
Available at: http://hdl.handle.net/2078.1/251830 [Downloaded 2021/10/29 at 09:49:43 ]

"Implementing the plugin distribution system"

Rybowski, Nicolas ; De Coninck, Quentin ; Rousseaux, Tom ; Legay, Axel ; Bonaventure, Olivier

ABSTRACT

Recent works proposed to dynamically extend protocol implementations through protocol plugins. While
addressing deployment issues, they raise safety concerns (do they terminate, do they act maliciously, ... ).
To fill this gap, a system distributing trust in plugin's verification properties was proposed in the literature.
However, it was not implemented. This poster demonstrates the feasibility of this approach by providing an
open-source implementation of this system. We also extend the state-of-the-art verification works about
protocol plugins by considering a new property called side-effects.

CITE THIS VERSION

Rybowski, Nicolas ; De Coninck, Quentin ; Rousseaux, Tom ; Legay, Axel ; Bonaventure, Olivier.
Implementing the plugin distribution system.SIGCOMM '21: ACM SIGCOMM 2021 Conference (Virtual
Event, du 23/08/2021 au 27/08/2021). In: SIGCOMM '21: Proceedings of the SIGCOMM '21 Poster and
Demo Sessions, Association for Computing Machinery : New York, NY, United States2021, p. 39-41 http://
hdl.handle.net/2078.1/251830 -- DOI : 10.1145/3472716.3472860

Le dépôt institutionnel DIAL est destiné au dépôt
et à la diffusion de documents scientifiques
émanant des membres de l'UCLouvain. Toute
utilisation de ce document à des fins lucratives
ou commerciales est strictement interdite.
L'utilisateur s'engage à respecter les droits
d'auteur liés à ce document, principalement le
droit à l'intégrité de l'œuvre et le droit à la
paternité. La politique complète de copyright est
disponible sur la page Copyright policy

DIAL is an institutional repository for the deposit
and dissemination of scientific documents from
UCLouvain members. Usage of this document
for profit or commercial purposes is stricly
prohibited. User agrees to respect copyright
about this document, mainly text integrity and
source mention. Full content of copyright policy
is available at Copyright policy

https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy


Implementing the Plugin Distribution System

Nicolas Rybowski, Quentin De Coninck, Tom Rousseaux, Olivier Bonaventure, Axel Legay
nicolas.rybowski@student.uclouvain.be

UCLouvain

Implementing the Plugin Distribution System

Nicolas Rybowski, Quentin De Coninck, Tom Rousseaux, Olivier Bonaventure, Axel Legay
nicolas.rybowski@student.uclouvain.be

UCLouvain

Pluginized protocols

Network protocols suffer from ossification
due to deployment issues. Pluginized pro-
tocols let peers exchange functionalities
(protocol plugins) to tune the protocol be-
havior. The plugins embed bytecodes in-
tended to replace the default protocol op-
erations implementations (See Fig. 2).

F
u

n
ct

io
n

Figure 1: Classical function call in monolithic pro-
tocol implementation

R
ep

la
ce

Pre

Post

Plugin’s
functions

Inject

Figure 2: Plugin functions injected at protocol op-
eration hooks of pluginized protocol

Distributed properties verification system

Pluginized protocols solve the deployment issues (ossification) of network protocols but raise safety issues [1, 3]. PQUIC [1] authors
described a theoretical plugin verification system (PDS) to distribute verified and safe to use plugins. This work proposes a practical
design and an open-source prototype implementation [2].

PDS

Plugin
Developers

Plugin
Repository

(PR)

Plugin
Validator
(PV) 1

PV 2

(...)

