
ISP Driven Informed Path Selection

Damien Saucez Benoit Donnet Olivier Bonaventure

June 3, 2011

1 Introduction

We are seeing the emergence of technologies severely challenging some
assumptions that have driven the development of many Internet protocols
and mechanisms. A first assumption is that (usually) one address is as-
sociated to each host. Also, the forwarding of packets is often exclusively
based on the destination address. For this reason, there is usually a single
path between one source (or client) and one destination (or server). Finally,
the Internet was designed with the client-server model in mind assuming
that many clients receive information from (a smaller number of) servers.
During the last years, these assumptions have been severely challenged. For
example, the LISP protocol described in the previous chapters relies on this
path diversity.

The client-server model does not correspond to the current operation of
many applications. First, large servers are usually replicated and different
types of content distribution networks are used to efficiently distribute con-
tent [FFM03, Lim, Aka]. Second, the proliferation of peer-to-peer applica-
tions implies that most clients also act as servers. This is currently creating
several problems in many Internet Service Provider (ISP) networks [KRP05].
Client-server asymmetry does not hold anymore.

Due to the transition from IPv4 to IPv6 many hosts will be dual-stack
for the foreseeable future [CLH03]. Furthermore, measurements show that
IPv4 and IPv6 do not always provide the same performances, even for a
single source-destination pair [ZJUVM07]. This implies that to reach a
destination supporting both IPv4 and IPv6, a source host can achieve bet-
ter performance by selecting the stack that provides the best performance.
However, today, this selection is based on simple heuristics. For instance, as
highlighted by Matsumoto et al. [MFHK08], IPv6 is chosen prior to IPv4 in
most of the dual-stack configurations although IPv4 still remains the best
choice from a performance point of view in many environments [ZJUVM07].

We are thus heading towards an Internet that provides a set of potential
paths between a source and a destination or a content. Obviously, any path
in this set differs from the others as each path has its own performances,

1

i.e., bandwidth, delay, loss, etc. In such a context, it is important for any
application to select their paths in a way meeting their requirements (i.e.,
not in random way). For instance, bulk data transfer peer-to-peer clients
will favor paths with the largest bandwidth so that the targeted file will be
downloaded faster. Such a situation is currently discussed within the IETF
Application-Layer Traffic Optimization (ALTO) Working Group [SB09].

A way to enable efficient path selection for applications would be to allow
the network to cooperate with them. Such a cooperation would also give the
opportunity to operators for managing incoming and outgoing traffic on their
networks. Indeed, according to their traffic engineering needs, operators
could balance traffic from one link to another and ensure that some are only
used as backup.

In this chapter, we propose a generic informed path selection service
called ISP-Driven Informed Path Selection (Idips). Idips is generic as it
can be used in many networking contexts without changing anything to its
behavior (see Sec. 2.2 for a description of networking use cases). It further
does not require fundamental changes in the current Internet architecture
and implementation (only the service clients need to implement a library for
contacting the service), making its deployment very easy. Idips is scalable,
lightweight, and designed to be easily deployed in ISP, corporate, or campus
networks.

Idips is designed as a request/response service. The network operators
deploy servers that are configured with policies and that collect routing
information (e.g., OSPF/ISIS, BGP) and measurements towards popular
destinations. The clients that need to select a path send requests to a
server. A request contains a list of sources, a list of destinations and a
traffic qualification that determines the rule for ranking the paths to use.
The server replies with an ordered list of < source, destination, rank >
tuples to the client. The reply gives an indication of the ranking lifetime.
This ranking is based on the current network state and policies. The client
will then use the first pairs of the list and potentially switch to the next
one(s) in case of problems or if it wants to use several paths in parallel.

We implemented Idips within the Xorp [HHK03] open source routing
platform. We describe this implementation in the chapter and discuss cost
functions, i.e., functions returning a cost for a given path allowing later
ranking. We explain how to construct simple cost functions, such as maxi-
mizing the available bandwidth, and demonstrate how to combine them to
reflect more complex ranking strategies.

Our evaluation of Idips focuses on the whole ranking process, from the
request sent by the client to the use of cost function. We demonstrate that
our implementation is robust as Idips is able to process a large quantity of
requests per second while providing a stable response time to the clients.

This chapter is organized as follows: Sec. 2 describes how an informed
path selection service should work; Sec. 3 explains how the Idips service

2

ISP1

ISP2

Informed

Path

Selection

Service

Customer

Network

Internet

Monitoring

Tools

Policies

measurements

BGP feeds

Rank [P1, P2, P3, TQ]?

Rank [1:P2, 2:P1, 3:P3]

Client

Figure 1: A network service rank paths for the clients

can be implemented; Sec. ?? evaluates our Idips implementation; Sec. 6
positions our work regarding the state of the art; finally, Sec. 7 concludes
by summarizing our main achievements.

2 An Informed Path Selection Service

In this section, we provide a high level description of how should work
an informed path selection service. We first explain the behavior of this
service (Sec. 2.1) before discussing several use cases that could benefit form
the service (Sec. 2.2).

2.1 Overview

As illustrated in Fig. 1, an informed path selection service is a re-
quest/response service allowing to rank paths. The service is intended to be
deployed at strategic points of the network by the network operator inside a
domain, a campus, or a corporate network. Clients (see Sec. 2.2 for example
of applications that can benefit from such a service) have to implement a
library to send requests to the server and use the more preferable paths.

Clients see the service as a black-box. First, a client sends a request to
the server (dotted arrow on Fig. 1). This request contains a list of sources
and destinations, forming a set of paths to rank, and a traffic qualification
(TQ on Fig. 1). The latter argument is a ranking criterion provided by the
client. It might be, for instance, “maximize the bandwidth”, “minimize the
delay”, or “maximize locality”. The server replies to the request with a

3

ranked list of paths (e.g., source-destination pairs - dashed-dotted arrow on
Fig. 1). The way the ranking is computed by the server remains hidden for
the client.

The presence of multiple sources in the request comes from particular
situations, such as multihomed hosts (for instance a smartphone with a 3G
and a standard wifi connection) or IPv4/v6 dual-stack hosts, where hosts
own several addresses.

The server ranks the paths with the help of information from the net-
work:

• Routing information (i.e., BGP, OSPF/ISIS) allowing the informed
path selection service to compare different paths based on their routing
metrics (e.g., BGP local preference or AS path, IGP cost, etc). This
is illustrated in Fig. 1 with the plain arrows.

• Active or passive measurements (i.e., delay, bandwidth, loss, etc) al-
lowing the informed path selection service to compare different paths
based on quantitative performance metrics. Note that the server does
not necessarily perform the measurements itself. It can request a third
party to do the job and retrieve the required performance metrics. This
is illustrated with dashed arrows on Fig. 1.

• Policies configured by the network administrator that indicate prefer-
ences for some paths over others.

Upon reception of a request, the informed path selection service builds
a list of all the possible paths between the source(s) and the destination(s).
Then, it removes from consideration the paths that are invalid due to routing
(e.g., one destination is not reachable from a given source) or policies. The
remaining paths are then ranked according to a set of criteria and the reply
sent back to the client contains the following information:

• the best path (source, destination),

• the second best path (source, destination),

• . . .

• the Nth best path (source, destination)

• the lifetime for the ranked paths.

and for each path its associated rank.

The number of paths returned by the service may be lower, as indicated
above, than the total number of possible paths.

Ranking is valid for some time and the client is encouraged to cache the
ordered list for the lifetime indicated in the response.

4

Source and destinations can be IP addresses (either IPv4 or IPv6 or
both), IP prefixes, AS numbers, names or of any other type, as long as the
client and the server agree on a meaning for them. This possibility to use
IP prefixes is motivated by the fact that contiguous IP addresses tend to be
used similarly and present similar performances [CH10, SDB09].

Idips is designed to be as generic as possible and to prevent an operator
to reveal critical information about its topology. This is the reason why
the only information returned to the client is the path rank. The rank is
an abstraction of information known by the server that defines a partial
order among the paths. The order is valid only within one reply and the
ranking relationship among any two paths in the reply holds the reflexivity,
antisymmetry and transitivity properties.

Path rank is the information revealed to the clients and is computed at
the server side with the help of cost functions. A cost function determines
the cost of using a path. The higher the cost, the less interesting the path.
The cost of a path is computed from its attributes. The path attributes
are the information related to the path. Example of path attributes are its
predicted round-trip delay, its reachability or even the AS path from the
RIB.

Sec. 2.2 discusses different use cases where Idips can be used.

2.2 Use Cases

A client of the informed path selection service refers to any entity that
has the possibility to select a path to reach a destination or get a con-
tent. Idips is thus not limited to the user level applications but can also
be used directly to improve the routing with the control plane requesting
information from Idips to make better choices. In this section, we explore
several networking scenarios in which the service might find a suitable usage,
demonstrating so the general purpose of the service. Additional use cases
described in [SB09] can be applied to our informed path selection service.

2.2.1 Peer-to-Peer

Peer-to-peer applications are clear candidate users for such an informed
path selection service. Each time a peer-to-peer client wants to fetch a given
content, it can use the service to rank the various peers sharing the content
and, then, select the peer based on the service reply instead of randomly
selecting a peer. Ranking, from the client perspective, might be done in
order to maximize the throughput, so that the best path will allow a faster
download of the content.

Furthermore, not only peer-to-peer clients can benefit from the service
but also the ISPs. Indeed, an ISP or a campus network running the informed
path selection service could influence providers used by packets sent/received

5

by hosts of its networks. One can imagine an ISP giving priority to peer-
to-peer clients in its own network or in those with who it has a shared-cost
peering relationship, avoiding so to pay traffic to its own provider.

The rank is the information abstraction revealed to the client. Internally,
an Idips server relies on path attributes and cost functions.

Solutions allowing ISPs to help peer-to-peer clients have already been
proposed [XYK+08, AFS07]. See Sec. 6 for a discussion on how our informed
path service differs from those solutions.

2.2.2 IPv4/IPv6 Transition

Due to the transition from IPv4 to IPv6 many hosts will be dual-stack
for the foreseeable future [CLH03]. Furthermore, measurements show that,
in today’s Internet, IPv4 and IPv6 do not provide the same performances,
even for a single source-destination pair [ZJUVM07]. This implies that to
reach a destination supporting both IPv4 and IPv6, a source can use the
informed path service selection to achieve better performance by selecting
the stack that provides the best performance.

Today, this selection is based on simple heuristics. For instance, as
highlighted by Matsumoto et al. [MFHK08], IPv6 is chosen prior to IPv4
in most of the dual-stack configuration although IPv4 still remains the best
choice in most of the environments [ZJUVM07].

2.2.3 Multihoming

An increasing number of ISPs, but also campus and corporate net-
works have chosen to become multihomed by being attached to two or more
ISPs [ACK03]. For these networks, multihoming offers two main benefits:
technical and economical redundancy, i.e., they remain connected to the In-
ternet even if the link that attaches them to one of their ISPs fails or if one
of their ISPs becomes bankrupt. Another important benefit shown by sev-
eral studies [APS04, AAS03, AMS+08, GDZ06, DD06] is that multihoming
allows sites to choose better quality paths over the Internet.

An informed path selection service can find here an usage, for the ISP,
in selecting the best provider to reach a given destination/content.

2.2.4 Local Network Optimization

The use cases presented above are mostly considering interdomain traffic.
Nevertheless, Idips can be used for intradomain application. For example,
a network optimizing its IGP with OSPF-TE [KKY03] could obtain traffic
engineering information regarding its local links via Idips. In this case, the
Idips server would monitor internal path and use information from the IGP
to determine the best paths to use. Although this application is promising,
we have not investigated more.

