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Abstract—The size of the capacity of data centers have been
growing significantly during the last years. Most data centers
rely on switched Ethernet networks. A drawback of the Ethernet
technology is that it relies on the spanning tree protocol (or
variants of it) to select the links that are used to forward
packets inside the data center. In this paper we propose a
Constrained-Based Local Search optimization scheme that is able
to efficiently compute the optimum spanning tree in large data
center networks. Our technique exploits the division of the data
center network in VLANs. We evaluate its performance based on
traffic matrices collected in data center networks and show good
improvements compared to the standard spanning tree protocol
with up to 16 VLANs.

Index Terms—Traffic Engineering, Multiple Spanning Tree
Protocol, Combinatorial Optimization, Data center traffic, Local
search.

I. INTRODUCTION

Data centers are now a key part of the Internet. Their
number and their size are growing quickly. Some reports [18],
[20], [21] indicate that there are data centers containing up to
10K servers and some speculate that data centers could contain
100K servers or more. Data centers are used for various
purposes. Some data centers are mainly used to perform
computation while others are mainly used to provide Internet
services. Many data centers support various applications at
the same time and each application runs on a set of virtual
machines that are distributed on physical servers.

From a networking viewpoint, data centers heavily rely on
switched Ethernet networks. Servers are typically attached
by using one or more Gigabit Ethernet interfaces to top of
the rack switches that are connected to aggregation switches
by using one or more 10 Gbps Ethernet links. These aggre-
gation switches are then connected by using one or more
10 Gbps Ethernet links to core switches that are attached
to routers when Internet access is required. The switched
Ethernet networks used in data centers are redundant to
enable recovery in case of link or switch failure. However,
currently deployed Ethernet switches can not directly use a
mesh of links and need to use variants of the Spanning Tree
protocol to restrict the Ethernet network to a tree rooted
on, typically a core, switch. Several variants of the spanning
tree protocol are used. The first standard, IEEE 802.1d [9],
enables switches to compute a single spanning tree over a
large network. The rapid spanning tree protocol [10] is an
extension to 802.1d that enables switches to converge quickly
to an alternate spanning tree in case of link failures. 802.1d is

largely used in campus networks. However, its major drawback
is that it disables the links that do not belong to the selected
spanning tree. This is potentially a waste of resources since
these links exist in the network. Fortunately, large Ethernet
networks such as data center networks are logically divided
in several Virtual Local Area Networks (VLANs). VLANs
are mainly used to isolate one application or one data center
customer from the others. The servers (or virtual machines)
that belong to a given VLAN can only communicate with
the other servers that belong to the same VLAN. A switched
Ethernet network can contain up to roughly 4000 different
VLANs. The Multiple Spanning Tree Protocol(MSTP) [11]
is an extension to the Spanning Tree Protocol that allows
switches to compute several spanning trees over a single
physical topology. The utilization of multiple spanning tree
enables a network operator to spread different VLANs over
different spanning trees that use different physical links and
switches. Networks that implement the MSTP protocol are
typically able to use more links than networks using a single
spanning tree. In practice however, it should be noted that
most implementations of MSTP can only compute up to 16
different spanning trees, and map each VLAN onto one of
these spanning trees.

Constraint Programming (CP) [14] and Constraint-Based
Local Search (CBLS)[13] are well suited for solving complex
combinatorial problems. COMET [13] is an object-oriented
language with several innovative modeling and control abstrac-
tions for CP and CBLS. In COMET, some classical problems
can be modeled in only about a dozen lines of code. We chose
a local search approach implemented in COMET for solving
this traffic engineering (TE) problem.

In this paper, we propose a Local Search Algorithm for
MSTP (LSA4MSTP), which guides the MSTP to select a good
set of spanning trees for a given set of traffic demand matrices.
The remainder of this paper is organized as follows.

We first present the related works in section II. We define
the problem formulation in section III. Next, we present our
local search algorithm with the techniques for speeding up the
search in section IV. Our evaluation is presented in section V
with an analysis of the experimental results, and we conclude
the paper in Section VI.

