.3 Global decisions . 10
1.3.1 The programming language . 10
1.3.2 The application’s name . 10
1.3.3 Notations . 10
1.3.4 Data manipulations . 11

1.4 Firewall analysis: state of the art . 12
1.4.1 Single firewall analysis . 12
1.4.2 Distributed firewalls analysis . 13

2 Definition of a language for firewalls 14
2.1 Language structure . 14

2.1.1 Representation of the language . 14
2.1.2 Language formalisation . 16
2.1.3 Document definition . 16

2.2 Filtering, NAT and other tables . 17
2.2.1 Filtering . 17
2.2.2 Logging . 17
2.2.3 Network Address Translation (NAT) . 17
2.2.4 Packet alterations . 19

2.3 Network interfaces and connected subnets . 19
2.4 User-defined chains . 20
2.5 Rules and fields for filtering . 23
2.6 IP flows . 27

2.6.1 Data flows with TCP, UDP and ICMP 28
2.6.2 Finite state machines . 30

– ii –

CONTENTS

2.6.3 Flag analysis . 31
2.6.4 Stateful versus stateless firewalls . 31

2.7 Extensions . 32
2.8 Conclusion . 32

3 The parser 34
3.1 XML and Java . 34

3.1.1 The Document Object Model (DOM) 34
3.1.2 Simple API for XML (SAX) . 34
3.1.3 DOM or SAX? . 35

3.2 Common implementation . 35
3.2.1 The main classes . 35
3.2.2 The rule child classes . 37
3.2.3 The interface definitions . 37

3.3 Dealing with iptables . 39
3.3.1 Parsing of the input file . 40
3.3.2 Rule parsing . 42

3.4 Limitations . 45
3.5 Support of other firewall configuration languages 46
3.6 Conclusion . 46

4 Analysis of distributed firewall configurations 47
4.1 Overview of the firewall decision for each flow 47

4.1.1 What is a policy tree . 48
4.1.2 Construction of a policy tree . 49
4.1.3 Improving the efficiency of the policy tree 54

4.2 Anomaly detection . 57
4.2.1 Anomaly classification . 57
4.2.2 Anomaly searching . 60
4.2.3 Relevance levels of anomalies . 62

4.3 Conclusion . 64

5 Validation of the application 65
5.1 Overview of the test network . 65
5.2 Parsing of iptables files . 66
5.3 Analysis of configurations . 67

5.3.1 General overview . 67
5.3.2 More relevant anomalies . 68
5.3.3 Request limited between networks . 68
5.3.4 Other verifications . 69

Conclusion 70

Bibliography 72

A Examples and test sets I
A.1 A simple example of iptables-save outputs I
A.2 Test sets for the parser . II

A.2.1 Rule merging . II
A.3 Test sets for the analyser . VI

– iii –

CONTENTS

A.3.1 Recognition of the firewall positioning (see Figure 1.3) VI
A.3.2 Finding more relevant anomaly . VIII

B Short manual for DFA XIV
B.1 To launch the application . XIV
B.2 Overview of the interface . XIV
B.3 The parser . XIV
B.4 The analyser . XV

– iv –

List of Figures

1.1 Different types of firewalls in a typical network 4
1.2 A network in which distributed firewalls may generate anomalies 5
1.3 Various positioning of firewalls . 6
1.4 A network with two ways out to the same external network 9
1.5 A valid example of firewall rule list . 11

2.1 An example of XML document representing a library 15
2.2 Example of a message sent through a NAT . 19
2.3 Processing of incoming, outgoing and forwarded packets in Netfilter filtering ta-

bles . 20
2.4 Filtering model in this language . 20
2.5 A rule list without using user-defined chains . 21
2.6 The same rule list as 2.5 but using user-defined chains 22
2.7 Structure of the chains in the example of Figure 2.6 22
2.8 Tree that represents the set of rules of Figure 2.6 23
2.9 Ack and syn flag in TCP three-way handshake 29

3.1 Diagram of the parser main classes . 36
3.2 Class diagram of the Parser package . 37
3.3 A typical network where the firewall interface definition has to be made 38
3.4 Interface list of the firewall in Figure 3.3 . 39
3.5 Algorithm uses by the parser to remove the user-defined chains 42

4.1 An example of policy tree . 48
4.2 An example of a network where interfaces may cause some problems 51
4.3 Algorithm used to determine the value of NA

B 51
4.4 Algorithm used to translate interfaces into IP addresses 52
4.5 Algorithm used to add IP addresses in the tree 55
4.6 A network in which the redundancy anomaly detection could be relevant 58
4.7 A simple example of upstream-blocked anomaly 59
4.8 A simple example of downstream-blocked anomaly 59
4.9 A simple example of the no reply anomaly . 60
4.10 An example of the useless established anomaly 61
4.11 All the possible configurations and their anomalies 63

5.1 A representation of the test network . 66

– v –

LIST OF FIGURES

B.1 The entire DFA window . XV
B.2 A successful parsing . XVI
B.3 An analyser frame . XVI

– vi –

List of Tables

2.1 Definition of the element firewall . 16
2.2 Definition of the element filtertable . 17
2.3 Definition of the element interface . 21
2.4 Definition of the element network . 21
2.5 Definition of the element ip . 21
2.6 Definition of the element mask . 21
2.7 Definition of the element frule . 24
2.8 Definition of the element interfacein . 24
2.9 Definition of the element interfaceout . 24
2.10 Definition of the element protocol . 24
2.11 Definition of the element ipv4 . 25
2.12 Definition of the element src . 25
2.13 Definition of the element dst . 25
2.14 Definition of the element fragment . 25
2.15 Definition of the element tcp . 25
2.16 Definition of the element srcport . 26
2.17 Definition of the element dstport . 26
2.18 Definition of the element from . 26
2.19 Definition of the element to . 26
2.20 Definition of the element udp . 26
2.21 Definition of the element icmp . 27
2.22 Definition of the element type . 27
2.23 Definition of the element ah . 27
2.24 Definition of the element esp . 27
2.25 Definition of the element spi . 27
2.26 Definition of the element established . 31

4.1 Translation of the source/destination addresses into A/B addresses 53
4.2 Model of a policy table . 61
4.3 Two equivalent policy tables . 62

5.1 The number of rules after parsing . 67
5.2 Summary of the test results . 69

– vii –

Introduction

Network security, a subject that was barely brought up ten years ago, is these days one of the
hottest topics of many technology information publications. This evolution can be viewed as a
direct consequence of the great expense of the Internet in our everyday life. The Internet is a
marvellous technological advance that allows to buy a book, to phone your friends, to obtain the
last news or to read the diary of someone at the other side of the world in a few seconds. But
Internet is also a major danger where thousands of people have the ability to destroy information
and threaten your private life.

Firewalls are pieces of the Internet security jigsaw. They provide protection to network devices
by filtering what is entering and leaving. The protected devices are generally networks of several
computers, but firewalls can also be implemented in end-computers, inside the application layer
or below. In this work, we will especially deal with firewalls that work inside the network and
transport layers.

When several neighbouring firewalls share a part of their policy, it is said that the firewalls are
part of distributed firewalls. These shared policies are the subject of this thesis. More precisely,
the thesis is about the analysis and the evaluation of these policies.

Objectives of the work

First, let us start with the global objective of the work. This is to conceive a software application
that takes as input two firewall configurations and that outputs a complete overview of the policies
implemented between these firewalls. The tool has also to provide some hints to detect potential
anomalies in these policies.

The configurations considered by the analyser have to be expressed in a common firewall
configuration language that can represent nearly all the possible network configurations. Our
language is XML-based and has been built up from scratch.

Another specification is that the application has to be able to import any configuration file of,
at least, one of the best-known firewall configuration languages. The supported language is Netfil-
ter/iptables, the most used firewall implementation in Linux systems. So the iptables configuration
files must be parsed into the XML language for firewalls that have just been mentioned.

When the application that explores the policies has been implemented, the ultimate test is to
import configurations of large network firewalls and to translate them into our language. Once

– 1 –

INTRODUCTION

it is done, these configurations have to be analysed by our application to discover the policies.
Then, our approach has been to allow to check these policies by hand or automatically. All the
policies of the distributed firewalls can be explored by hand using a policy tree. A policy tree is
a structured tree that provides a quick overview of the policies applied to a specific flow between
two hosts. The tool also provides an anomaly detection system that tries to point out the more
common anomalies.

A simple graphic user interface (GUI) has been implemented to make the preceding manipu-
lations easier. Among others, it allows to easily explore the policy tree. This GUI will not be
discussed in this report but a short manual can be found in Appendix B.

Plan of the report

This report is divided in five chapters. The first one is an overview of the general problematic.
This chapter introduces in more details the distributed firewall issues and defines some concepts
useful for the rest of the report. Then, a description of the objectives and hypotheses of this thesis
are outlined. Finally it makes a quick review of the publications on firewall analyses.

The second chapter fully describes the intermediate language for firewalls that has been elab-
orated Some important choices made for its conception are also discussed.

The third chapter explains how the parser has been conceived. The aim of this parser is to
translate a firewall configuration from a well-known firewall language to our language. Its global
implementation and the iptables-specific part of the implementation are explained. The limitations
of this parser for iptables and other future languages are also discussed.

Chapter four is about the firewall configuration analyser. The chapter has two main parts: First
it describes how to build and use the policy tree used for manual anomaly detection. Then, some
common anomalies are described and how they are detected in the policy tree is explained.

The last chapter is about the validation of the application. The entire software is tested on real
world iptables configurations. The anomaly detection mechanisms are evaluated and the way to
use the policy tree to detect new anomalies is briefly explained.

Note that French is my native language. Writing this report in English was for me a great
challenge. So I apologize for the mistakes that may appear in this text.

– 2 –

Chapter 1
Distributed firewalls: overview and
problem statement

This first chapter begins with a description of what has to be known about firewalls and distributed
firewalls to tackle this report. Then the objectives of this work are described in more details as
well as the way to fulfil them. Finally, an overview is provided of previous work related to firewall
analysis.

1.1 Firewall overview

1.1.1 Simple firewalls

A firewall can be viewed as a box at the boundary of a network which is traversed by all the
packets from the outside to the inside of the network and from the inside to the outside. This box
has the ability to check the content of the data flow and to determine if it has to be accepted or
rejected. Firewalls can be used to protect any network device, from a single personal computer to
networks containing thousands of computers or more. In the case of a personal computer firewall,
the filtering may be performed by application level software. On the other hand, in medium and
large networks, firewall systems are often included in border routers.

A firewall can perform filtering on lots of network properties. These properties usually come
from the network headers of packets. The IPv4 header offers interesting fields for filtering like
protocol or source and destination addresses. Other fields regularly used are the source and desti-
nation ports of the TCP and UDP headers. However nearly all the possible fields or information
inside packets can be interpreted. Filtering can be based on the input interface or MAC address
and even on the operating system that has sent the packet[Palm 04].

Anyway firewalls do not just make decisions of accepting or dropping packets. Firewalls may
also be in charge of network address translation or application-layer services such as proxies or
mail filters. Packet modifications for QoS or VLAN may also be performed by firewall softwares.
These background roles are numerous and differ from an implementation to another. The more
important ones will be discussed in the next sections.

A typical network of medium size is represented at Figure 1.1. The letters between brackets in

– 3 –

1.1 Firewall overview

Figure 1.1 – Different types of firewalls in a typical network

this section refer to it. Firewalls are represented by brick walls. They can usually be classified in
three main categories depending on their location in the network. First, firewalls may be located at
the border, as a gateway (Z) between the LAN (C) and the outside. They are also used to protect a
subnetwork from another, between two departments in a company for instance. These firewalls are
often implemented inside gateway devices (X, Y) between the two subnets (A, B). Finally, they
can be implemented on servers (M) or personal computers (N) to protect efficiently themselves.

These firewalls are not redundant. All of them may have a specific role in the security of the
network. This kind of structure is essentially useful in networks where computers cannot trust
each other. It is nearly the case in every network: each computer may be a potential source of
intrusion. The number of firewalls and their positions depend on a lot of parameters and need a
detailed investigation.

As a last consideration it can be assumed that a firewall has always two or more interfaces.
These interfaces link the firewall with two categories of networks that can be called inside and out-
side networks. Inside networks are the networks that the firewall is supposed to guard, it generally
belongs to them. Outside networks are the networks firewall is protecting from. They generally
lead to the network default route (0.0.0.0/0). There is usually only one outside network associated
with a firewall and one or more inside networks. Note that in the case of an end-computer firewall,
the inside network is the host itself.

1.1.2 Distributed firewalls

Distributed firewalls are a set of firewalls that are managed together with the objective to con-
solidate their security policy. This concept is rather abstract since the relationship between two
firewalls may be restrained to an agreement about the policy to apply. In the network represented at
Figure 1.1, if each firewall is administrated independently of the others, incoherences may appear.
The aim of distributed firewalls is to avoid those incohences as much as possible.

Some distributed firewall systems are centralized. It means that a central management node
deals with all the firewalls of the network [Bell 99]. The advantages are that only one configuration
is needed and the overall policy is coherent if well implemented. Actually this kind of scheme still

– 4 –

1.1 Firewall overview

suffers from several problems and is not yet widely used [Ches 03]. So the distributed firewalls
considered in this thesis refer to independent firewalls that are administered one by one with a
special attention about coherence; they are also called decentralized distributed firewalls.

Potential issues

Since each firewall is administrated independently from the other ones, some issues may quickly
occur. Here are some examples based on the network illustrated at Figure 1.2.

Figure 1.2 – A network in which distributed firewalls may generate anomalies

The network administrator of LAN3 wants to prevent the users of its subnet from going on the
external website WWW.SITE.COM. A solution could be to block all these requests in firewall Y.
However, it is no use for requests from A to the web server to go through LAN3 since they will be
dropped in Y. These should be rejected in firewall X at once.

The host B is a mail server that has been built up to answer to user requests of the entire
network. So firewall Z has been configured to accept requests from LAN1, LAN3 and LAN4 to
B. However LAN3 and LAN4 do not deal with B anymore and the firewall Y rejects the mail
requests to this destination. In the current configuration of the network, no real problem has to
be noticed. Nevertheless it is not a good idea to let Z accept the requests from LAN3 and LAN4
addresses. Furthermore, an evil-minded person could use it to spoof their addresses and attack the
mail server. This example shows that a small change in the policy of a subnet may have an impact
on the configuration of a whole distributed firewall system.

Architecture of distributed firewalls

As seen in the example of the preceding section, the firewall positioning in a distributed firewall
system may be rather complex. They can be located on the same link as other firewalls, with their
network included in a network protected by another firewall or other configurations. To clear it
up, from now on, the analysis of distributed firewalls will always be made by considering two

– 5 –

1.1 Firewall overview

firewalls. This is not a restriction since for three neighbour firewalls U, V and W, if the pairs of
firewalls U-V, V-W and W-U are coherent, it can be assumed that U-V-W is also coherent. Another
assumption is that only neighbour firewalls can be directly compared. On Figure 1.2, X and Y can
be compared, as well as Y and Z. To compare X and Z, it is necessary to merge one of the two
firewall configurations with the Y one.

Finally, the positioning between two neighbour firewalls can be classified in two categories.
The first one, represented at Figure 1.3a, is face-to-face. With this symmetric layout each firewall
can reach the other one through its outside network interface (see 1.1.1). The second category
is one firewall behind the second one and is represented at Figure 1.3b. In this positioning, one
firewall is included in the network protected by the other one. The first firewall can join the
second one through its outside network interface. The second one has to use one of its inside
network interfaces to join the first firewall. The difference between these two categories will have
a significant importance in a later part.

(a) Face-to-face (b) One firewall behind the second one

Figure 1.3 – Various positioning of firewalls

Administering difficulties

The distributed firewalls discovered in the previous examples reveal the complexity that may ap-
pear in large networks using firewalls. The administration of distributed firewalls in a large network
is especially difficult for the following reasons:

• The policy implemented in a firewall may be difficult to read and interpret correctly by a
human. It is especially the case in large networks that use complex firewall configurations
and where the number of rules can exceed one thousand.

• When the policy implemented in a single firewall is still clear, understanding the whole
policy of a distributed firewall system is usually more complicated. Among other issues, the
network architecture and the behaviour of each network have to be well understood to build
up strong systems.

• In large networks or in highly fragmented ones, several administrators are generally in
charge of the network security. Each of them is usually responsible of one or several subnets.
An acceptable overall configuration can only be realized if there is a good communication
between the persons in charge of the firewalls.

• In a single network, firewalls can be implemented in various hosts and operating systems.
To understand these firewall configurations, people need to have good knowledge on them.
This does not allow a quick overview on a diversified network.

– 6 –

1.1 Firewall overview

1.1.3 Packet filtering implementations

As written previously, firewalls can appear at lots of locations in networks. They can be set up on
routers or general-purpose computers. The implementations mainly depend on the manufacturer
for routers and on the operating systems for computers. Here is an overview of the best-known
implementations of the moment. (inspired from [Zwic 00] and other documentations)

ipchains and netfilter/iptables

ipchains and iptables are different versions of the same packet filtering system included in Linux
kernel since version 2.1. ipchain has replaced the old firewall code (ipfwadm) used in kernel 2.0
and has been superseded by iptables since version 2.4.

ipchains has been one of the first filtering system to provide masquerading on Linux. Actually,
masquerading is a dynamic network address translation (NAT) system. More precisely, it is the
most common type of NAT. It allows someone that has only one public and dynamic IP address to
connect more than one computer to a public network. It is also called SNAT for source NAT since
it translates the source address of the first packet and the next outgoing ones [Netfilt].

Another important concept introduced by ipchains is the rule chains. Each rule can be split into
three parts: the first one is the chain concerned by this rule, the second one is a set of conditions
and the last one is a target chain or action (accept, deny, ...). The rules in a chain are read in order;
if an action is taken about a packet, no more rule matches the packet anymore. If a packet belongs
to a chain and matches the conditions, its new chain is the target chain or if an action is specified
the action is taken. So a packet may pass through several rules before an action occurs. More
details about ipchains and iptables chains will be given in the section 2.4.

Another strength of ipchains and its successor is to be easily extensible. Many extensions are
included in the base iptables package and are loaded as kernel modules. They provide a lot of new
matches and new targets that guarantee more accurate filtering.

iptables (or Netfilter) is the successor of ipchains and has kept its main properties, it is deve-
lopped inside the Netfilter/iptables Project [Netfilt].

ipfilter (ipf)

ipfilter (also known as ipf) is another packet filtering and NAT system for Unix. It comes as a
part of FreeBSD, NetBSD and some versions of Solaris. OpenBSD does not use it anymore due
to licensing problems. ipf has also been ported to other Unix operating systems such as SunOS,
IRIX or Linux.

ipfilter checks its rules in sequence but unlike netfilter the last rule matched by a packet is used
to determine the fate of it. This behaviour can be avoided by using the quick keyword in a rule.
It allows a packet that matches the rule to be immediately handled. Rules may be arranged into
groups to build up more complex configurations. Groups are defined by a head rule that determines
if the rules inside the group have to be checked or not.

The address translation functionality of ipf is minimal and weaker than in netfilter. Another
weakness is that ipfilter is also more difficult to extend than netfilter.

– 7 –

1.2 Thesis specifications

PF packet filter

PF packet filter is the firewall used by OpenBSD since version 3.0. It replaces ipf that is no more
used for licensing issues.

PF has kept the main characteristics of ipf but has improved its weak points. It has been
merged with ALTQ traffic-shaping framework for QoS support. Network Address Translation
(NAT) and advanced features have also been integrated into PF to allow greater flexibility. The
offered functionalities now permit to build feature-rich firewalling devices. So PF has already
been ported to FreeBSD and NetBSD. [Palm 04]

Cisco Access Lists

The most encountered routers in networks are the Cisco Systems’ one. One of the operating system
run by these routers called Internetwork Operating System (IOS) uses the access list concept for
packet filtering.

An access list is a serie of rules that instructs the router on what to do with an incoming or
outgoing packet. Each rule of an access list has three main parts: a number that identifies the list,
a deny or permit decision and a list of conditions to match. A list number is associated with an
interface and a direction (in or out). When a packet arrives on an interface and with a direction that
corresponds to an access list number, the rules identified by this number are processed sequentially.
If the packet matches the conditions defined by a rule, the decision (permit or deny) is immediately
made. [Seda 01]

Cisco routers obviously implement address translation but NATing is not performed in access
lists. More information about the NAT capabilities of Cisco IOS will not be given in this document.
However, a full description of Cisco IOS can be found in [Bone 02].

1.2 Thesis specifications

1.2.1 Global objectives

The preceding section has shown that administrating distributed firewalls is not an elementary
operation. The aim of this thesis is to make this task easier and more efficient. The final objective
of this work is to design, implement and evaluate an assessment software for distributed firewalls.
This software should take as input the configurations of distributed firewalls in order to output a
representation of the policy and point out some anomalies.

The secondary objectives are the following:

• The tool has to import distributed firewall configurations. In order to do that, it has to be
able to parse the configuration files of at least one well-known filtering system.

• The parser part of the software has to be easily extensible to support new input languages.
For this reason, it has to be as much as possible independent from the evaluation part.

• The final application has to be evaluated on a large network configuration.

– 8 –

1.2 Thesis specifications

1.2.2 Hypothesis

In order to restrict the problem, some small hypothesis have been made.

The first one is that the network routes to the outside of amm the networks are thoroughly
symmetric and unique. In a more formal way, it means that for a host A in the network and a host
B outside the network, a packet from A to B always passes through the same gateway firewall to
leave the network. Moreover, this firewall is also traversed by the packets from B to A. So, the
network architecture represented at Figure 1.4 is not valid. Note that this kind of network structure
is almost never encountered since stateful packet filtering is impossible. One solution could be
to translate source addresses to the gateways’ when packets get out. This problem is out of this
work’s scope. The entire statement of this kind of configuration is explained in the section 9.4.2
of [Ches 03].

