
IEEE COMMUNICATIONS MAGAZINE: NETWORK TESTING SERIES, MARCH 2016 1

Observing Real Smartphone Applications over
Multipath TCP

Quentin De Coninck [1], Matthieu Baerts [2], Benjamin Hesmans [1], Olivier Bonaventure [1]
[1]ICTEAM, Universite catholique de Louvain, Louvain-la-Neuve, Belgium

[2]Tessares, Louvain-la-Neuve, Belgium
[1] first.last@uclouvain.be

[2] matthieu.baerts@tessares.net

Abstract �A large fraction of the smartphones have
both cellular and WiFi interfaces. Despite of this,
smartphones rarely use them simultaneously because
most of their data tra�c is controlled by TCP which
can only use one interface at a time. Multipath TCP is
a recently standardized TCP extension that solves this
problem. Smartphone vendors have started to deploy
Multipath TCP, but the performance of Multipath
TCP with real smartphone applications has not been
studied in details yet. To �ll this gap, we port Multipath
TCP on Android smartphones and propose a frame-
work to analyze the interactions between real network-
heavy applications and this new protocol. We use eight
popular Android applications and analyze their usage
of the WiFi and cellular networks (especially 4G/LTE).

I. Introduction

SMARTPHONES are the most popular mobile multi-
homed devices. Many users expect that their smart-

phones will be able to seamlessly use all available WiFi
and cellular networks. Unfortunately, reality tells us that
seamless coexistence between cellular and WiFi is not
as simple as what users would expect despite the huge
investments in both cellular and WiFi networks by large
network operators.

Several cellular/WiFi coexistence technologies have
been proposed during the last years [1]. Some of them
have been deployed. Recently, Multipath TCP [2] received
a lot of attention when it was selected by Apple to sup-
port its voice recognition (Siri) application. Siri leverages
Multipath TCP to send voice samples over both WiFi and
cellular interfaces to cope with various failure scenarios. As
of this writing, Siri is the only deployed smartphone appli-
cation that explicitly uses Multipath TCP. But there is no
public information about the bene�ts of using Multipath
TCP with it. In July 2015, Korea Telecom announced at
IETF 93 that they use Multipath TCP on the Samsung
Galaxy S6 smartphones to provide their users a higher
bandwidth.

c 2016 IEEE. Personal use of this material is permitted. Per-
mission from IEEE must be obtained for all other users, including
reprinting/ republishing this material for advertising or promotional
purposes, creating new collective works for resale or redistribution to
servers or lists, or reuse of any copyrighted components of this work
in other works.

Multipath TCP is a TCP extension that allows sending
data from one end-to-end connection over di�erent paths.
On a smartphone, Multipath TCP allows the applications
to simultaneously send and receive data over both WiFi
and cellular interfaces. It achieves this objective by estab-
lishing one TCP connection, called sub�ow in [2], over each
interface. Once the sub�ows are established, data can be
sent over any of the sub�ows thanks to the Multipath TCP
scheduler. Researchers have analyzed the performance of
Multipath TCP in such hybrid networks [3], [4], [5], [6].
Their measurements show that Multipath TCP can indeed
provide bene�ts by pooling network resources or enabling
seamless handovers. However, these analyses were per-
formed with bulk transfers between laptops and servers.
As of this writing, no detailed analysis of the performance
of real smartphone applications with Multipath TCP has
been published.

We �ll this gap in this paper by presenting two main
contributions that improve our understanding of the inter-
actions between smartphone applications and the protocol
stack. After a brief overview of Multipath TCP, we �rst
propose a measurement methodology that automates user
actions on Android smartphone applications. These ac-
tions trigger the creation of real connections. We then an-
alyze how eight popular smartphone applications interact
with Multipath TCP under di�erent network conditions
with both WiFi and cellular networks. Our measurements
indicate that Multipath TCP works well with existing
smartphone applications. Finally, we summarize the key
lessons learned from this analysis.