6

2.2.5 Traffic Engineering with LISP

LISP, described in Chapter ??, relies on mappings. A mapping associates
a list of locators to an identifier. A priority and a weight are associated to
each locator. Only the locators with the lowest priority value can be used,
the others can be used only for backup. The weight is used to balance the
traffic between the most preferable locators (see Chapter ??). Idips can
be used by the mapping owner to determine the priority and the weight of
the locators in a mapping. The priorities and weights in LISP offer traffic
engineering capabilities to the LISP sites.

3 Service Construction

In this section, we describe how we implement an informed path selection
service. Our implementation is called ISP-Driven Informed Path Selection
(Idips) and it architecture is described in Sec. 3.1. We further discuss how
our implementation is included in the Xorp framework [HHK03] (Sec. 3.2).
Finally, we explain in details how to build simple cost functions and combine
them to reflect more complex ranking strategies (Sec. 3.3).

3.1 Architecture

Idips is composed of three independent modules: the Querying module,
the Prediction module, and the Measurement module. The Querying mod-
ule is directly in relation with the client as it is in charge of receiving the
requests, computing the path ranking based on traffic qualification provided
by the client and the ISP traffic engineering requirements, and replying with
the ranked paths. For the sake of generality, the remainder of this chapter
will use the term ranking criterion when referring to traffic qualification.
The Measurement module is in charge of measuring path performance met-
rics if required. Finally, the Prediction module is used to predicting paths
performance (i.e., future performance metrics of a given path based on the
past measurements).

The ranking criterion provided by clients in their requests might require
measuring the network to obtain path performance metrics, such as delay or
bandwidth estimation. One of the key advantages of Idips is that it avoids
clients measuring themselves the network, leading to redundant traffic in-
jected in the network (See Chapter ??). The Measurement module performs
the measurements or asks a third-party to perform the measurements. Those
measurements can be active (i.e., probes are sent in the network) or passive
(i.e., no additional traffic is injected).

It is possible to predict the performance of a given path if it has been pre-
viously measured [YRCR04, DCKM04, PLMS06, Pap07, dLUB05, WSS05,
LPS06, LGS07, LHC03, LGP+05, NZ04, FJP+99, NZ02, PCW+03, ST03,

7

LHC05, CCRK04, RMK+08, MS04]. This prediction task is achieved by
the Prediction module. Note that a given measurement can be used in sev-
eral different predictions. For instance, the previous delay measurements
can serve for predicting the delay, the jitter, or for determining whether the
path is reachable or not.

To enable flexibility, ease of implementation and performance1, Idips

clearly separates the Querying, Measurement and Prediction modules. Each
instance module communicating with the other modules thanks to a stan-
dardized interface. Therefore, the handling of requests from the clients is
strictly separated from the prediction of path performance and path perfor-
mance prediction is separated from path measurements.

The Querying module receives the ranking requests from the clients and
computes the rank for these requested paths based on their predicted future
performance. Future paths performance are estimated by the Prediction
module that relies on the measurements performed by the Measurement
modules.

All along this chapter, we are using the terms measurements and pre-
dictions however, they have to be understood in their very generic meaning.
For Idips, a measurement corresponds to any information grabbed from
the network. This definition encompasses active measurements like pings,
passive measurements like Netflow information [Cla04] or even routing in-
formation like BGP feeds. Likewise, a prediction in Idips is an information
that is likely to be valid in the coming future. Therefore, a prediction can be
the result of very complex machine learning techniques but also very simple
information like the originating AS of the path destination. In other word,
a measurement is an information discovered in the past and a prediction is
an information that is likely to be valid in the coming future.

To support as many requests per second as possible, the Idips modules
are running independently of each others. This independence is ensured
through the use of caches. Each module stores its processing results in its
local cache. If another module requests a given result, a simple get in the
appropriate cache will return it.

There may exist several instances of the Prediction and Measurement
modules. For example, Idips can have a delay measurement module, a
bandwidth measurement module, a delay prediction module, and a band-
width prediction module. Sec. 3.2.1 gives an example of Measurement and
Prediction modules implementation.

3.1.1 Querying module

Common applications are only able to use one path at a time, even
if several exist. In this case, the client only needs to know the very best

1
Idips must potentially handle many ranking requests simultaneously

8

path returned by Idips when it has no additional information about the
paths. For this reason, the list of ranked path is sorted by rank before being
transmitted to the client. Then, the client can safely consider the first path
of the list as the very best path (or one best path among all the best paths if
several ones have the same lowest rank value). The other paths are returned
only for resiliency (the best path is not valid for the client) or if the client
uses the ranked list to refine a local decision. Sorting the paths simplify the
operation at the client.

Paths ranking is done with the use of Cost Function. For a given <source,
destination> pair, the cost function returns a cost, i.e., a positive integer
resulting from metrics combination of a given path. The lower the path cost,
the more attractive the path. By definition, the sum of several costs is also
a cost. It is therefore possible to combine cost functions with a weighted
sum in order to reflect complex strategies or politics. Sec. 3.3 explains how
to construct cost functions.

To support as many requests per second as possible, the Idips modules
are running independently of each others. This means that the Querying
module never has to wait for a path performance prediction to be computed
by the Prediction module to compute the path ranking. When a prediction
has to be retrieved by the Querying module, it calls a get on the Prediction
module for the path attribute it is interested in. The attributes of a path
are the predicted metric values as computed by the Prediction module for
the path. For the sake of generality, any attribute is encoded as an integer.
If an information is too complex to be represented with a single integer, it
can always be represented as a set of integers. For example, an < x, y >
coordinates can be decomposed in the x coordinate and the y coordinate

and a function that needs to use the coordinates just needs to retrieve the
x coordinate and the y coordinate to reconstruct the full coordinates.
Sec. 3.1.3 gives more details about the interface to retrieve path attributes
from the Prediction module.

Depending on its needs, a client can query Idips in a synchronous or
asynchronous way. In synchronous mode, when a request is received by the
Idips server, the server sends the list of ranked paths back to the client
once computed. On the contrary, in asynchronous mode, when a request
is received by the Idips server, the server computes the paths ranking but
does not send the list back to the client. The requester must explicitly send
a special command to retrieve the list of ranked paths. The API that Idips

presents to clients is depicted in Fig. 2 for the synchronous mode and in
Fig. 3 for the asynchronous mode.

The commands are sent by the client to the server. When the client uses
the asynchronous mode, it receives a transaction identifier (tid) back from
the server. Every request received by a server is abstracted as a transaction.
This tid is the identifier of that transaction on the server. This identifier is
used for retrieving the list of ranked path with the get all path ranks. If

9

sync_rank_paths

? sources & destinations & criterion

-> ranked_paths_list & ttl

Figure 2: Idips server API for synchronous mode clients

async_rank_paths

? sources & destinations & criterion

-> tid

get_all_path_ranks

? tid

-> ranked_paths_list & ttl

get_next_path_rank

? tid

-> source & destination & rank & ttl & more

get_next_n_path_ranks

? tid & n

-> ranked_paths_list & ttl & more

terminate_transaction

? tid

Figure 3: Idips server API for asynchronous mode clients

10

the ranking is not yet computed by the server when the get all path ranks

is received, an empty list of ranked paths and the invalid 0x0 ttl are returned.
The server, in asynchronous mode, always returns immediately a result when
it receives an async rank paths or a get all path ranks. The client must
then poll the server until it has retrieved the list. This behavior is used
to avoid the server to maintain state about the clients, it only maintains
ranking state. To avoid the need of client polling, signaling could be used
to let the server inform the client that the transaction is ready but it thus
means that the server must maintain state about the client, which is what
we want to avoid while using asynchronous mode. Polling is by definition
avoided in synchronous mode. It is worth to notice that a ranking call
can be implemented as being blocking or non-blocking at the client side,
independently of the client to server communication mode. The typical use
of a blocking call is when the path to exchange data cannot be changed
once the flow is started. Then, the best path must be used. The client
must then wait for the path ranking before being able to exchange data.
On the contrary, non-blocking call is used when the client can change the
path it uses while exchanging data. For example, a shim6 [NB09] host starts
exchanging data with a path arbitrarily selected by following the rules of
RFC3484 [Dra03]. If the data transfer is long enough, shim6 could decide
to switch to the best path computed by Idips. In this case, the flow can
start as soon as possible, even if the path used to exchange data might be
sub-optimal at the beginning.

To avoid this waste of resources, Idips also offers the possibility to re-
trieve one path at a time with the get next path rank that returns the
best path that has not yet been retrieved by the client. To use the best
working path, the client can use the algorithm presented in Fig. 4 where
handle path is the client function that needs the path and that returns
true when no more path is needed. The more parameter returned by the
get next path rank indicates if there is still a path to retrieve for the trans-
action. Optionally, the client can explicitly ask Idips to terminate the trans-
action. If not, Idips should eventually terminate it automatically. Instead
of considering retrieving the rankings one by one or all at a time, the more
generic get next n path ranks is also proposed where the client specifies
the number of paths that must be returned by Idips. The equivalent of
get all path ranks corresponding to a specified number higher or equal
to

(

sources ∗ destinations
)

while a value equal to one corresponds to the
get next path rank. However, in most of the cases, a client is interested
by either one or all the paths.

We suggest to use UDP to exchange message between the clients and the
servers. Using UDP avoids the burden of establishing and maintaining TCP
connections. However, Idips does not preclude the use of another protocol
or even several protocols at the same time. For example, a server can be
requestable via UDP by lightweight clients and propose a more complex

11

more := true

WHILE more

DO

(src, dst, rank, more) := get_next_path_rank(tid)

IF handle_path(srcs, dst, rank)

THEN

STOP

END

DONE

terminate_transaction(tid)

Figure 4: One-by-one path ranking retrieval algorithm

start_measurement ? source & destination & interval

stop_measurement ? source & destination

set_interval ? source & destination & interval

get_measurements ? source & destination

-> measurements

Figure 5: Measurement module API

interface via HTTP/XML for more powerful clients.

3.1.2 Measurement Module

The Measurement module is in charge of measuring the paths. The
measurements can be active or passive. For example, an active measurement
could be a ping and a passive measurement could be the count of the number
of TCP SYNs entering the network.

The Measurement module API presented in Fig. 5 is two fold. The
start measurement, stop measurement and set interval commands de-
termine the targets to measure while the get measurements is used to re-
trieve the last measurements of a path.

Measurements are always defined between a source and a destination
and are performed periodically (with a configurable interval between the
measurements). The possibility to modify the interval of a measurement is
not mandatory but is more convenient as it allows one to adapt the mea-

12

start_prediction ? path

stop_prediction ? path

get_prediction ? path

-> prediction

Figure 6: Prediction module API

surement rate dynamically without disrupting a measurement campaign. If
such command is not available, it means that the measured values must be
stored outside the measurement module. Indeed, without the set interval

command, the measurement has to be stopped, then re-started from scratch
meaning that all the state in the measurement module instance is lost for
this measurement. Finally, the get measurements command returns all the
measurements performed so far for the <source, destination>.

The decision of measuring a path is done either by configuration or
triggered by the Prediction module.

3.1.3 Prediction Module

The prediction module contains all the intelligence of Idips. Indeed,
Idips is a service that aims at determining the best paths to use. However,
determining the best path to use is a prediction exercise as the future be-
havior of a path is seldom know, particularly when considering inter-domain
paths. Determining how to predict a path behavior the best is out of the
scope of this chapter but this section presents how a Prediction module has
to be implemented in Idips.

As already expressed earlier, Idips modules are running independently.
However, the Querying module needs to know the path attributes computed
by the Prediction module. In addition, the Prediction module has to know
the path it has to predict the performance metric for. To this aim, the
Prediction module provides the API presented in Fig. 6.