Figure 1.4 – A network with two ways out to the same external network

The second hypothesis may appear a bit strange but is important for later suppositions. It
assumes that firewalls protect themselves against IP address spoofing. Of course, only recogni-
sable spoofing has to be filtered out. It includes the outgoing packets with a source address cor-
responding to a external address and incoming packets with a source address corresponding to an
address of the network.

The last hypothesis is that no NATing is performed in the firewalls considered. The reasons of
this will be widely explained later in section 2.2.3.

1.2.3 Steps

To achieve the described objectives, an analysis of the different steps is needed. One requirement
is that the firewall evaluation has to be as much as possible independent from the input language. It
means that the implementation has to be divided in two main parts: the parsing and the evaluation.
It could even be better if an independent parser that supports a new firewall configuration language
could be used without changing anything to the previous implementations. So the solution is to
design an intermediate language in which the parser has to translate the input files. Next, the
evaluation part of the implementation just has to import this configuration and analyse it. With
this process, two more constraints have to be appended. The first one is that for most of firewall
systems, all configurations could be translated into the intermediate language. The second one is
that the language should be easy to parse by the second part of the implementation.

So the major steps of this work are the following:

• Design a language to configure filtering rules on firewalls

– 9 –

1.3 Global decisions

• Implement a parser to translate real firewall configurations to the language

• Implement an analyser that evaluates the distributed firewall configurations

1.3 Global decisions

1.3.1 The programming language

The programming language chosen for this implementation is Java. It has been selected for the
following reasons:

• This language is well-known by the author. It permits not to waste time with silly imple-
mentation issues.

• Java is a good choice for cross-platform compatibility. Since the tool has to be used by
system administrators, it is more appropriate to have the software compatible with exotic
systems.

• Java has integrated XML support and is a good choice for tree structures that will be often
used in this implementation.

The version of Java SDK used is the 1.4’s. It is preferred to version 5 since it has been released
a few years ago and is still the version in use in a lot of organisations. So the application has to be
run with JRE version ≥ 1.4.

1.3.2 The application’s name

A name has been given to the software developped: DFA for Distributed Firewall Analyser. It is
not very important but it permits not to write "this implementation" during all this report when the
context relates to the implementation associated with this work.

1.3.3 Notations

Throughout this report, short rule listings will be frequently shown as examples. The way to
interpret these listings has to be determined to avoid misunderstanding. When a list of rules is
displayed, it is assumed that the first rule matched by a packet determines its fate.

A rule has the following intuitive structure:
[chain :] condition_list => ACCCEPT|DROP|chain.
The chains are only used to represent the rules into languages that include this concept. Accept or
drop is obviously the action performed on the packet when it matches. Condition list is a series
of conditions separated by a "&". All the conditions must be true to match a packet. Each of
these conditions is written field_name[!]=field_value except for fields that do not need
a value. The equals (=) symbol is an abuse of notation since src_ip=1.0.0.0/8 does not
mean that the source address has to be equals to 1.0.0.0/8 but rather that it has to be included in
1.0.0.0/8. The ranges are represented by two boundaries separated with a dash (-).

The rule list shown at Figure 1.5 is a valid example of it. The input chain forwarded means
that the three rules will be traversed by each forwarded packet. A packet begins by checking the

– 10 –

1.3 Global decisions

first rule. If its source IP address is included in 1.0.0.0/8 and if its protocol is TCP, the packet is
definitely accepted by this filtering table. Otherwise, the second rule is checked. If the protocol
is UDP and if the destination UDP port is contained between 20 and 24 (20 and 24 included), the
packet is accepted and the third rule is never checked. Finally, if the packet hasn’t matched the
two first rules, it checks the third one. There is no condition, so the rule matches all the packets.
Thus, the packets that do not match one of the two first rules are dropped.

forwarded: src_ip=1.0.0.0/8 & prot=tcp => ACCEPT
forwarded: prot=udp & dst_port=20-24 => ACCEPT
forwarded: => DROP

Figure 1.5 – A valid example of firewall rule list

1.3.4 Data manipulations

The parser and the analyser have to manipulate rule data to perform their job. One of the main
complicated operations they have to do is the conjunction (AND operation) of two rules. It involves
a conjunction of each of the common fields but doing this operation on fields is not easy. The next
items represent the values encountered in rules and explain their properties illustrated with the
conjunction operation.

IP addresses

What is called an IP address here rather corresponds to an IP subnet. It is defined by a "real" IP
address, i.e. four positive integer between lower than 256, and a mask length (CIDR). The CIDR
is a number lower or equals to 32 that indicates the number of bits of the IP address corresponding
to the network. The CIDR number can easily be translated to and from network or wildcard mask.
An example of IP address is 1.0.1.0/24 thus.

Such IP addresses have the property that for two IP addresses A and B, the relation between
them can only be one of the following. Note that wherever their values, A and B can be viewed as
sets of end-host IP addresses.

• A includes B (A ⊃ B)

• A is included in B (A ⊂ B)

• A is equivalent to B (A = B)

• A and B are disjoint (A ∩B = ∅)

Then if A and B have an intersection, either A includes B or B includes A. To determine the in-
tersection between two IP addresses, in order to do the conjunction of two source IP fields for
instance, the analysis of whether one address includes the other has just to be made.

Imagine a list of addresses associated with information. For this example, the information will
be a colour: (1.0.0.0/8:blue, 2.0.0.0/8:red). If a new address 1.0.4.0/24:yellow has to be added,
the property of IP addresses permits to define the new list as (1.0.0.0/8:blue, 1.0.4.0/24:blue/yel-
low, 2.0.0.0/8:red). To read the information associated with the address 1.0.4.20, the more specific

– 11 –

1.4 Firewall analysis: state of the art

address of the list has just to be found, 1.0.4.0/24:blue/yellow here. This example shows how this
interesting property should be used and will be used in the next chapter implementation.

Ranges

Ranges of values are used in two circumstances: the UDP or TCP port values and AH or ESP
Security Parameter Index (SPI). Unlike the IP addresses, two ranges can have an intersection
without having one range entirely included in the other one. For instance, the intersection of 10-30
and 20-40 is 20-30.

If the same exercise is done for ranges than for IP addresses, our list may look like (0-
30:blue, 40-50:red). If (20-45:yellow) is added, the list becomes (0-20:blue, 20-30:blue/yellow,
30-40:yellow, 40-45:red/yellow, 45-50:red). So it is obvious that ranges need more manipula-
tions in such operation. However, calculations are easier on ranges (a couple of integers) than on
IpAddresses. More specific algorithms will be explained in the next chapters.

Values

Values are obviously easier to manage than addresses or ranges. They are particularly encountered
in the interface fields or in the protocol ones.

No value fields

The main field that has no value is the established one. The operation on this category of field is
quite obvious too.

1.4 Firewall analysis: state of the art

More and more articles about security are released each year, firewall is one the subject covered
by those. Although a lot of publications are about firewall analysis [Al S 03, Hame 05, Scha 04,
Al S 04b, Bart 99, Maye 00], a tiny amount of them deals with analysis of firewall groups or
distributed firewalls. Here is the review of some interesting articles out before the end of 2005.

1.4.1 Single firewall analysis

A lot of tools already exist on Unix systems to manage firewalls but most of them have two main
issues: [Scha 04]

• They do not include a functionality to parse any well-known firewall language; they only
give a way to export their configuration in these languages. So the firewall configuration
has to be built up from scratch into the software. This problem limits their use to simple
personal firewalls or small size network ones.

• These tools do not use all the potential of the languages. They limit their use to a closed list
of possibilities.

– 12 –

1.4 Firewall analysis: state of the art

However, two interesting papers on simple firewall analysis have been found. These two works
are the ones that have had the most influence on this work.

The first one, [Al S 03] has tried to define with strictness all the possible firewall policy anoma-
lies. To do that, it begins by formally describing a model of rule relations. Next, it lists with the
same formalism all the possible firewall anomalies that may occur in a set of rules. The authors
describe an anomaly as the existence of filtering rules that may match the same packet or the ex-
istence of a rule that may never match any packet. Then an algorithm is proposed to discover
these anomalies and to correct them. The authors have implemented an application that is able
to detect the anomalies, it is called Firewall Policy Advisor (FPA). This article provides a very
good analysis of all the simple anomalies that may occur but has two problems. First, FPA does
not parse well-known language rule lists. The analysis is made from a very simple meta-language
made of five fields : protocol, source IP, destination IP, source port and destination port. A TCP
flow is represented by one rule in the initialisation direction. For example, this rule of their lan-
guage "tcp 1.1.1.1 0 2.2.2.2 22 accept" allows a SSH flow between 1.1.1.1 and
2.2.2.2:221 only if the flow is initiated by 1.1.1.1. The second weakness of FPA is that it
is impossible to process more complex rules like the TCP flags or application level filters.

[Scha 04] is an undergraduate dissertation about a visualisation software development for ipt-
ables rules. The dissertation describes among other things the parsing of the iptables rules into
an XML language. The application is writen in C++ and can be extended with new modules.
Unfortunately it was not possible to obtain the implementation of the program but the approach
described in the report is interesting for this work.

1.4.2 Distributed firewalls analysis

The authors of [Al S 03] have written a second article in the same field. [Al S 04a] is about
anomaly discovery in distributed firewalls. It consists of a summary of the previous article with a
few new sections about inter-firewall anomaly discovery. As in the first article, this one formally
defines what they are considering as a anomaly and the algorithm to discover these. Inter-firewall
anomaly discovery functionality has also been added to their FPA tool; nevertheless the imple-
mentation of the tool is not freely available. This article provides an interesting foundation for
anomaly detections but is maybe a little bit too formal and limited to be applied on real large con-
figurations. The inter-firewall anomalies described in this article will be discussed in more details
in the appropriate section.

1x.x.x.x:y is a simplified notation for "the port y on host x.x.x.x".

– 13 –

Chapter 2
Definition of a language for firewalls

As previously explained, an intermediate language for firewalls has to be built up first. This lan-
guage will be an intermediary between the parser part and analyser part of DFA. It has to be
expressive enough to represent most of the possible firewall configurations and easily upgrade-
able to support new firewall features such as advanced IPv6 rules. This chapter first explains the
meta-language chosen for the structure of the language. Next, the characteristics of other firewall
languages are examined to decide which ones will be integrated in the language and how this will
be done. The features considered include the frequently used fields, the actions that differ from
pure filtering, the chains, the interfaces and the data flows.

2.1 Language structure

2.1.1 Representation of the language

The description of firewall configurations in a generic language has to follow a structure. This
structure will be the subject of the next section of this chapter but first the way to organise all this
information must be decided. Our objective is to obtain files that can be easily parsed. For this
purpose, a markup meta-language is the best choice. The first idea that comes is obviously the
most famous one: the eXtensible Markup Language (XML). This meta-language, recommended
by the W3C [W3C], is a general-purpose markup language for creating special-purpose markup
languages, capable of describing many different kinds of data. Here are some more reasons to
choose XML as meta-language:

• XML parsers are available for most programming languages. Thus XML files can be written
and read easily.

• If the language specification and the markers used are well defined, the files generated can
be read on all platforms by anyone.

• It is easy to create or edit XML files by hand via a front-end application or a simple text
editor. This is useful for debugging, validating and checking how the application performs
the translation.

– 14 –

2.1 Language structure

Short overview of XML

An XML document is above all a text document with – of course – a particular syntax. Figure 2.1
is an example of a simple XML document that represents a (small) library.

<? xml v e r s i o n =" 1 . 0 " ?>
< l i b r a r y >

<book ISBN="1−56592−871−7">
< t i t l e > B u i l d i n g I n t e r n e t F i r e w a l l s < / t i t l e >
< a u t h o r > E l i z a b e t h D. Zwicky< / a u t h o r >
< a u t h o r >Simon Cooper< / a u t h o r >
< a u t h o r >D. B r e n t Chapman< / a u t h o r >

< / book>
<book ISBN="0−201−63466−X">

< t i t l e > F i r e w a l l s and I n t e r n e t S e c u r i t y < / t i t l e >
< a u t h o r > Wil l i am R . Cheswick< / a u t h o r >
< a u t h o r > S te ve n M. B e l l o v i n < / a u t h o r >
< a u t h o r > A v i e l D. Rubin< / a u t h o r >

< / book>
< / l i b r a r y >

Figure 2.1 – An example of XML document representing a library

This document is a well-formed XML document and so can be read by any XML parser. Here
are some definitions of the XML vocabulary: [Haro 02a]

• An element begins with a start-tag (<element_name>) and ends with an end-tag
(</element_name>). In the example, a library, a book, a title and an author are elements.

• Everything between a start– and an end-tag is the content.

• If there is no content between the two tags, the element can be represented by
<element_name />.

• The element book is the parent of the element author and is a child of the element
library.

• The element library is the root of the XML document.

• ISBN is an attribute of book.

A redundant question is whether to use a new child element or an attribute to hold information.
In the previous example, could the title be set as an attribute of a book? There is no ultimate answer
to that question. It is commonly said that an attribute is used for metadata about an element while
a child element is used to store information itself. Child elements are also chosen when there are
more than one entry of the same type to store. In the example, authors cannot be put as an attribute
of a book since it is possible to have more than one author for a book. [Haro 02a]

XML also allows more "complex" optional features. Two of them that may be useful are
namespaces and Document Type Definitions (DTD). An XML namespace is a standard for provid-
ing uniquely named elements and attributes in an XML document. DTD, as the name indicates,
define a precise structure of the content of an XML document. In the example, author can be a
child of book but not a direct child of library or title. It is also possible to define in DTD

– 15 –

2.1 Language structure

that a book must have one and only one title. More information about theses features is available
on the W3Consortium website [W3C] or in books about XML [Haro 02a].

2.1.2 Language formalisation

Some formalisation is now necessary to define how this language has to be understood:

• Filter rules will appear in the specific order given by the succession of the XML rule ele-
ments. This order is total. So between two rules, there is always one of them positioned
before the other one.

• The rules have to be checked in sequence, the first one that matches a packet determines the
outcome of it.

• For each packet, there is always at least one rule that matches it. So, no default policy is
needed.

2.1.3 Document definition

First, it is important to notice that the objective of our language is not to use all the capabilities of
XML to obtain a perfect robustness. It is only to obtain well-formed XML documents with valid
structures. For this reason, XML namespaces and DTD are not used by our language. The XML
files are supposed to be generated by our application and thus, a verification of the structure is not
needed. Anyway, if a structural error appears it will be detected by the analyser.

The root of the firewall configuration document is an element called firewall. The only
attribute of this element is the source language of the firewall. This is not an essential information
and it is not used in the future. Children of firewall are interface definitions and rule tables.
Interface definitions describe for each firewall network interface the subnets attached to it. It is
required to analyse authorized packet flows. This is detailed in the section 2.3. Rule tables express
all the tables in a firewall that are passed through packets, this is to say the filter table, the NAT
table, . . . In this work, only the filter tables will be considered. More information about this will
be supplied in the section 2.2.

Table 2.1 describes the root element as explained in the previous paragraph in a more formal
way. The symbols between brackets represent the cardinality of each content in the elements:
(?) = zero or one, (∗) = zero or more, (+) = one or more, (1) = exactly one. The child elements
will be described in next sections.

firewall
Description The root element of the document

Attribute srclang: the language of the original firewall configuration file
Allowed content interface(+), filtertable(1)

Table 2.1 – Definition of the element firewall

– 16 –

2.2 Filtering, NAT and other tables

2.2 Filtering, NAT and other tables

As explained in the first chapter, firewalls do not only perform simple packet filtering. Several
other roles are generally associated with firewalls. For this project only pure filtering rules are
supported. Thus it is important to extract these rules from the firewall configuration. Here are
some of functionalities that can be performed by firewalls and the way to extract data from them.

2.2.1 Filtering

Packet filtering includes all the rules that inspect packets to determine whether a packet must be
accepted or rejected. The rule is applied to all the packets that pass through the firewall. Here is
an example of a rule.

src_ip=1.1.1.1 & prot=UDP => DROP

If the source IP address of the packet checked is equals to 1.1.1.1 and if the protocol is UDP,
then the packet is dropped.

The filtering rules are obviously the most interesting ones to determine which packets will be
authorized. So they have to be converted in the intermediate language. All the possible fields
of rules will be examined in section 2.5. The XML element corresponding to the filter table is
described in table 2.2.

filtertable
Description Table that contains all the filtering rules of the firewall.

Attribute none
Allowed content frule(+)

Table 2.2 – Definition of the element filtertable

2.2.2 Logging

In the same way as packet filtering matches some properties to determine whether accepting or
dropping a packet, the target of a rule can be a log file. It is often use to keep track of packets that
are not supposed to be sent in a standard data flow. These log files can be analysed afterwards to
detect potential attacks or anomalies. For this work, the logged rules have no interest since they
do not cause packets to be dropped or accepted.

2.2.3 Network Address Translation (NAT)

Network Address Translation is widely used in routers and gateway hosts, however it is less fre-
quently used in end-computer firewalls. NAT proliferation can be viewed as a consequence of the
lack of IPv4 addresses. Address translations can be divided in two main categories: [Andr, Netfilt]

Destination NAT is used to redirect packets that arrive at a specific port to another host or/and
another port. The job of the NAT in this case is to alter the destination address and port

– 17 –

2.2 Filtering, NAT and other tables

of packets and to reroute them. Port forwarding, load sharing and transparent proxying are
examples of the purpose of destination NAT.

Source NAT is the category of NAT that is the most frequently used. One of its objectives is
to give the opportunity to hosts of a local network to access the Internet by using a single
or a few public IP addresses. This is used by many home users to connect more than one
computer to the Internet in spite of the single IP address provided by their ISP. This kind
of source NAT translates the source address of packets that are leaving the network to the
public address of the gateway. Then, it translates back the destination address of reply
packets coming from the Internet. Source NAT is generally performed dynamically but can
also be done statically with a provided address matching. Source NAT is sometimes called
masquerading.

How to consider NAT rules in DFA

The final objective of this thesis is to design a tool that shows which flows will be accepted between
two firewalls. Now, let us see how NAT can be dealt in such analysis. In the following paragraphs,
local address refers the IP address and port in the local area. On the other hand, public address
corresponds to the same address as it is known on the Internet. The link between the two addresses
is the address translation made in the NAT box. The term flow includes all the packets with the
same source and destination IP addresses and the same source and destination ports.

Our objective is to follow the same flow through several firewalls. However, the problem is
that a reference to the source (or destination) address of one packet changes from a firewall table
to another. In the example of Figure 2.2, the rules associated with the packet sent is the first one
in the left firewall (if NATing is done after filtering) and the second one in the right one. At first
sight, one of these solutions could be considered: for each address translation, convert all the
address occurrences of a flow into the local or into the public address. But this is not correct. If
it is converted into the local address, a conflict may be noticed on Figure 2.2 in the right firewall.
If it is converted into the public address, all the filtering that concerned the local area is no more
possible. For instance, if the router of the local network decides to block all the UDP packets
coming from 192.168.1.10, the rule on the IP address cannot be replaced by the public address
since all the hosts are not concerned by the rule.

Another solution could be to replace all the occurrences of translated addresses by a virtual
address like "local address:public address". However, the port translation must also be taken into
account, static and dynamic port attribution must be considered. But what to do if the assigned
ports are between 1024 and 4096 and that an encountered rule accepts port between 1024 and 2048
and drops the other ones?

Another problem is that NAT configuration is not always contained in the firewall one. In
Linux, NAT is generally performed by Netfilter and its configuration can be read in the Netfilter
output. But it may also be performed by fast-NAT as well. Fast-NAT is implemented inside the IP
routing code of the Linux kernel [Andr]. This solution may be more efficient if there is no state to
store.

Because of these various possible configurations and the difficulty to interpret them, NAT is not
taken into account in the current version of our language. We assume that no address translation is
performed in the configuration file supplied. Otherwise, the concerned rules have to be removed
from the configuration file.

– 18 –

2.3 Network interfaces and connected subnets

Figure 2.2 – Example of a message sent through a NAT

2.2.4 Packet alterations

Other encountered rules are those that change packet information. The fields usually modified are
the Type of Service (TOS), the TCP Maximum Segment Size (MSS), the Time To Live (TTL) or
other significant information for local routing. These rules are not widely used and can actually be
ignored since filtering is seldom performed based on this kind of fields. Nevertheless, it could be
interesting to control in configurations whether the modified fields are indeed not used in filtering.

2.3 Network interfaces and connected subnets

It is important not to forget the Virtual Local Area Networks (VLANs) used in a lot of networks.
VLANs are useful to divide networks on a single physical infrastructure. Routing and filtering
tables consider these VLANs as separated networks. So a packet transmitted through a VLAN can
be considered as transmitted on a specific network.

As explained in the first chapter, simple firewalls usually possess two of more network inter-
faces; One or more connected to the inside networks and one to the outside network (to 0.0.0.0/0).
Exceptions are the firewalls implemented in end-computers. These hosts generally have only one
interface.

In most firewall implementations, packets from or to the local host are matched differently.
For instance, in Netfilter filtering tables, rules that match packets entering in a host begin with
-A INPUT. Three elementary chains are recognized in filtering tables: INPUT, OUTPUT and
FORWARD. Figure 2.3 represents the treatment of these chains. The large ovals symbolize the
chain filtering process.

The objective of our language is to be as general as possible. For this reason, the local host
is considered as a sub-network behind a virtual interface. Of course, this sub-network contains
only a few IP addresses but it is not a problem. Figure 2.4 shows the new version of the filtering

– 19 –

2.4 User-defined chains

Figure 2.3 – Processing of incoming, outgoing and forwarded packets in Netfilter filtering tables

process. To distinguish the packets going to the local host from the other ones, these packets are
considered as going to the interface firewall_host. In the same way, packets from the host
are coming from this interface.