II. Multipath TCP and Related Work

Multipath TCP is a recent TCP extension that enables
the transmission of the data belonging to one connec-
tion over di�erent paths or interfaces [2]. A Multipath
TCP connection is a logical association that provides a
bytestream service. Compared to other multi-path trans-
port layer solutions such as SCTP, Multipath TCP can
be deployed on TCP-compatible networks. To request the
utilization of Multipath TCP, the smartphone adds the
MP_CAPABLEoption in SYNsegment sent over itsdefault
interface (for instance, WiFi). This option contains some
�ags and a key [2]. If the server supports Multipath TCP,
it includes its key in the MP_CAPABLEoption sent in the



IEEE COMMUNICATIONS MAGAZINE: NETWORK TESTING SERIES, MARCH 2016 2

SYN+ACK. According to the Multipath TCP terminology,
this TCP connection is called the initial sub�ow [2]. The
smartphone can use it to exchange data over the WiFi in-
terface. If the smartphone also wants to send data for this
connection over its cellular interface, it sends a newSYN
segment with the MP_JOINoption over this interface. This
option contains a token derived from the key announced by
the server in the MP_CAPABLEoption. This token identi�es
the Multipath TCP connection on the server side. The
server replies with a SYN+ACKcontaining the MP_JOIN
option and the second sub�ow is established. Multipath
TCP sends data over any of the available sub�ows. Two
levels of sequence numbers are used by Multipath TCP :
the regular TCP sequence number and the Data Sequence
Number (DSN). The DSN is associated to the bytestream.
When data is sent over a sub�ow, its DSN is mapped
to the regular sequence numbers with theDSSoption
that also contains DSN acknowledgements. When losses
occur, Multipath TCP can retransmit data over a di�erent
sub�ow. To achieve that, the device sends on another
sub�ow a packet with the same DSN containing data.
This operation is called a reinjection [7]. Although at
sub�ow level it looks like a new packet, a reinjection can be
detected by looking at its DSN to see if it was previously
sent on another sub�ow.

The operation of a Multipath TCP implementation
depends on several algorithms that are not standardized
by the IETF. First, the path managerde�nes the strategy
used to create and delete sub�ows. Second, thepacket
scheduler [8] selects, among the active sub�ows that have
an open congestion window, the sub�ow that will be used
to send the data.

Various researchers have analyzed the performance of
Multipath TCP through measurements. Raiciu et al. [9]
discuss how Multipath TCP can be used to support mobile
devices and provide early measurement results. Chen et
al. [4] analyze the performance of Multipath TCP in
WiFi/cellular networks by using bulk transfer applications
running on laptops. Deng et al. [6] compare the perfor-
mance of single-path TCP over WiFi and LTE networks
with Multipath TCP on multi-homed devices by using
active measurements and replaying HTTP tra�c observed
on mobile applications. They show that Multipath TCP
provides bene�ts for long �ows but not for short ones, for
which the selection of the interface for the initial sub�ow
is important from a performance viewpoint.

A. Multipath TCP on Android smartphones

Several backports of the Multipath TCP kernel on
Android smartphones were released in the last years.
However, these ports were often based on old versions
of the Multipath TCP kernel. For this work, we rely on
a backport of the latest version 0.89v5 of the Multipath
TCP Linux kernel 1 on a Nexus 5 running Android 4.4.4.
It should be noted that the Linux kernel used on such
Android devices is tweaked to use only one interface

1Available from www.multipath-tcp.org

Figure 1. High-level view of the test framework.

at a time. We disable this function and con�gure the
kernel to be able to simultaneously use two interfaces.
The Multipath TCP kernel controls the utilization of the
available interfaces thanks to a path manager. We use the
Full Mesh path manager that creates a sub�ow over all
network interfaces for each established TCP connection.
To spread packets over the available paths, we use the
default RTT-based scheduler [8] which sends packets over
the available path with the lowest Round-Trip-Time.

Most popular smartphone applications use TCP to in-
teract with servers managed by the application developers.
As of this writing, it has not been possible to convince
them to install Multipath TCP on their servers. To over-
come this issue, we con�gure the smartphone to use a
Multipath TCP capable SOCKS proxy server for all its
connections as shown in Fig. 1. This is exactly the same
setup as the one that was launched commercially in Korea
in June 2015. Each (Multipath) TCP connection initiated
by the smartphone is thus redirected to, and terminated
at, the proxy server. The proxy server then establishes
a regular TCP connection to the server. Thanks to this
setup, the smartphone can use Multipath TCP over the
cellular and WiFi interfaces while interacting with legacy
servers via the proxy. The SOCKS server itself uses Shad-
owSocks and is con�gured to use the minimum encryption
scheme to reduce the overhead. The other settings are set
to the recommended values2. On the smartphone, we use
the standard Android ShadowSocks client.