This API has two components. On the one hand, the start prediction

and stop prediction commands are used to specify the path to predict
performance metric for. On the other hand, the get prediction command
is used to retrieve the predictions.

get prediction always returns a value. If the attribute value is not
defined, an error or a meaningful default value is returned. For example, if
the bandwidth of a path is not known a default value of zero can be returned
making the path less interesting than any other path.

The decision of measuring or predicting a path is highly related to the de-
ployment policies, the topology and the traffic. The decision of predicting a

13

path is thus not provided by Idips but is considered case by case by the Pre-
diction module or by configuration. There exists three ways of determining
if a prediction has to be started or stopped. First, an operator can man-
ually determine the path to do prediction for and uses start prediction

and stop prediction commands to do so. Second, a prediction module
instance can determine by itself if a path is worth being measured or not.
For example, if a prediction module received enough get prediction for
a path it is not predicting yet, it can decide to start predicting it. In this
second case, the start prediction and stop prediction commands are
not used. Finally, a prediction module instance can predict that a path has
to be predicted and command another prediction module to start predicting
the path. For example, a prediction module instance can be in charge of
predicting if a path is important or not based on the traffic it carries. If the
path is considered as important, it can ask to start the delay prediction for
that particular important path.

To predict the future path behavior, a prediction module often needs in-
formation from the measurement module. Like the Querying module can re-
trieve a prediction with a simple get, the Prediction module can retrieve the
measurements from the Measurement module with the get measurements

(see Sec. 3.1.2). The Prediction module can use the last measurements to
predict the future behavior of a path. Based on the prediction and on its
quality, the prediction module can decide to modify the frequency at which
a measurement has to be performed (with the sec interval command) or
ultimately to start or stop a measurement. In addition, because a predic-
tion module aims at providing the path performance for the near future, the
get prediction only returns one result as opposed to get measurements

that returns a list of measurements. Obviously, this API does not preclude
an extended API that would return more information about the quality of
the prediction (for example a TTL) or several predictions at once.

3.2 XORP Implementation

Sec. 3.1 presents a potential generic architecture for Idips. In this sec-
tion, we present how we have implemented Idips within the Xorp frame-
work [HHK03]. Xorp is an open source routing plateform that facilitates
the implementation of control plane protocols. In Xorp, each control plane
protocol (this including their communication channels) is implemented as
an independent process. The Xorp inter-process communication is ensured
by the use of the Xorp Resource Locators (XRL). An XRL is very similar
to RPC but much simpler to implement and use. XRLs are always asyn-
chronous. It means that once a process has sent an XRL, it does not block
waiting the answer. When the target of the XRL has computed the result,
it will instead trigger the call of a callback function at the process that sent
the XRL. This is possible because a callback function (a C++ method ref-

14

Internet

Front-

end

Transaction

Cost

function

Querying Module Prediction Module

Measurement Module

IDIPS

Client

Client

Client

delay

bandwidth

packet loss

ping UDP

ABW

loss rate

Predicted

values

XORP

Figure 7: Idips within Xorp

erence) is always associated to an XRL call. The callback is just a call to
the method on the instance with the parameters set to the values computed
by the target of the XRL. We have chosen to implement Idips within Xorp

for two reasons. First, implementing Idips in Xorp gives direct access to
the routing table, meaning that routing information can be easily injected
into Idips. Xorp provides implementations for the most common control
plane protocols, e.g., BGP, with well defined XRL interfaces to communicate

15

Client Querying Prediction Measurement

start measure(a, b, 5)
ping(a, b)

start measure(a, c, 10)
ping(a, c)

ping(a, b)

ping(a, b)

ping(a, c)

ping(a, b)

ping(a, c)

ping(a, c)

ping(a, b)

ping(a, b)

get measure(a, b)

get measure(a, c)
set att(Pa,b, delay, x)

set att(Pa,c, delay, y)

rank(src: a, dst: {b, c},
TQ: min delay)

rank!

Cost function XRL UDP

cf delay(Pa,b)

cf delay(Pa,c)

sort(Pa,b, Pa,c)

Figure 8: Example of modules interactions in Idips

with. Second, Xorp is designed to be distributed. It means that it is pos-
sible to have processes interacting together but running on different hosts.
We do not use process distribution in our prototype however, one could
imagine running the prediction modules on dedicated servers or distribute
the measurement module.

As in the generic architecture presented in Sec. 3.1, our implementation
is decomposed in the Querying, Prediction and Measurement modules. The
querying module is a single Xorp process, while there are as many Xorp

processes as required to implement the Measurement and Prediction mod-
ules. For example, if Idips requires to measure the delay and the bandwidth,
the Measurement module will contain two Xorp module. One implementing
a delay measurement and the other implementing the bandwidth measure-
ment. Fig. 7 shows the Idips architecture in Xorp, while Fig. 8 shows how
the different modules interact with each others.

16

The Querying module is decomposed in three main parts: (i) the Front-
end part, (ii) the Transaction part and (iii) the Cost function part. The
Transaction part receives the requests from clients and returns the rank-
ing results. The Transaction part processes the requests received by the
Front-end and computes the path rank for these requests. Finally, the Cost
function part implements the cost functions. Our implementation has two
different Front-ends. On the one hand, a client can request Idips to rank
paths by sending UDP messages. On the other hand, any Xorp process
can request paths ranking just by sending an XRL to the Querying module.
The typical use of UDP messages is for clients independent of Idips, e.g., a
P2P client while the XRL interface allows any XORP process to use Idips

to improve its decision. For example, the FIB as computed by Xorp could
be optimized by taking Idips ranks into account.

Idips must potentially handle many ranking requests at the same time.
To support a potentially high load, requests are abstracted into transactions.
Therefore, for each request, a transaction instance is created by a unique
identifier. Each transaction runs independently of the others and maintains
the list of sources, the list of destinations and the path ranking criterion.
If the request uses the synchronous mode, the transaction also maintains
information to send the reply to the requester. When a request is received,
the Front-end instantiates an empty transaction and adds all the paths from
the request. At that stage, the paths are computed blindly: for each source
s, for each destination d in the source and destination lists, the < s, d > path
is added to the transaction. Once all the paths are added to the transaction,
the run method is called on the instance.

The job of the run method is to determine the cost and the rank of each
path, according to the path ranking criterion and to build the sorted list of
ranked paths. A transaction is ready once the ordered list of ranked paths
has been built completely. The cost of each path is determined by calling
the appropriated cost function on the path. Once the cost is determined for
a path, the path, tagged with its cost is added to the priority queue costs.
The costs structure is maintained ordered by the path cost. It means that
at any time, the ith entry in costs has a lower or equal cost than the i+1th
entry. The transaction is set ready once the cost and rank of each path is
known. If the request was in synchronous mode, the transaction triggers the
transmission of the reply to the request once the transaction becomes ready.
If the request was in asynchronous mode, the method stops. As long as the
transaction is not ready, a call to retrieve a path for an asynchronous mode
request returns an error.

We have implemented the call of the cost function in two different ways.
By using XRL or by directly calling the method on the querying module
class instance. We use the XRLs to parallelize the processing. However,
as the processing of XRL is centralized (via the finder) and because the
management of XRLs is sequential and implemented with a list, this im-

17

plementation does not improve the performance, even worse, it reduces the
number of requests Idips is able to sustain and may cause ranking failures
because XRLs can be lost. Indeed, the XRLs are enqueued in a list limited
in size and number of entries. Therefore, once the list is full, XRLs can be
lost. The performance can also drop because an XRL at position i in the
queue will not be dispatched to the Querying module before the XRLs prior
to position i have been dispatched to their target process. Even if the pro-
cesses are different. With an experiment where the requests ask to rank 50
different paths, we observed a drop of 54% of requests per second supported
by Idips compared to an implementation calling the cost function directly
without XRLs. We also noticed about 12% of failing transactions and a
time to compute the rank 56 times higher with the XRL implementation.
However, for the requests that succeeded, the time perceived by the client
was 13% faster with the XRL implementation. The time perceived by the
client is the time elapsed between the sending of the request and the recep-
tion of the ordered list of ranked paths. Despite the better client perceived
time with the XRL implementation, we recommend not to use the XRL
implementation. Indeed, without the use of XRLs, Idips can handle more
simultaneous requests and does not face loss of requests due to the limited
size of the XRL queue.

Sec. 3.1 proposes to keep the modules independent thanks to the use of
getter functions: when a module needs information from another module,
it sends a get to the module to retrieve the values. In our implementation,
every module implements such getters. However, we have also implemented
a paths attributes cache within the Querying module. This cache stores, for
each path, all the known attributes for the paths. The attribute values are
computed by the Prediction module. This cache is based on a push model.
It means that it is not the Querying module that populates it but the Pre-
diction module that pushes the values to that cache. The querying module
thus implements the set attribute and get attribute XRLs. Therefore,
when a prediction is computed, the Prediction module immediately calls
the set attribute XRL on the Querying module to set the attribute value
for the path that as just been computed. This mechanism is implemented
to speed-up the cost computation for the paths. Indeed, as presented in
Sec. 3.3, the cost of a path is computed with a cost function that poten-
tially needs the attributes of the path. Thus, without an attribute cache at
the Querying module, an XRL must be called to the appropriate Prediction
module instance for each attribute to retrieve. However, calling XRL implies
some delay as the call must be sent first to the main Xorp process, i.e., the
finder, then it is sent to the appropriate Prediction module instance. This
delay can become non negligible if the Prediction module is not running
on the same host as the Querying module. For this reason, the Querying
module does only rely on this cache. If the cache has no entry for the path
attribute, it is considered that the path is not under measurement/prediction

18

and the Cost function must determine an appropriate cost. It is important
to remark that our implementation does not allow the prediction module to
determine by itself that a path merits to be predicted. Indeed, the Query-
ing module never calls the get attribute on the prediction module so the
prediction module cannot count the number of failing calls. However, one
could imagine a measurement module instance monitoring the cache misses
at the querying module. The prediction module could then determine the
paths that are worth being predicted.

The notion of module is translated into XRL interfaces in Xorp. Except
for the Querying module, there might be several C++ classes implementing
a module and possibly several instances of a class as illustrated in Fig. 7.
Each class must implement the XRL interface corresponding to the module
it is related to. Fig. 9 gives the XRLs that must be implemented by the
class implementing the Querying module. It is important to notice that the
interface for the querying module is only composed of the setter and the
getter for the path attributes. It does not include an interface for clients to
query Idips. Indeed, XRL interfaces are only related to the implementation.
Nevertheless, we have implemented the client-related commands described
in Fig. 2 and Fig. 3 with XRLs to make Idips usable directly by any Xorp

process. It means that our Idips implementation has two front-ends, one
listening on UDP and the other listening on XRLs. Fig. 10 lists the XRLs
that must be implemented by the classes implementing the Measurement
module. Finally, Fig. 11 shows the XRLs that the classes implementing the
Prediction module must implement. Each class implementing one and only
one technique. For example, one class can implement a UDP ping for the
measurement module and another can measure the path bandwidth and one
class can implement a delay bandwidth product predictor based on the delay
and bandwidth measurements.

The whole process is presented in Fig. 8. The Prediction module asks an
instance of the Measurement module (i.e., the delay measurement instance)
to measure a path. A path to measure is defined by a source and a desti-
nation. For the sake of generality, the source and the endpoint of any path
to measure is represented textually, meaning that it can be a name, an IP
address a network interface, or any other suitable information. Each path
installed in a measurement module is periodically measured with a config-
urable interval between measurements (e.g., 5 for path (a,b) and 10 for (a,c)
in Fig. 8). The use of IP prefixes instead of IP addresses is particularly in-
teresting to aggregate information. For example, if a site has one IP prefix
p/P for its clients and that the performance are considered to be the same
for any of them, then all the paths can be aggregated by using the p/P
source instead of the client IP address.