Figure 2.4 – Filtering model in this language

In order to be able to translate every filtering tables in the language and with this transforma-
tion, small changes are normally needed. The modifications needed for Netfilter/iptables are very
light and are explained in the section 3.3.1.

To analyse distributed firewalls, DFA will need information about the network topology. We
choose to store this in the firewall configuration file. In this way, the file contains the filtering
information along with the network topology information. The entire file includes all the data to
be able to understand all the rules when the firewall is isolated.

How to represent the location of the firewall in a network? Our solution is to define precisely
each interface. For each interface, we list the IP addresses that can be reached by this interface.
These lists of addresses are represented by the networks that can be reached through the interface.
It should be noted that if a network associated with an interface is included in another network,
then packets are considered as routed to the more specific network, as in a normal routing table.
The four next tables (2.3, 2.4, 2.5, 2.6) define the structure elements used to define each interface.
We explain how to fill the interface lists in details in section 3.2.3.

2.4 User-defined chains

In large networks, the number of rules written to implement a security policy can be very large.
Moreover, such long rule lists can be complicated to understand. It is always interesting to be able

– 20 –

2.4 User-defined chains

interface
Description A physical or logical interface of the firewall.

Attribute name: the name/identifier of the interface
Allowed content network(+)

Table 2.3 – Definition of the element interface

network
Description Definition of an IP subnetwork.

Attribute none
Allowed content ip(1), mask(?)

Table 2.4 – Definition of the element network

ip
Description An IP address.

Attribute none
Allowed content An IP address in the format x.x.x.x (0 ≥ x ≥ 255)

Table 2.5 – Definition of the element ip

mask
Description Network mask associated with the IP addres.

Attribute none
Allowed content A mask address in the format x.x.x.x (0 ≥ x ≥ 255), not needed if equals

to 255.255.255.255.

Table 2.6 – Definition of the element mask

to structure the rules, especially for the rules that share a common part. For instance, consider the
rule set of Figure 2.5.

forwarded: prot=TCP & dst_ip=1.2.3.4 & dst_port=22 => ACCEPT
forwarded: prot=TCP & dst_ip=1.2.3.4 & dst_port=23 => ACCEPT
forwarded: prot=TCP & dst_ip=1.2.3.4 & dst_port=80 => ACCEPT

forwarded: prot=TCP & dst_ip=2.2.2.2 & dst_port=22 => ACCEPT
forwarded: prot=TCP & dst_ip=2.2.2.2 & dst_port=23 => ACCEPT
forwarded: prot=TCP & dst_ip=2.2.2.2 & dst_port=80 => ACCEPT

forwarded: prot=TCP & dst_ip=4.3.2.1 & dst_port=22 => ACCEPT
forwarded: prot=TCP & dst_ip=4.3.2.1 & dst_port=23 => ACCEPT
forwarded: prot=TCP & dst_ip=4.3.2.1 & dst_port=80 => ACCEPT

forwarded: dst_ip=LAN => ACCEPT
forwarded: => DROP

Figure 2.5 – A rule list without using user-defined chains

– 21 –

2.4 User-defined chains

This example implements a policy where the only packets that can leave the network are those
bound to the IP addresses 1.2.3.4, 2.2.2.2 or 4.3.2.1 and port 22, 23 or 80. Unfortunately, this
policy requires a lot of redundancy in the rule set.

A solution to reduce this redundancy is to introduce user-defined chains. As explained in the
first chapter and as the name indicates, chains permit to link several rules together. More precisely,
a chain is a target that a rule can start from. To illustrate this concept, Figure 2.6 corresponds to
the previous policy formulated with chains.

forwarded: prot=TCP => tcp
tcp: dst_ip=1.2.3.4 => trust_srv
tcp: dst_ip=2.2.2.2 => trust_srv
tcp: dst_ip=4.3.2.1 => trust_srv
trust_srv: dst_port=22 => ACCEPT
trust_srv: dst_port=23 => ACCEPT
trust_srv: dst_port=80 => ACCEPT
forwarded: dst_ip=LAN => ACCEPT
forwarded: => DROP

Figure 2.6 – The same rule list as 2.5 but using user-defined chains

This representation is simpler and shorter than the previous one. It is possible to recover the
long list by linking the rules together. Figure 2.7 represents the nested chains in this example.
It can be noticed that a given chain can be called several times. Of course, no chain loop has to
appear in the rule definition!

Figure 2.7 – Structure of the chains in the example of Figure 2.6

Netfilter products are famous for the use of this concept of chain. First, there are some built-in
chains: INPUT, FORWARD and OUTPUT that match incoming, forwarded and outgoing packets.
Moreover, users have the ability to define new chains. These user-defined chains can be useful in
some case as explained previously.

– 22 –

2.5 Rules and fields for filtering

Chained rules are useful to simplify the definition of the rules but not for their representation.
A simple way to represent a rule set is to do it with a tree where each node represents a field
choice. Figure 2.8 provides the tree representation of the rules shown as example just before.
Unfortunately, it can be very difficult to build such trees with chains. Imagine a rule set :

fwd: prot=TCP & dst_port=0-1024 & src_ip=1.0.1.0/24 => chain1
[...]
chain1: dst_port=80 => chain2
[...]
chain2: dst_ip=1.2.3.4 & src_ip=1.0.0.0/8 => ACCEPT
[...]

The only way to insert the rule resulting from this chain in a tree is to merge it into a single rule.
An insertion with a linear reading of these chains is nearly unfeasible.

Figure 2.8 – Tree that represents the set of rules of Figure 2.6

Therefore, to simplify the further work, we have decided to merge the chained rules into simple
rules. This is the only solution to remove chains from languages that use user-defined chains.

2.5 Rules and fields for filtering

Now that chains have been introduced, we can add the other elements of the language structure.
The first one is the basis element of a filter table, a rule. A rule contains a target and a list of
conditions. If all conditions are matched by a packet, it is sent to the target. An important point
to notice is that all the conditions to match in a rule are linked with an AND operation. In some
languages, rules may occasionally have some hidden disjunctions. In our language, it is authorized
to match «source port between 20 and 23» since it can be written in one element. However, a rule
containing «source port 20 or 23» has to be split in two rules. The definition of a rule in the
language is shown in Table 2.7.

The reason why the cardinality of interfacein, interfaceout and protocol is "zero
or more" and not "zero or one" is because it is needed when the fields are inverted. For instance,
the rule prot!=tcp & prot!=udp => ACCEPT needs two protocol elements since only
one value can be contained in an XML protocol element.

– 23 –

2.5 Rules and fields for filtering

frule
Description A rule of the firewall filtering table that matches some packets to give them

a specific target. The children are linked with an AND operation.
Attribute target: the target whose matching packets are sent to. (ACCEPT|DROP)

Allowed content interfacein(*), interfaceout(*), protocol(*), ipv4(?),
tcp(?), udp(?), icmp(?), ah(?), esp(?), established(?)

Table 2.7 – Definition of the element frule

The next elements correspond to the fields that define the rules. For most elements, the attribute
inverted is added. If it is false, the packets matched are those with the value of the element.
On the opposite, if it is true, the packets are matched if their values are different from the value of
the element.

The field elements are arranged in groups when they cover the same topic. For instance all
matches about IPv4 rules are gathered together inside an ipv4 element.

The basic rules are about packet input and output interfaces and are defined in tables 2.8 and
2.9.

interfacein
Description The input interface of the packet.

Attribute inverted: true if only packets without this value are matched, false
if only packets with this value are matched.

Allowed content A name of an interface defined in one of the interface elements.

Table 2.8 – Definition of the element interfacein

interfaceout
Description The output interface of the packet.

Attribute inverted: true if only packets without this value are matched, false
if only packets with this value are matched.

Allowed content A name of an interface defined in one of the interface elements.

Table 2.9 – Definition of the element interfaceout

Next, the protocol field is described in table 2.10. Note that the value used in this field is
part of the the keywords defined by the IANA in lower case. A list of these values can be found in
the /etc/protocols file in Linux systems or on the IANA webpage about protocol numbers1.

protocol
Description The protocol used in the packet.

Attribute inverted: true if only packets without this value are matched, false
if only packets with this value are matched.

Allowed content A valid name of protocol as defined by IANA and in lower case.

Table 2.10 – Definition of the element protocol

1IANA protocol numbers: http://www.iana.org/assignments/protocol-numbers

– 24 –

http://www.iana.org/assignments/protocol-numbers

2.5 Rules and fields for filtering

Tables 2.11, 2.12, 2.13 and 2.14 describe the matches about IP version 4. The role of the
ipv4 tag is to aggregate the IPv4 matches. The ipv4 element is not needed if the group is
empty. The ip and mask elements used are the same as those used in the interfacein and
interfaceout elements (see tables 2.5 and 2.6).

ipv4
Description Group of the rules about IP version 4.

Attribute none
Allowed content src(*), dst(*), fragment(?)

Table 2.11 – Definition of the element ipv4

src
Description The source IP address of the packet

Attribute inverted: true if only packets without this value are matched, false
if only packets with this value are matched.

Allowed content ip(1), mask(?)

Table 2.12 – Definition of the element src

dst
Description The destination IP address of the packet

Attribute inverted: true if only packets without this value are matched, false
if only packets with this value are matched.

Allowed content ip(1), mask(?)

Table 2.13 – Definition of the element dst

fragment
Description Match the fragments of IP packets.

Attribute inverted: true if only the non fragmented packets and the first part
of fragmented ones are matched, false if only the second, third, ... frag-
ments are matched.

Allowed content none

Table 2.14 – Definition of the element fragment

TCP elements look like the IP ones except that the matched fields are obviously different.
Tables 2.15, 2.16, 2.17, 2.18 and 2.19 are about TCP.

tcp
Description Group of the rules about TCP.

Attribute none
Allowed content srcport(*), dstport(*)

Table 2.15 – Definition of the element tcp

UDP is very similar to TCP. It is defined in table 2.20 and uses the same child elements.

– 25 –

2.5 Rules and fields for filtering

srcport
Description The source port of the packet for this protocol.

Attribute inverted: true if only packets without this value are matched, false
if only packets with this value are matched.

Allowed content The port value if there is only one value or from and to for a range.

Table 2.16 – Definition of the element srcport

dstport
Description The destination port of the packet for this protocol.

Attribute inverted: true if only packets without this value are matched, false
if only packets with this value are matched.

Allowed content The port value if there is only one value or from and to for a range.

Table 2.17 – Definition of the element dstport

from
Description The lower-bound of a range

Attribute none
Allowed content A positive integer

Table 2.18 – Definition of the element from

to
Description The higher-bound of a range

Attribute none
Allowed content A positive integer (has to be higher than the value of its "brother" from).

Table 2.19 – Definition of the element to

udp
Description Group of the rules about UDP.

Attribute none
Allowed content srcport(*), dstport(*)

Table 2.20 – Definition of the element udp

ICMP type and code can be also configured, see tables 2.21 and 2.22. An ICMP packet has
always a message type and no payload. Some of these messages may also have a specific code
associated to the type. For instance: Echo reply ICMP has the type 0, this type has no subcategory.
However, the Destination Unreachable ICMP (type 3) uses 16 codes. These codes and types can
be found on the IANA definition of ICMP type numbers2.

The last protocols supported by the current version of the language are those used by IPsec:
ESP and AH. These two protocols rely on the concept of key-id which is transmitted in the packet
header. This is called the SPI (Security Parameter Index) and is the only match that can be config-
ured in the language for these protocols. Details can be found in tables 2.23, 2.24 and 2.25. More
complex firewall configurations about IPsec are possible [Hame 05] but are not widely used today.

2IANA definition of ICMP type numbers: http://www.iana.org/assignments/icmp-parameters

– 26 –

http://www.iana.org/assignments/icmp-parameters

2.6 IP flows

icmp
Description Group of the rules about icmp.

Attribute none
Allowed content type(*)

Table 2.21 – Definition of the element icmp

type
Description The ICMP type and code if any

Attributes inverted: true if only packets without this value are matched, false
if only packets with this value are matched.
value: the ICMP type number.
code(optional): the code associated with this ICMP type

Allowed content none

Table 2.22 – Definition of the element type

It should be added to the language in a next version.

ah
Description Group of the AH rules.

Attribute none
Allowed content spi(*)

Table 2.23 – Definition of the element ah

esp
Description Group of the ESP rules.

Attribute none
Allowed content spi(*)

Table 2.24 – Definition of the element esp

spi
Description The Security Parameter Index of the packet.

Attribute inverted: true if only packets without this value are matched, false
if only packets with this value are matched.

Allowed content The SPI if there is only one value or from(?), to(?) for a range.

Table 2.25 – Definition of the element spi

2.6 IP flows

Very effective policies used in firewalls are built around the concept of data flows. It is common
to see policies like « accept the connection initiations from the inside to the outside and deny the
others ». Given that a unidirectional connection generates packets in both directions, a firewall

– 27 –

2.6 IP flows

cannot block those coming from the outside. The issue is also to find which host has initiated a
data flow in order to reject unauthorized packets.

There are two main ways to achieve that. The first one is to implement a finite state machine in
the filtering software and is called stateful. The second is to interpret the flags of the packet header
and is called stateless. Let us start with a quick review about the protocols above IP.

2.6.1 Data flows with TCP, UDP and ICMP

First, a flow is defined as the set of all packets from one computer to another, relating to an
instance of a service and during a given period of time. A part of these general concepts is based
on [Zwic 00].

TCP

TCP is the protocol that is the most widely used for reliable communication over the Internet. A
successfull TCP connection between two hosts ensures that the data has been correctly transmitted
to the destination, in the same order as the packets were sent and without duplication. If one of
these conditions is not fulfilled, the connection is broken and an error is notified to the upper layers.

Even if the data is only transmitted in one direction as in a FTP transfer, packets have to be
exchanged in the both directions. Acknowledgment packets are sent in the opposite direction of
the data packets to ensure the previous properties. So the TCP connection cannot be initiated if
packets are not authorized in both directions.

One of the more important issues for TCP packet filtering is to identify which host has initiated
the connection. This analysis can be done by looking at the packet headers. Important header
information is, of course, the source and destination ports but also the TCP flags. TCP flags whose
we care about are syn and ack for the beginning and fin and rst for the termination.3

A TCP connection is initiated by the three-way handshake (except for simultaneous open).
Figure 2.9 represents the values of TCP flags during the handshake. If the implementation con-
forms to RFC [Post 81], a connection could not be established if the flags are not well-defined.
The first two packets have the syn flag set, this flag is only used for initialisation. The first packet
has the particularity that it must have its ack bit not set. This characteristic is important since
it allows to distinguish it with the second one. From the third one, the packets cannot have the
syn bit set. They also have the ack bit set to notice that the acknowledgement field contains the
number of the next expected piece of data. Of course, all these properties are useful to detect the
start of a connection.

The flags rst and fin are used to close a TCP connection. The rst is sent for an abrupt
close, i.e. the connection is immediately closed when a packet with this flag is received or sent.
The fin bit is used to perform a graceful shutdown of the connection. Each host sends a packet
with this flag to the other to say goodbye. Note that fin segments are acked. Packet filtering can
use these flags to consider the connection as closed and to refuse subsequent packets.

3Flags and other information about TCP can be found in RFC[Post 81].

– 28 –

2.6 IP flows

Figure 2.9 – Ack and syn flag in TCP three-way handshake

UDP

In contrast to TCP, the User Datagram Protocol (UDP) is a non-reliable protocol. An application
using UDP has to make its own data control if necessary. There is no guarantee that datagrams
sent are actually received by the destination or are received only once. The benefit of UDP is the
low overhead due to the absence of all the control mechanisms.

UDP packet headers contain, like TCP, the source and destination ports. However, for packet
filtering, UDP is more difficult to trace. Moreover, it does not contain any flag or sequence number.
Thus it is not possible to know for sure that a packet is the first one of a flow or a response. A
way to determine data flows is to suppose that a packet sent with the same addresses and ports as
a previous one is probably from the same flow.

ICMP

ICMPs are messages sent in IP packets and contain status and control messages. Well-known
ICMP messages are echo request/reply, time exceeded, destination unreachable and redirect. The
header of such messages does not contain port information but contains its type. The filtering can
be done on this field and even on extra-options proper to the type of ICMP.

There is no pure ICMP flow to observe most of the time. Only four types of ICMP messages
generate an ICMP response[Andr]: echo request/reply, timestamp request/reply (deprecated), in-
formation request/reply and address mask request/reply. Since there is always at most an unique
reply to a request, ICMP flows can be considered as finished when the reply has been received.

Actually most of the ICMP messages are sent in reply to TCP or UDP packets. That is why
ICMP messages have to be considered as special responses to an existing data flow. Some of these
messages are terminal error messages concerning TCP or UDP connections. The net unreachable
and net prohibited ICMP messages are two examples of this, the client does not receive anymore
packets after these ICMP messages. When one of those is detected, the firewall can consider the

– 29 –

2.6 IP flows

TCP or UDP connection as finished. This is how the finite state machine of Netfilter/iptables is
implemented. [Andr]

2.6.2 Finite state machines

Firewalls that implement a finite state machine to control the data flows are called stateful firewalls.
These firewalls simply keep track of each connection thanks to the source and destination addresses
and ports. The advantage of this solution in comparison with the next one is that all packet types
can be analysed, even UDP and ICMP. The following paragraphs describe a simple implementa-
tion.

The memory of a firewall state machine can be viewed as a list of entries, one for each con-
nection. A typical entry is composed of the protocol of the flow followed by local address, local
port, remote address and remote port, and a countdown. For instance: «udp 1.1.1.1 32000
2.2.2.2 80 60»

When a packet reaches the firewall, the system controls whether the packet flow is registered
in the entry list. If so, the countdown field is reset to its initial value. Otherwise, a new entry is
created if the connection is authorized. Then, the subsequent packets received for this flow will
reset the countdown at their arrival. The countdown is decremented each second; if it reaches zero,
the corresponding entry is removed.

This simple implementation is sufficient to observe the policy "accept the connection initia-
tions from the inside to the outside and deny the others". To implement it, new entries can only be
created when a packet is leaving the network.

More complex implementations are possible. The Netfilter/iptables implementation is detailed
in [Andr]. In iptables, four different states are used for each flow: new, established, related and
invalid.

• The new state matches only when a packet is the first one of a flow and an entry has just
been entered in the "state table"4.

• The established state is put in the state table when packets of a flow have been seen in both
directions. When the established state is the only one allowed, it means that packets can be
sent only in reply from an authorized request in the other direction.

• Related is used to authorize a flow that is related to another flow. Common examples of
such connections are FTP-data flows. ICMP errors are also considered as related. We will
not enter into details since this is not important for the purpose of the problem.

• The invalid state means that the packets do not have any state or that they cannot be identi-
fied. Such packets are usually dropped.

An important point to notice is that, by default, iptables does not look at all at the TCP flags.
This is a choice of Netfilter to improve dynamic changes in firewalls5.

4In Netfilter, the connection tracking is done by a special framework inside the kernel called conntrack.
5See the section "B.2. State NEW packets but no SYN bit set" in [Andr] for more information.

– 30 –

2.6 IP flows

2.6.3 Flag analysis

An alternative exists to this complex state machine; this is to simply look at the flags inside the
packet header. As seen in the section 2.6.1, only TCP has a header that can be interpreted. To
realize the policy « accept connections from inside to a remote host and deny connections from
the outside », two solutions are used in packet filtering implementations. The first one is simply
to not accept TCP packets from the outside without the ack bit set. The flag ack cannot be
set in the first packet of the three-way handshake, so the connection cannot be established. The
Cisco implementation examines this bit when the word established is specified6[Cisco]. The
second solution is to use the syn bit. Netfilter uses it to define the match «--syn» that means
SYN=1,ACK=0,RST=0 : this flag configuration is only used in the first packet of a TCP connec-
tion. Using «!--syn» on the input link will drop connection attempts from the outside. The only
difference is that, in the second solution, a reply packet is accepted if syn=0, ack=1 or rst=1.
Packets with flags syn=0,ack=0 or ack=0,rst=1 will be accepted by the second solution
and not by the first one. However, this difference is unimportant.

Note that it is possible with iptables to match any combination of flags but this does not seem
to be very common.

2.6.4 Stateful versus stateless firewalls

Two different solutions are possible to filter connection requests. To translate these rules in our
meta-language, it is interesting to see if there is an actual difference between these two approaches.

The state machine and the TCP flag analysis are mainly used to accept or reject connection
requests. For this reason and to simplify the intermediate language, only these matches are kept.
Unfortunately, custom flag combinations and RELATED matches cannot be translated in the lan-
guage.

In the direction of authorized connections, the following matches are commonly accepted (i.e.
are associated with an ACCEPT policy in rules): «NEW, ESTABLISHED» for a stateful firewall
and nothing for TCP flag analysis. Actually, «NEW, ESTABLISHED» does not filter anything but
it initiates the state machine. Then the filtering is the same in both cases: nothing is done. In the
limited direction, the encountered matches are «ESTABLISHED» for state machine and «!syn»
for flags. The ESTABLISHED effect is nearly the same as the «!syn» one, it rejects new TCP
connections. More precisely, it is not exactly the same from a security point of view but it is on
the semantic one.

Only the semantic is important in our language, so the concept of connection can be repre-
sented in the language by a single element. The table 2.26 contains the information about this
element.

established
Description Matches packets belonging to a known flow.

Attribute inverted: true if packets has to be the first one of flow, false if it
has to be a response to a existing flow.