III. Automating measurements

In order to collect a large number of measurements, we
developed a test framework that automates the interac-
tions with these applications3. A high-level overview is
shown on Fig. 1. On this basis, we identify two main tasks:
controlling devices and mimicking user interaction.

The devices are controlled by Python and shell scripts
(3100 lines split into di�erent modules). Our controller
checks their availability of the smartphones and the wire-
less networks, collects packet traces and modi�es settings
such as the protocol (either TCP or Multipath TCP)
or the interfaces (WiFi, cellular or both) used by the
smartphone. It was designed to be reusable, modular using

2See http://shadowsocks.org/en/con�g/advanced.html
3Results are reproducible, instructions are publicly available. See

http://github.com/MPTCP-smartphone-thesis/uitests

www.multipath-tcp.org
http://shadowsocks.org/en/config/advanced.html
http://github.com/MPTCP-smartphone-thesis/uitests


IEEE COMMUNICATIONS MAGAZINE: NETWORK TESTING SERIES, MARCH 2016 3

parameters and to cope with unexpected situations caused
by unreliability of this kind of devices.

User interactions are simulated through application UI
tests to produce each high-level scenario. Each of the eight
selected applications has its own UI test. These UI tests
are implemented by using the MonkeyRunner Android
UI testing tool. Each unit test is implemented as a new
program and all of them use a sharedUtils class. Thanks
to this class, our framework allows to build a scenario
with less than a few hundred lines of code. Each test
was designed to resist di�erent unusual situations, such
as the failure of the smartphone, the failure of one of
the wireless networks or unexpected reaction of the ap-
plication. The measurements presented in this article were
performed with the versions of the applications released on
November 15th , 2014. To avoid network optimization and
have repeatable measures, cached �les are deleted when
launching our tests.

All the tests described in this paper were performed
during the night to reduce interferences with other users
on the networks. The WiFi network was provided by a
controlled router with an 802.11n interface on the 5 GHz
frequency band with a bit rate of 65 to 72 Mbps. The
router was connected with a 100 Mbps link to the uni-
versity network. We ensured that no other WiFi network
was emitting in this frequency band in the building. The
cellular network is a commercial one and we con�gured
either 3G or 4G on the smartphone. The test scenarios
were run in a random order each day to limit correlation
of the results with the time at which they were launched.

A. Test scenarios

Now, we provide an overview of the scenarios used
to generate network tra�c. Our test scenarios can be
split into two categories: upload intensive scenarios and
download intensivescenarios. Each test takes less than 120
seconds.

1) Upload intensive: We �rst consider two interactive
applications: Facebook and Messenger. With the Facebook
application, our test �rst updates the news feed, then
writes a new status, takes and shares a new photo with
a description and �nally performs a new check out status.
With Messenger, it sends a text message, then puts a smi-
ley and �nally sends a new photo. Then we consider two
cloud storage applications: Dropbox and Google Drive. For
both, we create a fresh �le containing 20 MB of purely
random data and upload it.

2) Download intensive: First, we use Firefox to browse
the main page of the top 12 Alexa web sites with an empty
cache. Our second application is Spotify. This is a music
delivery application. The test plays a new music (shu�e
play feature) for 75 seconds. Finally, we consider two
popular video streaming applications: Dailymotion and
Youtube. For both applications, we play three di�erent
videos in the same order and watch them for 25 seconds.
Those videos are available in HD and we fetch the best
possible quality even when using cellular networks.

Figure 2. Duration and data transferred by the smartphone appli-
cations.

We used these applications on the testbed shown in
Fig. 1. This setup allows us to capture all the packets
sent by both the smartphone and the SOCKS server. We
captured more than 110000 connections over about 1400
di�erent tests conducted in February and March 2015
carrying more than 15 GBytes of data. The entire dataset
is publicly available4.

IV. Measurements

We use our test framework to analyze the interactions
between smartphone applications and the network under
various conditions. We �rst observe our applications over
regular TCP, then we study how they behave over Mul-
tipath TCP. We use tstat [10] and mptcptrace [11] to
extract information from packet traces.