The start measurement XRL function triggers the measurement of the
path defined by the source and destination parameters. The path is then

19

interface idips_querying/0.1 {

/**

* Get a path attribute

* @param path to get the attribute from

* @param name of the attribute

* @param value of the path attribute

* @param rpath echo of path

*/

get_attribute?path:txt&name:txt->value:u32&rpath:txt;

/**

* Set a path attribute

* @param path to set the attribute to

* @param name of the attribute

* @param value of the path attribute

*/

set_attribute?path:txt&name:txt&value:u32;

}

Figure 9: Xorp Querying module XRL interface

measured every interval seconds (e.g., 5 for the path (a,b) in Fig. 8).2

The various Measurements module instances keep locally the last mea-
surements they obtained for the paths they are measuring. When a Predic-
tion module needs a measurement, it sends a get measurement XRL to the
adequate instance of the Measurement module and retrieves the measure-
ments for the path. The measurement is then sent to the Querying module,
with the set attribute function, for being stored in the Predicted values
storage.

3.2.1 Examples of module implementation

This section presents two examples of module implementation. We first
present a Measurement module that implements a UDP ping and then de-
scribe a Prediction module that implements an average delay predictor. The
Prediction module uses the measurement module to predict the delay of the
paths.

Measurement module example Our Measurement module example im-
plements a simple UDP ping. To estimate the round-trip delay between a
<source, destination> IP pair, we send a UDP segment to the destination
on a port number that is very unlikely to be open. If the port is not opened

2To avoid synchronization, the time between two measurements should be set to be
equal to the interval parameter on average.

20

interface idips_measurement/0.1 {

/**

* Start periodically measuring a destination

* @param destination destination to measure

* @param interval interval in seconds between two measurements

*/

start_measurement?source:txt&destination:txt&interval:u32;

/**

* Stop measuring a destination

* @param destination destination to stop measuring

*/

stop_measurement?source:txt&destination:txt;

/**

* Change measurement interval for a destination

* @param destination destination to change the measurement interval

* @param interval new measurement interval for the destination

*/

set_interval?source:txt&destination:txt&interval:u32;

/**

* @params destination destination to get the past measurements

* @params measurements list of measurements

* @params clean remove elements after retrieving them

*/

get_measurements?source:txt&destination:txt&clean:bool->measurements:list<u32>;

}

Figure 10: Xorp Measurement module XRL interface

21

interface idips_prediction/0.1 {

/**

* Start a prediction model for a path

* @param path to predict

* @param src source IP for the measurements

* @param dst destination IP for the measurements

*/

start_prediction?path:txt&src:ipv4&dst:ipv4;

/**

* Stop a prediction model for a path

* @param path to stop the prediction for

*/

stop_prediction?path:txt;

/**

* Get the prediction for a path

* @param path to get the prediction for

* @param prediction for the path

*/

get_prediction?path:txt->prediction:u32;

}

Figure 11: Xorp Prediction module XRL interface

and if no filtering applies, an ICMP port unreachable is expected to be re-
turned to the Measurement module. The sending of the UDP segments is
done by using the Xorp socket API. Xorp sockets are similar to the Posix

sockets except that they are asynchronous and that they are implemented
with XRLs. In the reminder of this section we will use the term socket to
refer to the Xorp socket abstraction. A Xorp process that wants to use a
socket has to implement the socket4 user3 XRL interface. This interface
defines several XRL like error event or recv event that respectively in-
dicate if an error occurred with the socket or if bytes are ready to be read
on a socket. The socket4 user is used to signal the Xorp process about
events on the sockets it is in charge of. To open, bind, connect, listen, send
data on or close a socket, the Idips must use an XRL Socket Client. XRL
Sockets Clients are classes that implement the socket4 XRL interface and
are directly provided in the Xorp framework.

To implement the UDP ping, we create one connected UDP socket per
<source, destination> IP pair and periodically send a UDP socket with it.
The time at which the packet is sent is stored for later use. Because the
destination does not listen on the port, it sends an ICMP port unreachable
that eventually triggers the call of the error event XRL in our process.

3socket6 user for IPv6

22

The error indicates on which socket the error arrives and the nature of the
error. The delay is thus simply computed by doing now − measure where
now is the time at which the XRL is called and measure is the time at
which the probe was sent.

The module needs to keep some state about the <source,destination> IP
pairs it measures. To do so, different datastructure are required. First, the
destinations map maintains measurement information for each <source,
destination> IP pair. This information contains the interval at which the
pair must be measured and the list of the measured delays for the pair (the
closer to the end of the list, the more recent the measurement). Once a
delay has been measured for a pair, it is appended to its measured delay
list. When the get measurements command is called on the measurement
module, this is the measured delay list for the requested pair that is returned.
Two other datastructures are used to map a socket identifier to a pair and
vice versa. The socket info maps gives information about the socket
indexed by the socket identifier. The related information is the source and
destination addresses and the time at which the last segment has been sent
on this socket (the measure variable). The sockets map is the opposite
of the socket info. sockets gives the socket identifier for any pair. The
socket info is unfortunately required as there exists no way in Xorp to
retrieve meta information on a socket like those we need.

The IP pairs are measured periodically. To implement these periodic
probings, we use a Xorp periodic timer. Every second, this timer calls the
loop method of our process. When this method is called, a UDP segment is
sent to each <source, destination> IP pair that should have been measured
at the latest when the loop method is called. To efficiently determine the
pairs to measure at the loop call, the to measure priority queue is main-
tained for each source covered by the measurement module. The key in the
priority queue is the time at which the measurement has to be done and the
value is the destination address. When a measurement is sent by the loop,
the entry is removed from the priority queue and the next measurement
time is computed for that entry. The new measurement time is then added
to the priority queue. Fig. 12 shows the pseudo-code of the loop method.

Lines 17 – 21 ensure the measurement periodicity of <source, destination>
pair that has not been stopped. The salt is used to avoid synchronization of
measurements and is a small random value [AKZ99].4 With Fig. 12, we can
see that stopping a measurement by calling the stop measurement does not
apply immediately and an ultimate probe is sent after such a call. We can
also see that there is never more that one entry par <source, destination>
pair in the queue which is optimal from a memory point of view.

Fig. 13 shows how the ICMP port unreachable is processed by our mod-
ule.

4In our implementation, the salt is zero.

23

00 FOREACH source IN _to_measure

01 DO

02 WHILE _to_measure[source] IS NOT EMTPY

03 DO

04 entry := _to_measure[source].pop

05

06 IF entry.key > NOW

07 THEN

08 MOVE TO NEXT SOURCE

09 END

10

11 destination := entry.address

12 socketid := _sockets[source][destination]

13 _socket_info[socketid].last_call := NOW

14

15 send_UDP_probe(socketid, source, destination)

16

17 IF (source, destination) NOT STOPPED

18 THEN

19 entry.key := NOW + _destinations[source][destination].interval

+ salt

20 _to_measure[source].push(entry)

21 END

22 DONE

23 DONE

Figure 12: Measurement module loop method pseud-code

SOCKET4_USER_0_1_ERROR_EVENT(socketid, error)

00 now := NOW

01 IF error = ICMP_PORT_UNREACHABLE

02 THEN

03 si := _socket_info[socketid]

04 measure := si.last_call

05 delay := now - measure

06 _destinations[si.source][si.destination].measurements.append(delay)

07 END

Figure 13: UDP ICMP port unreachable management

24

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

UDP XORP ICMP

d
e
la

y
 [
m

s
]

Figure 14: Delay precision comparison between standard UDP ping, ICMP
ping and XORP UDP ping

It is not possible, without changing Xorp to associate a time to an event
on a socket. This explains why line 0 is required in the algorithm of Fig. 13.
The retrieval of the time has to be carried out as soon as possible to limit
the inaccuracy of the delay estimation.

Fig. 14 compares the accuracy of the UDP ping we have implemented in a
Measurement module with the standard traceroute UDP ping and the ICMP
ping command. Fig. 14 plots the average of delay measured by the technique
and the 95% confidence interval. For the comparison, we made 1,500 pings
for each technique. The interval between two probes is one second. The
setup uses two machines directly on the same VLAN. One running Idips on
Linux, and the other receiving the UDP probes and running on Linux. The
UDP ping is performed with the traceroute command and the ICMP ping
with the ping command.

From Fig. 14 UDP ping and XORP labels, we can see that using XORP
introduces a bias in the measurement. This bias is mostly due to the pro-
cess context switching introduced by the XRL based implementation of the
XORP sockets. Indeed, when an segment arrives at the host, it is not
delivered immediately to the measurement process. It is first received by
the main Xorp process that then notifies the Measurement module process
that an event occurred on the socket (i.e., the reception of the ICMP port
unreachable). This design thus imply process switching in addition to the

25

standard kernel/user space switching with POSIX sockets. In addition, this
scheme is also applied when sending the segment meaning that the time
between the probe is sent from the Measurement module process and the
time the probe is effectively received by the kernel depends on how rapidly
the XRL is sent and processed by the main Xorp process. However, the
bias is of less than 0.3ms in our setup which is acceptable for most of the
measurements. More interestingly, the measurement is better with the UDP
ping implemented in Idips than the standard ICMP ping.

Prediction module example The Measurement module presented above
does delay measurement by the mean of UDP pings. The Prediction module
example in this section uses the round-trip-delays measured by the UDP ping
measurement module to predict the delay expected for the paths in the near
future. The Prediction module simply averages the last round-trip-delays
measured for a <source, destination> IP pairs. The average delay is the
prediction of the delay for the path defined by the pair.

In this module, a path is defined by a source and a destination IP address.
When a start prediction command is received by the prediction module,
it requests the UDP ping measurement module to start a measurement for
the <source, destination> IP pair that defines the path the delay prediction
has to be performed for. The prediction module then periodically retrieves
the list of the last measurements for the path. Because the prediction module
is the single one to use the UDP ping prediction module, it requests the
measurement module to flush its memory. The prediction module then
computes the average of the measured delays in the list. This average is
considered as the future value of the delay until the next retrieval of the
measurements list for the path.

The prediction module maintains two datastructures. On the one hand,
the paths map maps a path to a <source, destination> IP pair. On the
other hand, the delays map stores the predicted delay for each path.

To speed-up the Querying module processing, the prediction module
also pushes the prediction delays to the Querying module path attributes
collection. That is, when the Querying module needs the delay prediction,
it does not need to request the prediction module. Doing so limits the use
of XRLs and thus the number of context switches.

Our example implementation has no other intelligence. Indeed, the list
of measurements is retrieved at the same rate for each path (once every
10 seconds thanks to a Xorp periodic timer) and the prediction module
requests the UDP ping measurement module to send a probe every second.
However, it would not be a hard task to modify the module to enable an
adaptive measurement rate and an adaptive measurements list retrieval.

26

Algorithm 1 Example of cost function for the reachability

Ensure: Integer value representing the result of this Cost Function.
1: procedure is reachable cf(src, dst)
2: reachable ← get attribute(<src,dst>, REACHABILITY)
3: return reachable
4: end procedure

3.3 Cost Functions Implementation

In this section, we show how to construct simple fundamental cost func-
tions and how to combine them to implement an ISP policy. Our example
is based on a situation in which an ISP has three customer families: (i)
premium users always requiring the best available performances, (ii) stan-
dard users requiring a good performance/cost trade off, and (iii) light users
always requiring the lowest cost. The traffic engineering changes between
the night and the day for standard users: during the day, a lower cost is
preferred while during the night, the performance is preferred. The mone-
tary cost of a path depends on the 95th percentile load of the link used to
reach the Internet.