Allowed content none

Table 2.26 – Definition of the element established

6To be precise, established is matched if the TCP header has the ack or rst bits set.

– 31 –

2.7 Extensions

2.7 Extensions

One of the main objectives of our language was to be as extensible as possible. Extending the
language could be needed for several reasons:

• The current version has – above all – been built to parse the main rules of iptables. It does
not mean that other firewall implementations cannot be translated into our language. These
other firewall languages might force us to add new matches corresponding to new fields
supported.

• As indicated before, a lot of extensions are available for iptables [Netfilt, Andr]. Some of
them cannot be expressed in the current language. Thus, our language could be extended to
express some new matches for these extensions.

• Most of the current filtering implementations only consider IPv4 as the network layer pro-
tocol. In a few years, IPv6 will certainly be used worldwide and filtering tables will have to
conform.

To add a new match in the language, the only thing to do is to add the new elements at the
right place with the same structure. General purpose elements are put as children of frule and
protocol specific properties are grouped in elements with the same name as the protocol. For
example, the only thing to do to support IPv6 is to add an ipv6 element as a new group in our
language. In this group should be added all the properties of IPv6 that can be matched. A new IP
address element obviously has to be defined.

The filtertable element is a child of the root element and contains all the filtering rules.
If a NAT table has to be defined later, this table could be placed next to the filtering table without
mixing filtering rules and NAT ones.

2.8 Conclusion

The language introduced in this chapter fulfils the objectives that have been set. The language
is expressive enough to represent most of the matches that may appear in firewall configurations.
Furthermore, the language can be easily extended to support future matches. The meta-language
used to represent our language is XML.

Moreover, the construction of our language was the opportunity to take some global important
decisions for the rest of the thesis:

• Only the filtering rules are taken into account in the firewall configurations. Log- and NAT-
rules are ignored.

• The network interfaces of the firewall are directly defined in the configuration file of our
language.

• The packets coming from and going to the host itself are considered as coming from or
going to a virtual interface that represents all the addresses of the firewall host.

• The user-defined chains do not exist in our language. Rule merging is thus needed to remove
these chains from the imported configurations.

– 32 –

2.8 Conclusion

• The stateful and stateless flow detection rules are all translated into the established
element that matches the flows that are already established.

– 33 –

Chapter 3
The parser

This third chapter deals with the implementation of the parser. This parser has been designed to
translate configurations of common firewall configuration files in the language defined in the previ-
ous chapter. In the current version, the only language supported is Netfilter/iptables but the parser
has been designed to be easily extended to support other configuration languages. The first section
describes how to create and parse XML files in Java. Secondly, the general parsing mechanism
and the class organization are introduced. Next, the parsing of iptables rules is explained in more
details. Finally, the way to extend the implementation to other languages is described.

3.1 XML and Java

As seen in the previous chapter, XML is used to define well-structured documents. Writing and
reading an XML file is independent from its structure and can be performed in several ways. Two
main approaches exist: DOM and SAX.[Haro 02a]

3.1.1 The Document Object Model (DOM)

DOM is an API for accessing and manipulating XML documents as tree structures. It has been
designed by the W3C[W3C] and uses a hierarchical arrangement of objects to represent the XML
entities.

DOM is appropriate when XML documents have to be browsed and changed. It is easy with
DOM to add and delete elements. Of course, the drawback is that the entire document has to be
parsed before it can be manipulated. Moreover, such a tree structure may consume lots of memory.

3.1.2 Simple API for XML (SAX)

SAX is an event-based API. This means that a SAX parser reads linearly the XML files and
reports the elements encountered. In opposition to DOM, SAX does not use a lot of resources
and therefore can manipulate very large files without any problem. However, the manipulation of
XML documents with SAX is much more complex.

– 34 –

3.2 Common implementation

3.1.3 DOM or SAX?

In DFA, the firewall configuration structure is built step by step. The rule elements are built as
trees before being inserted in the firewall structure. Then, a dynamic tree structure is needed to
build the entire document.

We choose to use JDOM to parse the XML files. JDOM is a Java API designed to take
advantage of the Java language to obtain better tree representations of XML documents. JDOM
has less functionality than DOM but is much easier to use for the kind of manipulations needed in
this work. JDOM can equally use a SAX Parser to build its document structures though they are
still structured as trees. More information about JDOM can be found on the project webpage1.

To make clearer the class descriptions of the next sections, here are the main classes of JDOM
used by our implementation:

Document: Class that contains the root of the document XML tree. It can be easily outputted to
an XML file.

Element: Class that represents an XML element as defined in the previous section. An element
is identified by a name and can have a string text value, some child elements and some
attributes.

There are many more JDOM classes but these few classes are sufficient to manipulate the entire
XML tree. Nearly everything is done by the Element class. Its methods allow to obtain the value
stored, the value of an attribute with a given name and its child elements. More information about
XML with Java and JDOM can be found in [Haro 02b, McLa 01].

3.2 Common implementation

This section describes the part of the implementation that does not depend on the input language.
It explains the class structure of the application and general parsing mechanisms. The graphical
user interface for the parser part will not be explained in this chapter; it provides a simple interface
to select input and output files for parsing.

3.2.1 The main classes

The application is hierarchically organised as traditionally in Java applications. A general class
that represents the firewall configuration calls a parser to build the XML document. This parser
finds string rules in the input file and creates Rule elements associated with those. Then, the
rules extract information found in their string representation and create an XML structure from
it. Figure 3.1 represents the basis classes of the parsing part of the application and the iptables-
specific classes. The « import » links correspond to a use (or a call) of a class by another one. It
may be noticed that language-specific classes extend the parser and the rule ones in order to define
the operations particular to the parsed language.

1The JDOM project website: http://www.jdom.org/.

– 35 –

http://www.jdom.org/

3.2 Common implementation

Figure 3.1 – Diagram of the parser main classes

SourceFw class

The SourceFw class is the representation of the imported file. This class manages:

1. the opening and closing of the input and output files;

2. the exception handling: it prints the error messages in the message stream displayed on the
GUI;

3. the call of the parser class of the suitable language when parsing is requested.

This class is the one called by the GUI to control parsing. The implementation is quite simple and
does not need more explanation.

Parser class

The Parser class is an abstract class. In Java, an abstract class is a class that cannot be instantia-
ted. Such a class defines one or more abstract methods. An abstract method has no definition i.e.
is not implemented. So, such a class has to be extended with classes that must extend at least the
abstract methods of their super class [Lewi 04]. In our application, Parser is an abstract class
that must be extended with language-specific parsing classes. In this way, the methods that have
language-specific parts can be implemented in their class. On Figure 3.1, IptablesParser
extends Parser, i.e. it defines the iptables specific methods.

Here are the various functions of the Parser class and its child classes:

1. It parses the input file to find the relevant rule lines and stores them a list;

2. It calls the parsing method on each rule; it also suppresses and duplicates rules if needed;

3. It imports the list of interfaces given by the user (and generates an empty one if needed);

4. It returns the structure of the entire XML document.

The first and second steps are implemented in the language-specific classes. The third one
is explained in section 3.2.3. The last one consists in the creation of a firewall element, the
root of the XML tree. Then, the interface elements have to be added to the root as well as the
filtertable element. Finally, all the rules of the list are added as children of filtertable.

– 36 –

3.2 Common implementation

Rule class

At its creation, a rule is only a string representation of a filtering rule; this string can be parsed
afterwards. The Rule class extends the org.jdom.Element one since it is actually a frule
element (seen in the previous chapter in Table 2.7). In this way, when a rule parses its string
representation, sub-elements are created according to the matches and are attached to the rule.
When parsed, a rule can therefore directly be inserted into the XML tree structure.

The Rule class is also an abstract class. Indeed, the parsing of a string rule to its XML
representation depends on the language parsed.

3.2.2 The rule child classes

The children created during parsing belong to one of the following classes: Protocol, Esta-
blished, IntefaceIn, InterfaceOut, Ipv4, Tcp, Udp, Icmp, Ah or Esp. All these
classes extend org.jdom.Element since each instance of them is a child element of a rule
element in the programming structure as well as in the XML structure. The XML name of these
child elements corresponds to the names of fields defined in the previous chapter. So when a rule
parses its string representation, it builds its XML tree.

Figure 3.2 represents the classes that can be child of the class Rule. Note that some classes
have other classes as child too. It corresponds to the field groups explained in the previous chapter.
When the class box is contained into another class box, it means that it is an inner class.

Figure 3.2 – Class diagram of the Parser package

3.2.3 The interface definitions

As explained in the previous chapter, we chose to include network information in the firewall
configuration files. So, all the network interfaces (or virtual interfaces) must be precisely defined.
The preferred approach to thoroughly describe the network interfaces of a firewall is to provide
all the IP addresses that can be reached by each interface. The way to do it is to supply an XML
interface file with the definition of each interface of the firewall. In order to not have to create this
file from scratch, a feature has been added to the application to generate an empty XML structure
for this file. It looks for the interfaces used in the parsed rules and creates an empty skeleton.

How to fill it? The first idea is to add for each interface the address of the network this
interface belongs to. These networks can be found in the listing given by the network status listing

– 37 –

3.2 Common implementation

(ifconfig under Linux). Unfortunately, as illustrated at Figure 3.3, in some configurations,
other networks can be joined behind an interface. In this example, the network 5.5.5.0/24 can
also be joined by the interface eth1. So, supplying 1.2.0.0/16 is not sufficient.

Figure 3.3 – A typical network where the firewall interface definition has to be made

Another idea to fill the interface list is to examine the routing table of the host. This table
gives all the reachable networks and the interface used to join them. However, in some hosts (in
some bridges for instance), the routing is not done at the same level and the routing table does not
provide any interesting information. Anyway, an unfailing way to fill the interface list is to know
the network topology and to express it directly.

Because of the lack of time, no graphic interface has been done to manage the interface list. In
the current version of the application, a skeleton of the interface list with the interfaces discovered
during parsing can be exported. Then, the file has to be filled manually. When this has been done,
DFA is able to generate the entire firewall configuration file. The structure of the interface list
is the following: a root element interface_list and as children, the interface elements
defined in the previous chapter (table 2.3).

For instance, the interface list has to be filled as shown in Figure 3.4 for the network repre-
sented at Figure 3.3. As explained in the language definition, the interface firewall_host is
used for all the packets from and to the firewall itself.

It is possible that an actual interface does not appear in the skeleton to fill. This may occur if
the interface is not contained in a rule of the filtering table. Nevertheless, it is important to add it
to the interface list in order that the packets from this interface are not associated with another one.

It can be noticed that the loopback interface does not appear. Actually, it is absolutely essential
that it is removed from the list. Indeed if it is kept when the two firewalls are analysed, the address
127.0.0.1 in the two configurations will refer to addresses that do not correspond to same physical
host.

– 38 –

3.3 Dealing with iptables

<? xml v e r s i o n =" 1 . 0 ">
< i n t e r f a c e _ l i s t >

< i n t e r f a c e name=" f i r e w a l l _ h o s t ">
< ne twork >

< i p > 1 . 2 . 0 . 1 < / i p >
< / ne twork >
< ne twork >

< i p > 9 . 8 . 7 . 6 < / i p >
< / ne twork >

< / i n t e r f a c e >
< i n t e r f a c e name=" e t h 0 ">

< ne twork >
< i p > 0 . 0 . 0 . 0 < / i p >
<mask> 0 . 0 . 0 . 0 < / mask>

< / ne twork >
< / i n t e r f a c e >
< i n t e r f a c e name=" e t h 1 ">

< ne twork >
< i p > 1 . 2 . 0 . 0 < / i p >
<mask> 2 5 5 . 2 5 5 . 0 . 0 < / mask>

< / ne twork >
< ne twork >

< i p > 5 . 5 . 5 . 0 < / i p >
<mask> 2 5 5 . 2 5 5 . 2 5 5 . 0 < / mask>

< / ne twork >
< / i n t e r f a c e >

< / i n t e r f a c e _ l i s t >

Figure 3.4 – Interface list of the firewall in Figure 3.3

3.3 Dealing with iptables

Iptables is the packet filtering implementation used in Linux kernels 2.4 and 2.6. Its functionalities
have been described in section 1.1.3. This language is the first one supported by the parser; here
are several reasons of this choice:

• Linux systems can be found both in gateways and in end-computers. Moreover, this free
operating system is widely used in servers and in routers. So, iptables is a common tool for
packet filtering in networks.

• Several iptables filtering tables of a large network were available. It is very important to
make the validation of this work.

• Iptables is a rather complex implementation. If the parsing is performed without any pro-
blem with iptables, other language parsers can probably be implemented.

As seen in the previous section, the main classes Parser and Rule are extended by classes
proper to iptables. These classes implement the entire parsing of the iptables output. They have
also to deal with iptables-specific problems like the user-defined chains. This section provides an
overview of all the processing from the input file to the XML rules. Although it relates to iptables,
the parsing modus operandi would be very similar for other languages.

– 39 –

3.3 Dealing with iptables

3.3.1 Parsing of the input file

This section discusses the parsing viewed from the angle of the Parser class. It relates to the
rules in general but not to the parsing of these rules that is the subject of the next section.

Choice of the input file

The first problem is to select which output of iptables to parse. An iptables rule table is built by
using the iptables command to add all the rules one by one. For outputting the entire table,
several solutions exist. The following discussion is inspired by the same problem resolved in
another thesis about iptables [Scha 04].

The iptables command called with the parameter -l returns a structured table that re-
presents all the rules entered. This table is useful for a human to have a quick overview on
the configuration but it is not easy to parse though. Another possible output for iptables is the
one given by the iptables-save command. The result is a linear listing of rules with ap-
proximately the same structure than the rules entered previously. This listing is more difficult
to quickly understand for a human but it is much easier to parse for an application. Moreover,
iptables-save does absolutely output regular rules in spite of the synonymous terms to de-
fine the same matches. This last point is interesting because whether you enter -s 1.1.1.1,
-src 1.1.1.1 or -source 1.1.1.1 to indicate that you want to match the packets with
1.1.1.1 as source IP, the iptables-save output will always be -s 1.1.1.1. So, it simplifies
the parsing by using a shorter vocabulary.

Structure of the input file

iptables-save has a quite regular output: a simple example is shown in Appendix A.1. First,
comment lines begin with a #. These lines can obviously be ignored. Next, the output is divided
into three parts: filter, nat and eventually mangle. Each part begins with a line *<part-name>
and finishes with COMMIT. As explained previously, only the filter part is kept for parsing. Each
of the three parts has the same general structure. First of all, each chain is defined (one per line).
The structure of these lines is the following:
:<chain-name> <chain-policy> [<packet-counter>:<byte-counter]
These lines are parsed to build a list of the chains used in the table and to know the default policy
for basic chains. Only INPUT, OUTPUT and FORWARD have a default policy. The way to deal with
it is explained below. When the chain definitions have been handled, filtering rules remain. Each
rule line is used to create a new Rule object that is put in a rule list.

Default policies

As explained in the previous section, the iptables-save output contains the default behaviour
of the main chains. However, as noticed in the section 2.1.2, the XML intermediate language does
not support default policies, each packet has to be matched by at least one rule. So, the solution
to observe this rule is to convert these default behaviours into rules. For instance, DROP as default
policy for forward chain is equivalent to a rule with no field (matches all packets) whose target is
DROP: forward: -> DROP. Then, such rule is added at the end of the rule list for each default
policy; there is no loss of information with this procedure.

– 40 –

3.3 Dealing with iptables

Replacement of the INPUT and OUTPUT chains by a new interface

In the description of the firewall language, it was explained that all the packets passing through the
firewall box are forwarded ones. The problem is that some packets are going to or are native from
the host itself. The solution suggested was to consider that this host can receive and send packet
through a virtual interface named firewall_host.

Let us add this interface now. Rules must be modified so that no change of policy was noticed.
In iptables, filtering tables have three built-in chains: FORWARD, INPUT and OUTPUT. Rules
of FORWARD chain do not refer to packets from and to the firewall_host interface. So,
a condition «interfacein 6= firewall_host» and «interfaceout 6= firewall_host» has to
be added to all the rules starting from the FORWARD chain. This is done by adding a rule «-i
! firewall_host -o ! firewallhost -j FORWARD». Note that it is not a valid
iptables-save rule since it does not have a input chain. In our implementation, that rule
means that it is a root rule, i.e. all packets are concerned by this rule. In the same way, the rules:
«-o firewall_host -j INPUT» and «-i firewall_host -j OUTPUT» are added
for packets respectively to and from the firewall itself.

Parsing of all the rules

As explained in the parsing of the input file, rules are stored in a rule list when the parsing of
the file is finished. Actually each rule is not parsed yet, it is just an object that contains a string
representation of the rule. Then, all the rules are therefore parsed one by one. The way of parsing
the rule is explained later but the result of the parsing is one of the following:

1. The rule will never be matched by a packet or the rule does not send the packet matched in
a definitive target (it is the case if the target is LOG for instance).

2. All the rule matches are not linked with a conjunction (AND) and then the rule has to be
split in two or more rules. The multiport match for example permits to give a list of ports to
match. If the ports given are «3, 4, 6», the rule cannot be written as a conjunction.

3. The rule is parsed without problem.

In the first case, the rule must simply be dropped. In the second one, the rule is split and each
of these new rules resulting of this splitting are added at the position of the old rule (the order
between the rules has to be observed). Finally, if everything is all right, the rule is kept in the list.

Iptables chains

As explained in the section 2.4, we have decided to remove all the user-defined chains of the
configuration file of iptables. This is not an easy job.

Figure 3.5 shows the simplified pseudo-code of the algorithm used by the iptables parser to
make the chains disappear. The list of rules is called rules. fromchain is the chain related to
a rule and target is the target of a rule. At the beginning of the algorithm, allsources is a
hashtable that contains for each chain the list of rules concerned by the chain and alltargets
is a hashtable that contains for each chain the list of rules whose the chain is the target.

– 41 –

3.3 Dealing with iptables

f o r each c h a i n c :
t a r g e t s = a l l t a r g e t s [c]
s o u r c e s = a l l s o u r c e s [c]
f o r each r u l e _ h e a d i n t a r g e t s :

f o r each r u l e _ t a i l i n s o u r c e s :
r e s u l t = r u l e _ h e a d . merge (r u l e _ t a i l)
i f r e s u l t i s a v a l i d r u l e :

r u l e s . add (r u l e _ h e a d . index , r e s u l t)
r u l e s . remove (r u l e _ h e a d)
a l l s o u r c e s [r u l e _ h e a d . f r o m c h a i n] . remove (r u l e _ h e a d)

f o r each r u l e i n s o u r c e s :
a l l t a r g e t s [r u l e . t a r g e t] . remove (r u l e)

Figure 3.5 – Algorithm uses by the parser to remove the user-defined chains

This algorithm calls the merge function. It corresponds to a method of the class Rule. This
method is explained in the next section about the parsing process in the rules.

At the end of algorithm, all the rules should not be concerned by any chain and should have as
a target ACCEPT or DROP. When all the merging has been done, the rule list is scanned. If a rule
is still concerned by a chain or has a chain as target, it must be dropped.

3.3.2 Rule parsing

This section is about rule parsing into the Rule class and into the classes that extend it.

Parsing of a rule

When it is asked to a rule to parse its string representation, it begins by splitting this string to obtain
a substring for each match. All the matches start with a «--matchName» or «-matchName»
and can be preceded by «!» if they are inverted. When a match is recognised, a method specific
to it is called to parse the arguments if any. The following item explains how to deal with these
arguments.

Supported fields

Here is a list of the fields that are supported by the current implementation and the way they are
handled. For most of them, it is possible to invert them with a «!» before the entire match or
before the value.

Target When the target is found, a verification is made on the value before storing it. If the target
is LOG, the rule does not give any decision on the packet and so the rule is dropped. On
the other hand, if the target is REJECT, it means that the packets will be dropped and that
an error message will be sent to the source. So, REJECT can be replaced by a simple DROP.
The other values are ACCEPT, DROP or an user-chain; these values are stored.

Protocol The protocol stored is the string name of the protocol in lower case.

– 42 –

3.3 Dealing with iptables

Source/Destination IP The argument can be either a single host IP address or an IP address with
a mask.

Input/output interface No problem, nothing to check.

Source/Destination port In accordance with the protocol, the port or port range is added in the
suitable element group (TCP or UDP).

TCP flags In iptables, all the combinations of the flags SYN, ACK, FIN, RST, URG and PSH may
appear. However, only two configurations will be accepted for the parsing in our language:
SYN=1, RST=0, ACK=0 and SYN=0, RST=1, ACK=1. The other ones cannot be converted in
the language but fortunately they are rarely used. The two recognised combinations can be
interpreted as established for the first one and !established for the other one.

ICMP type The value of this match is either only the type or the type and the code of the ICMP
messages concerned.

AH/ESP SPI The value can either be a unique value or a range. The element has to be added in
the AH or ESP group according to the protocol value.

Conntrack state The conntrack state values are those of the state machine introduced in 2.6.2.
Any combination of the states NEW, ESTABLISHED, RELATED and INVALID may appear but
only the values NEW and ESTABLISHED are considered. Four cases can be differentiated:

«NEW» or «!ESTABLISHED» are translated to !established in the language.

«!NEW» or «ESTABLISHED» are translated to established in the language.

«NEW, ESTABLISHED» is not translated since there is no restriction, all the packets match
it.

«!NEW, !ESTABLISHED» cannot be translated, no packet will match it. The rule must be
dropped.

Source/Destination IP range IP Ranges are sets of IP addresses between two values. The pro-
blem is that, in the language, a source or destination address can only be defined by what is
called one IP address (i.e. a host address and a CIDR mask). An IP range corresponds to a
list of such IP addresses and then, cannot be expressed in one rule with conjunctions. So the
solution is to extract a list of IP addresses from this range (for instance 1.0.0.0− 1.0.1.2 =
1.0.0.0/24 & 1.0.1.0/31 & 1.0.1.2/32) and to duplicate the rule for each of these addresses.