A. Single-path measurements

The selected applications interact in di�erent ways with
the underlying transport protocol. An important factor
that in�uences the performance of TCP is the lifetime
of the connections and the number of bytes that are
exchanged. To study this factor, we analyze the TCP con-
nections established by our studied applications. Figure 2
shows that they create di�erent types of TCP connections.
Each point on this �gure represents one captured TCP
connection. The x-axis (in logarithmic scale) is the con-
nection duration in seconds while the y-axis is the number
of bytes exchanged on the connection. Firefox is clearly
the application that uses the largest number of connec-
tions (63.9 % of all connections) which is not surprising
given that our Firefox scenario contacts the 12 top Alexa
web sites. Unsurprisingly, streaming and cloud storage
scenarios with Dropbox (31.75%), Youtube (29.7%), Drive
(19.9%), Dailymotion (9.6%) and Spotify (5%) are the
applications that exchange the largest volume in bytes.
On the other hand, our Facebook scenario generates long
TCP connections that do not exchange too many bytes.

Some of the connections that we observe are caused by
the utilization of a SOCKS proxy. There are hundreds

4See http://multipath-tcp.org/data/IEEEComMag16

http://multipath-tcp.org/data/IEEEComMag16


IEEE COMMUNICATIONS MAGAZINE: NETWORK TESTING SERIES, MARCH 2016 4

Figure 3. Average Round-Trip-Time of the TCP connections over
the WiFi, 3G and 4G networks.

connections that last up to tens of seconds but only
transfer seven bytes of data. After investigation, Firefox
preventively opens new TCP connections but sometimes
never uses them. The seven exchanged bytes correspond to
the command sent by the SOCKS client. This command
contains the IPv4 address and destination port used by
the SOCKS proxy to establish the regular TCP connection
to the remote servers. Most of the short connections that
only transfer about 100 bytes are the DNS requests that
are sent over TCP by the SOCKS client.

Our connections can be categorized in 3 types :(i) the
short connections carrying a relatively small amount of
data, (ii) the long connections carrying most of the data,
and (iii) long-lived connections carrying a small amount
of data. In our tests, 74% of the connections last less than
1 second. Among the connections that last more than 1
second, 32% carry more than 10 KB and represent 98.6%
of the overall volume. Finally, the remaining 68% of the
connections that last more than 1 second exchange less
than 10 KB of data. This tends to match many measure-
ment studies which identi�ed that most TCP connections
are short and most of the tra�c is carried by a small
fraction of all TCP connections [12].

The Round-Trip-Time is one of the key factors that
in�uence the performance of TCP connections. We used
tstat to compute the average RTT for each of the cap-
tured TCP connections. Figure 3 provides the CDF of the
RTT measures among all the TCP connections used in the
upstream (data sent by the smartphone) and downstream
directions. The 4G network exhibits an RTT in upstream
with a median of 42.6 msec and a mean of 50 msec. In the
downstream direction, the median RTT increases up to
38.1 msec. On the WiFi network, 60% of the connections
have an RTT shorter than 15.4 msec. Unsurprisingly, there
is some bu�erbloat on the 3G network, mainly in the
upstream direction, but the bu�erbloat remains reasonable
compared to other networks [13].

B. Multipath measurements

The previous section showed that our measurement
scenarios cover di�erent utilizations of TCP. We now
enable Multipath TCP on our smartphone and perform
the same measurements to understand how our eight
applications interact with Multipath TCP. The �rst, but
important, point to be noted is that we did not observe any
incompatibility between the applications and Multipath
TCP.

Multipath TCP can be used in di�erent modes [3] on
smartphones. For our measurements, we focus on a con�g-
uration where Multipath TCP tries to pool the resources of
the cellular and the WiFi interfaces simultaneously since
the handover and backup performance has already been
studied in [3].

When a 4G and a WiFi interface are pooled together
it is interesting to analyze which fraction of the tra�c
is sent over which interface. With the Multipath TCP
implementation in the Linux kernel, this fraction depends
on the interactions between the congestion control scheme,
the packet scheduler, the underlying networks and the
application.

We �rst consider Multipath TCP connections using
WiFi and 4G interfaces, with WiFi set as the default
interface. In Fig. 4a, each point corresponds to one Multi-
path TCP connection, and the x axis indicates the number
of bytes transfered by this connection from the smartphone
to servers. Although we observe connections using both
WiFi and cellular interfaces, Fig. 4b shows that 96% of
the connections only use the WiFi interface. However,
Fig. 4c indicates that those connections are small since
they carry only 16.3% of all the data bytes contained in
the considered connections.