II. RELATED WORKS

There exist four main approaches to deal with the TE
for MSTP. First, several MSTP optimization techniques such



as [1], [2], [3] aimed to map a set of VLANs to a given
number of spanning trees. Second, [4] has proposed a multi-
objectives meta-heuristic ensuring the load balancing of the
Metro Ethernet using MSTP by mapping a set of flows to a set
of given spanning trees. Third, the construction algorithm [5]
addresses the TE problem for the US network with 12 vertices
and 17 links by building source-based multiple spanning trees
(construct a spanning tree for each of the given source nodes).
Last, [6], [7] advocated for solving the TE for MSTP by
finding the set of spanning trees in the metro domain described
by customer traffic demands and given network topology. In
this paper, we follow the same approach as in [6], [7] but
we aim to find solutions for large data center networks with
hundreds of switches instead of small networks with dozen
switches as in the state-of-the-art techniques.

Our previous work in [12] considered the traffic engineering
problem for the STP 802.1d [9] in switched Ethernet networks.
We proposed a local search algorithm using spanning tree
neighborhood instead of link cost neighborhood. In this paper,
we extend our local search proposed in [12]. We introduce new
heuristics to cope with large data centers and many VLANs
(spanning trees). In addition, the topologies and traffic demand
matrices of current data centers mentioned in [18] are used for
evaluating the performance of our algorithm.

III. PROBLEM FORMULATION

Our Ethernet network is modeled as an undirected graph
G = (N,E), where N is the set of nodes (switches) and
E is the set of links between nodes. Each link (i, j) ∈ E
has a bandwidth denoted by BW [i, j] (note that BW [i, j]
= BW [j, i]). When link bundles are used between switches,
we consider each bundle as a single link having the band-
width of the bundle. Let V ={V1, V2, ..., Vk} be the set of k
given VLANs in the network (each VLAN is a connected
component of G represented by Vr ⊆ N ∀r ∈ [1..k]) and
TD={TD1, TD2, ..., TDk} be the set of k traffic demand ma-
trices. TDr[i, j] (r=1, 2, ..., k; i, j ∈ Vr), represents the traffic
that switch i sends to switch j. Let W={W1,W2, ...,Wk} be
the set of link weight matrices for the k given VLANs. We call
MST (G,V,W ) the set of k spanning trees ST1(G,V1,W1),
..., STk(G,Vk,Wk) obtained by the Multiple Spanning Tree
Protocol [11] on graph G, with set of VLANs V and set of
link weight matrices W . The Ethernet switching problem is
defined as follows: for all TDr[i, j] > 0 (r=1, 2, ..., k; i, j
∈ Vr), distribute the traffic demand over unique path from i
to j in STr(G,Vr,Wr).

Assume L[i, j] (i, j ∈ N ) denotes the load (sum of traffic
flow) on the link (i, j). For the computation of L[i, j], the
traffic flow is directed (L[i, j] 6= L[j, i]).

The utilization of a link (i, j) is the ratio between its load
and its bandwidth:

U [i, j] = L[i,j]
BW [i,j] (i, j ∈ N ).

The link utilization is also directed. The link (i, j) is over-
loaded if its load is greater than its bandwidth (U [i, j] > 1 or
U [j, i] > 1).

In this work, our goal is to find the optimal (best possible)
set of link weights matrices W ∗ minimizing the maximal
utilization:

Umax = max{max(U [i, j], U [j, i]) | (i, j) ∈ E}.

The formulation of this problem is the following:
Input: Graph G = (N,E), set of k VLANs V , bandwidth
matrix BW , set of k traffic demand matrices TD
Output: Set of link weights matrices W ∗ such that
MST (G,V,W ∗) yields k spanning trees minimizing Umax

There are many possible QoS objectives for this traffic engi-
neering problem: minimization of the maximal link utilization,
minimization of the network delay, fault tolerance, etc. In this
work, we start with the popular objective of minimizing the
maximal utilization because this is the most important and the
most visible objective. We will take into account the other
objectives in our further work.

This problem is an expansion of the Spanning Tree Protocol
Optimization in [12]. Its search space is exponential. It is too
complex to be solved with exact methods even for reasonable
size instances. In this paper, we use a local search algorithm
for achieving a good approximation of this optimization prob-
lem.

