
Implementing the Plugin Distribution System
Nicolas Rybowski, Quentin De Coninck, Tom Rousseaux, Axel Legay, Olivier Bonaventure

UCLouvain, Belgium
firstname.lastname@uclouvain.be

ABSTRACT
Recent works proposed to dynamically extend protocol implemen-
tations through protocol plugins. While addressing deployment
issues, they raise safety concerns (do they terminate, do they act ma-
liciously,. . .). To fill this gap, a system distributing trust in plugin’s
verification properties was proposed in the literature. However, it
was not implemented. This poster demonstrates the feasibility of
this approach by providing an open-source implementation of this
system.We also extend the state-of-the-art verification works about
protocol plugins by considering a new property called side-effects.

CCS CONCEPTS
• Networks → Protocol testing and verification;

KEYWORDS
Distributed verification system, Plugin, Protocol operation, Safety
properties, PQUIC
ACM Reference Format:
Nicolas Rybowski, Quentin De Coninck, Tom Rousseaux, Axel Legay, Olivier
Bonaventure. 2021. Implementing the Plugin Distribution System. In SIG-
COMM ’21 Poster and Demo Sessions (SIGCOMM ’21 Demos and Posters),
August 23–27, 2021, Virtual Event, USA. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3472716.3472860

1 INTRODUCTION
Important Internet protocols are designed to be easily extensible
to cope with new application requirements. However, implementa-
tions evolve at a slow pace and extensions often require support
from all participating entities. Researchers proposed pluginized
protocols (PQUIC [1], xBGP [5], . . .) as an alternative architecture.
Base implementations are deployed once and can be dynamically
extended through machine-independent bytecode called protocol
plugins. Anyone can develop these plugins and distribute them by
a side-channel or through the pluginized protocol itself.

While plugins enable extension deployments from day one, their
untrusted nature raises safety issues. To address them, PQUIC’s
authors [1] proposed a distributed verification system called Plugin
Distribution System (PDS) where entities can assess that a given
plugin follows safety rules. In a nutshell, developers can distribute
their plugins at large scale through Plugin Repositories (PRs). Plugin
Validators (PVs) can register on these PRs to verify these plugins.
If a plugin satisfies the PV safety requirements, the PV includes

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’21 Demos and Posters, August 23–27, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8629-6/21/08. . . $15.00
https://doi.org/10.1145/3472716.3472860

Verifier
(T2)

Binding Manager

Merkel Tree
Manager

Verifier
(SeaHorn)

Plugin Validator

Plugin Repository Gateway

User
Gateway

Pluginized peers /
developersPlain HTTP request

mTLS / MQTTs connection

Figure 1: Components of a Plugin Validator.

it in a Merkle tree and computes its Signed Tree Root (STR). Any
host can check whether a given plugin has been verified by a PV
by reconstructing the PV’s Merkle tree using hash functions. If the
check ends with the value of the PV’s STR, then it means the PV
validated the plugin. Any host can fetch STRs either through PRs or
by directly contacting the PVs. This system offloads the verification
tasks from the pluginized hosts. Hence, it allows verifying complex
properties with time and computation intensive tools.

However, this Plugin Distribution System was not implemented
and it remained unclear if such a system would be feasible in
practice. Furthermore, PQUIC’s authors only checked that plugins
always terminate. Malicious plugins may still advertise a given
functionality while actually exposing a different behavior, such as
accessing or modifying unrelated connection’s fields.

In this poster, we propose a modular, open-source implementa-
tion of the Plugin Distribution System [4]. In particular, we imple-
ment a generic Plugin Validator and a basic Plugin Repository. Our
implementation enables the inclusion of several verification tools
inside a single PV. We demonstrate this by using SeaHorn [2] to
verify plugins altering connection fields. The source-code of this
tool is also publicly available [3].

2 IMPLEMENTATION
Our Plugin Distribution System (PDS) consists in a set of PVs and
PRs. Developers push their plugins to PRs that can then distrib-
ute them to all existing PVs. To handle such events, we rely on
a Publish-Subscribe messaging pattern using the MQTT protocol,
allowing PRs to reach all subscribed PVs without being aware of
them. We rely on mutual TLS with Public Key Infrastructure for the
communications that require authentication, e.g., the ones between
PR and PV. Our PDS deploys its own root Certificate Authority
which is used to sign certificates for PVs, PRs and developers. These
certificates are then used for secure MQTTs and classical TLS con-
nections between the PVs and the PRs.

39

https://doi.org/10.1145/3472716.3472860
https://doi.org/10.1145/3472716.3472860

SIGCOMM ’21 Demos and Posters, August 23–27, 2021, Virtual Event, USA Rybowski et al.

Each PDS component is implemented as a Kernel Virtual Ma-
chine (KVM) running a stack of micro-services. Figure 1 illustrates
our overall PV implementation architecture. It consists in two main
components: (𝑖) the micro-services forming its core and (𝑖𝑖) the
embedded verifiers. The core is common to all PVs and is protocol
agnostic, while verifiers are property and/or protocol specific. They
implement a simple routine which queries, at regular interval, the
core for unverified plugins. Each new plugin is verified and the
result of the verification is sent back to the core. Each core service
presents a REST API for inner PV communication.