Source/Destination ports This match does not only take as value a port or a port range but also
accepts port or range lists. For instance, the following value is authorized: «3−6, 8, 9−10».
Like in the previous item, the rule has to be duplicated for each of the port or port range.

Packet type This match has as value either unicast or multicast or broadcast and match these
kinds of packet destinations. Its translation has been simplified. When multicast is given,
addresses of public multicast groups are matched (224.0.0.0-239.255.255.255), when broad-
cast is given the overall broadcast address is matched (255.255.255.255) and all the other
addresses correspond to unicast. It is clear that this translation is not really exact but no in-
formation has been found on how this match has been implemented. In a further version, this
should be improved with an analysis of the interface list for broadcast addresses. However,
this approximation is not severe since this match is seldom used.

– 43 –

3.3 Dealing with iptables

IP fragment This field is easy to convert since it has no argument. It matches the second, third
and the following fragments of fragmented IP packets. This is used to drop these fragments
since they do not contain UDP or TCP headers and so cannot be easily associated with a
flow.

Limit This match limits the number of packets accepted per time-unit. This can be used to avoid
DoS attacks or to log a sample of the packets. The objective of DFA is not to perform a
dynamic analysis but a static one. Then these matches are assumed to match all the packets
that pass through the rule. These matches are therefore ignored.

Physdev This match is used in bridges to filter on the input or output ports. Since these ports
are the equivalent of interfaces of classic host, they are translated as interfaces in the in-
termediate language. If a value ends with a «+», it matches all the interfaces that begin
with the value before the plus. It has not been implemented and so it is not supported. The
substitution of it by the related interfaces has to be done by hand.

Merging two rules

The algorithm to make the chains disappear uses a method to merge two rules. This method
is implemented in the iptables implementation of Rule. The merging of two rules is done by
merging each field of the first rule with similar fields of the second one and by conserving all the
fields that do not exist in both rules. Merging two values of a field is an AND operation. The way
to do it will be different among the four types of data described in section 1.3.4 (IP address, range,
unique value and no value). The value often comes with an inverted value. If inverted is
true, the field has to be different from this value and is called negative is the next algorithms. The
term positive relates to the fields that are not inverted.

For unique value fields, 5 cases can be considered:

The two fields have the same value and are both either positive or negative.
One of the two field values is kept with its inverted value.
Example: protocol = tcp & protocol = tcp → protocol = tcp.

The two fields have the same value but one is positive and the other negative.
The two fields are not compatible, no packet will match this and the rules cannot be merged.
Example: protocol = tcp & protocol 6= tcp → ∅ : merging of the rules stopped.

The two fields have different values and are both positive.
The rules cannot be merged.
Example: protocol = tcp & protocol = udp → ∅ : merging of the rules stopped.

The two fields have a different value and are both negative.
The two fields are kept.
Example: protocol 6= tcp & protocol 6= udp cannot be simplified.

The two fields have different values and one is positive and the other negative.
The positive field is kept, the other is ignored.
Example : protocol = tcp & protocol 6= udp → protocol = tcp.

Now, let us deal with the ranges. A range can always be viewed as a set of values. Consider
that the sets of values of the two fields to merge are called A and B. To do the conjunction of

– 44 –

3.4 Limitations

the two fields is equivalent to do the intersection of the sets (A ∩ B). Here is an example: the
first field is defined by 10:100 & !20:30 and the second one by 25:130 & !70:90. The
result of the conjunction is 31:100 & !70:90. (Note that such discontinuous range could also
be represented by a disjunction (31:69 | 91:100), but if it is done the rule has to be splitted
into two rules with ranges 31:69 and 91:100.) The general algorithm used to merge two ranges
into one is the following. We suppose that Z is the final value. At the beginning, the whole range
is selected (Z = 0− 65535). For each not inverted range X , the range Z is restricted to its value
(Z = Z ∩X). For each inverted range Y , a part of the range Z is removed (Z = Z \Y). When all
the ranges have been added, the resulting range (Z) can always be represented with a not inverted
range and eventually some inverted ones.

For IP addresses (host IP + mask length), the algorithm used is different. Using the properties
of IP addresses seen in 1.3.4, it is accepted that all the IP addresses sets can be represented by
one not inverted IP address (the positive) and zero or more inverted ones (the negatives). At the
beginning of the algorithm, we suppose that we have an empty negatives set and positive equals
to the global IP address 0.0.0.0/0. When a not inverted address is added, three different situations
may occur. If it includes the current positive, nothing changes. If it is disjoint of it, the merging
of the rules can be aborted. Finally, if it is included in the current positive, it replaces the positive.
When an inverted address is added, several situations may also occur. If it includes the positive
one, the rules cannot be merged. If they are disjoint, the inverted address can be ignored. In the
other cases, the address has to be added into the negatives list. Of course, there are a few igored
details in this presentation of the algorithm in order to make it simpler to understand.

As you can see, the merging algorithms are not so easy to implement. Unfortunately, this kind
of difficulties involves more risk of mistakes. For this reason, the implementation of this part has
been thoroughly tested. The different test sets used are listed in Appendix A.2.

3.4 Limitations

Our implementation of the parser works with most unmodified iptables configuration files. Never-
theless, some hypotheses are still made on the input configuration whatever the imported language
was. Some of these hypotheses has already been brought up before but are reminded because they
need small modifications of the input file supplied.

• All the rules of the filtering table that refer to NATed addresses have to be removed. As
explained previously, it has been chosen not to consider the address translations. If such
rules remain, local addresses could be considered to be located on the global network (on
the Internet) and it can lead up to false anomalies.

• For the same reasons, all the rules referring to the loopback interface or to the 127.0.0.1
address have to be removed.

• It must be possible to represent the network structure of the firewall. Actually some firewall
cannot be represented with the interface list used in this implementation. An example is a
bridge that filters two flows of data that are entirely disjoint. There is no only one but two
default routes and this cannot be expressed with our interface lists.

• As explained in the supported fields, the physdev values that end with a «+» in iptables
configuration are not supported. The substitution of the value by the entire names of inter-
faces has to be done by hand.

– 45 –

3.5 Support of other firewall configuration languages

• Finally, the input files have to be correctly formulated. If the iptables input file is changed
by hand, it must have the same shape as an iptables-save file. The interface list has
also to observe the structure defined. No assumption can be made on the result if the input
files do not observe their specifications.

Note that if some fields and targets are not recognise by the parser, warning messages will be
displayed in the control GUI. It is always a good idea to check this stream at the end of the
parsing.

3.5 Support of other firewall configuration languages

Since it is one the objective of the work, the parser part of the application can be extended to
support more languages. The main modifications to do are the creation of a Parser and a Rule
classes in a specific package for parsing operations of this language. These classes have to extend
the generic ones and have also to implement the non-defined methods of the abstract class.

Other classes will require small changes. Here are theses classes:

dfa.FwLanguage This class manages the different languages and their string representations.
New languages have to be referred in this class to appear in the language combo box into
the GUI.

dfa.parser.SourceFw This class opens the files and create the instances of the parsing objects.
The class has to know the name of the parser class to call for the new language.

The other classes do not care of the input language of the firewall. The same steps as those
explained in this chapter on iptables have to be applied for other languages. It is obviously a good
idea to use the iptables implementation as a model to implement similar operations.

3.6 Conclusion

This section described how our parser implementation is organised. Its architecture is hierarchical:
a firewall class calls a parser that is made up of a list of rule objects. Then, all the XML child
elements of a rule are represented as children in Java tree structures. These structures are managed
with the org.jdom Java package that allows them to be directly exported to XML files.

More time than expected was spent on this part of the implementation. Indeed, as you may
have seen, parts of the implementation contain relatively complex algorithms. The difficulty came
from the odd cases that have to be supported although they hardly ever occur. The merging of rules
also required complex data manipulations. This chapter has not detailed these long and sometimes
boring algorithms since the interest for the reader is not very high.

– 46 –

Chapter 4
Analysis of distributed firewall
configurations

All the components required to perform the main objective of this thesis are now available . Given
two firewall configuration files, it is possible to analyse which flows are authorized between two
networks. This analysis can be split in two parts. First, it is interesting to obtain, for each data
flow between two networks, an overview of the decision made by each firewall. These decisions
can be examined manually by a network administrator or by a user of the network to know the
authorized connections between the two networks. They can also be automatically analysed by a
tool to detect potential anomalies. The main ones will be explained in this chapter as well as the
algorithms to discover them.

4.1 Overview of the firewall decision for each flow

The aim of this section is, from the firewall configuration files, to list the firewall behaviours on
each data flow between two networks. Between two hosts and for the same service (i.e. the same
TCP ports for instance) there are four possible decisions: (the two hosts will be called X and Y)

1. Are requests from X to Y authorized?

2. Are requests from Y to X authorized?

3. Are responses from Y to X authorized?

4. Are responses from X to Y authorized?

If everything is coherent, the second item involves the third one and the first one involves the fourth
one. Indeed, if requests are authorized, it means that new connections and following packets are
accepted. So there is no reason for response packets in the same direction to be rejected.

To answer these four questions, a simple approach is to read linearly the firewall configuration
files and to keep the rules matched by the packets of the flow concerned. Once it is done for each
firewall, several lists are obtained containing the rules determining the policy for this flow. Then,
these lists can easily be interpreted by a human or by a computer.

– 47 –

4.1 Overview of the firewall decision for each flow

A good way to have a global overview of the policies applied for all the possible flows is to use
a policy tree. The following sections explain what is a policy tree and how to build it efficiently.

4.1.1 What is a policy tree

The initial idea of using a policy tree comes from [Al S 03, Al S 04a]. The tree they use is similar
to the one decribed in this chapter. Nevertheless, how it is used and built is not exactly the same.
The differences are explained in more details at the end of the description of our policy tree.

A policy tree is a tree that represents all the possible flows covered in one or more firewalls.
For the analysis needed in this work, it will cover the filtered flows between two firewalls. In the
leaves we store the information about the flow. In our case, the leaves will store the rules associated
with the concerned flow. Such a tree is represented in Figure 4.1. At each level, the policy tree
evaluates a new field. The order chosen for the different fields is arbitrary, however the choice
made seems appropriate. The order is the following: IP address of A, IP address of B, protocol
and ports of A and B if necessary (under the dashed line). Each branch of the tree corresponds
to a specific value or a range of values; a star (*) corresponds to all the other values that are not
represented in the branches. Each node is in charge of a new field and has one or more children.
Finally, the leaves contain lists of the rules corresponding to the flow represented by the path from
the root to the leaf.

Figure 4.1 – An example of policy tree

In the policy tree used by our application, the leaves contain four lists called flow policy tables.
Why four? First, because two firewall configurations are analysed and lists are filled while reading
each configuration file. It is not a good idea to blend the two flow policy tables since they provide

– 48 –

4.1 Overview of the firewall decision for each flow

the information of which table blocks the packets. Moreover, this kind of merging is not as simple
as it can seem. Secondly, each of these two lists is divided into one relating to the flow from A to
B and another from B to A. Once more, the aim of this division is to make clearer the output and
so to simplify the interpretation of the results.

Why not to add nodes for other fields? Some other fields like IP properties may appear in
rules and indeed could be added to the tree structure like the other ones. We choose to not add
them because that these fields are not very important for packet filtering and do not often appear. If
added, these fields would increase the complexity of the tree, its construction and its interpretation.
For instance, IP fragmentation is not something differencing a flow from another and so, it is not
a good idea to discriminate the nodes based on this property.

In the current version of our implementation, we only take into account the properties of the
TCP and UDP protocols. This is because there are fewer ICMP, ESP and AH rules than TCP or
UDP ones. Moreover, these rules can be quite easily interpreted even if they are mixed in the
same table. For ICMP messages, it is also simpler not to have the rules divided into several tables.
Otherwise the ICMP request and response messages could be scattered in different tables.

Comparison between our tree and the tree defined in [Al S 03]

The structure of the policy tree described by the authors of [Al S 03] and [Al S 04a] does not
differ a lot from ours. The rules inserted in their tree are 6-uples made of the following fields:
action, protocol, src_ip, dst_ip, src_port, dst_port. The protocols supported are only TCP and
UDP. ICMP, AH, ESP and others are not recognized. IP addresses and ports cannot be made of a
conjunction of several values and cannot be inverted.

One major difference between the trees is that theirs does not support any flow information.
This is an important simplification since a large proportion of the current firewall configurations
uses flow matches.

The field order in our tree is different from theirs: protocol, src_ip, src_port, dst_ip, dst_port,
action. It should also be noticed that they use src_ip and dst_ip on the contrary of our policy tree
where A_ip and B_ip are used. If the packet flows are taken into account, our solution seems to be
more relevant.

Finally, their leaf nodes only contain one rule list. There is a single list where are stored the
rules disregarding the direction and the firewalls from which the rules come. Moreover, there is
only one list for the direction since for their tree structure (with src_ip and dst_ip), it is sufficient.

4.1.2 Construction of a policy tree

The analyser part of the application was made as an independent part from the previous ones. The
control GUI takes as input the two firewall configurations (firewall A and firewall B) and generates
a policy tree that can be browsed. When a leaf of the tree is selected, the rule lists referring to it
are displayed.

Note that it is supposed that the input configurations are well-formed. It means that the input
files observe the XML structure defined in the previous chapters. But the hypothesis has also
been made that there is no absurdity in the rules defined. For instance, a source or a destination
address cannot be defined by two not inverted addresses, a port range cannot be defined as «100−
200 & !300 − 400»,. . . Of course, the files generated by the parser part of the application observe

– 49 –

4.1 Overview of the firewall decision for each flow

these rules. This hypothesis is important since some part of the implementation has been simplified
thanks to it.

The Java structure

The implementation of the policy tree is a simple Java tree with a root node that maintains a list of
child nodes that also have children and so on. At each level, the nodes are from a different type, the
level one contains IpANode’s, the level two IpBNode’s and the level three ProtocolNode’s.
The next levels depend on the value of the protocol node. A ProtocolNode element with TCP
or UDP value has APortNode’s children that have BPortNode’s as children. The other protocol
nodes and the BPortNode have FlowPolicyTables nodes as leaves. This class records all
the rules related to the branch.

To fill the tree, first, the rules are added to the root element of the tree. This element performs
several operations:

1. It analyses which IP addresses of A this rule corresponds to. This involves the analysis of
the source address, destination address, input interface and output interface fields.

2. It splits if necessary its own children to have at least one node corresponding to each IP
address matched in the rule.

3. For each child included in the set of IP addresses concerned by this rule, the root node adds
the rule to it.

When the root node has added a rule to one of its children, the child node (an IpANode
element) performs the same type of analysis for B IP addresses and transmits the rule to some of
its children and so on. When a leaf node is reached, the rule is added to a suitable list.

The details of the Java implementation of this part will not be given here but a global idea of
the more complex algorithms used are explained in the next sections.

Interpretation of interface fields into host address information

In order to insert a rule in the tree, its input and output interface fields have to be translated into IP
addresses. For illustration, imagine in the network of Figure 4.2 that the firewall B contains a rule
input-if=vlan0 => ACCEPT. How to insert this rule into the policy tree? By intuition, it
seems that an equivalent rule with IP addresses should be src-ip=1.5.100.* => ACCEPT.
But it is not always so easy. The interface eth0 of firewall B is associated with network 0.0.0.0/0
but a rule input-if=eth0 => ACCEPT cannot be translated into src-ip=0.0.0.0/0 =>
ACCEPT: this solution would match more packets than expected.

So, a more precise algorithm is needed to identify the addresses concerned by a rule when
an interface field is mentioned. As previously explained, each interface is defined by the list of
networks it leads to. The interface used by a packet to reach a destination is the more specific route
for it. Some notations are introduced to make the algorithm clearer:

• NA is the set of the interfaces of the firewall A.

• NA
i is the interface of A with index i.

– 50 –

4.1 Overview of the firewall decision for each flow

Figure 4.2 – An example of a network where interfaces may cause some problems

• NA
ij is j-th network associated with NA

i .

• NA
B is the interface of A used by packets to reach B. The way to determine it is described in

Figure 4.3.

Baddr = one of t h e h o s t a d d r e s s e s o f t h e f i r e w a l l B
c i d r = 0
f o r each i n t e r f a c e NA

i :
f o r each ne twork NA

ij of t h e i n t e r f a c e :
i f Baddr ∈ NA

ij and NA
ij .cidr ≥ cidr :

NA
B = NA

i

Figure 4.3 – Algorithm used to determine the value of NA
B

So, the algorithm used to translate interface information into IP addresses for firewall A is
shown in Figure 4.4. The algorithm is the same for the other firewall, A and B have just to be
inverted.

The resulting IP addresses are the ones contained in the IpA set. The set direction is also
important. It contains the direction concerned by this rule. If direction is empty at the end of the
algorithm, the rule can be dropped (not inserted). This direction is important in the policy tree to
select to which tables of the leaf the rule must be appended.

Here is additional explanation on some parts of the previous algorithm:

(A) At first sight, this operation seems difficult to understand. Actually, the explanation is quite
easy but the implementation does need more attention. When an input interface is given
and is not inverted, it is obvious that the IP network addresses behind this interface have to
be accepted as source addresses. But if the algorithm is stopped here, there is a problem
when an interface network is included in another. This could be illustrated with Figure 4.2:
if a rule is considering the input interface eth1 of A and if this match is replaced by the
input address 1.4.*.*, the packets from eth2 will be also taken into account. To solve the
problem, the interface is not only replaced by the addresses of its networks but is replaced by

– 51 –

4.1 Overview of the firewall decision for each flow

d i r e c t i o n = “A → B” ∪ “B → A”
IpA = whole r a n g e o f IP a d d r e s s e s
f o r each i n p u t i n t e r f a c e i n f o r m a t i o n Ik :

i f Ik == NA
B :

i f Ik n o t i n v e r t e d :
d i r e c t i o n = d i r e c t i o n ∩ “B → A” /∗ r e s t r i c t t h e d i r e c t i o n ∗ /

e l s e :
d i r e c t i o n = d i r e c t i o n ∩ “A → B”

e l s e :
i f Ik n o t i n v e r t e d :

d i r e c t i o n = d i r e c t i o n ∩ “A → B”
IpA = IpA∩

⋃
j

(
NA

kj\
⋃

m,n,m6=k,NA
mn∈NA

kj
NA

mn

)
/∗ e x p l a i n e d f u r t h e r i n (A) ∗ /

e l s e
d u p l i c a t i o n o f (d i r e c t i o n , ipA) i n 2 c a s e s :

(d i r e c t i o n 1 , IpA1) and (d i r e c t i o n 2 , IpA2) /∗ e x p l a i n e d i n (B) ∗ /
d i r e c t i o n 1 = d i r e c t i o n 1 ∩ “A → B”
IpA1 = IpA1 ∩

⋃
m,n,m6=k

(
NA

m,n \
⋃

j NA
kj

)
/∗ e x p l a i n e d i n (C) ∗ /

IpA2 = IpA
d i r e c t i o n 2 = d i r e c t i o n 2 ∩ “B → A”

f o r each o u t p u t i n t e r f a c e i n f o r m a t i o n Ik :
i f Ik == NA

B :
i f Ik n o t i n v e r t e d :

d i r e c t i o n = d i r e c t i o n ∩ “A → B”
e l s e :

d i r e c t i o n = d i r e c t i o n ∩ “B → A”
e l s e :

i f Ik n o t i n v e r t e d :
d i r e c t i o n = d i r e c t i o n ∩ “B → A”
IpA = IpA ∩

⋃
j

(
NA

kj \
⋃

m,n,m6=k,NA
mn∈NA

kj
NA

mn

)
e l s e

d u p l i c a t i o n o f (d i r e c t i o n , ipA) i n t o 2 c a s e s :
(d i r e c t i o n 1 , IpA1) and (d i r e c t i o n 2 , IpA2)

d i r e c t i o n 1 = d i r e c t i o n 1 ∩ “B → A”
IpA1 = IpA1 ∩

⋃
m,n,m6=k

(
NA

m,n \
⋃

j NA
kj

)
d i r e c t i o n 2 = d i r e c t i o n 2 ∩ “A → B”
IpA2 = IpA

Figure 4.4 – Algorithm used to translate interfaces into IP addresses

the addresses of its networks minus the networks of the other interfaces that are included in
them. To give an example, the interface eth1 of Figure 4.2 should be replaced by network
1.4.*.* minus 1.4.10.*.

(B) This duplication is needed because the rule may match two opposite cases. For instance
suppose a match «input-if!=eth2» on Figure 4.2. It means that either the packets
from network B to network A are authorized or the packets from A to B but only those that
do not come from 1.4.10.*. The two cases have to be added separately in the tree.

(C) The reasoning about this operation is the same than in (A) except that the sets are inverted.

– 52 –

4.1 Overview of the firewall decision for each flow

Interpretation of the source and destination IP addresses

The interpretation of the source and destination IP addresses is easier than the interfaces. The work
here is limited to determine if the source or destination address has to be associated with A or B;
remind that the policy tree contains «A address» and «B address» nodes. Table 4.1 summarises
the translation from IP source or destination to IP of A or B.