IV. MSTP OPTIMIZATION USING LOCAL SEARCH

The MSTP creates the spanning trees based on two param-
eters: the switch IDs and the link weights. The weight of a
link is an integer number in [1..216−1]. Suppose that we have
k VLANs and each VLAN consists of all the switches in the
network. Even if we do not consider the choices of root for
each spanning tree, the size of the search space if we do a
search on link weights is (216 − 1)k.m (with m the number
of links). In addition, it is difficult to control the change of
link weights on the spanning tree. Another possibility is to
search the space of spanning trees and at the end to generate
the link weights from the obtained spanning trees. Of course
the generated link weights are such that MSTP will provide
the obtained spanning trees. This method reduces significantly
the size of the search space to

(
m

n−1
)k

(with n the number of
switches). This is the solution chosen in this paper.

Local Search (LS) is a powerful method for solving com-
putational optimization problems such as the Vertex Cover,
Traveling Salesman, or Boolean Satisfiability. The advantage
of LS for these problems is its ability to find an intelligent
path from a low quality solution to a high quality one in a
huge search space. This can be done by iterating a heuristic of
exploration to the neighborhood solutions [13]. So, we choose
a local search approach on the spanning tree space for solving
this problem. In this section, we first present an overview of
our local search algorithm called LSA4MSTP (Local Search
Algorithms for the Multiple Spanning Tree Protocol problem).
Then, we describe the algorithms and the techniques allowing
to speed up the search.

A. Algorithm description
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Algorithm 1 Pseudo-code for LSA4MSTP

1: MST = getInitialMST(G,V )
2: MST ∗= MST
3: U∗max = getMaxUtilization(MST,BW,TD)
4: while time exec < time windows do
5: (smax, tmax) = getMaxCongestedLink(MST )
6: selected vlan=selectVLAN(MST, smax, tmax)
7: (s0, t0)= getRemovedLink(MST, selected vlan,

smax, tmax)
8: (sI , tI) = getAddedLink(MST, selected vlan, s0, t0)
9: MST= replaceEdge(MST, selected vlan, s0, t0, sI , tI )

10: Umax = getMaxUtilization(MST,BW,TD)
11: if Umax < U∗max then
12: U∗max = Umax

13: MST ∗ = MST
14: end if
15: end while
16: W ∗ = generateLinkWeights(G,MST ∗)

Algorithm 1 is an extension of our algorithm LSA4STP in
[12]. It provides the pseudo-code of our local search algorithm.
We aim to find a good solution in the spanning tree search
space by moving from one solution to a neighbor solution.
At each iteration, we try to replace one edge in one of the
k spanning trees to reduce Umax. The steps of LSA4MSTP,
according to the pseudo-code, are:

• Line 1: The method getInitialMST (G, V ) returns an
initial solution (k spanning trees) for the local search
algorithm. We simply simulate the MSTP to compute
this initial solution. In this computation, we use the link
weights for each VLAN as the 802.1d [9] cost by default.

• Line 2 and Line 3: We store the initial solution obtained
with 802.1s as the best solution at the start of the search.
The method getMaxUtilization(MST,BW,TD) re-
turns Umax after computing the utilization of each links
in MST .

• Line 4: We use the time window as the termination
criteria. The choice of time windows depends on the test
size (number of nodes and number of links).

• Line 5-7: At each search iteration, we first try to find
the most congested link (smax, tmax) (Line 5). Then, we
select a VLAN selected vlan that contains (smax, tmax)
(Line 6). An edge (s0, t0) in selected vlan will be
chosen to be removed (Line 7). We describe this task
in section IV.A.1.

• Line 8: Section IV.A.2 describes the choice
of the replacing edge (sI , tI) in the method
getAddedLink(MST, selected vlan, s0, t0). A new
spanning tree for selected vlan is created by replacing
(s0, t0) with (sI , tI).

• Line 9: An update of the link loads is performed when
the edge (s0, t0) is replaced by (sI , tI). The speeding
up technique for computing the link loads is depicted in
section IV.B.2.

• Line 10-14: If the new Umax is less than the best known
U∗max, we store this solution as the best one.

• Line 16: the method generateLinkWeights
(G,MST ∗) generates k link weight matrices so
that 802.1s protocol [11] produces exactly the k
spanning trees in MST ∗. This link weight generation is
described in section IV.A.3.

The search process from line 5 to line 14 is iterated until the
execution time reaches the time window (Line 4).