In our example, we assume that the prediction module feeds the querying
module with the following information:

• routing reachability of the paths. A path is reachable if there exists a
route in the FIB to forward traffic from its source to its destination,
this information is stored in the REACHABILITY attribute

• originating ASN. The originating Autonomous System Number of a
path is the originating AS number of the prefix of the destination as
discovered by BGP. This information is stored in the ORIGIN attribute

• monetary cost of the paths. The monetary cost of a path is the ex-
pected cost it would represent to carrying one additional Mega bit per
second of traffic on it. This cost is computed by applying the 95th

percentile technique [DHKS09] and is stored in the COST attribute

• available bandwidth of the paths. The available bandwidth of each
path is estimated and is expressed in Mbps stored in the ABW attribute

• customer family. A customer can be premium, standard or light user.
The customer family, stored in the FAMILY attribute, of a path is de-
termined simply by considering the source of the path and ignoring its
destination

We first have to define if a destination is reachable or not from a given
source address. A path, defined by a <source, destination> pair, has its

27

Algorithm 2 Example of cost function for the path locality

Ensure: Integer value representing the result of this Cost Function.
1: procedure locality cf(src, dst)
2: origin ← get attribute(<src,dst>, ORIGIN)
3: if origin = LOCAL ASN then
4: return 0
5: end if
6: return 1
7: end procedure

Algorithm 3 Example of cost function for the cost minimization

Ensure: Integer value representing the cost of using the path defined by
src, dst.

1: procedure minimize cost cf(src, dst)
2: cost ← get attribute(<src,dst>, COST)
3: return cost
4: end procedure

Algorithm 4 Example of available bandwidth cost function

Ensure: Integer value representing the result of this Cost Function.
1: MAX BW the highest theoretical available bandwidth in the network
2: procedure available bw cf(src, dst)
3: abw ← get attribute(<src,dst>, ABW)
4: return (MAX BW – abw)
5: end procedure

REACHABILITY attribute equal to 1 if it is reachable. Otherwise, the attribute
is set to the maximum integer value. The cost function is reachable cf,
implemented in Algorithm 1, thus makes reachable destinations more prefer-
able than unreachable ones.

The locality of a path is determined by the originating AS number of
the path destination. If the destination prefix is originated by the operator,
the path is considered local. Algorithm 2 shows how to implement the
locality cf cost function that prefers local paths over non-local ones. In
this function, LOCAL ASN is operator AS number.

Algorithm 3 shows the minimize cost cf cost function that returns the
monetary cost of using a path. This function makes path with the lowest
monetary cost more attractive. To avoid oscillations, it is a good idea to use
classes of monetary costs instead of the exact monetary cost. For example,
the COST attribute could be the monetary cost modulo x instead of being
the raw value of the monetary cost.

When considering bandwidth, the best paths are those having the high-
est available bandwidth. The implementation of a cost function preferring

28

Algorithm 5 Example of customer family cost function

Ensure: Integer value representing the customer family for traffic from src
to dst.

1: procedure customer family cf(src, dst)
2: family ← get attribute(<src,dst>, FAMILY)
3: return family
4: end procedure

Algorithm 6 Example of a complex cost function

Ensure: Encounters customers requirements
1: PREMIUM USER = 1
2: STANDARD USER = 10
3: LIGHT USER = 20
4: procedure customer management cf(src, dst)
5: if (is reachable cf (src, dst) = MAX INTEGER) then
6: return (UNREACHABLE)
7: end if
8: customer ← CUSTOMER FAMILY CF(src, dst)
9: if (customer = PREMIUM USER) then

10: cost ← AVAILABLE BW CF(src, dst)
11: end if
12: if ((customer = STANDARD USER ∧ DAY) ∨ customer =

LIGHT USER) then
13: cost ← MINIMIZE COST CF(src, dst)
14: end if
15: if (customer = STANDARD USER ∧ NIGHT) then
16: cost ← AVAILABLE BW CF(src, dst)
17: end if
18: return

(

LOCALITY CF(src, dst) · cost
)

+ cost
19: end procedure

paths with the highest bandwidth is not straightforward. Indeed, Idips, by
definition, always prefers the lowest cost while in terms of bandwidth, the
highest is the best. Thus, to prefer the paths with the highest bandwidth,
the value of the available bandwidth is subtracted to the highest theoreti-
cal available bandwidth for the operator (i.e., the capacity of the best link
(or link bundle) in the network). Algorithm 4 provides the implementa-
tion of such a cost function, MAX BW being the highest theoretical available
bandwidth in the network.

As for cost minimization, the customer family cost function only has to
return the customer family. Algorithm 5 shows the implementation of this
cost function. In the system, the family 1 corresponds to premium users, 10
is for standard users and 20 for light users.

29

The previous algorithms can be combined by the network operator to
build more complex policies. Algorithm 6 combines all the blocks in order
to reflect the operator policies proposed earlier in this section. In particular,
Algorithm 6 first checks whether the destination dst is reachable from the
source src. If the path is reachable, it applies the policies previously defined,
based on the FAMILY attribute. For premium clients available bandwidth is
always preferred. For standard clients the applied policy depends on the
time period; the available bandwidth is used as cost function during the
night, while cost minimization is preferred during the day.

The last line gives preference to a local paths. This line is an example
of weighted sum of cost functions. More particularly, the cost result by the
CUSTOMER MANAGEMENT CF is a weighted sum of the costs from other cost
functions, weight by the cost returned by a cost function. The principle in
the example is to double the cost if the path is not local.

4 Performance Based Traffic Engineering with LISP

and IDIPS

Sec. ?? shows how the priority, weight and TTL can be used to ensure
traffic engineering with LISP. In LISP, the best locator is the locator pre-
senting the lowest priority value. To some extent, we can thus consider
the RLOC priority as its relative rank in the mapping. As a consequence,
Idips ranks can be used to infer the RLOC priorities dynamically. Using
Idips to attribute the LISP priorities then enables automated performance
based incoming traffic engineering. Sec. ?? shows that EID prefixes are
likely to be attached to several locators. If an EID have several locators,
which are not aliases, it means that it exists several paths to exchange pack-
ets with it. However, it is well known that the paths on the Internet are
not equal [AAS03, AMS+08, GDZ06, Int05, Cis, SAA+99, Ava05, XYK+08,
DD06]. . Some path have lower delay than others, more bandwidth or are
more stable. Fig. 15 shows that this observation holds with LISP.

Fig. 15, is obtained from the ping dataset we built in Sec. ??. Fig. 15
shows the relative difference of delay between all the locators of a mapping
and the locator with the shorter delay in the mapping. The relative distance
of the locator i with the fastest locator f of the mapping is computed by
rtti−rttf

rttf
. A 10% distance thus means that the locator has a delay higher by

10% than the locator with the shorter delay in the mapping. Fig. 15 shows
the average distance to the shorter delay locator in the mapping and the
95th confidence interval. Fig. 15 shows that for 4% of the mappings, the
locators had a delay more than 50% bigger than the shortest delay observed
in the mappings with 1% of the mappings with locators presenting a delay
more than twice longer than the shortest one. For few mappings, the average
distance was even worst by more than 500% on average up to 6309% higher

30

 0.1

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000 1200 1400 1600

d
i
s
t
a
n
c
e

f
r
o
m

f
a
s
t
e
s
t

l
o
c
a
t
o
r

[
i
n

%
]

mapping

high 95th confidence interval
average

low 95th confidence interval

Figure 15: Relative distance between the locators in the mappings

on average. Fig. 15 shows that a bad choice of locator can have a significant
impact on the performance showing the necessity of assigning the priorities
with care. However, Fig 15 also shows that for 77% of the mappings, the
average distance to the locator with the shortest delay in the mapping is
lower than 10%. It thus means that for most of the mappings, traffic can
be load balanced between at least two locators by playing with the weight
without degrading the performances [KKSB07].

Fig. 15 shows that the traffic could benefit from a traffic engineering
approach that considers performances as much as costs. Idips can help
in the choice of the priorities an the weights in LISP. Idips is however
designed to rank paths while LISP mappings are related to IP addresses.
But assuming that the locator priority has to be computed for a mapping
to be distributed on the mapping system, the RLOC R to set the priority
to can be seen as the destination of a path. If differentiated mapping is not
used, this path is then defined as <*,R> where * corresponds to any source
in the Internet. If differentiated mapping is used and the differentiation is
done for the site S, then, the path is <S,R>. As we have seen in Chapter. ??,
Idips supports paths defined by prefixes. Therefore, if PS is the prefix for
the site S, then the path can be defined as <PS,R/32>. PS being 0.0.0.0/0
for *.

As a result, Idips can be used to set the RLOC priorities but a transla-
tion work is required. Two options are possible to determine the priorities

31

in a mapping. Either Idips is queried manually and an operator configures
LISP with the appropriate priorities, or a tool automatically adapts the
priorities.

Operations related to interdomain traffic engineering are often performed
manually by the network operators [CGG+04]. The operators configure
their network such that it corresponds to the business objective and react
to alarm triggered by monitoring tools. Manual operation can be continued
with Idips used as a hint by the operator. Before setting the priorities, the
operator requests Idips to rank the paths corresponding to the locators in
the mapping. The operator then sets the priorities to reflect his interpreta-
tion of the Idips ranks. For instance, he can request Idips twice. Once with
delay optimization and once with cost minimization. The best result(s) of
each query being set with a priority of one, all the others with a priority of
10. Manual Idips-aided operation is interesting to support subjective crite-
ria but is subject to configuration error and is time consuming in complex
networks [WSR09, CGG+04].

If a translation tool is used between LISP and Idips, it is possible to
fully automate the Idips-based priority computation. The tool listens the
insert and update events in the EID-to-RLOC Database. The locators in the
mapping that triggered the event are then extracted to build the destination
list. The source list depends on whether the differentiated mapping is used
or not. Once the source and destination lists are built, the tool requests
Idips to rank these paths according to a pre-configured ranking criterion.
Upon Idips reply, the tool translates the Idips rank to LISP priority by
applying a t translation function on each rank such that:

t : R× I → P

where R = [0; 232[⊂ R0 and P = [0; 255] ⊂ R0. R is the Idips ranking
space and P is the LISP priority space. I ⊆ IP × IP ×R is the space of
all the possible Idips replies with IP being the IP space.

t can be any function and is defined according to the network require-
ments. For example, if only the best locator can be used, i.e., the other
cannot, t can be defined as follow:

t(x, m) =

{

1 if x = min(m)
255 otherwise

where min(m) : I → R gives the minimum rank observed in the Idips

reply m.

Once the ranks have been converted into priorities, the mapping can be
built. To do so, the rank of each locator r in the mapping is extracted from
the Idips reply and converted into the associated priority. If the locator is
not present in the Idips reply, it must be considered as non-reachable and
should not be present in the mapping or with a priority set to 255.

32

In addition to the priority, a weight is associated to each locator in a
mapping. However, an Idips reply only provides priority information. A first
solution is to set the same weight to all the locators with the same priority,
e.g., 1/n when n locators have the same priority. This weight assignment
can be used when the rank computed by Idips depends on the link usage.
Therefore, Idips will eventually remove the locators that have been used too
much or at least give them an higher rank value. A second solution is to
compute the weights independently of Idips. A third solution is to define
an Idips cost function, Idips can thus be used to indirectly compute the
weight. Let us call this function proportion cf. proportion cf is a cost
function which provides a rank corresponding to the proportion of traffic to
send between the paths. For example, if the path p1 must support one half
of the traffic while p2 and p3 must handle both 25% of the traffic, the ranks
could be 2, 1 and 1 respectively. Which means that path p1 must handle two
times more traffic than paths p1 or p2. However, the weights in LISP must
be such that the sum of the weights of the locators with the same priority
must be equal to 100. As a consequence, the ranks from proportion cf

must be converted into weights. To do so, Idips is first queried with the list
of locators to rank for the priority. Idips is then queried to rank them with
the proportion cf cost function. Afterward, the locators are grouped by
priority. Let R = {r1, . . . rn} the set of locators with the same priority. The
weight of locator ri ∈ R is defined by

weight(ri) =

⌊

rank(ri)
∑

rj∈R rank(rj)

⌋

· 100

where rank(x) gives the rank of locator x as defined by Idips. However,
because LISP works with integer weights, the conversion does not ensure
that the sum of the weights is 100. For the sum to equal 100, we suggest to
use the following smoothing method:

weight(rm) = weight(rm) +

100 −
∑

rj∈R

weight(rj)

where rm is a locator with the highest weight.