Firewall Rule encountered A address B Address Direction
A sce-IP=a.b.c.d a.b.c.d * A→B

* a.b.c.d B→A
dst-IP=a.b.c.d a.b.c.d * B→A

* a.b.c.d A→B
B src-IP=a.b.c.d a.b.c.d * B→A

* a.b.c.d A→B
dst-IP=a.b.c.d a.b.c.d * A→B

* a.b.c.d B→A

Table 4.1 – Translation of the source/destination addresses into A/B addresses

In this table, the star (*) represents all the IP addresses. It may be noticed that all the rules are
interpreted by two rules, one in each direction. This is not needed at all, in fact, each rule should
be interpreted by zero or one rule because a.b.c.d cannot be at the same time behind the firewall
A (seen from B) and behind the firewall B (seen from A). One or the two rules could be ignored
thus. However, the choice was made not to make this simplification here in the algorithm; It will
be rather done by pruning the policy tree later. If the match is inverted, the a.b.c.d address match
is also inverted in the policy tree insertion algorithm.

Building the tree: adding address nodes

Once the IP addresses of A and B have been found for a rule, the rule has to be inserted in the
policy tree. As explained in a previous section, the root node has IpANode children and each of
these nodes have IpBNode children. Before the first rule is added, there is only one A child that
has one B child; each of these two nodes match all the IP addresses. So these nodes have to be
split when rules are added. The algorithm to do it is described in this section.

First, whatever the number of the fields relating to addresses, their type and whether they are
inverted or not, the IP address set matched by a rule can always be represented by one positive (not
inverted) IP address and several negative (inverted) ones. The algorithm presented in Figure 4.5
allows to add in a root node a rule that match as a set of addresses symbolised by A. The set A
is represented by a positive network and several negatives ones. For instance, it can represent the
addition of a rule that matches the IP 1.4.*.* except the IPs 1.4.10.* and 1.4.0.1.

– 53 –

4.1 Overview of the firewall decision for each flow

Here are a few notations:

• A+ is the positive network.

• A−i is the i-th negative network (1 ≤ i ≤ n−).

• Tj is the network associated with the j-th child of the node where the rule has to be added
(the root node).

• A+.needsplit/A−i .needsplit is false if a node with this address already exists, true other-
wise. It is initialised to true.

• A+.fatherNode/A−i .fatherNode contains the reference to the child with the smallest
network (greatest CIDR) that includes this network.

Adding protocol and port nodes

The three previous sections examined the IP addresses in the policy tree. But once this has been
done, the lower levels have to be filled: protocol and, for UDP and TCP, A and B ports.

For protocol, the extraction of the information from the rules is much easier than for IP ad-
dresses. All the protocol information of a rule is contained in the protocol marker, if it does
not exist, the protocol value is any. It can be supposed that the more complex configuration that
can occur is the one that rejects several protocols, for instance «prot!=udp, prot!=tcp».
The node insertion of a rule is done first by adding a child for each protocol used and that does not
exist yet (by duplication of the any child node). Then, the rule is added to each node matched by
the protocol values of the rule.

The same operation for ports is more complicated. The extraction of the information from
rules is quite simple: it is contained into the srcport and dstport elements of the tcp or
udp group. But how are srcport and dstport translated in A and B ports? Source ports are
converted into A port if the direction is A → B and into B port if it is B → A. The opposite is
done to translate the destination ports. If no direction is defined, the rule is add to each direction.
Concerning the insertion of the information in the tree, each port node has a port range associated
with it. These ranges have to be split if necessary when new values are inserted. For example,
if the existing nodes cover the ports 0-1024 and 1025-65535 and a rule concerning ports 500-510
is inserted, the first range has to be split into three sub-ranges. If the rule inserted is 1000-2000
instead, the two ranges have to be split into two sub-ranges. The detailed algorithm will not be
listed here because it is quite long and relatively similar to the previous ones.

4.1.3 Improving the efficiency of the policy tree

The problem with the general structure of the policy tree implemented was especially that the
resulting tree was too large. It was insignificant for small firewall configurations used for tests but
was problematic in the real configurations used for validation. For example, the insertion in the
tree of a 400 rules firewall configuration and a 1175 rules one requires several GBytes of memory
to store the tree. In fact, in these examples, more than ten millions of nodes were used. The whole
tree needs to be loaded in memory to be explored easily and to permit reading the rules associated
with each leaf. The following items give interesting improvements to the tree in order to reduce
the number of nodes needed in memory at the same time.

– 54 –

4.1 Overview of the firewall decision for each flow

addRule = e m p t y _ l i s t / / l i s t o f t h e nodes concerned by t h e c u r r e n t r u l e

f o r each Tj :
i f Tj == A+ :

A+.needsplit = f a l s e
addRule . add (Tj)
f o r each A−i :

i f A−i .needsplit and A−i .fatherNode.cidr ≤ Tj .cidr :
A−i .fatherNode = Tj

A−i .fatherNode.cidr = Tj .cidr

i f Tj ⊃ A+ :
i f A+.needsplit and A+.fatherNode.cidr ≤ Tj .cidr :

A+.fatherNode = Tj

A+.fatherNode.cidr = Tj .cidr

f o r each A−i :
i f A−i .needsplit and A−i .fatherNode.cidr ≤ Tj .cidr :

A−i .fatherNode = Tj

A−i .fatherNode.cidr = Tj .cidr

i f Tj ⊂ A+

addRuleForThisNode = t rue
f o r each A−i :

i f Tj == A−i :
A−i .needsplit = f a l s e
addRuleForThisNode = f a l s e

i f Tj ⊃ A−i :
i f A−i .needsplit and A−i .fatherNode.cidr ≤ Tj .cidr

A−i .fatherNode = Tj

A−i .fatherNode.cidr = Tj .cidr

i f Tj ⊂ A−i :
addRuleForThisNode = f a l s e

i f addRuleForThisNode :
addRule . add (Tj)

f o r each A−i wi th A−i .needsplit == t rue :
newNode = d u p l i c a t e (A−i .fatherNode)
newNode . changeValue (Ai)
addNewChild (newNode)
addRule . add (A−i .fatherNode)

i f A+.needsplit == t rue :
newNode = d u p l i c a t e (A+.needsplit)
newNode . changeValue (Ai)
addNewChild (newNode)
addRule . add (newNode)

f o r each Ni i n addRule :
Ni . a d d C u r r e n t R u l e

Figure 4.5 – Algorithm used to add IP addresses in the tree

– 55 –

4.1 Overview of the firewall decision for each flow

Do not add rules in branch that cannot be matched

As explained in the section about the insertion of source and destination IP in the tree, all the
addresses are added in the tree disregarding whether these addresses really belong to the network.
If a rule is related to an address that is not behind the firewall A seen by firewall B, the rule has
not to be added in the A address nodes with this value. In the example of networks A 1.0.0.0/8 and
B 2.0.0.0/8, the only A address nodes that can be created are the ones with an address included in
the network A (1.0.0.0/8).

To apply this improvement in the tree, the following algorithm has been followed. At the
beginning of the tree building, A address nodes are created for each of the networks associated
with the interface of firewall A to B (often 0.0.0.0/0). These nodes are defined as locked. It means
that these nodes exist but do not add new rule and create children anymore. Then, all the networks
of the other interfaces of A that are included in these locked networks are also inserted as A address
nodes but they are unlocked.

The same algorithm can be applied for B nodes. It importantly reduces the number of nodes
in the tree.

Do not add rule in nodes that already have a global policy

This improvement comes from an observation: In each of the four tables of the leaves, a lot
of rules are stored despite that the policy is definitely fixed after a few rules. For illustration,
if the rule src-ip=1.1.0.0/16 => ACCEPT has already been added in a leaf, the rule
src-ip=1.0.0.0/8 => DENY does not need to be added as well as any new rule with a
source address included in 1.0.0.0/16. In the other hand, if the rule src-ip=1.1.0.0/16 &
established => ACCEPT has been added, other rules are welcomed to complete the policy.
This problem can easily be solved with a few variables that save whether a table is entirely defined
or not. A rule decides of the final policy of a table if the fields of the rule are only among input
and output interfaces, source and destination addresses, protocol and source and destination ports
(the fields used for the construction of the policy tree). If another field is defined, the established
property for example, nothing can be concluded from this rule in the table. So, a table of a leaf is
locked when it becomes entirely defined. When a table is locked, no rule is accepted anymore.

Another observation made was that some nodes are uselessly split for the same reason. For ex-
ample, a rule src-ip=1.1.1.1 & dst-ip=2.1.1.1 & protocol=tcp => ACCEPT
is inserted first and then src-ip=1.1.1.1 & dst-ip=2.1.1.1 & protocol=tcp &
src-port=15 => ACCEPT is also inserted. The second rule will involve the spitting of the
port node «*» in 3 three nodes («0-14», «15» and «16-65535»). The splitting is absolutely useless
because all the tables of the child nodes are already locked. To avoid this, when a leaf locks one
of its tables, it warns its parent. When the parent is warned, it checks all its children and, if they
have all locked one of a table, the parent put also a lock on the table. Each table corresponds to a
couple (firewall, direction); a node that has locked a table does not add packets corresponding to
this couple anymore.

Merge the FlowPolicyTable nodes with their parents

The FlowPolicyTable nodes were the leaves of the policy tree. The leaves in such tree are
the more numerous nodes; there are several millions of such nodes in trees of thousands of rules.

– 56 –

4.2 Anomaly detection

By conception (see before), the parents of these leaves have always only one child. So, a way to
reduce the total number of nodes is to merge the leaves with their parents. So the tables are now
contained in B port nodes or in protocol ones when the protocol value is different from TCP and
UDP.

Explore one branch at time

Once these enhancements have been implemented, the number of nodes was widely reduced but
not enough. The nodes needed for a problem with 400 rules for A and 1175 for B was more than
three millions and the memory needed around 1.3 GByte. To be able to run the application on a
standard computer, a last improvement has been made. When the analysis is launched, all the rules
are handled but no node is created beneath the first level. Then, the user can choose the addresses
of A he wants to explore. The second analysis is limited to the second level, A address and B
address nodes are explored and the choice is given to the user to select the B network. Then, the
branch of the tree selected is entirely explored and can be freely browsed. The choice is always
left to the user to explore all the branches but it works only for small configurations or on powerful
computers.

4.2 Anomaly detection

The preceding tool is interesting to analyse two simple firewalls or to have a good idea on the
policy applied to a specific flow but it does not provide a good support to find easily real errors.
That is why it could be useful to have a tool that points the abnormal rule configurations to help
the administrator to detect the actual errors.

4.2.1 Anomaly classification

A lot of remarks could be made on distributed firewalls configurations. However, a lot of those
are not real anomalies but are due to the complexity of the configurations. Some rules could also
look strange only because they have been written with a special care of efficiency or of human
readability.

The article [Al S 04a] outlines four anomalies that can be discovered in distributed firewalls1.
Here is a short summary of them. It supposes that the upstream firewall is the one nearer to the
source.

Shadowing: It occurs when the upstream firewall blocks packets accepted by the downstream
one.

Spuriousness: It occurs when the upstream firewall accepts packets dropped by the downstream
one.

Redundancy: It occurs when the upstream firewall blocks packets already blocked by the down-
stream one.

1Remember that this article does not take the flows into account.

– 57 –

4.2 Anomaly detection

Correlation: It occurs when there are two correlated rules in the upstream and downstream fire-
walls. Two rules are correlated if some fields of the first rule are subsets of those in the
second one and if some fields of the first rule are supersets of those in the second one.

The shadowing and the spuriousness are interesting anomalies to match and they will be ex-
plained in further details later. However, the relevance of the redundancy anomaly can be dis-
cussed. If it is taken into account, it involves that a blocked flow will always match one of the first
three anomalies. But is it an anomaly to have a flow blocked and is it abnormal to have packets
blocked in both firewalls of a distributed firewall configuration?

One situation where redundancy could be an anomaly is represented in Figure 4.6. It is a con-
figuration where the network between the two firewalls is trusted. Packets coming from the WAN
and passing through the firewall A do not need to be checked again in firewall B. However, it could
be considered that this kind of situation is very special and is seldom encountered. Actually, this
configuration is a subset of the configurations taken into account. So, all the anomalies found by
the application will be relevant in this kind of configuration but some anomalies could be missed.

Figure 4.6 – A network in which the redundancy anomaly detection could be relevant

Since the redundancy is not an anomaly in classical distributed firewalls, it will not be conside-
red in such way. About the last anomaly listed in [Al S 04a], the correlation is above all a special
case of shadowing and spuriousness. For this reason and because correlation is unavoidable in a
complex firewall configuration, correlation will not be considered in itself as an anomaly.

In addition to these anomalies, some other ones considering flows could be defined. The first
one is «blocked replies». Apart from some special needs, there is no reason to let packets pass in
one direction and to drop them in the other one. Another anomaly to consider is about the misuse
of the established property. There is no point to accept established flows if the flow is not accepted
in the other direction. The items below describe more in details each anomaly considered and
detected in DFA.

Upstream-blocked anomaly

The upstream-blocked anomaly corresponds to the shadowing anomaly of [Al S 04a]. It occurs
when the upstream firewall (nearer to source) blocks packets that are accepted by the downstream
firewall. A representation of this kind of anomaly is shown at Figure 4.7.

The security risk with this kind of anomaly is not very important but it reveals incoherence
between the two configurations and could permit unexpected spoofing attacks. The anomaly is

– 58 –

4.2 Anomaly detection

Figure 4.7 – A simple example of upstream-blocked anomaly

more critical if, as in the example, the accepting rule is related to the source network that has
blocked the flow.

Downstream-blocked anomaly

This anomaly is equivalent to the spuriousness anomaly of [Al S 04a] and so, occurs when the
downstream firewall blocks packets accepted by the upstream one. This anomaly is represented at
Figure 4.8.

Figure 4.8 – A simple example of downstream-blocked anomaly

This anomaly reveals also incoherence between the two firewall configurations. The main
problem of this kind of anomaly is that packets pass through the network between the two firewalls
for nothing. If the communication is limited or has to be paid, it could be important to drop directly
the packets in the first firewall. As in the previous anomaly, it is more critical if the accepting rule
concerned precisely the network that rejects the packets.

– 59 –

4.2 Anomaly detection

No reply anomaly

The no reply anomaly occurs when requests are accepted from network A to network B and replies
are blocked either in the first or in the second firewall. A representation of this anomaly is shown
on Figure 4.9.

Figure 4.9 – A simple example of the no reply anomaly

Most of the time, this anomaly reveals a real problem because a very few services works
without neither reply nor acknowledgment. If requests are accepted, the packets pass through the
network for nothing and possibly create state in the destination machine. If it is pointlessly sent, a
better security policy should be to reject the requests too. Note that if this kind of anomaly is found
in distributed firewalls, the anomaly can also be found in one of the two firewalls independently of
the other one.

Useless established anomaly

The last anomaly matches the futile uses of the established keywork. This anomaly is encoun-
tered when the established of an accepting rule could be replaced by a drop without changing
the policy of the distributed firewall. A situation in which this anomaly occurs is represented at
Figure 4.10. All the established are useless in this figure: they could be replaced by a drop rule
without changing anything in the policy between the two firewalls.

Once more, such anomaly does not reveal any severe security risk but points a potential mi-
sunderstanding between the administrators of the networks. In the example, it would be possible
that the administrator of firewall A believes that the flows initiated by A to B are authorized while
they do not.

4.2.2 Anomaly searching

The next step of the analysis is now to determine where the defined anomalies occur in the given
configurations. To do this, the application will base its analysis on the policy tree previously
designed. As a reminder, each node of the policy tree has four tables, one for each firewall and
one for each direction. These tables contain a list of rules that correspond to it. The last one of

– 60 –

4.2 Anomaly detection

Figure 4.10 – An example of the useless established anomaly

these rules is always a global rule that matches all the packets concerned by the table2. In the
leaves concerning the TCP or UDP flows, tables contain a few rules, when there are more than one
rule, it is often due to a rule concerning the established flow. In the leaves of the other protocols,
more rules can appear. For example, an ICMP leaf may describe the action to apply to each ICMP
message before defining the default behaviour.

A great simplification is made at this point. The policy associated with a table will be the
policy of the last rule of the table, this is the default policy. However, if the default policy is DROP

and there is a rule before that is defined as established => accept or if the default policy
is ACCEPT and there is a rule before that is defined as !established => drop, the policy
of the table will be considered as ESTABLISHED. So the policy associated with a table is either
ACCEPT, DROP or ESTABLISHED.

The general policy associated with a flow is represented by the four policies. It could be
represented by a policy table as Table 4.2. In this table, A|D|E is one of the three policies ACCEPT

(A), DROP (D) or ESTABLISHED (E).

A B
A→B A|D|E A|D|E
B→A A|D|E A|D|E

Table 4.2 – Model of a policy table

The policy table corresponding to a flow allows to detect the anomalies. Since the number
of different policy tables is finite, the matching between a policy table and the known tables is
sufficient to do an efficient anomaly detection.

2It could be considered that all the tables always finish with a global rule that matches all the packets of this table.
If no global rule exists for a table, it would mean that the hypothesis saying that all the packets match at least one rule
would not be respected. Theoretically the hypothesis does not require having a global rule, several rules that cover all
the cases should be sufficient. However, in nearly all the possible configurations a global policy exists, translated from
the default policy.

– 61 –

4.2 Anomaly detection

Before looking at how to recognise each anomaly with the policy tables, note that the tables
represented at Table 4.3 are equivalent by swapping A and B. The four letters in the tables (a, b, c,
d) represent one the three policies.

A B A B
A→B a b d c
B→A c d b a

Table 4.3 – Two equivalent policy tables

Anomalies detected into configurations

Table 4.11 represents all the different possible configurations and the anomalies associated with
them. When D/E is indicated, the same anomalies occur whatever the value is D or E. However, if
the value is E, the result is the same than D and so a useless established anomaly occurs.

4.2.3 Relevance levels of anomalies

By matching the previous patterns with the policy tables, it is now possible to list all the anomalies
of a configuration. If these anomalies are examined, a few real errors will certainly be found and a
lot of the anomalies are well known from the administrator and do not cause any problem.

For instance, consider the network represented at Figure 4.8. If the accept rule in the firewall
A is dst-ip=1.1.*.* => ACCEPT and the drop rule in B is dst-ip=1.1.5.101 =>
DROP, the anomaly is not very important. It can even be supposed that this anomaly is intentional
not to overweight the filtering table of A. Indeed if the table of A has to contain DROP rules for
each destination on the Internet that can drop its packets, it would contain millions of rules. On
the contrary, if the ACCEPT rule in the firewall A is dst-ip=1.1.5.101 => ACCEPT and
the DROP rule in B is dst-ip=1.1.5.* => DROP, the anomaly is more critical. It can be
assumed that the configuration of the firewall has been made without the knowledge of the policy
of B. The contrast between these two configurations about the same anomaly shows that there are
several degrees in the anomaly relevancy.

For this reason, several levels of anomalies should be defined. The rating of the anomaly
should be based on a few arbitrary properties. A good idea could be to compare the mask lengths
of the IP addresses used in rules that make the final decision of the dropping or accepting. It
could be noticed that the source addresses is the major property to evaluate the relevance of the
upstream-blocked anomaly while the destination addresses is for the downstream-blocked one.
Unfortunately, by lack of time, it has not been possible to conceive and implement a full relevancy
level system for anomalies.

The mechanism implemented allows to detect only some anomalies that can be considered as
real problems. These anomalies detected are those of the examples shown above. Four cases are
considered:

• There is an upstream-blocked anomaly and the destination address of the rule that drops in
the upstream firewall is included in a network behind the other firewall.

• There is an upstream-blocked anomaly and the source address of the rule that accepts in the
downstream firewall is included in a network behind the other firewall.

– 62 –

4.2 Anomaly detection

A B
A→B A D/E
B→A D/E D/E

• Downstream-blocked

A→B D/E A
B→A D/E D/E • Upstream-blocked

A→B A A
B→A E E • - (no anomaly)

A→B A A
B→A D/E D/E • No reply anomaly

A→B A D/E
B→A A D/E • Downstream-blocked

• Upstream-blocked

A→B A A
B→A A D • No reply anomaly

• Upstream-blocked

A→B A A
B→A A E • Upstream-blocked

A→B A D
B→A A A • Downstream-blocked

• No reply anomaly

A→B A E
B→A A A • Downstream-blocked

A→B D/E A
B→A A D/E • Upstream-blocked (in both directions)

A→B A D/E
B→A D/E A • Downstream-blocked (in both direc-

tions)

A→B A A
B→A A A • -

A→B D/E D/E
B→A D/E D/E • -

Figure 4.11 – All the possible configurations and their anomalies

• There is an downstream-blocked anomaly and the destination address of the rule that accepts
in the upstream firewall is included in a network behind the other firewall.

– 63 –

4.3 Conclusion

• There is an downstream-blocked anomaly and the source address of the rule that drops in
the downstream firewall is included in a network behind the other firewall.

No real problem is detected on no-reply anomaly since this kind of anomaly involves a problem
in one of the firewalls independently from the other. This software was not developped to make
verification of single firewalls and so no energy has been spent on detection of this kind of anomaly.

About the implementation, there are not a lot of things to report. The source or destination
address set associated with a rule may include inverted and not inverted addresses. In such cases,
only the not inverted address is considered since the inverted ones are included in it. The other
manipulations has already been explained in other sections.

4.3 Conclusion

The policy tree provides a quick overview of the policies applied by one or several firewalls. This
tree can however be used for other purposes than distributed firewall analysis. Only some parts of
it would have to be changed in order to be used with a single firewall analyser.

The anomalies introduced in this chapter are only the more obvious ones but many others
could be found. These anomalies have to be tested on real firewall configurations to measure their
relevance. The next chapter performs their evaluation and proposes other ideas.

– 64 –

Chapter 5
Validation of the application

Now that the tool has been implemented, it has to be tested on real size network configurations.
This section discusses the evaluation of the entire application on a large network that contains three
firewalls. The three configurations are coming from real networks and can contain some errors. To
maintain the privacy of these firewalls, the names and rules used have been modified.