Several factors explain why Multipath TCP does not
use the cellular network for these short connections. The
�rst factor is the con�gured default route. When an
application initiates a connection, Multipath TCP sends
the SYNover the interface with the default route, in our
case the WiFi interface. This is the standard con�guration
of Android smartphones that prefer the WiFi interface
when it is active. If the Multipath TCP connection is
short and only transfers a few KiloBytes or less, then
most of the data �ts inside the initial congestion window
and can be sent over the WiFi interface while the second
sub�ow is established over the cellular interface. 71% of the
connections sending only on WiFi interface are in this case.
Furthermore, the RTT over the WiFi interface is shorter
than over the cellular interface. This implies that most of
the time, as long as the congestion window is open over the
WiFi interface, Multipath TCP's RTT-based scheduler [8]
prefers to send packets over the WiFi interface. Indeed,
84% of the connections with both sub�ows established
have a smaller average RTT on WiFi than on 4G.

Those factors explain why data on the short connec-
tions are exchanged only over the WiFi interface. We
experimentally veri�ed this by performing the same set
of measurements with thedefault route pointed to the



IEEE COMMUNICATIONS MAGAZINE: NETWORK TESTING SERIES, MARCH 2016 5

a) Fraction of data bytes sent on a connection
depending of its data size.

b) Connections classi�ed by the percentage of
data sent on cellular interface.

c) Data bytes classi�ed by the percentage of
data sent on cellular interface on the connec-
tion it belongs to.

Figure 4. When the default route points to the WiFi interface, Multipath TCP mainly uses this interface for the short connections.

Figure 5. When the default route points to the cellular interface,
many connections are aspired by the WiFi interface.

4G interface. Figure 5 shows that with this con�guration
most short connections still exclusively use the 4G network
(see label 1 on Fig. 5), but this concerns only 65% of all
connections. It seems that even if cellular is thedefault
interface, many connections still mainly use WiFi, even
for connections exchanging less than 1 KB. This occurs for
connections that do not push data as fast as possible. If the
connection lasts more than two RTTs, Multipath TCP has
enough time to establish the second sub�ow. The packet
scheduler will then select the sub�ow with the lowest RTT
� 88% of connections using both sub�ows have a WiFi
sub�ow with a lower average RTT than the cellular one.

This explains the bottom of Fig. 5 (annotated as 2): a
group of Firefox connections that transfer less than 10 KB
nearly exclusively use the WiFi interface. A closer look at
the packet trace reveals that these connections are part
of the connection pool managed by Firefox. This behavior
does not happen with other applications. When Firefox
creates a connection in this pool, the initial handshake
and the SOCKS command to our SOCKS server are sent.
These packets are exchanged over the cellular interface and
Firefox does not immediately send data over the estab-
lished connection. This leaves enough time for Multipath
TCP to create the sub�ow over the WiFi interface and

measure its RTT. When Firefox starts transmitting data
over such a connection, the RTT-based scheduler used by
Multipath TCP prefers the WiFi sub�ow and no data
(except the initial SOCKS command) is sent over the
cellular sub�ow.

When the applications push more data over the Mul-
tipath TCP connection, the distribution of the tra�c
between the cellular and the WiFi interface also depends
on the evolution of the congestion windows over the two
sub�ows. If the application pushes data at a low rate,
then the packet scheduler will send it over the lowest-RTT
interface (WiFi in this case). However, this distribution
can be fragile. If one packet is lost, then the congestion
window is reduced and the next data might be sent over
the other interface. If the application pushes data at a
higher rate, then the congestion window over the lowest-
RTT interface is not large enough and the packet scheduler
will send data over the second sub�ow.

In some cases, data transfered by Multipath TCP
on one �ow may be retransmitted again on the other
�ow. This phenomenon is called reinjection [7] and might
limit the performance of Multipath TCP in some cir-
cumstances [14]. We usedmptcptrace to compute the
reinjections over all observed Multipath TCP connections.
In our experiments (WiFi and 4G), reinjections in the
upstream direction were rare (less than half one percent of
all connections include a reinjection) and short (no more
than 5 KB are reinjected on a connection). Looking at the
proxy traces in the downstream direction, reinjections are
observed on only 2% of all connections, and the largest
observed reinjection is 30 KB on a 5 MB connection. This
overhead is thus low.