1) Removing an edge: In each search iteration, we try to
relieve the most congested link (Umax) of its load by replacing
an edge in the spanning tree containing it. To determine which
edge from which VLAN to be replaced, LSA4MSTP extends
from the heuristic in [12]. Let (smax, tmax) be the most
congested oriented link, the key decision of this heuristic is to
select one of the VLANs containing (smax, tmax) to do the
replacement. In the method selectV LAN(MST, smax, tmax)
(Line 6 - Algorithm 1), we create a set SV of VLANs that
contains (smax, tmax). We assign to each VLAN in SV a
probability to be selected based on its load on (smax, tmax).
The probability for a vlan ∈ SV to be selected vlan is:

pr[vlan] = Lvlan[smax,tmax]∑k

i=1
Li[smax,tmax]

. Obviously,
∑

i∈SV pr[i] = 1.

This strategy can find a balance between greedy
search and unexplored neighborhood. From selected vlan,
we can assume that the congestion is caused by the
traffic coming from the subtree of the spanning tree
STselected vlan dominated by smax. Next, the method
getRemovedLink(MST, selected vlan,smax, tmax) (Line
7- Algorithm1) uses the heuristic described in [12] to deter-
mine an edge (s0, t0) to be removed from the set of edges
containing (smax, tmax) and all the edges belonging to the
subtree dominated by smax. The edges closer to the root have
a higher probability to be removed.

2) Adding an edge: After having removed (s0, t0) from
STselected vlan, we obtain two separate trees that must be
reconnected with a new edge. Our objective is to have more
bandwidth and a less congested solution. We consider two
criteria for choosing an edge to be added to form the new
spanning tree. First, we call SA the set of all the edges that join
the two separate trees. Second, we consider h edges having
the highest remaining bandwidth from SA. Next, we compute
the resulting Umax when adding each of these h edges. The
edge (sI , tI) offering the minimal value of Umax is selected
to be added into STselected vlan.

This heuristic differs from [12] as an edge can belong to
many spanning trees. Therefore, we can consider only the
highest remaining bandwidth edges instead of the highest
bandwidth edges.

We also use tabu search [15] - a heuristic preventing the
search from visiting the same points in the search space. But
in this problem, we insert only the added edge in each search
step into the tabu list. We do not tabu the max congested edge
and removed edge as in [12] because in MSTP, an edge can
be used by different spanning trees.
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3) Link Weight Generation: From the k spanning trees in
MST ∗ obtained by LSA4MSTP, we generate the k link weight
matrices of W ∗. For each VLAN Vi ∈ V , we assign a unit
cost to all the links in the spanning tree STi and by assigning
a weight of ni (number of nodes of Vi) to all the other links
in Vi. After this assignment, we can see that the weight of
the longest possible path between a pair of nodes in spanning
tree STi is n − 1 (passes n − 1 edges) while the cost of the
shortest path between any pair of nodes with out using of
spanning tree edges is n (passes one edge). Consequently, the
802.1s protocol [11] will produce exactly the k spanning trees
in MST ∗.

B. Speeding up the Search

1) Root Selection: Symmetry breaking [16] is a well-known
technique in Constraint Satisfaction Problems (CSPs) to speed
up the search. In [12], we showed that the root determination
does not change solution. By fixing a unique root for each
VLAN, we can eliminate all the symmetries in this problem.
The search space is reduced from (n.

(
m

n−1
)
)k to

(
m

n−1
)k

(with
n the number of nodes, m the number of links and k VLANs).
The choice of root can however influence the choice of the
neighborhood solution in each iteration and thus the balance of
the trees. Network operators normally configure the switches
with the highest capacity (ports x bandwidth) as the root
of their spanning trees. In our algorithm, we a priori select
the node with maximal sum of associated link capacities
(bandwidth) as the root.

2) Incremental Link Load Computation: Link load com-
putation is a computationally expensive task at iteration,
especially when the size of networks is large. In [12], we
proved that for each replacement of an edge (s0, t0) by another
edge (sI , tI), the load changes only on the links on the cycle
C created by adding (sI , tI) into the spanning tree. This
substabtially reduces the computation cost.

In our algorithm, spanning trees are represented using the
LS(Graph & Tree) framework [17]. With incremental data
structures (auto-update after each change of the tree), all
queries on spanning tree mentioned above can be performed
in time O(1) and the update action is performed in O(nv)
where nv is the number of vertices of the VLAN.