Our PV architecture uses two different gateways isolating the
PV core from the outside world. The first one focuses on communi-
cations with PRs. It is the only way to modify the inner PV state
from the external world. Hence, their exchanges require authen-
tication from both entities. The second (user) gateway is publicly
accessible and serves the PV’s signed Merkle tree root. The Bind-
ing manager stores all known information (source code, bytecode,
manifest, ...) on every plugin processed by the PV. It serves plugin’s
data to verifiers and stores their verification results. The Merkle
tree manager produces the Merkle tree at regular intervals and
provides access to the data stored within. The Merkle tree includes
plugins succeeding all verifiers. Its depth is statically defined at PV
deployment time. Considering a Merkle tree of depth 7 containing
16 plugins, our prototype creates it in about 2.8 ms and pluginized
hosts takes 0.839 ms to check with the STR that a plugin is inside it.
This duration comprises both the root hash computation (0.142 ms)
and the STR validation (0.697 ms). The STR contains the root hash
of the PV’s Merkle tree, signed with the PV’s private key. Hence,
the STR validation corresponds to the comparison of the root hash
recomputed by the pluginized host and the one contained in the
STR (extracted using the PV’s public key).

The whole PDS prototype is about 845 lines of code, excluding
the code required for its deployment.

In the current prototype version, the PR might be a single point
of failure. However, future works envision an interconnection of
multiple PRs ensuring the whole system availability. The PVs are,
by nature, not single points of failures since they do not have to
be individually trusted. Depending on its safety requirements, a
pluginized peer may query multiples PVs to enforce its trust in a
plugin verification status. Also, even whether they are extensively
tested before being integrated in a PV, the verifiers can make mis-
takes or not being able to prove a given property. Again, it is up to
the pluginized peers to choose which PVs they trust by operating
a form of consensus on their outputs. Eventually, the whole PDS
should converge to a valid result.

3 VERIFYING PROTOCOL PLUGINS
Protocols plugins introduce a new programming model where an
implementation executes bytecode within an eBPF virtual machine.
A specific safety property is side-effects, i.e., which session fields are
altered by a given plugin. The plugin manifest contains a high-level
specification listing the session fields whose value can be changed
after its execution. To verify this property, we extend the source
code of each plugin function as follows. First, we initialize a context
and inputs for the function’s call. Then, we call the plugin’s function.
Finally, we use SeaHorn assertions to verify that the PQUIC context,

1 2 3 4
0

2

4

6

8

10

12

To
ta

l d
ur

at
io

n
[s

]

1 2 3 4
Pluglets

0

50

100

150

200

250

To
ta

l m
em

or
y

us
ag

e
[M

B]

1 be.michelfra.disable_cc/congestion_algorithm_notify (12 SLOC)
2 be.michelfra.westwood/congestion_algorithm_notify (122 SLOC)
3 be.mpiraux.ack_delay/is_ack_needed (27 SLOC)
4 be.mpiraux.ack_delay/update_ack_delay/ (21 SLOC)

Figure 2: Performance measurements of pluglets verifica-
tion of their side-effects property.

except the fields listed in the manifest, remains unchanged. This
verification is performed statically with formal methods.

We consider the plugins publicly available on the PQUIC’s reposi-
tory. Among them, we succeed to verify the side-effects propertie of
three plugins consisting of four different plugin’s functions. These
plugins consists in congestion control algorithms or adaptation of
the delay for ACK frame generation.

Figure 2 illustrates the resource usage of their verification on an
Intel(R) Core(TM) i7-3610QM CPU @ 2.30GHz (4 cores, 8 threads)
CPU with 16 GB of DDR3 1600MHz RAM. This verification process
takes up to a dozen of seconds, which is reasonable for the offline
approach proposed by the PDS. The time variation of those mea-
sures is probably due to the structure of the data manipulated by
those plugins. For instance, pluglet 4 takes a non-deterministically
bounded linked list as argument. However, the online approach,
i.e., letting pluginized hosts verify plugins on-the-fly just before
injecting them on connections, remains unpractical. The memory
usage could also be problematic on memory-limited hosts. This
shows that the PDS is relevant to perform complex verification.

Our preliminary results show that it is possible to verify other
properties than termination of protocol plugins. Yet, there remain
areas of improvements for this. We also considered 12 other plu-
gin’s functions (from 7 different plugins), but their verification fails.
Those failures have several origins. For some of them, workarounds
are possible by slightly modifying the plugin’s code, e.g. changing
the model of some PQUIC memory accesses. This was done on the
congestion_algorithm_notify implementation of the Westwood plu-
gin. Our future work will extend those fixes to the failing plugin’s
functions. For the other issues, some adaptations are required in
the PQUIC model used for the verification. For instance, we will
reconsider plugins calling other plugins or functions external to
the PQUIC API, and the usage of a formal specification of this API.

40

Implementing the Plugin Distribution System SIGCOMM ’21 Demos and Posters, August 23–27, 2021, Virtual Event, USA

REFERENCES
[1] Quentin De Coninck, François Michel, Maxime Piraux, Florentin Rochet, Thomas

Given-Wilson, Axel Legay, Olivier Pereira, and Olivier Bonaventure. 2019. Pluginiz-
ing quic. In Proceedings of the ACM Special Interest Group on Data Communication.
59–74.

[2] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A Navas. 2015.
The SeaHorn verification framework. In International Conference on Computer
Aided Verification. Springer, 343–361.

[3] Nicolas Rybowski. 2021. Side-effects verification tool for PQUIC plugins. https:
//github.com/nrybowski/pquic-formal-model. (2021).

[4] Nicolas Rybowski. 2021. SPMS prototype implementation. https://github.com/
nrybowski/SPMS. (2021).

[5] ThomasWirtgen, Quentin De Coninck, Randy Bush, Laurent Vanbever, and Olivier
Bonaventure. 2020. xBGP: When You Can’t Wait for the IETF and Vendors. In
Proceedings of the 19th ACM Workshop on Hot Topics in Networks. 1–7.

41

https://github.com/nrybowski/pquic-formal-model
https://github.com/nrybowski/pquic-formal-model
https://github.com/nrybowski/SPMS
https://github.com/nrybowski/SPMS

	Abstract
	1 Introduction
	2 Implementation
	3 Verifying Protocol Plugins
	References