The mapping TTL should be lower or equal to the Idips replied TTL.
Therefore, when the mapping expires in the EID-to-RLOC database, Idips

must be queried to re-build the mapping with up-to-date information ob-
tained from Idips.

Idips can work with prefixes to reduce the number and size of the ex-
changed messages. If Idips replies with prefixes instead of addresses, it
becomes possible to use a reply for different EIDs. For instance, if an EID
has RLOCs within prefixes already returned by Idips, it is possible to reuse
the ranking. This technique has two advantages. First, it reduces the traffic

33

to and from Idips and, second, it reduces the time required to obtain the
optimal RLOC priorities. A drawback is that a specific cache has to be
implemented on the Lisp router.

4.1 Case Study

In this section, we evaluate the benefits of the interaction between Lisp

and Idips. To do so, we build the testbed depicted in Fig. 16. The left hand
network, labeled Content Producer, is a content producer and the right hand
network is the consumer. Interdomain connectivity is ensured by Lisp. For
the test, we used the two types of customers light and premium and apply the
customer management cf cost function presented in Sec. 3.3. As discussed
in Sec. 3.3, the objective for light users is cost reduction. On the contrary,
QoS has to be ensured for premium users. In the sake of clarity, in our
experiments two clients with one flow per client are involved. The light client
downloads a large file using FTP (TCP) while the premium client watches
a video over UDP. The video must have at least a 1.4Mbps bandwidth and
the jitter must be limited. The two networks are connected with two links:
L1 and L2. L1 represents a peering link and L2 a customer/provider link
(from the producer point of view). L2 is protected by a 128Kbps backup
link. Penalties are due when QoS is not ensured for premium users.

In the testbed, we use OpenLisp [ISB11]. OpenLISP implements the
Lisp protocol in the FreeBSD kernel. A particularity of OpenLISP is the
mapping socket that allows user space applications to interact with the EID-
to-RLOC mappings maintained in the kernel.

The content producer (resp. consumer) part of the testbed is operated
with a dedicated Pentium 4 computer running FreeBSD and OpenLISP. The
machine is used at the same time as xTR and as content producer (resp.
consumer). The two machines are connected via a third machine that runs
FreeBSD and dummynet to emulate the links [Riz97].

An Idips server instance runs in each network. At that point, neither
OpenLISP nor Idips are aware of each other. A wrapper runs on each
OpenLISP router to allow LISP to query Idips. The wrapper monitors
the mapping socket and the Idips control plane. When there is an event
concerning an EID of the local OpenLISP’s map table, the wrapper re-
trieves all the RLOCs for that EID and asks the Idips server to rank them.
The resulted ranks are translated into priorities and the EID’s mapping is
updated according to the information given by Idips.

The experiment is divided in four periods (P1 to P4). The RLOCs used
for each period depends on the Idips rankings. During P1, both L1 and
L2 are working properly and Idips optimizes the performance for premium
traffic and minimizes the cost for the light traffic. The beginning of P2

corresponds to the L2 link failure: L2 traffic is diverted to the backup link.
During L2, Idips is not involved and the RLOCs are not modified, premium

34

Client

FTP

L2 Backup
(128Kbps)

L2 (10Mbps)

L1 (2Mbps)

xTR

xTR

Content Producer Content Consumer

Content

Server

Idips

$ $

= =

Client

video

Idips

Figure 16: Case study testbed

traffic is degraded. In P3, Idips is informed of the failure and modifies the
mapping to minimize the cost and avoid backup links. It is worth to notice
that the gap between P1 and P3 is for illustration only, in practice, Idips

can be informed of the topology change at the same time as the backup link
activation (e.g., via SNMP). During P3, the backup link is not used anymore.
Finally, P4 shows what happens if Idips policies are set to the original
premium and light traffic requirements (as during P1). In P4, Idips decides
to divert the light traffic (i.e., FTP) to the backup link and keep premium
traffic on L1 to ensure its QoS requirements while minimizing costs. For
the experiment, IPFW is instantiated on each machine to monitor the link
usage thank to the IPFW statistics [LLB02, Riz97]. The volume monitored
by IPFW correspond to the amount of traffic that crossed the links.

Fig. 17 shows the flows’ dynamic during the different periods. The hor-
izontal axis is the normalized time and the vertical axis the bandwidth (in
Kbps). The best effort traffic consist of a big file transfer using FTP (TCP).
The video is simulated with Iperf. Iperf continuously sends 700 bytes long
UDP segments with a constant rate of 1.7 Mbps.

During P1, both flows are working as expected: the video (premium
customer) encounters a limited jitter and has enough bandwidth (1.7Mbps)
and the cost for FTP (light customer) is minimized. After the failure, dur-
ing P2, the video stream is redirected to the backup link. The video flow
bandwidth falls down to around 100Kbps, which is not sufficient to ensure
QoS (1.4 Mbps is required to ensure QoS requirements). FTP traffic is not
affected by the failure as it is carried by L1. P3 presents the flow bandwidth

35

Figure 17: Evolution of the different flows bandwidth for the different net-
work events.

when all the traffic is diverted on L1. For that period, the policies in Idips

are to avoid backup links. However, this choice does not ensure QoS for the
video as the jitter is important and video bandwidth falls to 1.3Mbps. With
this configuration, video traffic is influenced by the TCP behavior of the
FTP flow. Period P4 shows what happens if Idips is configured to ensure
QoS and minimize costs, thus video is diverted on link L1 as this is the only
one allowing QoS for video. The best effort flow is diverted to L2 backup
link because the costs of using it is lower than the cost of losing QoS for
video.

This test shows that Idips path selection algorithm can take administra-
tive and technical question into account (e.g., minimize costs but maximize
bandwidth). Furthermore, it also shows that the simplicity of Idips allows
to use it in situations where several paths are possible.

5 Evaluation

In this section, we evaluate the performance of our Idips implementa-
tion. We first present the methodology we follow and the testbed we build
(Sec. 5.1). The testbed is based on the Xorp implementation of Idips we

36

Figure 18: Evaluation testbed

discussed in Sec. 3.2. We next discuss the results (Sec. 5.2). In particular,
we focus on the heart of Idips, i.e., the ranking process.

5.1 Methodology

Fig. 18 provides a description of the testbed we build for evaluating
Idips. The server on which Idips is running is a quad-core Xeon E5430 at
2.66GHz. The server has a 6MB processor cache and has 4GB of RAM.
The server runs a Linux 2.6.31-22-server 64 bits distribution. The predicted
values storage is populated with 1,500,000 paths randomly generated, each
path having a single delay randomly assigned in [0, 1000ms]. The cost
function implemented is the minimize delay cf(src, dst).

The client is running a dual-core Xeon 3060 at 2.40GHz, with 5GB of
RAM and a Linux 2.6.32-5 32 bits distribution. If there is a single hardware
representing the client, the machine ensures that 100 instances of the client
are running in parallel. Each client instance sends a request to Idips, each
request containing a source address and a list of destination addresses. Those
destinations are randomly generated but we ensure that roughly 10% of
the randomly generated destinations are not present in the paths stored by
Idips. Each instance of the client is in charged of sending 10,000 requests
to Idips, meaning that a total of 1,000,000 requests are sent to Idips. We
consider the following values for the number of destinations in a request: 1,
2, 5, 10, 50 and 100.

The clients and the Idips server are are attached with a 100Mbps switch.

Each experiment in Sec. 5.2 is repeated ten times. Each data point
represents the mean value over ten runs of the experiment, the clients and the
server process being rebooted before each run. We determine 95th confidence
intervals for the mean based, since the sample size is relatively small, on the
Student t distribution. These intervals are typically, though not in all cases,

37

too tight to appear on the plots.

5.2 Results

Fig. 19 shows the Idips service time from the client perspective. In
particular, Fig. 19(a) gives the time (in ms) between each request and the
associated reply for a particular run when the client request contains ten
destinations. Fig. 19(a) shows how Idips is stable over transactions, no
drift is observed.

Fig. 19(b) shows the Idips time distribution as quantiles. The dotted
line represents the median value, while the box plot gives the minimum and
95th percentile values as well as the 25th and 75th percentiles.

Obviously, the Idips service time increases with the number of paths (i.e.,
the number of destinations in this example) induced by the client requests.
The service time linearly increases with the number of paths. The linear
dependency is the result of the conversion of the list received from the client
in text into a binary format into the querying module implementation, the
construction of the possible paths and the cost computation for each of
such paths. The cost function having a temporal complexity of O(1), the
total complexity is O(s ∗ d) = O(n) where s is the number of sources in
the request, d, the number of destinations and n the number of paths. In
our experiment, s = 1 making n = d. In addition, the bigger the number
of destinations, the less stable the service time as suggested by the service
time distribution amplitude. The higher dispersion observed for the list of
one destination can be explained by the overhead caused by the switching
between the Xorp processes (i.e., the finder and the querying module).

Fig. 20 breaks the Idips service time down into three categories: the
network delay (labeled “network” - descending line pattern portion of the
stacked bars), the path ranking (labeled “IDIPS” - ascending dashed line
pattern portion of the stacked bars), and the internal Xorp processing (la-
beled “Xorp” - descending dashed line pattern portion of the stacked bars).
For plotting those results, we consider the median value among the ten runs.
Instead of plotting the median value of the service time, we rather consider
the time proportion of each category.

The time consumed by the network is negligible. This is due to clients
and server, in our testbed, are separated by a single switch. However, as the
Idips server is supposed to be deployed within a campus or an ISP network
(in the fashion of DNS service), one can imagine that the required network
time (i.e., time spend in the network between the client and the server and
vice-versa) would be very close to what we experienced in our testbed.

In general, the time spent in the whole ranking process in Idips increases
linearly with the number of paths from the requests. With about only 12% to
20% of the time spent building the list to return to the client once the costs
are computed. The rest being spent by the cost computation and attribute

38

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 200000 400000 600000 800000 1e+06

s
e
rv

ic
e
 t
im

e
 (

in
 m

s
)

transaction id

(a) service time stability - destinations=10

 0

 10

 20

 30

 40

 50

 60

 70

1 2 5 10 50 100

s
e
rv

ic
e
 t
im

e
 (

in
 m

s
)

destinations

(b) service time distribution

Figure 19: Idips service time as perceived by the client

retrieval. The internal Xorp processing represents most of the service time

39

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 5 10 50 100

ti
m

e
 p

ro
p
o
rt

io
n

destination

network IDIPS XORP

Figure 20: Proportion of the service time split - median over the ten runs

(around 90%) and is also linearly dependent with the number of paths from
the requests. The time spent directly in the Xorp internals is mostly due
because of the marshaling and unmarshaling of the XRLs and the context
switching between the finder and the querying module (remember that the
XRLs are always processed by the finder.

Fig. 21 shows the load on Idips in term of requests/second number. Ob-
viously, the capacity of Idips to process requests decreases with the request
size. It is a normal behavior as large requests require more processing time,
in terms of Idips (typically more cost function to evaluate and, thus, more
lookup into the predicted values storage) and internal Xorp processing (as
already suggested by Fig. 20).