V. EXPERIMENTS AND EVALUATION

In this section, we first present two topologies coming from
the private enterprise and cloud data centers which are studied
in [18]. Second, we described the method for generating these
topologies, the traffic demand matrices and the VLANs for
our tests. Next, we analyze the obtained results and evaluate
the performance of our local search algorithm LSA4MSTP.

A. Data Center topologies

The extensive studies by Benson et al. [18] showed that
there are three main classes of data centers, namely university
campus data centers, private enterprise data centers and cloud
data centers. The statistics were collected from 10 data centers
in US and South America. In this work, we only consider the

large data centers of private enterprises and clouds containing
a few thousand to more than 10K servers. We choose to not
consider university campus data centers because their size is
often too small, containing only a few decades of switches.
As depicted in Fig 1, the private enterprise data center uses a
canonical 2 or 3-Tier Cisco architecture [19] while the cloud
data center uses the 3-Tier textbook data center architecture
in [22].

3-Tier Cisco architecture (Fig 1a) consists of core, ag-
gregation and edge (or access) tier. At the highest level, core
tier contains switches connecting the data center to extranet,
WAN or Internet. The aggregation tier consists of switches
connecting to many edge tier uplinks, and aggregating flows
going in and out of the data center. Core and aggregation
switches are usually equipped with 10 Gbps interfaces [19].
At the lowest level, edge tier consists of the racks. Each
rack contains 20-80 servers interconnected by a Top of Rack
switch (ToR). Each ToR switch has usually a small number
(4-8) of 10 Gbps uplinks and servers are attached to their
ToR switch through 1 Gbps links [19]. The 2-Tier Cisco
architecture is used in small data centers in which the core
tier and aggregation tier are merged into one tier.

Cloud data center architecture described in [22] (Fig 1b)
is an improvement of the canonical 3-Tier Cisco architecture.
In this topology, the core tier is replaced by an intermedia
tier to improve the performance of the aggregation layer. A
large number of 10GigE ports of each aggregation switch is
used that can provide a huge aggregate capacity. The links
of the intermediate and aggregation switches form a complete
bipartite graph [22]. Suppose each aggregation switch uses
k ports of 10 GigE, k/2 of these ports will connect to k/2
switches in the intermedia tier. The remaining k/2 ports of
each aggregation switch are used for connecting to the ToRs
in the edge tier. As in 3-Tier Cisco architecture, core and
aggregation switches are equipped with 10 Gbps interfaces
and ToRs have 4-8 interfaces of 10 Gbps and a large number
of 1Gbps links.

In our experiments, the number of servers per rack is fixed
to 20. Thus, each private enterprise data center with 4K servers
consists of 242 switches (200 ToRs + 40 aggregation switches
+ 2 core switches) and each cloud data center with 10K servers
contains 564 switches (500 ToRs + 32 aggregation switches +
32 intermedia switches).

B. Traffic demand matrices and VLANs generation

To obtain data sets that are representative of data centers, we
analyzed the SNMP data from [18] on a private enterprise (PR)
data center (53 switches). These data allowed us to synthesize
the traffic flow in the network by 10 minutes, 1 hour, 1 day and
1 week worth of data. Unfortunately, there is no information
related to VLANs composition and on traffic demand between
each pair of switches.

1) Traffic demand matrices: In spite of the fact that the
VLAN and traffic demand information is inaccessible, the
SNMP data from [18] is worthy to infer traffic demand
matrices. The SNMP data captures the amount of traffic on
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(a) Private enterprise data center (b) Cloud data center

Fig. 1: Large data center topologies

each link at a precise time. Therefore, we were able to retrieve
the total traffic entering or departing from each switch over
various time intervals. We use the simple gravity model [23]
relying on proportionality relationships to build the traffic
demand matrix. This method is developed for large-scale IP
networks but we assume that it is also appropriate for the
data center networks. The simple gravity model is defined as
follows:

TD[i, j] = TI(i, ∗) TO(∗,j)∑
k
TI(∗,k)

.

where TD[i, j] is the traffic amount switch i sends to switch
j. TI(i, ∗) represents the total traffic entering at switch i.
TO(∗, j) denotes the total traffic departing from switch j. And∑

k TI(∗, k) is the total amount of traffic departing of every
switch.