5.1 Overview of the test network

The test network is quite similar to the networks viewed as examples throughout this report. It is
represented in Figure 5.1. The network is composed of 3 subnetworks, each one protected by a
firewall. The network A is a large network that contains a lot of hosts. It is split in several VLANs
to restrict the rights between different subnetworks. The network B is a simple network that is not
subdivided but contains both servers and normal computers.

The network C is a bit special. It contains two LANs that are separately processed, even in the
firewall. If a packet is going from LAN C1 to LAN C2, it has to leave the network C and thus to
pass through the firewall two times. This structure permits to handle the two subnets as entirely
different networks. Actually, the firewall C is a bridge with only two interfaces. On each interface
two VLANs are defined and each VLAN on an interface is exactly linked with one on the other
interface. The VLAN number associated with a packet cannot change in the firewall and thus,
although a part of the filtering rules is the same, the two flows can be considered as totally separate
flows. A description of this kind of configuration is given in [Grid].

In DFA, an interface list has to be defined to generate the XML configuration file. In this
list, among others, appears an interface that leads to the default route. In the firewall C, there
are two default routes, one for each VLAN. Thus it is impossible for the analyser to determine
which interface is supposed to be used to join the Internet. Actually this route depends on the
input interface but this kind of consideration is not known by the analyser. To solve this problem,
the filtering table of the network C has to be split into two tables, one for each VLAN. To do this,
some minor changes have been made in the table without changing anything in the firewall policy.

The firewall configuration files supplied for the three firewalls are naturally iptables ones. The
route -n and ifconfig outputs have been provided and are sufficient to obtain the entire
network information needed for firewalls A and B. For the firewall C, the bridge, more information

– 65 –

5.2 Parsing of iptables files

Figure 5.1 – A representation of the test network

was required about the addresses associated with each VLAN. The number of rules of A, B and C
is respectively 1178, 390 and 638.

5.2 Parsing of iptables files

No special problem has been encountered during the parsing of the iptables configurations. How-
ever, the files have to be cleaned before importing them in the application. The main items to
check in each table are the following:

• Remove all the rules concerning local addresses that are used for NATing or that can only
be accessed from the inside. It comes to remove all the rules relating to networks addresses
included in 10.0.0.0/8, 172.16.0.0/12 or 192.168.0.0/16. (37 rules in A, none in B and C)

• Remove the rules about the loopback interface (lo under Unix) or using the 127.0.0.1 ad-
dress. (2 rules in A, 0 in B and 1 in C)

To create a filtering table for each VLAN from the firewall configuration C, the only thing to
do is to remove the rules that contain references to the other VLAN (physdev matches). Such
rules frequently have a chain as a target. If only this rule relates to this chain, all the rules starting
from the chain will automatically be removed since the chain is never matched. There is however
a problem with this splitting, this is the way to deal with the firewall host address. The bridge has
only one address and this address is located in the network LAN C1. When the LAN C2 is isolated
from the other network, the network address of the firewall is a source of errors. Indeed, a firewall

– 66 –

5.3 Analysis of configurations

address inside the network LAN C1 is interpreted as if the LAN C2 was included in C1. At least
one firewall address is needed to position the firewall in the network. So to solve the problem, a
fake address included in the C2 LAN is associated with the firewall. This address cannot be used
in the filtering rules.

Nearly all the rules of filtering tables are well understood. Only the ctorigdst match1 is not rec-
ognized, this match appears four times in firewall A. The rules containing this match are dropped.
It does not widely affect the policy since the rules concerned did match very specific IP addresses.

The three firewall configurations use user-defined chains. Table 5.1 summarises the effect of
the chain merging on the number of rules. The number of log-rules is also mentioned since a slew
of such rules can reduce in an important way the number of effective rules. The size of the output
of C1 and C2 is smaller than the input for the reason explained earlier. This table permits to have
an idea of the number of rules in classical firewalls as well as the number of chains and dropped
log-rules.

Firewall Size (# IP addr.) Input rules User-chains Log-rules Output rules
A ∼ 640 1139 135 163 7566
B ∼ 1024 390 4 0 389

C1 ∼ 64 629 12 7 511
C2 ∼ 512 598 12 7 359

Table 5.1 – The number of rules after parsing

5.3 Analysis of configurations

5.3.1 General overview

The firewall configurations obtained in the preceding section can now be analysed with our appli-
cation. For example, we will perform the analysis between firewall A and firewall B. Since the two
firewalls contain a lot of rules, we will explore only one branch of the policy tree at the same time.
Let us look at the flows between the network corresponding to the VLAN A3 and the network B.
In the policy tree, we can see that, in addition to the global address of A3, several host addresses
(/32) appear. These addresses probably exist because some rules are related to them. Since we
would like to know the global policies between the two networks, only the global addresses will
be selected.

2522 different flows exist for this couple of addresses. In these flows are detected no upstream,
3270 downstream, 76 no-reply and 2401 useless-established anomalies. Such number of anoma-
lies can naturally not be checked one by one by a human. However, to examine the policy applied
for certain important flows can be interesting. For example, we immediately see that input ICMP
packets in A are only accepted if there are sent in response to packets sent in the other direction,
or if there are of the type «Fragmentation Needed» or «Time Exceeded». Let us look now at
the TCP connections. If we want to see which connection is authorized from A3 to B, first we
will select any global port (without a specific rule relating to it) as an A port. Any global port
is suitable because the source port of a TCP connection is randomly selected. We see that the
policy of A is to allow outgoing connections and to only accept replies of established flows. In the

1The match ctorigdst is not widely used. It matches based on the original destination IP specification of the con-
ntrack entry that the packet is related to.[Andr]

– 67 –

5.3 Analysis of configurations

firewall B, two behaviours can be distinguished: First, for some B destination ports, requests are
dropped because only established flows are accepted. However, for another set of ports, requests
are accepted. Users can therefore make connections from A3 to B servers with ports 22 (ssh),
53(dns), 515 (print spooler), 9100 (used by HP printers). It means that by default a host that opens
an SSH port in the network B can receive connections from A.

The high number of downstream blocked anomalies is absolutely normal in this kind of net-
work structure. Indeed, the general policy is allow everything for most of outgoing requests and
accept only some server ports for the incoming ones. So, it is generally the downstream firewall
that blocks the stream. The other anomaly that regularly occurs is the useless established one. This
was also predictable since the policy that has just been explained involves that the rules that block
the incoming requests reject only the incoming new connection but obviously accept the outgoing
ones. The consequence is that a lot of established rules are encountered despite that most of them
only reject packets. Note that nearly all the networks in our sample use the same policy.

We can assume that a category of networks does not apply the same policy: the ones that host
servers. The networks C1 and VLAN A1 have been built up with this objective. Let us see what
the policy is between A3, the same client network, and C1. More precisely, we will look at the
policy between any host in A3 and a known server in C1. Two different policies are noticed: The
first policy is the same as the one of the previous example, only incoming established connections
are authorized. It is equivalent to drop the requests. The second one is about the authorized ports
and it accepts the incoming requests as expected. Using DFA, the network administrator can have
a quick view of the ports opened: 21 (ftp), 80 (www), 88 (kerberos) and 389 (ldap). In fact, the
policy in C1 is not really different from the previous ones.

5.3.2 More relevant anomalies

As explained in the section 4.2.3, some anomalies have been classified as more relevant than the
other ones. It is the anomalies that are related to rules containing an explicit reference to the other
network. Unfortunately, in our sample, each network is independent from the other and does not
have any rule concerning another network. The only exception is between the networks C1 and
C2 where a few rules concern the other one.

Between these networks, there is actually one anomaly considered as relevant. This anomaly
is about the firewall host in C2. The policy of C2 is to refuse all the connections to the bridge.
In the other hand, C1 explicitly accepts all the packets from and to the network C2, including the
firewall. Unfortunately, this anomaly is not a really good example of a interesting one since only
one host is concerned by dropping and the accepting rule includes the entire network. The other
rules between C1 and C2 accept packets in both directions with the other network. Obviously,
these rules do not generate any anomaly.

5.3.3 Request limited between networks

Since the more relevant anomalies cannot be applied in our sample network, we will try to see if
it is possible to find other interesting anomalies in the network. The policy applied in the subnets
involves that only a few ports are accepted for incoming requests and only a few ports are refused
for outgoing requests.

The reason why some incoming connections are authorized for some hosts and ports is that
the requests to these servers are accepted from any foreign host. Therefore, it is curious that a

– 68 –

5.3 Analysis of configurations

firewall of another network dropped the requests to this server. For instance, if a public FTP server
is installed in one network, each other network should authorize requests to this server. This policy
does not apply to the entire Internet but it does in a network as the sample where each network
partly trusts the other ones.

How is it possible to detect easily this kind of anomaly? With the policy tree, the only thing to
do is to explore the addresses for which we would like to check the anomaly. For simpler handling,
the best choice is to select the client part as A and the server part as B. Then, for a given protocol
(UDP or TCP), a general port has to be chosen for A. At this point, we will check whether some
B port nodes contain upstream blocked anomalies. This anomaly means that packets are dropped
by the source firewall while they are accepted by the destination one.

Tests have been performed between several networks of our sample. The table 5.2 summarises
the results. In this table, when only the network code is specified, it means that the address checked
is the general address of this network. The result is so the default behaviour of the network.

Client Network Server Network Dst ports accepted for servers but refused for clients
B C1 -
B C1, a server UDP ports 379, 389, 636 (LDAP)
B C2 -
B A3 -
B A1 TCP ports 1214 (Kazaa), 1285, 1299, 1331, ... and UDP

ports 0-52, 54-909, ...
A3 B -
A3 C1, a server -

Table 5.2 – Summary of the test results

These results do not mean that there are problems in these networks. The second test as well
as the fifth one show such results because the destination networks are very permissive networks
and B has some restrictions for its output requests. Actually, this result should be quite comforting
for the administrators of the different networks.

5.3.4 Other verifications

Using the policy tree, it is possible to invent a large number of verifications depending on the
networks checked. If a policy in a network is to permit the access from the outside to a set of
computers, it could be verified with this application that the policy is well observed. It is now up
to the imagination of the administrators to find the right tests to apply to their networks. All the
possible tests cannot be imagined but however the policy tree seems to be a serviceable tool to
perform a lot of experiments in a short time.

– 69 –

Conclusion

The main objective of this thesis was to develop an application capable of analysing distributed
firewall configurations. At the end of this work, we think that the objective is fulfilled. The tool can
indeed parse and interpret distributed firewall configuration files. In our case, Netfilter/iptables is
the only firewall configuration language supported but the software has been designed to be easily
extended to support other languages.

At the beginning of the thesis, it was not clear how far we would be able to go as the way of
achieving each step was obscur. After further reflection, we decided to build a intermediate lan-
guage that allows to split the implementation in two parts. The first part would parse the firewall
configuration files to this intermediate language and the second one would analyse the configura-
tion. This permits to reuse each part in another framework. The language is quite simple but can
represent pretty well most of firewall configurations in most of languages. It can also be easily
extended to support new firewall features.

The large number of features supported by the language involves that the parser has to take
into account all the input firewall configuration language details. The parser is not only a widget
that supports the ten basic matches. It is rather a tool that can be taken apart from the rest of the
implementation and that offers enough flexibility to be used in other contexts. This parser has been
implemented for the Netfilter/iptables configuration language but can be easily extended. For all
these reasons, the time spent on this part has been more important than expected, it exceeded half
of the implementation time.

Once it has been done, a new functionality has been added to our software. This is an analyser
of distributed firewalls. This implementation has two main parts, the policy tree and the anomaly
finder. The policy tree permits to explore the policies of each flow between two firewalls and so to
find anomalies. A few ones of theses anomalies has been thoroughly defined and are automatically
detected in the policy tree.

The graphical user interface has not been explained at all in this report. The parsing and
the analyser can be controlled (it is even recommended) through this GUI developed in Java
Swing/AWT. No special care has been given to the design of this interface but it permits to quickly
obtain the different results. It is also very useful to browse the policy tree. A short manual has
been written about this interface and is available in Appendix B.

– 70 –

CONCLUSION

Future work

All along the conception of this application, special attention has be given to make the software as
extensible as possible. Each part that has been described above can be used independently from
each other. One of its objectives is to permit reusing part of this application for new researches on
the same subject. At this state of the implementation further works can be performed in four main
directions.

The first one is to extend the parser to support new firewall configuration languages. As ex-
plained in the first chapter, several languages for firewalls exist and new ones will appear. The
software can be used with Cisco routers running Cisco IOS or PIX OS for example. The only
thing to do is to extend the parser classes and to redefine the parts of the algorithm proper to the
language.

Another possible direction for researches is to use the parser for other purposes. For instance,
it would be possible to implement a tool that performs the parsing in the opposite direction to our
parser. It would convert our language configuration files into real firewall configurations. If it is
combined with our parser, it would permit to convert any firewall configuration from one language
to another using our intermediate language.

A third idea would be to use the parser and the policy tree to perform other analyses. One
example could be to implement an analyser for simple firewalls. The parser would not have to be
altered and only the construction algorithm of the policy tree would have to be changed. It would
permit to have a quick overview of what is accepted and dropped in a single firewall. An anomaly
detection system could also be added as in our application.

A last idea is to simply continue the work performed in this thesis. As you would have noticed,
only an introduction to anomaly detection has been made in this work. So it should be possible to
find more efficient anomaly detection mechanisms that return more reliable results.

The objective of this work was not to make a commercial application but to build good foun-
dations of a distributed firewall analysis system. The objective is fulfilled and so this contribution
could be a good starting point for further work on this subject.

– 71 –

Bibliography

[Al S 03] E. Al-Shaer and H. Hamed. “Firewall Policy Advisor for Anomaly Detection and
Rule Editing”. IEEE/IFIP Integrated Management (IM’2003), March 2003.

[Al S 04a] E. Al-Shaer and H. Hamed. “Discovery of Policy Anomalies in Distributed Firewalls”.
IEEE INFOCOM’2004, March 2004.

[Al S 04b] E. Al-Shaer and H. Hamed. “Modeling and Management of Firewall Policies”. IEEE
Transactions on Network and System Management, Vol. 1-1, April 2004.

[Andr] O. Andreasson. “Iptables-tutorial”. http://iptables-tutorial.
frozentux.net/.

[Bart 99] Y. Bartal, A. Mayer, K. Nissim, and A. Wool. “Firmato: A Novel Firewall Manage-
ment Toolkit”. Proceedings of 1999 IEEE Symposium on Security and Privacy, May
1999.

[Bell 99] S. M. Bellovin. “Distributed firewalls”. ;login:, pp. 39–47, November 1999.

[Bone 02] J. Boney. Cisco IOS in a Nutshell - A desktop quick reference for IOS on IP networks.
O’Reilly, 2002.

[Ches 03] W. R. Cheswick, S. M. Bellovin, and A. D. Rubin. Firewalls and Internet Security -
Second edition. Addison-Wesley, 2003.

[Cisco] “Cisco Documentation”. http://www.cisco.com/univercd/.

[Grid] F. Gridelet. Commentaires coupe-feu. UCL/SGSI/SISY, http://www.sisy.
ucl.ac.be/index.php?blk=doc01&tag=more1.

[Hame 05] H. Hamed, E. Al-Shaer, and W. Marrero. “Modeling and Verification of IPSec and
VPN Security Policies”. IEEE International Conference on Network Protocols (ICNP
’05), pp. 259–278, 2005.

[Haro 02a] E. R. Harold and W. S. Means. XML in a nutshell, 2nd Edition. O’Reilly, 2002.

[Haro 02b] E. R. Harold. Processing XML with Java: A Guide to SAX, DOM, JDOM, JAXP and
TrAX. Addison-Wesley, 2002.

[Lewi 04] J. Lewis and W. Loftus. Java Software Solutions 4th Edition: Foundations of Program
Design. Addison-Wesley, 2004.

– 72 –

http://iptables-tutorial.frozentux.net/
http://iptables-tutorial.frozentux.net/
http://www.cisco.com/univercd/
http://www.sisy.ucl.ac.be/index.php?blk=doc01&tag=more1
http://www.sisy.ucl.ac.be/index.php?blk=doc01&tag=more1

BIBLIOGRAPHY

[Maye 00] A. Mayer, A. Wool, and E. Ziskind. “Fang: A firewall analysis engine”. Proceedings
of IEEE Computer Society Symposium on Security and Privacy, pp. 177–187, May
2000.

[McLa 01] B. McLaughlin. Java & XML, 2nd Edition: Solutions to Real-World Problems.
Addison-Wesley, 2001.

[Netfilt] “The Netfilter/iptables Project”. http://www.netfilter.org/.

[Palm 04] B. Palmer and J. Nazario. Secure Architectures with OpenBSD, Chap. 22. Addison-
Wesley, 2004.

[Post 81] J. Postel. “Transmission Control Protocol (TCP)”. September 1981. RFC 793.

[Scha 04] F. Schanda. Visualisation of iptables. PhD thesis, Department of Computer Sciences
- University of Bath, July 2004.

[Seda 01] J. Sedayao. Cisco IOS access lists. O’Reilly, 2001.

[W3C] “W3C - World Wide Web Consortium”. http://www.w3.org/.

[Zwic 00] E. D. Zwicky, S. Cooper, and D. B. Chapman. Building Internet Firewalls, Second
Edition. O’Reilly, 2000.

– 73 –

http://www.netfilter.org/
http://www.w3.org/

Appendix A
Examples and test sets

A.1 A simple example of iptables-save outputs

Generated by iptables-save v1.2.9 on Thu May 25 00:00:34 2006

*filter
:INPUT DROP [0:0]
:FORWARD DROP [0:0]
:OUTPUT DROP [0:0]
:LOG_DROP - [0:0]
-A INPUT -i lo -j ACCEPT
-A INPUT -i eth1 -p tcp --dport 22 -j ACCEPT
-A INPUT -j LOG_DROP
-A FORWARD -s 192.168.0.0/255.255.255.0 -i eth1 -o eth0 -j ACCEPT
-A FORWARD -d 192.168.0.0/255.255.255.0 -i eth0 -o eth1 -j ACCEPT
-A FORWARD -j LOG_DROP
-A OUTPUT -o lo -j ACCEPT
-A OUTPUT -o eth1 -p tcp --sport 22 -j ACCEPT
-A OUTPUT -j LOG_DROP
-A LOG_DROP -j LOG --log-prefix ’[IPTABLES DROP] : ’
-A LOG_DROP -j DROP
COMMIT
Completed on Thu May 25 00:00:34 2006
Generated by iptables-save v1.2.9 on Thu May 25 00:00:34 2006

*mangle
:PREROUTING ACCEPT [9106515:6406097707]
:INPUT ACCEPT [168822:34496923]
:FORWARD ACCEPT [8846009:6341422559]
:OUTPUT ACCEPT [300064:39869273]
:POSTROUTING ACCEPT [8848118:6341656508]
:outtos - [0:0]
:pretos - [0:0]
-A PREROUTING -j pretos
-A OUTPUT -j outtos
-A outtos -p tcp -m tcp --dport 22 -j TOS --set-tos 0x10
-A outtos -p tcp -m tcp --sport 22 -j TOS --set-tos 0x10
COMMIT
Completed on Thu May 25 00:00:34 2006
Generated by iptables-save v1.2.9 on Thu May 25 00:00:34 2006

*nat
:PREROUTING ACCEPT [281192:40984704]
:POSTROUTING ACCEPT [181278:27591165]
:OUTPUT ACCEPT [245645:30059474]
-A PREROUTING -i eth0 -j DNAT --to-destination 192.168.0.5
-A POSTROUTING -s 192.168.0.0/255.255.255.0 -o eth0 -j MASQUERADE
COMMIT
Completed on Thu May 25 00:00:34 2006

– I –

A.2 Test sets for the parser

A.2 Test sets for the parser

Here are a few test sets for the parser. A lot of tests have also been done with the real firewall
configuration files.