We also notice that, in the worst case (i.e., 100 destinations per request),
Idips can still process more request per second than what could be required
for peer-to-peer applications [GCX+05].

6 Related Work

In 2007, when we started to design Idips P2P optimization was not an
objective [SDIB08]. However, Idips can help to select the best peers in
P2P systems. Despite the fact that we do not use Idips for P2P traffic
optimization, most of the Idips related work are in that field.

40

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 5 10 50 100

#
re

q
/s

e
c

destinations

Figure 21: Load on Idips without XRL

Bindal et al. show by simulation that biasing the peer choice in P2P
can improve the overall performance [BCC+06]. On the one hand, down-
load times can be reduced and on the other hand ISPs can reduce their
operational costs. This simulation based study shows that an informed peer
selection gives better results than an unbiased peer selection when using
Bittorrent [PGES05].

Aggarwal et al. [AFS07] propose an oracle service very similar to Idips

that would be configured by the network operator and queried by P2P appli-
cations [AFS07]. The underlying assumption in oracle is that traffic would
be optimized by letting ISPs and P2P clients collaborate. The oracle is
a server operated by the network operator. When a P2P client needs to
select peers in a swarm, it sends the list of peer’s IP addresses to the ora-
cle. The oracle returns these addresses labeled with a rank. The way the
rank is computed by the oracle is hidden to the clients. The paper shows
that preferring peers within the local AS increases the overall performance
and should reduce the operational costs for the ISP as the traffic tends to
remains local. [AFS07] characterizes performance metrics to evaluate the
benefits of using a biased peer selection like oracle. While the oracle limits
the ranking to destination addresses, Idips proposes to rank paths or even
groups of paths, using prefixes. Another difference between the oracle and
Idips is the ranking scope: the oracle ranking is limited to local or peering
domains while such a limitation does not exists in Idips.

41

Choffnes and Bustamante [CB08], as opposed to the oracle approach [AFS07],
propose a biased peer selection in P2P without the need of a specific infras-
tructure. Instead, Choffnes and Bustamante propose Ono that uses the
information that are already available within commercial CDNs. In general,
CDNs like Akamai 5 and Limelight 6 control the traffic from the clients by
using the DNS. To be simple, depending on the client location, the DNS
replies for a name are different. By periodically resolving names for CDNs
servers, the peers can build an abstracted representation of the relations
they have with these CDNs, this representation is called the behavior map.
Each Ono-enabled peer resolves the name of the same 6 well chosen CDN
names. The corresponding C-class prefix is considered instead of the ad-
dresses. Indeed CDNs often have several servers in the same data-center
and the servers are grouped in C-class prefixes. The addresses belonging to
the same C-class prefix can be safely considered as belonging to the same
datacenter. The peers do the resolution several times to determine the dy-
namic of the change in the CDN name map. Two peers ”close” to one name
will have the same dynamics in the CDN map. In addition, to the change
ratio of the CDN names in the map, the peers ping the returned addresses.
The measured delay is used to weight the map according to the delay with
the servers. When a peer must select another peer, it will chose a peer
that presents a similar weight ratio map. The RTT weighting relies on the
principle that the closer two peers are, the more likely the name will be
resolved in the same /24 subnet. and the delay to the server for a given
name will be close as well. The deployment of Ono on hundred of thousands
nodes shows that doing so can reduce the average delay and increase the
download rate by about 30%. It also shows that in 33% of the cases, the
chosen peers were within the local ISP. The major difference between Idips

and Ono is that no specific infrastructure must be deployed for the service
to work. However, the reduction of inter-AS cost is only a side effect of the
optimization of the perceived client performance. Ono does not leverage an
ISP P2P collaboration.

Xie et al. propose P4P [XYK+08]. P4P provides topology hints to P2P
clients. In P4P, the topology and policies are abstracted into the p-distance.
The p-distance summarizes the metrics that are relevant for the operator
and is used by ISPs to communicate their preferences and status for the
traffic. The application uses the p-distance to create an abstracted view of
the network connectivity. The applications can then select their destinations
based on the minimal p-distance in the abstracted network view. ISPs,
or third parties, maintain iTrackers to communicate the p-values. These
iTrackers are contacted by P2P clients to compute the set of the best swarm
peers. The iTrackers are used to retrieve the policy information, the p-values

5http://www.akamai.com
6http://www.limelightnetworks.com

42

but also the network capabilities.

During the mid 2000ies, network operator started to complain about
the operational cost of supporting P2P traffic [Lig, She, KTCI04]. Indeed,
the P2P overlays do not take the underlay network topology into account
and neighbors are in general selected at random. Therefore, it is possi-
ble that a packet sent by a peer in an AS A to a peer in the same AS
follows a path that crosses several times the network boundaries, possibly
via provider links. Providers have then started to block P2P traffic or to
limit the bandwidth for P2P flows. However, P2P application now rely on
encryption or simply behave like HTTP to masquerade their traffic. The
problems faced by the ISPs is because ISPs are black boxes and it is hard
for a client application to know the peers that are efficient but not harmful
for its ISP. Industry and academy started to collaborate on a solution for
this problem with an IETF P2P Workshop meeting specially hold in May
2008 in Boston.7 During this workshop researchers and operators were in-
vited to present position papers about the problem and the solutions they
though to be good for this. The conclusion of the workshop is that P2P and
ISPs must collaborate somehow. Some proposed to add caches and install
the trackers inside the ASes, but this would have caused legal issues as it
is known that P2P traffic is mostly used for illegal content. As a result,
the Application-Layer Traffic Optimization (ALTO) [SB09] Working Group
as been set up at the IETF. ALTO aims at designing and specifying ser-
vices helping applications such as peer-to-peer, content delivery networks,
and mirror selection, to select the best peers. Factors of interest in this
selection are, among others, maximum bandwidth, minimum cross-domain
traffic, lowest cost to the user, etc. ALTO is a mix of the best features
of P4P, oracle and Idips with additional contributions. Clearly, Idips is in
line with the ALTO Working Group thematic. However, while we have been
actively working in the ALTO working group at its beginning [AFP+09] to
make sure that the protocol would be able to support IP prefixes, names or
AS numbers, we have chosen not to implement the ALTO protocol in Idips

because many features are P2P related and because ALTO is closer to P4P
than to oracle or Idips. Nevertheless, Idips could be adapted to implement
the ALTO service as it meets most of the ALTO requirements [KPS+11].

As opposed to oracle, Ono, P4P and ALTO in general, Idips is not
designed specifically for P2P. Idips is an extension of the NAROS Name,
Address and ROute System (NAROS) server that has been designed for mul-
tihoming IPv6 host-centric traffic engineering in the early 2000 [dLBL03].
NAROS was proposed to select the best source address in multihomed IPv6
sites. A NAROS client sends a request to a NAROS server with the des-
tination address it aims to use and the list of its source addresses. The
server returns the best source address to use for the destination. The pre-

7http://www.funchords.com/p2pi/

43

fix of the destination is also returned to avoid a client requesting several
times the server for destinations within the same prefix and that would thus
have the same result. The major difference between Idips and NAROS
is that Idips return all the possible aggregated <source,destination> pairs
and ranks them. This change allows Idips to be used equally for incoming
and outgoing traffic engineering and enables the use of multi-path routing
or transport.

A proposal that shares objectives similar to Idips is Morpheus [WAR07],
which determines the best path to use according to the operator policies and,
then, sends BGP updates to its BGP router target (via multihop eBGP).
Like Idips, Morpheus is very modular but is restricted to BGP as the sig-
naling is performed using BGP messages while Idips has its own messaging
format, allowing a finer-grained interaction between the client and the path
selection service.

Finally, a number of vendors have proposed proprietary path selection
solution ([Int05, Ava05, Rad, Cis]). These solutions all follow the same
principle. Specialized boxes are deployed in the network and monitor it
actively, passively or both. The measurements are combined with policies
to determine the quality of the different routes. Based on the observations
and the configuration, the boxes can inject prefixes into BGP to influence
the incoming traffic but they can also modify link costs in the IGP or inject
partial BGP tables into it to control the outgoing traffic as well. Finally,
NAT can be used to ensure that some flows enter the network via a given
link.

7 Conclusion

The Internet is evolving. During this last decade, we have seen the
emergence of applications having more and more requirements in terms of
delay, jitter,or bandwidth. In addition, the single path assumption between
a source and a destination does not hold anymore. As a consequence, the
applications can use several paths to retrieve their content. It might thus be
interesting to provide those applications a service for selecting their paths
better than randomly, i.e., a service for selecting paths that meet applica-
tions requirements.

In this chapter, we proposed an Informed Path Selection Service (Idips),
that is able to rank paths. Idips is a generic, scalable, lightweight and easily
deployable solution allowing ISPs, enterprises, or campus networks to qualify
paths between a source and a set of destinations. Idips makes use of passive
and active measurements to keep track of the network conditions.

In this chapter, we have shown that Idips can be used to enable perfor-
mance based incoming traffic engineering with LISP.

We discussed our Idips implementation inside Xorp and focused on

44

simple cost function (i.e., the way Idips assigns a cost to a path) construction
and how to combine them to reflect more complex ranking strategies. We
built a testbed and evaluated the performance of Idips. In particular, we
focused on the heart of Idips, the ranking process. We demonstrated that
Idips is robust as it is able to process a large number of requests/second
while providing a stable response time to the client.

Acknowledgments

This work is supported by the ECODE European Project

References

[AAS03] A. Akella, Shaikh A., and R. Sitaraman. A measurement-based
analysis of multihoming. In Proc. ACM SIGCOMM, August
2003.

[ACK03] S. Agarwal, C-N. Chuah, and R. H. Katz. OPCA: Robust
interdomain policy routing and traffic control. In Proc. IEEE
Conference on Open Architecture and Network Programming
(OPENARCH), April 2003.

[AFP+09] O. Akonjang, A. Feldmann, S. Previdi, B. Davie, and
D. Saucez. The PROXIDOR Service. Internet draft, draft-
akonjang-alto-proxidor-00, work in progress, March 2009.

[AFS07] V. Aggarwal, A. Feldmann, and C. Scheideler. Can ISPs and
P2P users cooperate for improved performance. ACM SIG-
COMM CCR, 37(3):29–40, July 2007.

[Aka] Akamai. Web application acceleration and performance man-
agement, streaming media services, and content delivery. See
http://www.akamai.com.

[AKZ99] G. Almes, S. Kalidindi, and M. Zekauskas. A Round-trip Delay
Metric for IPPM. RFC 2681 (Proposed Standard), September
1999.

[AMS+08] A. Akella, B. Maggs, S. Seshan, A. Shaikh, and R. Sitara-
man. On the performance benefits of multihoming route con-
trol. IEEE Transactions on Networking, 16(1):96–104, Febru-
ary 2008.

[APS04] A. Akella, J. Pang, and A. Shaikh. A Comparison of Overlay
Routing and Multihoming Route Control. In Proceedings of
ACM SIGCOMM, Portland, Oregon, August 2004.

45

[Ava05] Avaya. Adaptative networking software (ANS), 2005.

[BCC+06] Ruchir Bindal, Pei Cao, William Chan, Jan Medved, George
Suwala, Tony Bates, and Amy Zhang. Improving traffic locality
in bittorrent via biased neighbor selection. In Proceedings of the
26th IEEE International Conference on Distributed Computing
Systems, ICDCS ’06, pages 66–, Washington, DC, USA, 2006.
IEEE Computer Society.

[CB08] David R. Choffnes and Fabián E. Bustamante. Taming the tor-
rent: a practical approach to reducing cross-isp traffic in peer-
to-peer systems. In Proceedings of the ACM SIGCOMM 2008
conference on Data communication, SIGCOMM ’08, pages 363–
374, New York, NY, USA, 2008. ACM.