In these data centers, there is always a switch receiving a
large amount of traffic (20-40% total traffic). There are about
ten other switches receiving from 2 to 18% total traffic. For
the remaining switches, the traffic amount is less than 2%.
When we look at each line of the traffic demand matrices,
each switch has about ten ”big clients” with a demand from
2 to 30% of its total traffic volume.

For each time sample, we thus obtain a demand matrix.
For each demand matrix, we define SumTD =

∑
TD[i, j],

denoting the total amount of traffic demand. We compute
the ratio of traffic volume of each switch to total traffic:
%TD SW [i] =

∑
j
TD[i, j]/SumTD and the ratio of each

traffic demand element to total traffic demand of each switch:
%TD[i, j] = TD[i, j]/TD SW [i].

The obtained demand matrices will be used to generate the
traffic demand matrices of our VLANs. The traffic demand
of each of our VLAN will thus be considered as the demand
of a small private enterprise data center. For the number of
racks (ToRs) in each VLAN, we consider 40 ToRs for each
VLAN in cloud topologies (with 564 nodes) and 20 ToRs
for each VLAN in private topologies (with 242 nodes). Each
VLAN will then also contain the minimum of aggregation and
core/intermediate switches in order to cover the ToRs of the
VLAN. In our experiments, we consider three types of traffic

(a) Internal TM (b) Internet TM (c) Uniform TM

Fig. 2: Traffic demand matrix types

demand matrices for the VLANs.

• Internal TM: We here assume that all the traffic stays
within the VLAN and consists of discussions accross the
k racks (ToRs) of the VLAN. The demand matrix of the
VLAN is thus composed of zeros, except between these k
ToRs (Figure 2a). The traffic demand between the ToRs of
the VLAN is based on the obtained demand matrices on
a private enterprise data center (PR) presented above. We
first choose a target SumTD. Then, using %TD SW [i]
and %TD[i, j], we derive a demand matrix as follows.
The k ToRs of the VLAN are randomly assigned to k
different nodes of PR (the nodes of PR with the smallest
%TD SW [i] are not considered). Then, given a ToR of
the VLAN associated to node i of PR, its traffic demand
with the other k ToRs of the VLAN will be a random
permutation of the top k values of %TD[i, j]. These
values are then randomly assigned.

• Internet TM: This case extends the previous case by
considering traffic outside network, consisting of traffic
accross VLANs and traffic from/to Internet. The traffic
entering/leaving each VLAN is centralized at one or
two core switches (with an average of 1.5) for private
enterprise networks, and at two core switches for cloud
data centers. The traffic demand matrix will thus have
(one or) two other non zero lines and columns (as
described in Figure 2b), associated to these core switches.
We will assume that 20% of SumTD is interconnection
traffic, and 80% of SumTD stays within the VLAN. The
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traffic demand within the VLAN is obtained as described
above. The interconnection traffic is uniformly distributed
between all the switches.

• Uniform TM: This type of traffic will be used as a
reference for the experiments, with a uniform distribution
of the traffic demand between every pairs of switches
in the VLAN (see Figure 2c). The values in the matrix
are varied in a small interval. The value is chosen to
achieving the targeted SumTD.

2) VLANs generation: We rely on two approaches for
generating VLANs. In the first case, each VLAN is generated
geographically by grouping a set of neighboring racks that
are interconnected by the ToRs and a number of aggregation
and core (or intermedia) switches (i.e. the racks of servers in
the same or neighboring buildings). In the second case, we
assume that the racks are assigned randomly to the different
VLANs depending on their increasing need. For this reason,
each VLAN can contain a set of arbitrary racks.

In our experiments, for each data center topology, we
generated 16 VLANs for both geographic and random case.
The 16 VLANs are generated by combining the four time
samples (4 VLANs generated using each of the time sample).
We also ensured that the 16 VLANs cover all the switches.

In order to analyse the influence of the number of VLANs
on the performance of our algorithm, we merged the 16
VLANs, 2 by 2, in order to obtain a new test with 8 VLANs,
with an equivalent total traffic. Two VLANs can be merged if
they have at least one common switch (for the geographic case,
this common switch must be ToR). We repeated this process
to obtain tests with 4, 2 and a unique VLAN (containing all
the switches in the network).