Pluginized
Host

Pluginized
Host

1. Push 2. Pull/Push

3. Plugin Exchange

4. Validate proof

Figure 3: PDS overview

1. Plugins developers push their plugins

2. PR and PVs exchange plugins, trust proofs and verification
status

3. Pluginized peers exchange plugins

4. Pluginized peers verify trust proofs

PV architecture

Verifier
(T2)

Binding Manager

Merkel Tree 
Manager

Verifier
(SeaHorn)

Plugin Validator

Plugin Repository Gateway

User 
Gateway

Pluginized peers /
developersPlain HTTP request

mTLS / MQTTs connection

Figure 4: Simplified PV architecture with two embedded verifiers

• Binding Manager stores all plugins related data

• Verifiers prove plugins properties

• Merkle Tree Manager creates a tree embedding plugins pass-
ing specified verifiers

• Gateways isolate the PV’s core from the outside world and
ensure secure and authenticated communications (mTLS)

Future Works

Implementation

• Re-implementation in Erlang

– Removes HTTP protocol and servers dependencies

• Full PR implementation

– Currently no state is maintained on PR

• Implement PQUIC / xBGP [3] peers interactions with PDS

• To ensure system availability in case of PR failure, multiple
PRs may be interconnected and duplicate their internal state
to the others (See Fig. 5).

PDS availibility

PR1 PR2

PR3

PV10

PV11

PV12

PV20

PV21

PV30

Figure 5: PDS interconnections to ensure the whole system availability

Plugin properties

Properties may be common to all protocols (Plugin termination, ...) or protocol specific (Side-effects, ...).
Previous work formally proved the termination of the majority of PQUIC plugins (with Terminator2) [1].
The current work proposes to formally verify the new side-effects property [4] by leveraging the SeaHorn framework [5].

Side-effects property

PQUIC plugins may alter specific connection fields which are defined in their specifications. Listing 1 illustrates the kind of
codea passed to SeaHorn to ensure that only authorized fields are modified by plugin’s functions.

1int main(void) {

2picoquic_cnx_t cnx , cnx0;

3initialize (&cnx);

4
5duplicate (&cnx , &cnx0);

6
7set_next_wake_time (&cnx); // Plugin ’s function call

8
9compare (&cnx , &cnx0 , WAKE_NOW);

10
11return 0;

12}

Listing 1: Pseudo-code of annotated main provided to SeaHorn

Difficulties

• Plugins are designed to run in eBPF virtual machine

– Need for a model emulating the plugin environment

• PQUIC has a complex memory management system

Verification method

1. Simulate connection context (picoquic_cnx_t)

2. Duplicate in witness state (left unchanged)

3. Plugin’s function is called with the connection context

4. Connection context is compared to its witness state

aThe annotated main and the helpers are automatically generated on basis of the PQUIC headers and

the plugin’s function specification

Firsts results

1 2 3 4
0

2

4

6

8

10

12

To
ta

l d
ur

at
io

n 
[s

]

1 2 3 4
Pluglets

0

50

100

150

200

250

To
ta

l m
em

or
y 

us
ag

e 
[M

B]

Figure 6: Total verification duration and solver memory consumption for
4 plugin’s functions

• 3 plugins fully verified (4 plugin’s functions)

– Congestion control algorithms and delay computation for
ACK frame generation

– Fig. 6 shows that the PDS offline approach is meaningful

• Verification failure for 12 plugin’s functions

– Some functions from the PQUIC API are badly handled by
SeaHorn: inner plugin calls, plugin memory management

Future Works

Side-effects

• Improve PQUIC model

– Extend memory accesses fix to others plugins

– Complete context’s fields verification

– Annotate plugin’s functions

• Use of formal specification of the PQUIC API

In general

• Prove properties on xBGP plugins (Active research topic)

• Integrate new verifiers into the PDS

References

[1] Quentin De Coninck et al. “Pluginizing quic”. In: Proceedings of the ACM Special Interest Group on Data Communication. 2019, pp. 59–74.

[2] Nicolas Rybowski. SPMS prototype implementation. https://github.com/nrybowski/SPMS. 2021.

[3] Thomas Wirtgen et al. “xBGP: When You Can’t Wait for the IETF and Vendors”. In: Proceedings of the 19th ACM Workshop on Hot Topics in
Networks. 2020, pp. 1–7.

[4] Nicolas Rybowski. Side-effects verification tool for PQUIC plugins. https://github.com/nrybowski/pquic-formal-model. 2021.

[5] Arie Gurfinkel et al. “The SeaHorn verification framework”. In: International Conference on Computer Aided Verification. Springer. 2015, pp. 343–361.