[CCRK04] M. Costa, M. Castro, R. Rowstron, and P. Key. PIC: Practi-
cal Internet coordinates for distance estimation. In Proc. 24th
International Conference on Distributed Computing Systems,
March 2004.

[CGG+04] Don Caldwell, Anna Gilbert, Joel Gottlieb, Albert Greenberg,
Gisli Hjalmtysson, and Jennifer Rexford. The cutting edge of
ip router configuration. SIGCOMM Comput. Commun. Rev.,
34:21–26, January 2004.

[CH10] X. Cai and J. Heidemann. Understanding block-level address
usage in the visible Internet. In Proc. ACM SIGCOMM, August
2010.

[Cis] Cisco Systems. Optimized edge routing (EOR).

[Cla04] B. Claise. Cisco Systems NetFlow Services Export Version 9.
RFC 3954 (Informational), October 2004.

[CLH03] K. Cho, M. Luckie, and B. Huffaker. Identifying IPv6 network
problems in the dual-stack world. In Proc. ACM SIGCOMM
Workshop on Network Troubleshooting, September 2003.

[DCKM04] F. Dabek, R. Cox, K? Kaashoek, and R. Morris. Vivaldi, a
decentralized network coordinated system. In Proc. ACM SIG-
COMM, August 2004.

[DD06] Amogh Dhamdhere and Constantinos Dovrolis. Isp and egress
path selection for multihomed networks. In IEEE INFOCOM,
2006.

[DHKS09] Xenofontas Dimitropoulos, Paul Hurley, Andreas Kind, and
Marc Stoecklin. On the 95-percentile billing method. In Passive
and Active Measurements Conference (PAM), April 2009.

46

[dLBL03] C. de Launois, O. Bonaventure, and M. Lobelle. The NAROS
Approach for IPv6 Multi-homing with Traffic Engineering. In
Proceedings of QoFIS, LNCS 2811, Springer-Verlag, pages 112–
121, October 2003.

[dLUB05] C. de Launois, S. Uhlig, and O. Bonaventure. Scalable route
selection for IPv6 multihomed sites. In Proc. IFIP Networking,
May 2005.

[Dra03] R. Draves. Default address selection for Internet protocol ver-
sion 6 (IPv6). RFC 3484, Internet Engineering Task Force,
February 2003.

[FFM03] M. J. Freedman, E. Freudenthal, and D. Maziéres. Democratiz-
ing content pulication with coral. In Proc. USENIX Symposium
on Networked Systems Design and Implementation (NSDI),
May 2003.

[FJP+99] P. Francis, S. Jamin, V. Paxson, L. Zhang, D. F. Gruniewicz,
and Y. Jin. An architecture for a global Internet host distance
estimator service. In Proc. IEEE INFOCOM, March 1999.

[GCX+05] Lei Guo, Songqing Chen, Zhen Xiao, Enhua Tan, Xiaoning
Ding, and Xiaodong Zhang. Measurements, analysis, and
modeling of bittorrent-like systems. In Proceedings of the 5th
ACM SIGCOMM conference on Internet Measurement, IMC
’05, pages 4–4, Berkeley, CA, USA, 2005. USENIX Associa-
tion.

[GDZ06] R. Gao, C. Dovrolis, and E. Zegura. Avoiding oscillations due
to intelligent route control systems. In Proc. IEEE INFOCOM,
April 2006.

[HHK03] Mark Handley, Orion Hodson, and Eddie Kohler. Xorp: an
open platform for network research. SIGCOMM Comput. Com-
mun. Rev., 33:53–57, January 2003.

[Int05] Internap. Premise-base route optimisation, 2005.

[ISB11] Luigi Iannone, Damien Saucez, and Olivier Bonaventure.
Implementing the locator/id separation protocol: Design
and experience. Computer Networks, 2011. To appear,
http://dx.doi.org/10.1016/j.comnet.2010.12.017.

[KKSB07] Srikanth Kandula, Dina Katabi, Shantanu Sinha, and Arthur
Berger. Dynamic load balancing without packet reordering.
SIGCOMM Comput. Commun. Rev., 37:51–62, March 2007.

47

[KKY03] R. Katz, K. Kompella, and D. Yeung. Traffic Engineering
(TE) Extensions to OSPF Version 2. Internet Engineering Task
Force, RFC3630, September 2003.

[KPS+11] S. Kiesel, S. Previdi, M. Stiemerling, R. Woundy, and Y r.
Yang. Application-Layer Traffic Optimization (ALTO) Re-
quirements. Internet Draft (Work in Progress) draft-ietf-alto-
reqs-08, Internet Engineering Task Force, March 2011.

[KRP05] T. Karagiannis, P. Rodriguez, and K. Papagiannaki. Should
Internet service providers fear peer-assisted content distribu-
tion. In Proc. Internet Measurement Conference (IMC), Octo-
ber 2005.

[KTCI04] R Keralapura, N Taft, C N Chuah, and G Iannaconne. Can
isps take the heat from overlay networks? In Proceedings of the
3rd Workshop on Hot Topics in Networks (HotNets-III), San
Diego,, 2004.

[LGP+05] E. K. Lua, T. Griffin, M. Pias, H. Zheng, and J. Crowcroft. On
the accuracy of embeddings for Internet coordinate systems.
In Proc. USENIX Internet Measurement Conference (IMC),
October 2005.

[LGS07] J. Ledlie, P. Gardner, and M. I. Seltzer. Network coordinates in
the wild. In Proc. USENIX Symposium on Networked System
Design and Implementation (NSDI), April 2007.

[LHC03] H. Lim, J. C. Hou, and C.-H. Choi. Constructing internet
coordinate system based on delay measurement. In Proc. ACM
SIGCOMM Internet Measurement Conference (IMC), October
2003.

[LHC05] H. Lim, J. C. Hou, and C-H. Choi. Constructing Internet coor-
dinate system based on delay measurement. IEEE/ACM Trans-
actions on Networking, 13(3):513–525, June 2005.

[Lig] Light Reading. Controlling P2P Traffic. http:

//www.lightreading.com/document.asp?site=

lightreading&doc_id=44435&page_number=3.

[Lim] Limelight Networks. High performances content delivery net-
work for digital media. See http://www.limelightnetworks.

com/.

[LLB02] Kurt J. Lidl, Deborah G. Lidl, and Paul R. Borman. Flexible
packet filtering: providing a rich toolbox. In Proceedings of the

48

BSD Conference 2002 on BSD Conference, BSDC’02, pages
11–11, Berkeley, CA, USA, 2002. USENIX Association.

[LPS06] J. Ledlie, P. Pietzuch, and M. I. Seltzer. Stable and accurate
network coordinates. In Proc. International Conference on Dis-
tributed Computing Systems, July 2006.

[MFHK08] A. Matsumoto, T. Fujisaki, R. Hiromi, and K. Kanayama.
Problem Statement of Default Address Selection in Multi-prefix
Environment: Operational Issues of RFC3484 Default Rules.
Internet Draft (Work in Progress) draft-ietf-v6ops-addr-select-
ps-05, Internet Engineering Task Force, April 2008.

[MS04] Y. Mao and L. Saul. Modeling distances in large-scale networks
by matrix factorization. In Proc. ACM SIGCOMM Internet
Measurement Conference (IMC), October 2004.

[NB09] E. Nordmark and M. Bagnulo. Shim6: Level 3 Multihoming
Shim Protocol for IPv6. RFC 5533 (Proposed Standard), June
2009.

[NZ02] T. Ng and H. Zhang. Predicting Internet network distance with
coordinates-based approaches. In Proc. IEEE INFOCOM, June
2002.

[NZ04] T. S. E. Ng and H. Zhang. A network positioning system for
the Internet. In Proc. USENIX Annual Technical Conference,
June 2004.

[Pap07] V. Pappas. Coordinate-based routing for overlay networks. In
Proc. International Conference on Computer Communications
and Networks (ICCCN), August 2007.

[PCW+03] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti.
Lighthouses for scalable distributed location. In Proc. 2nd
International Workshop on Peer-to-Peer Systems (IPTPS),
February 2003.

[PGES05] Johan Pouwelse, PaweÃl Garbacki, Dick Epema, and Henk Sips.
The Bittorrent P2P File-Sharing System: Measurements and
Analysis. In Miguel Castro and Robbert van Renesse, edi-
tors, Peer-to-Peer Systems IV, volume 3640 of Lecture Notes in
Computer Science, chapter 19, pages 205–216. Springer Berlin
/ Heidelberg, Berlin, Heidelberg, 2005.

[PLMS06] P. Pietzuch, J. Ledlie, M. Mitzenmacher, and M. Seltzer.
Network-aware overlays with network coordinates. In Proc.

49

IEEE International Conference on Distributed Computed Sys-
tems Workshops (ICDCSW), July 2006.

[Rad] Radware. http://www.radware.com.

[Riz97] L. Rizzo. Dummynet: a simple approach to the evaluation of
network protocols. ACM SIGCOMM Computer Communica-
tion Review, 27(1):37–41, January 1997.

[RMK+08] V. Ramasubramanian, D. Malhki, F. Kuhn, I. Abraham,
M. Balakrishnan, A. Gupta, and A. Akella. A unified network
coordinate system for bandwidth and latency. Technical Report
MSR-TR-2008-124, Microsoft Research, September 2008.

[SAA+99] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell,
A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and
J. Zhorjan. Detour: Informed internet routing and transport.
IEEE Micro, 19(1):50–59, January/February 1999.

[SB09] J. Seedorf and E. Burger. Application-Layer Traffic Optimiza-
tion (ALTO) Problem Statement. RFC 5693 (Informational),
October 2009.

[SDB09] Damien Saucez, Benoit Donnet, and Olivier Bonaventure. On
the impact of clustering on measurement reduction. In Net-
working, pages 835–846, 2009.

[SDIB08] D. Saucez, B. Donnet, L. Iannone, and O. Bonaventure. In-
terdomain traffic engineering in a locator/identifier separation
context. In Proc. IEEE Internet Network Management Work-
shop (INM), October 2008.

[She] Shen. HPTP: Relieving the Tension between ISPs and P2P.
IPTPS’07.

[ST03] Y. Shavitt and T. Tankel. Big-bang simulation for embedding
network distances in euclidean space. In Proc. IEEE INFO-
COM, March 2003.

[WAR07] Y. Wang, I. Avramopoulos, and J. Rexford. Morpheus: Making
routing programmable. In Proc. ACM SIGCOMM Workshop
on Internet Network Management (INM), August 2007.

[WSR09] Yi Wang, Michael Schapira, and Jennifer Rexford. Neighbor-
specific bgp: more flexible routing policies while improving
global stability. In Proceedings of the eleventh international
joint conference on Measurement and modeling of computer
systems, SIGMETRICS ’09, pages 217–228, New York, NY,
USA, 2009. ACM.

50

[WSS05] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: a lightweight
network location service without virtual coordinates. In Proc.
ACM SIGCOMM, August 2005.

[XYK+08] H. Xie, Y. Yang, A. Krishnamurthy, Y. Liu, and A. Silber-
schatz. P4P: Provider portal for applications. In Proc. ACM
SIGCOMM, Agust 2008.

[YRCR04] Ming Yang, X. Rong, Li Huimin Chen, and Nageswara S. V.
Rao. Predicting internet end-to-end delay: an overview. In
in Proc. of 36th IEEE Southeastern Symposium on Systems
Theory, pages 210–214, 2004.

[ZJUVM07] X. Zhou, M. Jacobsson, H. Uijterwaal, and P. Van Mieghem.
IPv6 delay and loss performance evolution. International Jour-
nal of Communication Systems, 21(6), June 2007.

51