C. Experiments

The different test sets are summarized in Table I. For each
topology type (private enterprise and cloud), we generated 10
topologies. For each topology, we combined two VLAN distri-
butions (Geographic and Random) with three traffic matrices
(Internal TM, Internet TM and Uniform TM). For each of
these 12 combinaisons, we generated 5 tests (16, 8, 4, 2 and
1 VLAN). We thus have 600 tests in our data sets. These data
sets are available online in [24]. The time window for running
LSA4MSTP for Private Enterprise and Cloud is 15 minutes.

D. Evaluation

As many traffic engineering studies in [4], [8], [12], we
consider the improvement of the maximal utilization Umax as
the criterion to evaluate the performance of LSA4MSTP. We
compare two different computations of Umax. The first one
is obtained with the solution of LSA4MSTP and second is
obtained with the default weights by the STP 802.1s standard.
With 802.1s, one spanning tree is computed for each VLAN
based on the least cost paths from every switch in VLAN to
an elected root switch (the switch with min ID - normally this
is one of the core switches). Because the network consists of
all 10 Gbps uplinks with the default cost of 2 [9], so the least
cost path strategy of 802.1s seems to be limited.

We measure the improvement in a test by the ratio between
Umax[LSA4MSTP ] and Umax[802.1s]:

%Improve = Umax[LSA4MSTP ]∗100
Umax[802.1s]

Figure 3 presents the Umax values for Cloud data centers.
LSA4MSTP always gives the best results for 16 VLANs, with
%Improve around 50% (about half of the Umax value given
by 802.1s). For 8 VLANs, this improvement is about 60%
in both geographic and random case. With 4, 2 and even 1
VLAN, LSA4MSTP also reduces Umax to about 70%-80% in
almost all the combinations. These results clearly show that
our LSA4MSTP algorithm provide better results than 802.1s.

We describe in Table II the %Improve results for Private
Enterprise data centers. We also observe that LSA4MSTP is
more efficient when the number of VLANs is large. For 16
VLANs with the original traffic matrices, LSA4MSTP gives
best performance with the uniform traffic matrices where there
is no zero-demand for every pair of source-destination. The
improvement is less important with the sparser traffic matrices
as the internal VLAN matrices. In summary, our LSA4MSTP
algorithm always provides better results than 802.1s. More-
over, the number of VLANs clearly further improves the
quality of the solution produced by LSA4MSTP.

TABLE II: Results for Private Enterprise data centers:
%Improve (in percent)

Combination 1 VL 2 VLs 4 VLs 8 VLs 16 VLs

Geographic/Internal TM 85.47 83.20 70.42 54.30 52.11

Geographic/Internet TM 87.67 83.04 73.67 52.43 51.26

Geographic/Uniform TM 88.97 83.05 80.51 62.13 42.46

Random/Internal TM 84.15 83.33 69.91 61.92 57.60
Random/Internet TM 83.36 75.63 70.25 58.54 52.19
Random/Uniform TM 88.03 80.77 78.17 62.85 42.02

TABLE III: %∆Links between LSA4MSTP and 802.1s (in
percent)

Topo 1 VLAN 2 VLANs 4 VLANs 8 VLANs 16 VLANs

PR 0 2.59 7.26 10.46 12.54
Cloud 0 0.71 2.05 2.79 3.41

Figure 4 shows the distribution of link utilization of the
solution provided by LSA4MSTP and by 802.1s on the
private enterprise topology (Internal TM/Geographic). With 16
VLANs, the 802.1s solution uses only 822 links for the packet
switching while LSA4MSTP uses 1008 links (we consider
both directions of a link). This distribution shows that the
high values of Umax in the 802.1s solution are concentrated
on few links. The LSA4MSTP solution, by using more links,
is able to reduce Umax from 0.66 to 0.37. For 8 VLANs,
the most congested links are only concentrated on very few
links (less than 1%) in the solutions given by 802.1s. The link
utilization of the other links are similar in the two solutions.
This analysis can also be made on the other combinations with
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TABLE I: Data generation for LSA4MSTP

Topo Topo. Type Num. Switches. Num. Servers Traffic Matrices VLAN distribution

Private Enterprise (PR) 3-Tier Cisco 242 4,000 Internal TM/Internet TM/Uniform TM Geographic/Random

Cloud VL2 564 10,000 Internal TM/Internet TM/Uniform TM Geographic/Random

Fig. 3: LSA4MSTP for Cloud data centers

4 and 2 VLANs where the congestion in the solutions obtained
with 802.1s is centralized in about 2 or 3 bottleneck links.