An important bene�t of the resource pooling capabili-
ties of Multipath TCP is its ability to adapt to various
networking conditions. When a smartphone moves, the
performance of the WiFi and cellular interfaces often
vary. Previous work with bulk transfer applications has
shown that Multipath TCP can adapt to heterogeneous
networks having di�erent bandwidths and delays [15]. Our
measurement framework also allows exploring the perfor-
mance of smartphone applications under various network



IEEE COMMUNICATIONS MAGAZINE: NETWORK TESTING SERIES, MARCH 2016 6

conditions. As an illustration, we analyze the packet traces
collected when the smartphone is uploading a �le with
Dropbox. We �rst consider a WiFi access point attached to
a DSL router having 1 Mbps of upstream bandwidth and
15 Mbps of downstream bandwidth. When the smartphone
is attached to both this WiFi access point and the 4G
network, it sends on average 91% of the data over the 4G
network. This is expected because although the WiFi has
better RTT, the congestion window of this path is quickly
full and it slowly empties. In that case, the Multipath
TCP scheduler selects the next available sub�ow with
lowest RTT � here the cellular interface. Since the cellular
network o�ers a larger bandwidth, Multipath TCP can
take advantage of it and thus avoids being trapped in a
low performance network for big connections.

As a second test case, we consider our standard WiFi
access (around 70 Mbps in both streams) and the 4G net-
work whose bandwidth is limited down to a few hundred
kilobits per second. This is the shaping enforced by our
cellular network once we reach the monthly tra�c volume
quota. In this case, 98.8% of the bytes are sent over the
WiFi interface.

V. Conclusion

Multipath TCP is a new TCP extension that has a
strong potential on smartphones as shown by its recent
adoption by Apple and Korea Telecom. By enabling TCP
connections to exchange data over cellular and WiFi inter-
faces, it brings new possibilities to improve the user experi-
ence. Apple's deployment focused on a single use case and
little is currently known about the interactions between
real smartphone applications and Multipath TCP. In this
article, we have proposed and implemented a measurement
testing framework that enables researchers to conduct
reproducible experiments with tra�c generated by real
applications.

We have used our measurement framework to study the
interactions between 8 very di�erent smartphone applica-
tions covering several smartphone use cases and the latest
version of the Multipath TCP implementation in the Linux
kernel. Several lessons have already been learned from a
�rst analysis of the packet traces that were captured. First,
all the studied applications work without any modi�cation
with Multipath TCP. This con�rms that Multipath TCP
is compatible with existing applications. Second, for the
short connections, that are often used by the studied
applications, Multipath TCP uses the default route to
forward the data for most connections. As suggested in [6],
we con�rm that the selection of this default route is thus
an important decision on the smartphone. Third, for long
connections, Multipath TCP enables the applications to
pool the bandwidth on the cellular and WiFi interfaces
and maintains good performance when one of them has
bandwidth restrictions. This is important for the user's ex-
perience given that smartphones often associate to wireless
networks by relying on metrics like signal-to-noise ratio.

We expect that our framework and the collected packet
traces will be bene�cial to Multipath TCP researchers and

implementers by enabling them to study how improve-
ments to the implementation would a�ect real applications
in a reproducible manner. Moreover, this framework could
be also used to measure the energy consumption impact
of Multipath TCP on mobile devices like smartphones.

Acknowledgment

This work was partially supported by the EC within the
FP7 Trilogy2 project. We would like to thank Gregory
Detal and Sebastien Barre for the port of the latest
Multipath TCP Linux kernel on the Nexus 5 and Patrick
Delcoigne and his team for the cellular measurements.

References

[1] F. Rebecchi, M. Dias de Amorim, V. Conan, A. Passarella,
R. Bruno, and M. Conti, �Data o�oading techniques in cellular
networks: A survey,� Communications Surveys Tutorials, IEEE ,
vol. 17, no. 2, pp. 580�603, Secondquarter 2015.

[2] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, �TCP
Extensions for Multipath Operation with Multiple Addresses,�
RFC 6824, Internet Engineering Task Force, January 2013.

[3] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaven-
ture, �Exploring Mobile/WiFi Handover with Multipath TCP,�
in ACM SIGCOMM CellNet workshop , 2012, pp. 31�36.

[4] Y.-C. Chen, Y.-s. Lim, R. J. Gibbens, E. M. Nahum, R. Khalili,
and D. Towsley, �A measurement-based study of multipath tcp
performance over wireless networks,� in Proceedings of the 2013
conference on Internet measurement conference . ACM, 2013,
pp. 455�468.

[5] Y.-s. Lim, Y.-C. Chen, E. M. Nahum, D. Towsley, and R. J.
Gibbens, �How green is multipath tcp for mobile devices?� in
Proceedings of the 4th workshop on All things cellular: opera-
tions, applications, & challenges . ACM, 2014, pp. 3�8.

