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ABSTRACT

Recent works proposed to dynamically extend protocol implementations through protocol plugins. While
addressing deployment issues, they raise safety concerns (do they terminate, do they act maliciously, ... ).
To fill this gap, a system distributing trust in plugin's verification properties was proposed in the literature.
However, it was not implemented. This poster demonstrates the feasibility of this approach by providing an
open-source implementation of this system. We also extend the state-of-the-art verification works about
protocol plugins by considering a new property called side-effects.
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Pluginized protocols

Network protocols suffer from ossification
due to deployment issues. Pluginized pro-
tocols let peers exchange functionalities
(protocol plugins) to tune the protocol be-
havior. The plugins embed bytecodes in-
tended to replace the default protocol op-
erations implementations (See Fig. 2).
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Figure 1: Classical function call in monolithic pro-
tocol implementation
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Figure 2: Plugin functions injected at protocol op-
eration hooks of pluginized protocol

Distributed properties verification system

Pluginized protocols solve the deployment issues (ossification) of network protocols but raise safety issues [1, 3]. PQUIC [1] authors
described a theoretical plugin verification system (PDS) to distribute verified and safe to use plugins. This work proposes a practical
design and an open-source prototype implementation [2].
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Figure 3: PDS overview

1. Plugins developers push their plugins

2. PR and PVs exchange plugins, trust proofs and verification
status

3. Pluginized peers exchange plugins

4. Pluginized peers verify trust proofs
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Figure 4: Simplified PV architecture with two embedded verifiers

• Binding Manager stores all plugins related data

• Verifiers prove plugins properties

• Merkle Tree Manager creates a tree embedding plugins pass-
ing specified verifiers

• Gateways isolate the PV’s core from the outside world and
ensure secure and authenticated communications (mTLS)

Future Works

Implementation

• Re-implementation in Erlang

– Removes HTTP protocol and servers dependencies

• Full PR implementation

– Currently no state is maintained on PR

• Implement PQUIC / xBGP [3] peers interactions with PDS

• To ensure system availability in case of PR failure, multiple
PRs may be interconnected and duplicate their internal state
to the others (See Fig. 5).
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Figure 5: PDS interconnections to ensure the whole system availability

Plugin properties

Properties may be common to all protocols (Plugin termination, ...) or protocol specific (Side-effects, ...).
Previous work formally proved the termination of the majority of PQUIC plugins (with Terminator2) [1].
The current work proposes to formally verify the new side-effects property [4] by leveraging the SeaHorn framework [5].

Side-effects property

PQUIC plugins may alter specific connection fields which are defined in their specifications. Listing 1 illustrates the kind of
codea passed to SeaHorn to ensure that only authorized fields are modified by plugin’s functions.

1int main(void) {

2picoquic_cnx_t cnx , cnx0;

3initialize (&cnx);

4
5duplicate (&cnx , &cnx0);

6
7set_next_wake_time (&cnx); // Plugin ’s function call

8
9compare (&cnx , &cnx0 , WAKE_NOW);

10
11return 0;

12}

Listing 1: Pseudo-code of annotated main provided to SeaHorn

Difficulties

• Plugins are designed to run in eBPF virtual machine

– Need for a model emulating the plugin environment

• PQUIC has a complex memory management system

Verification method

1. Simulate connection context (picoquic_cnx_t)

2. Duplicate in witness state (left unchanged)

3. Plugin’s function is called with the connection context

4. Connection context is compared to its witness state

aThe annotated main and the helpers are automatically generated on basis of the PQUIC headers and

the plugin’s function specification
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Figure 6: Total verification duration and solver memory consumption for
4 plugin’s functions

• 3 plugins fully verified (4 plugin’s functions)

– Congestion control algorithms and delay computation for
ACK frame generation

– Fig. 6 shows that the PDS offline approach is meaningful

• Verification failure for 12 plugin’s functions

– Some functions from the PQUIC API are badly handled by
SeaHorn: inner plugin calls, plugin memory management

Future Works

Side-effects

• Improve PQUIC model

– Extend memory accesses fix to others plugins

– Complete context’s fields verification

– Annotate plugin’s functions

• Use of formal specification of the PQUIC API

In general

• Prove properties on xBGP plugins (Active research topic)

• Integrate new verifiers into the PDS
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