Fig. 4: Link utilization distribution

We now analyze the influence of the number of VLANs
on the number of used links. Let #Links[LSA4MSTP ]
and #Links[802.1s] denote the number of links given by
the solution of LSA4MSTP and 802.1s. We compute the
percentage of links on the total number of available links
#Links in the network that LSA4MSTP uses more than
802.1s:

%∆Links = (#Links[LSA4MSTP ]−#Links[802.1s])∗100
#Links

We present in Table III the value of %∆Links for each
topology type. In the solutions given by LSA4MSTP, the
spanning trees use more links than the ones obtained with
802.1s for all the combinations with more than 1 VLAN
where #Links[LSA4MSTP ] and #Links[802.1s] are fixed
to n − 1 (with n the number of switches in the data center).
We can thus disjoin the VLAN spanning trees on the most
congested links. The value of %∆Links increases naturally
with the number of VLANs. This justifies why the best Umax

results are obtained with 16 VLANs.

We further refine our analysis by presenting in Table IV the
average number of links connecting Intermedia-Aggregation
(Int-AS) and Aggregation-Edge (AS-ToR) for Cloud data cen-
ters. For both 802.1s and LSA4MSTP solutions, the number
of used links Int-AS is very limited (always less than 100
links) comparing to the available links on this level (1024
links). Contrarily, the number of used links AS-ToR is growing
quickly with the number of VLANs (up to 71% of available
links on this level). Obviously, for the Cloud data centers
there are 500 ToRs and only 32 Aggregation switches +
32 Intermedia switches. In addition, 80% of the total traffic
amount is used for the traffic across racks. Our LSA4MSTP
algorithm always uses more links than 802.1s. It is interesting
to notice that LSA4MSTP can reduce 50% of Umax with only
63 more links for 16 VLANs.

Fig. 5: Improvement of Umax over execution time

We finally describe in Figure 5 the improvement of the
LSA4MSTP solution over execution time, for a test of
Cloud with 16 VLANs/Uniform TM/Geographic. As expected,
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TABLE IV: Number of used links across tiers for Cloud data centers (LSA stands for LSA4MSTP)

1 VLAN 2 VLANs 4 VLANs 8 VLANs 16 VLANs
Links Available 802.1s LSA 802.1s LSA 802.1s LSA 802.1s LSA 802.1s LSA

Int-AS 1024 63 63 66 69 73 78 75 81 91 98
AS-ToR 1000 500 500 521 532 536 573 598 648 656 712

Total 2024 563 563 587 601 609 651 673 729 747 810

LSA4MSTP reduces about 50% Umax of 802.1s (from 0.69
to 0.33) after only 10s. We can state that most of improved
solutions were found in the first 98s. In our experiments, the
solution found by LSA4MSTP in the first 5 minutes is often
very close to the best solution.

With the obtained results in our previous work in [12] with
Grid, Cube, Expanded Tree, Fat Tree and PortLand, our local
search algorithms give good performance with large instances
of network topology.

VI. CONCLUSION AND FUTURE WORK

The goal of this work is to give a new approach for the
traffic engineering problem for metropolitan networks where
Multiple Spanning Tree Protocol 802.1s is deployed. To cope
with large data centers with many VLANs, our algorithm
for single switched Ethernet network has been extended with
new adapting heuristics. We considered the current modern
topologies for large data centers containing up to 10K servers
in our experiments. The SNMP data of a private enterprise
in US has also been studied to create the traffic demand
matrices that are representative of data centers for our tests.
With regard to the load balancing aspect, our results show
much improvement in the use of network available bandwidth.
The solutions obtained with our algorithm could reduce up to
50% the maximal link utilization compared with the solution
obtained by 802.1s for the data centers with 16 VLANs.

Our further work is to extend our scheme to take into
account the delay and the fault tolerant aspect. We hope that
with this extended algorithm, data centers can become more
flexible and efficient in case of link or switch failures not
only for speeding up the slow convergence time but also for
achieving a high level of QoS.
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