A.2.1 Rule merging

Merging of IP addresses

The input file:

Generated by iptables-save v1.3.3 on Mon Mar 20 18:07:18 2006

*nat
:PREROUTING ACCEPT [3506:371499]
:POSTROUTING ACCEPT [523:35418]
:OUTPUT ACCEPT [523:35418]
COMMIT
Completed on Mon Mar 20 18:07:18 2006
Generated by iptables-save v1.3.3 on Mon Mar 20 18:07:18 2006

*filter
:INPUT DROP [3505:370891]
:FORWARD DROP [0:0]
:OUTPUT DROP [10:520]
:ch1 - [0:0]
:ch2 - [0:0]
-A FORWARD -m iprange --src-range 192.168.1.13-192.168.1.15 -j ch1
-A ch1 -s ! 192.168.1.16 -j ch2
-A ch1 -j ACCEPT
-A ch2 -s 192.168.1.14 -j DROP
COMMIT
Completed on Mon Mar 20 18:07:18 2006

The result:

<?xml version="1.0" encoding="UTF-8"?>
<firewall type="Iptables (iptables-save)">

<filtertable>
<frule target="DROP">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>
<ipv4>

<src inverted="false">
<ip>192.168.1.14</ip>

</src>
</ipv4>

</frule>
<frule target="ACCEPT">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>
<ipv4>

<src inverted="false">
<ip>192.168.1.14</ip>
<mask>255.255.255.254</mask>

</src>
</ipv4>

</frule>
<frule target="ACCEPT">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>
<ipv4>

<src inverted="false">
<ip>192.168.1.13</ip>
<mask>255.255.255.255</mask>

– II –

A.2 Test sets for the parser

</src>
</ipv4>

</frule>
<frule target="DROP">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>

</frule>
<frule target="DROP">

<interfaceout inverted="false">firewall_host</interfaceout>
</frule>
<frule target="DROP">

<interfacein inverted="false">firewall_host</interfacein>
</frule>

</filtertable>
<interface name="firewall_host">

<network>
<ip>x.x.x.x</ip>
<mask>x.x.x.x</mask>

</network>
</interface>

</firewall>

Merging of port ranges

The input file:

Generated by iptables-save v1.3.3 on Mon Mar 20 18:07:18 2006

*nat
:PREROUTING ACCEPT [3506:371499]
:POSTROUTING ACCEPT [523:35418]
:OUTPUT ACCEPT [523:35418]
COMMIT
Completed on Mon Mar 20 18:07:18 2006
Generated by iptables-save v1.3.3 on Mon Mar 20 18:07:18 2006

*filter
:INPUT DROP [3505:370891]
:FORWARD DROP [0:0]
:OUTPUT DROP [10:520]
:ch1 - [0:0]
:ch2 - [0:0]
-A FORWARD -p tcp -m tcp --sport 20:40 -j ch1
-A ch1 -p tcp -m tcp ! --sport 25:35 -j ch2
-A ch1 -j ACCEPT
-A ch2 -p tcp -m tcp --sport 0:40 -j DROP
COMMIT
Completed on Mon Mar 20 18:07:18 2006

The result:

<?xml version="1.0" encoding="UTF-8"?>
<firewall type="Iptables (iptables-save)">

<filtertable>
<frule target="DROP">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>
<protocol inverted="false">tcp</protocol>
<tcp>

<srcport inverted="false">
<range from="20" to="40" />

</srcport>
<srcport inverted="true">

<range from="25" to="35" />
</srcport>

</tcp>
</frule>

– III –

A.2 Test sets for the parser

<frule target="ACCEPT">
<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>
<protocol inverted="false">tcp</protocol>
<tcp>

<srcport inverted="false">
<range from="20" to="40" />

</srcport>
</tcp>

</frule>
<frule target="DROP">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>

</frule>
<frule target="DROP">

<interfaceout inverted="false">firewall_host</interfaceout>
</frule>
<frule target="DROP">

<interfacein inverted="false">firewall_host</interfacein>
</frule>

</filtertable>
<interface name="firewall_host">

<network>
<ip>x.x.x.x</ip>
<mask>x.x.x.x</mask>

</network>
</interface>

</firewall>

Merging of ICMP properties

The input file:

Generated by iptables-save v1.3.3 on Mon Mar 20 18:07:18 2006

*nat
:PREROUTING ACCEPT [3506:371499]
:POSTROUTING ACCEPT [523:35418]
:OUTPUT ACCEPT [523:35418]
COMMIT
Completed on Mon Mar 20 18:07:18 2006
Generated by iptables-save v1.3.3 on Mon Mar 20 18:07:18 2006

*filter
:INPUT DROP [3505:370891]
:FORWARD DROP [0:0]
:OUTPUT DROP [10:520]
:ch1 - [0:0]
:ch2 - [0:0]
-A FORWARD -p icmp -m icmp --icmp-type 8 -j ch1
-A ch1 -p icmp -m icmp ! --icmp-type 8/2 -j ch2
-A ch1 -j ACCEPT
-A ch2 -p icmp -m icmp --icmp-type 4 -j DROP
-A ch2 -p icmp -m icmp --icmp-type 8/3 -j DROP
-A ch2 -p icmp -m icmp --icmp-type 8 -j DROP
COMMIT
Completed on Mon Mar 20 18:07:18 2006

The result:

<?xml version="1.0" encoding="UTF-8"?>
<firewall srclang="Iptables (iptables-save)">

<filtertable>
<frule target="DROP">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>
<protocol inverted="false">icmp</protocol>

– IV –

A.2 Test sets for the parser

<icmp>
<type inverted="false" value="8" code="3" />

</icmp>
</frule>
<frule target="DROP">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>
<protocol inverted="false">icmp</protocol>
<icmp>

<type inverted="false" value="8" />
<type inverted="true" value="8" code="2" />

</icmp>
</frule>
<frule target="ACCEPT">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>
<protocol inverted="false">icmp</protocol>
<icmp>

<type inverted="false" value="8" />
</icmp>

</frule>
<frule target="DROP">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>

</frule>
<frule target="DROP">

<interfaceout inverted="false">firewall_host</interfaceout>
</frule>
<frule target="DROP">

<interfacein inverted="false">firewall_host</interfacein>
</frule>

</filtertable>
<interface name="firewall_host">

<network>
<ip>x.x.x.x</ip>
<mask>x.x.x.x</mask>

</network>
</interface>

</firewall>

Merging of SPI ranges

The input file:

Generated by iptables-save v1.3.3 on Mon Mar 20 18:07:18 2006

*nat
:PREROUTING ACCEPT [3506:371499]
:POSTROUTING ACCEPT [523:35418]
:OUTPUT ACCEPT [523:35418]
COMMIT
Completed on Mon Mar 20 18:07:18 2006
Generated by iptables-save v1.3.3 on Mon Mar 20 18:07:18 2006

*filter
:INPUT DROP [3505:370891]
:FORWARD DROP [0:0]
:OUTPUT DROP [10:520]
:ch1 - [0:0]
:ch2 - [0:0]
-A FORWARD -p ah -m ah --ahspi 500:1000000000 -j ch1
-A ch1 -p ah -m ah --ahspi ! 1000:1500 -j ch2
-A ch1 -j ACCEPT
-A ch2 -p ah -m ah --ahspi 300:1750 -j DROP
COMMIT
Completed on Mon Mar 20 18:07:18 2006

The result:

– V –

A.3 Test sets for the analyser

<?xml version="1.0" encoding="UTF-8"?>
<firewall type="Iptables (iptables-save)">

<filtertable>
<frule target="DROP">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>
<protocol inverted="false">ah</protocol>
<ah>

<spi inverted="false">
<range from="500" to="1750" />

</spi>
<spi inverted="true">

<range from="1000" to="1500" />
</spi>

</ah>
</frule>
<frule target="ACCEPT">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>
<protocol inverted="false">ah</protocol>
<ah>

<spi inverted="false">
<range from="500" to="1000000000" />

</spi>
</ah>

</frule>
<frule target="DROP">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>

</frule>
<frule target="DROP">

<interfaceout inverted="false">firewall_host</interfaceout>
</frule>
<frule target="DROP">

<interfacein inverted="false">firewall_host</interfacein>
</frule>

</filtertable>
<interface name="firewall_host">

<network>
<ip>x.x.x.x</ip>
<mask>x.x.x.x</mask>

</network>
</interface>

</firewall>

A.3 Test sets for the analyser

Here are a few test sets for the analyser. A lot of tests have also been done with the real firewall
configuration files.

A.3.1 Recognition of the firewall positioning (see Figure 1.3)

Configuration of the firewall A in face-to-face positioning

<?xml version="1.0" encoding="UTF-8"?>
<firewall type="Iptables (iptables-save)">

<filtertable>
</filtertable>
<interface name="firewall_host">

<network>
<ip>2.0.0.1</ip>

</network>

– VI –

A.3 Test sets for the analyser

<network>
<ip>2.0.0.2</ip>

</network>
</interface>
<interface name="intA">

<network>
<ip>2.0.0.0</ip>
<mask>255.0.0.0</mask>

</network>
</interface>
<interface name="exterA">

<network>
<ip>0.0.0.0</ip>
<mask>0.0.0.0</mask>

</network>
</interface>

</firewall>

Configuration of the firewall B in face-to-face positioning

<?xml version="1.0" encoding="UTF-8"?>
<firewall type="Iptables (iptables-save)">

<filtertable>
</filtertable>
<interface name="firewall_host">

<network>
<ip>1.0.0.1</ip>

</network>
<network>

<ip>1.0.0.2</ip>
</network>

</interface>
<interface name="exterB">

<network>
<ip>0.0.0.0</ip>
<mask>0.0.0.0</mask>

</network>
</interface>
<interface name="intB">

<network>
<ip>1.0.0.0</ip>
<mask>255.0.0.0</mask>

</network>
</interface>

</firewall>

Configuration of the firewall A in one firewall behind the second one positioning

<?xml version="1.0" encoding="UTF-8"?>
<firewall type="Iptables (iptables-save)">

<filtertable>
</filtertable>
<interface name="firewall_host">

<network>
<ip>1.0.0.1</ip>

</network>
<network>

<ip>1.0.0.2</ip>
</network>

</interface>
<interface name="intA">

<network>
<ip>1.0.0.0</ip>
<mask>255.0.0.0</mask>

– VII –

A.3 Test sets for the analyser

</network>
</interface>
<interface name="exterA">

<network>
<ip>0.0.0.0</ip>
<mask>0.0.0.0</mask>

</network>
</interface>

</firewall>

Configuration of the firewall B in one firewall behind the second one positioning

<?xml version="1.0" encoding="UTF-8"?>
<firewall type="Iptables (iptables-save)">

<filtertable>
</filtertable>
<interface name="firewall_host">

<network>
<ip>1.1.0.1</ip>

</network>
<network>

<ip>1.1.0.2</ip>
</network>

</interface>
<interface name="exterB">

<network>
<ip>0.0.0.0</ip>
<mask>0.0.0.0</mask>

</network>
</interface>
<interface name="intB">

<network>
<ip>1.1.0.0</ip>
<mask>255.255.0.0</mask>

</network>
</interface>

</firewall>

A.3.2 Finding more relevant anomaly

Example 1 containing a more relevant anomaly

<?xml version="1.0" encoding="UTF-8"?>
<firewall type="Iptables (iptables-save)">

<filtertable>
<frule target="DROP">
<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>

</frule>
<frule target="DROP">

<interfaceout inverted="false">firewall_host</interfaceout>
</frule>
<frule target="ACCEPT">

<interfacein inverted="false">firewall_host</interfacein>
</frule>

</filtertable>
<interface name="firewall_host">

<network>
<ip>1.1.36.119</ip>

</network>
</interface>
<interface name="eth2">

<network>

– VIII –

A.3 Test sets for the analyser

<ip>0.0.0.0</ip>
<mask>0.0.0.0</mask>

</network>
</interface>
<interface name="eth1">

<network>
<ip>1.1.36.0</ip>
<mask>255.255.252.0</mask>

</network>
</interface>

</firewall>

<?xml version="1.0" encoding="UTF-8"?>
<firewall type="Iptables (iptables-save)">

<filtertable>
<frule target="ACCEPT">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>
<ipv4>

<dst inverted="false">
<ip>1.1.36.0</ip>
<mask>255.255.252.0</mask>

</dst>
<src inverted="false">

<ip>1.1.228.1</ip>
<mask>255.255.255.255</mask>

</src>
</ipv4>

</frule>
<frule target="DROP">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>

</frule>
<frule target="DROP">

<interfaceout inverted="false">firewall_host</interfaceout>
</frule>
<frule target="DROP">

<interfacein inverted="false">firewall_host</interfacein>
</frule>

</filtertable>
<interface name="firewall_host">

<network>
<ip>1.1.233.234</ip>

</network>
<network>

<ip>1.1.228.69</ip>
</network>

</interface>
<interface name="eth0">

<network>
<ip>0.0.0.0</ip>
<mask>0.0.0.0</mask>

</network>
</interface>
<interface name="eth1.161">

<network>
<ip>1.1.228.0</ip>
<mask>255.255.255.128</mask>

</network>
</interface>

</firewall>

Example 2 containing a more relevant anomaly

<?xml version="1.0" encoding="UTF-8"?>

– IX –

A.3 Test sets for the analyser

<firewall type="Iptables (iptables-save)">
<filtertable>

<frule target="ACCEPT">
<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>
<ipv4>

<src inverted="false">
<ip>1.1.36.0</ip>
<mask>255.255.255.0</mask>

</src>
<dst inverted="false">

<ip>1.1.228.1</ip>
<mask>255.255.255.255</mask>

</dst>
</ipv4>

</frule>
<frule target="DROP">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>

</frule>
<frule target="DROP">

<interfaceout inverted="false">firewall_host</interfaceout>
</frule>
<frule target="ACCEPT">

<interfacein inverted="false">firewall_host</interfacein>
</frule>

</filtertable>
<interface name="firewall_host">

<network>
<ip>1.1.36.119</ip>

</network>
</interface>
<interface name="eth2">

<network>
<ip>0.0.0.0</ip>
<mask>0.0.0.0</mask>

</network>
</interface>
<interface name="eth1">

<network>
<ip>1.1.36.0</ip>
<mask>255.255.252.0</mask>

</network>
</interface>

</firewall>

<?xml version="1.0" encoding="UTF-8"?>
<firewall type="Iptables (iptables-save)">

<filtertable>
<frule target="DROP">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>

</frule>
<frule target="DROP">

<interfaceout inverted="false">firewall_host</interfaceout>
</frule>
<frule target="DROP">

<interfacein inverted="false">firewall_host</interfacein>
</frule>

</filtertable>
<interface name="firewall_host">

<network>
<ip>1.1.233.234</ip>

</network>
<network>

<ip>1.1.228.69</ip>
</network>

</interface>
<interface name="eth0">

– X –

A.3 Test sets for the analyser

<network>
<ip>0.0.0.0</ip>
<mask>0.0.0.0</mask>

</network>
</interface>
<interface name="eth1.161">

<network>
<ip>1.1.228.0</ip>
<mask>255.255.255.128</mask>

</network>
</interface>

</firewall>

Example 3 containing a more relevant anomaly

<?xml version="1.0" encoding="UTF-8"?>
<firewall type="Iptables (iptables-save)">

<filtertable>
<frule target="ACCEPT">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>

</frule>
<frule target="DROP">

<interfaceout inverted="false">firewall_host</interfaceout>
</frule>
<frule target="ACCEPT">

<interfacein inverted="false">firewall_host</interfacein>
</frule>

</filtertable>
<interface name="firewall_host">

<network>
<ip>1.1.36.119</ip>

</network>
</interface>
<interface name="eth2">

<network>
<ip>0.0.0.0</ip>
<mask>0.0.0.0</mask>

</network>
</interface>
<interface name="eth1">

<network>
<ip>1.1.36.0</ip>
<mask>255.255.252.0</mask>

</network>
</interface>

</firewall>

<?xml version="1.0" encoding="UTF-8"?>
<firewall type="Iptables (iptables-save)">

<filtertable>
<frule target="DROP">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>
<ipv4>

<dst inverted="false">
<ip>1.1.36.0</ip>
<mask>255.255.252.0</mask>

</dst>
<src inverted="false">

<ip>1.1.228.1</ip>
<mask>255.255.255.255</mask>

</src>
</ipv4>

</frule>

– XI –

A.3 Test sets for the analyser

<frule target="DROP">
<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>

</frule>
<frule target="DROP">

<interfaceout inverted="false">firewall_host</interfaceout>
</frule>
<frule target="DROP">

<interfacein inverted="false">firewall_host</interfacein>
</frule>

</filtertable>
<interface name="firewall_host">

<network>
<ip>1.1.233.234</ip>

</network>
<network>

<ip>1.1.228.69</ip>
</network>

</interface>
<interface name="eth0">

<network>
<ip>0.0.0.0</ip>
<mask>0.0.0.0</mask>

</network>
</interface>
<interface name="eth1.161">

<network>
<ip>1.1.228.0</ip>
<mask>255.255.255.128</mask>

</network>
</interface>

</firewall>

Example that does not contain a more relevant anomaly

<?xml version="1.0" encoding="UTF-8"?>
<firewall type="Iptables (iptables-save)">

<filtertable>
<frule target="ACCEPT">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>

</frule>
<frule target="DROP">

<interfaceout inverted="false">firewall_host</interfaceout>
</frule>
<frule target="ACCEPT">

<interfacein inverted="false">firewall_host</interfacein>
</frule>

</filtertable>
<interface name="firewall_host">

<network>
<ip>1.1.36.119</ip>

</network>
</interface>
<interface name="eth2">

<network>
<ip>0.0.0.0</ip>
<mask>0.0.0.0</mask>

</network>
</interface>
<interface name="eth1">

<network>
<ip>1.1.36.0</ip>
<mask>255.255.252.0</mask>

</network>
</interface>

</firewall>

– XII –

A.3 Test sets for the analyser

<?xml version="1.0" encoding="UTF-8"?>
<firewall type="Iptables (iptables-save)">

<filtertable>
<frule target="DROP">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>
<ipv4>

<dst inverted="false">
<ip>1.1.0.0</ip>
<mask>255.255.255.0</mask>

</dst>
<src inverted="false">

<ip>1.1.228.1</ip>
<mask>255.255.255.255</mask>

</src>
</ipv4>

</frule>
<frule target="DROP">

<interfacein inverted="true">firewall_host</interfacein>
<interfaceout inverted="true">firewall_host</interfaceout>

</frule>
<frule target="DROP">

<interfaceout inverted="false">firewall_host</interfaceout>
</frule>
<frule target="DROP">

<interfacein inverted="false">firewall_host</interfacein>
</frule>

</filtertable>
<interface name="firewall_host">

<network>
<ip>1.1.233.234</ip>

</network>
<network>

<ip>1.1.228.69</ip>
</network>

</interface>
<interface name="eth0">

<network>
<ip>0.0.0.0</ip>
<mask>0.0.0.0</mask>

</network>
</interface>
<interface name="eth1.161">

<network>
<ip>1.1.228.0</ip>
<mask>255.255.255.128</mask>

</network>
</interface>

</firewall>

– XIII –

Appendix B
Short manual for DFA

The GUI of DFA is quite intuitive to use. The following sections provide some brief explanations
of how to use it.

B.1 To launch the application

Read the README file in the directory of the application.

B.2 Overview of the interface

The main window of DFA is represented at Figure B.1. It contains a menu bar and a desktop. The
menu allows to close the application or to launch a new parsing or analysis window. When the
application is launched, only a parsing window is displayed.

B.3 The parser

The full parsing frame is shown at Figure B.2. The steps of parsing are the following:

• Choose the firewall configuration language. (For the moment, only iptables is supported)

• Select a «Firewall input file». This is the firewall configuration file in the language defined.

• If you want a empty interface list file to be generated, check the box and define a file for
interface list in the area below.

• When the fields are filled, the «Analyze» button becomes available. The analysis reads and
parses all the rules of the input file. It also generates the interface list file if asked. The result
of this parsing is printed in the message box below. The log-rules dropped and the matches
found that are not supported are also displayed.

• If the interface list has been generated, it has to be filled now. The way to fill it is explained
in 3.2.3.

– XIV –

B.4 The analyser

Figure B.1 – The entire DFA window

• When the output and the interface files are mentioned, the «Export» button becomes avail-
able. It outputs the entire XML document in our intermediate language. The result is printed
in the message box.

B.4 The analyser

Figure B.3 shows an analyser frame. The different analysis steps are the following:

• The two first fields have to contain the XML firewall configuration files. The first firewall is
consider as the firewall A and the second as the firewall B.

• When the «Analyze» button has been pressed, the first level of the tree is built.

• Then you have to select either a network of A to explore or «All». If you choose «All», all
the nodes of the tree are explored. In medium firewall, it may need more than 1GByte of
memory and some minutes to process. So, this is not advised except for small test firewalls
with a few rules. If you have not chosen «All», you have to select a B network.

• The policy tree is displayed. You can explore it and select leaf nodes to see the policy. The
numbers appended to the node names are: (the number of upstream-blocked anomalies, the
number of downstream-blocked anomalies, the number of no-reply anomalies, the number
of useless-established anomalies) [The number of more relevant anomalies]. If the node is
not a leaf node, these numbers are the sum of those values for their children.

• The two policy tables displayed below correspond to the policy table of A (left) and to the
policy table of B (right). The general policy found is summarised as well as the anomalies.
Then, the rules concerning this flow in each direction are displayed. The last rule is always
a rule that matches all the packet of this flow.

– XV –

B.4 The analyser

Figure B.2 – A successful parsing

Figure B.3 – An analyser frame

– XVI –

	Introduction
	Distributed firewalls: overview and problem statement
	Firewall overview
	Simple firewalls
	Distributed firewalls
	Packet filtering implementations

	Thesis specifications
	Global objectives
	Hypothesis
	Steps

	Global decisions
	The programming language
	The application's name
	Notations
	Data manipulations

	Firewall analysis: state of the art
	Single firewall analysis
	Distributed firewalls analysis

	Definition of a language for firewalls
	Language structure
	Representation of the language
	Language formalisation
	Document definition

	Filtering, NAT and other tables
	Filtering
	Logging
	Network Address Translation (NAT)
	Packet alterations

	Network interfaces and connected subnets
	User-defined chains
	Rules and fields for filtering
	IP flows
	Data flows with TCP, UDP and ICMP
	Finite state machines
	Flag analysis
	Stateful versus stateless firewalls

	Extensions
	Conclusion

	The parser
	XML and Java
	The Document Object Model (DOM)
	Simple API for XML (SAX)
	DOM or SAX?

	Common implementation
	The main classes
	The rule child classes
	The interface definitions

	Dealing with iptables
	Parsing of the input file
	Rule parsing

	Limitations
	Support of other firewall configuration languages
	Conclusion

	Analysis of distributed firewall configurations
	Overview of the firewall decision for each flow
	What is a policy tree
	Construction of a policy tree
	Improving the efficiency of the policy tree

	Anomaly detection
	Anomaly classification
	Anomaly searching
	Relevance levels of anomalies

	Conclusion

	Validation of the application
	Overview of the test network
	Parsing of iptables files
	Analysis of configurations
	General overview
	More relevant anomalies
	Request limited between networks
	Other verifications

	Conclusion
	Bibliography
	Examples and test sets
	A simple example of iptables-save outputs
	Test sets for the parser
	Rule merging

	Test sets for the analyser
	Recognition of the firewall positioning (see Figure 1.3)
	Finding more relevant anomaly

	Short manual for DFA
	To launch the application
	Overview of the interface
	The parser
	The analyser