[6] S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan,
�Wi�, lte, or both?: measuring multi-homed wireless internet
performance,� in Proceedings of the 2014 Conference on Internet
Measurement Conference . ACM, 2014, pp. 181�194.

[7] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, �How hard can it be? de-
signing and implementing a deployable multipath tcp,� in Pro-
ceedings of the 9th USENIX conference on Networked Systems
Design and Implementation . USENIX Association, 2012, pp.
29�42.

[8] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, �Experimen-
tal evaluation of multipath tcp schedulers,� in Proceedings of the
2014 ACM SIGCOMM workshop on Capacity sharing workshop .
ACM, 2014, pp. 27�32.

[9] C. Raiciu, D. Niculescu, M. Bagnulo, and M. Handley, �Op-
portunistic Mobility with Multipath TCP,� in ACM MobiArch
2011, 2011.

[10] M. Mellia, A. Carpani, and R. L. Cigno, �Tstat: Tcp statistic and
analysis tool,� in Quality of Service in Multiservice IP Networks .
Springer, 2003, pp. 145�157.

[11] B. Hesmans and O. Bonaventure, �Tracing multipath tcp con-
nections,� in Proceedings of the 2014 ACM conference on SIG-
COMM . ACM, 2014, pp. 361�362.

[12] A. Gember, A. Anand, and A. Akella, �A comparative study of
handheld and non-handheld tra�c in campus wi-� networks,� in
Passive and Active Measurement . Springer, 2011, pp. 173�183.

[13] S. Ferlin-Oliveira, T. Dreibholz, and O. Alay, �Tackling the chal-
lenge of bu�erbloat in multi-path transport over heterogeneous
wireless networks,� in Quality of Service (IWQoS), 2014 IEEE
22nd International Symposium of . IEEE, 2014, pp. 123�128.

[14] Y.-s. Lim, Y.-C. Chen, E. M. Nahum, D. Towsley, and K.-
W. Lee, �Cross-layer path management in multi-path transport
protocol for mobile devices,� in INFOCOM, 2014 Proceedings
IEEE . IEEE, 2014, pp. 1815�1823.

[15] C. Paasch, R. Khalili, and O. Bonaventure, �On the bene�ts of
applying experimental design to improve multipath tcp,� in Pro-
ceedings of the ninth ACM conference on Emerging networking
experiments and technologies . ACM, 2013, pp. 393�398.



IEEE COMMUNICATIONS MAGAZINE: NETWORK TESTING SERIES, MARCH 2016 7

Quentin De Coninck (quentin.deconinck@uclouvain.be) received
his B. Eng. and M. Eng. degrees in computer engineering from
Université Catholique de Louvain, Belgium, in 2013 and 2015, re-
spectively. He is now pursuing a Ph. D. in the same institution.
His research interests include applications of mobility in computer
networks and low-level system architecture.

Matthieu Baerts (matthieu.baerts@tessares.net) received his M.
Sc. degree in computer science in 2015 from Université Catholique
de Louvain, Belgium. He is now working with Tessares s.a. which
is currently developing hybrid Internet access bonding solutions
using Multipath TCP protocol. Beside that he is involved in Free
Software communities hoping contributing to technologies available
for everyone.

Benjamin Hesmans (benjamin.hesmans@uclouvain.be) is a third
year PhD student at Université Catholique de Louvain (Louvain-La-
Neuve, Belgium). His main interest is Multipath TCP performance
understanding and its improvements. He has written open source
tools such as MPTCPTrace that provides detailed graphical and
statistical information on MPTCP connections based on packet
traces.

Olivier Bonaventure (olivier.bonaventure@uclouvain.be) is pro-
fessor at Université catholique de Louvain (UCL) in Louvain-la-
Neuve, Belgium, where he leads the IP Networking Lab (INL)
(http://inl.info.ucl.ac.be). His research focuses on improving Internet
protocols. His recent work includes various improvements to routing
protocols, Multipath TCP and Segment Routing. He currently serves
as Editor for SIGCOMM Computer Communication Review.


	Introduction
	Multipath TCP and Related Work
	Multipath TCP on Android smartphones

	Automating measurements
	Test scenarios
	Upload intensive
	Download intensive


	Measurements
	Single-path measurements
	Multipath measurements

	Conclusion
	References

