
FLIP the (Flow) Table:

Fast LIghtweight Policy-preserving SDN Updates

INFOCOM

Stefano Vissicchio (UCLouvain)

13th April 2016

stefano.vissicchio@uclouvain.be

Joint work with Luca Cittadini (Roma Tre University)

mailto:stefano.vissicchio@uclouvain.be

SDN controller

Operators’ requirements are an

input for SDN controllers

requirements

packet delivery

firewall traversal

To satisfy input requirements,

the controller programs rules on the switches

match flow F

requirements

packet delivery

firewall traversal

apply
action

F:

F: F:

F:

v

out

zuin

By applying such rules,

switches can process incoming packets

requirements

packet delivery

firewall traversal

v

out

z

flow F F:

u
F: F:

F:

applied rule

in

requirements

packet delivery

firewall traversal

F:

F: F:

F:

Switch rules have to be (frequently) updated

e.g., for traffic surges, maintenance, new policies

v

out

zuin

How to update rules on switches

safely, robustly and efficiently?

requirements are not
violated during the update

How to update rules on switches

safely, robustly and efficiently?

independently of uncontrollable factors
(messages lost, switch installation time, etc.)

How to update rules on switches

safely, robustly and efficiently?

quickly and with
low resource utilization

How to update rules on switches

safely, robustly and efficiently?

Limitations of prior works

Additional degrees of freedom

FLIP the (Flow) Table:

Fast LIghtweight Policy-preserving SDN Updates

Our approach

Limitations of prior works

FLIP the (Flow) Table:

Fast LIghtweight Policy-preserving SDN Updates

Additional degrees of freedom

Our approach

Previous techniques cannot do it!

How to update rules on switches

safely, robustly and efficiently?

Previous techniques belong to two main families

add final rules to initial ones
apply rules consistently, with packet tags

replace initial with final rules
in a carefully-computed order

ordered rule replacements [McClurg15]

two-phase commit [Reitblatt12,Jin14]

Previous techniques belong to two main families

add final rules to initial ones
apply rules consistently, with packet tags

replace initial with final rules
in a carefully-computed order

ordered rule replacements [McClurg15]

two-phase commit [Reitblatt12,Jin14]

not always
applicable

requirements

packet delivery

firewall traversal

flow F

Ordering rule replacements

is not possible in our example

initial

final

v

out

zuin

requirements

packet delivery

firewall traversal

F:

F:

F:

Final rules cannot be installed

on any switch among u, v and z

flow F

v

out

zuin

vv

F:flow F F:

packet delivery

requirements

firewall traversal

Case 1) Installing final rule at u

would violate our security policy

install
final rule

out

zuin

zz

F:F:

F:

flow F

Case 2) Installing final rule at v

would violate our security policy

install
final rule

packet delivery

requirements

firewall traversal

v

out

uin

out

firewall traversal

flow F

Case 3) Installing final rule at z

would prevent packet delivery

install
final rule

F:

F:

F:

requirements

packet delivery

v zuin

Simultaneous rule replacements are not robust

e.g., like in time-based approaches [Mizrahi16]

out

in

F:

requirements

packet delivery

firewall traversal

F:

F:flow F

install final
rules at t

v zu

In our example, we could instruct u, v and z

to replace their rules at the same time t

However, this can lead to transient problems at t

e.g., because of per-switch installation time

packet delivery

requirements

firewall traversal

flow F

v

out

zuin

up to several
seconds [Jin14]

w

firewall traversal

Also, we can trigger permanent problems at t

e.g., if a switch does not apply a command

requirements

packet delivery

v zuin

flow F

Previous techniques belong to two main families

add final rules to initial ones
apply rules consistently, with packet tags

replace initial with final rules
in a carefully-computed order

ordered rule replacements [McClurg15]

two-phase commit [Reitblatt12,Jin14]
inefficient

requirements

packet delivery

firewall traversal

flow F

Two-phase commit techniques

are not efficient in our example

F:

F:

F:

F:

v

out

zuin

out

in

requirements

packet delivery

firewall traversal

flow F

Indeed, they are based on maintaining

both initial and final rules on internal switches

F:

F,𝝉:

F:

F,𝝉:

F,𝝉:
F: F:

if tag 𝝉,
use final rule

v zu

requirements

packet delivery

firewall traversal

flow F

So that switches keep applying initial rules…

F: F:

F:

F:

F,𝝉:

F,𝝉:

v

out

zuin

F,𝝉:

v

out

zu

F: F:

F,𝝉:

F:

F,𝝉:

F,𝝉:

requirements

packet delivery

firewall traversal

flow F

… as long as packets are not tagged at the ingress

F:

use final rule
and add tag 𝝉

𝝉
in

requirements

packet delivery

firewall traversal

flow F

When packets are tagged at the ingress,

all switches consistently use the final rules

F: F:

F,𝝉:

F:

F,𝝉:

F,𝝉:

F: 𝝉

𝝉

𝝉

𝝉
𝝉

v

out

zuin

𝝉

𝝉

out

in
𝝉

F: 𝝉

requirements

packet delivery

firewall traversal

flow F

However, these techniques consumes

precious and expensive memory (TCAM) entries

F,𝝉:
F:

F,𝝉:
F:

F,𝝉:
F:

v zu

Limitations of prior works

Additional degrees of freedom

FLIP the (Flow) Table:

Fast LIghtweight Policy-preserving SDN Updates

Our approach

How to update rules on switches

safely, robustly and efficiently?

We can do it!

The key intuition is to combine

rule replacement and additions

requirements

packet delivery

firewall traversal

flow F

Let’s take back our example

and start from the initial state

F:

F:

F:

F:

v

out

zuin

out

zuin

requirements

packet delivery

firewall traversal

flow F

We can start tagging packets at v,

at the very beginning of the update

F: F:

add tag 𝝉

F: 𝝉
v

requirements

packet delivery

firewall traversal

flow F

This does not change the applied rules

(since no switch matches the tag yet)

F: F:

F: 𝝉

𝝉

𝝉v

out

zuin

requirements

packet delivery

firewall traversal

flow F

We can then match the tag at z,

still without changing the forwarding

F:

F: 𝝉
𝝉

𝝉
F:

F,𝝉:

use initial rule,
if and only if tag 𝝉

v

out

zuin

v

out

zin 𝝉
F: 𝝉

𝝉
F:

F,𝝉:

requirements

packet delivery

firewall traversal

flow F

Tagging at v and matching at z

unlock rule replacement at u

F:

install
final rule

u

F: 𝝉

𝝉
F:

F,𝝉:

requirements

packet delivery

firewall traversal

flow F

Indeed, the resulting forwarding loop

is traversed only once by packets

F:

𝝉

used for packets from v

used for
packets
from u

v

out

zuin

F:

F:

F,𝝉:

requirements

packet delivery

firewall traversal

flow F

We can then instruct v to apply its final rule

(even in parallel with u)

F:

use final rule

v

out

zuin

F:

F:

requirements

packet delivery

firewall traversal

flow F

and complete the update

by cleaning z’s configuration

F:

use final rule

v

out

zuin

contrary to ordered rule replacement

solves our update problem

rollbacking before affecting safety

ensures robustness

Using both rule replacements and additions

is more powerful than restricting to any of them

33% with respect to two-phase commit

uses additional rules only on z

Using both rule replacements and additions

makes the update problem more challenging

e.g., we must distinguish loops that prevent
packet delivery from the good ones

we must consider combinations of rule
replacements and additions

larger search space

tricky interactions in intermediate states

Limitations of prior works

Additional degrees of freedom

FLIP the (Flow) Table:

Fast LIghtweight Policy-preserving SDN Updates

Our approach

We propose a framework to systematically

combine rule replacements and additions

to compute safe operational sequences

including a comparison with the state of the art

FLIP algorithm

of problem, search space, and solutions

formalization & modeling

evaluation

safe update
problem

operational
sequencedivide

compute
sequence
for flow 1

compute
sequence
for flow N

… merge

(input) (output)

FLIP

We released a prototype implementation of our approach

code available at http://inl.info.ucl.ac.be/softwares/flip

http://inl.info.ucl.ac.be/softwares/flip

safe update
problem

operational
sequencedivide

compute
sequence
for flow 1

compute
sequence
for flow N

… merge

(input) (output)

initial and final rules

forwarding correctness

policies: a flow must traverse path P1 or path P2 or … Pn

In our formalization, we allow complex policies…

… and combinations of rule replacements and additions

operational
sequence

(output)

Each step includes replacements
and additions safe to apply

in any relative order

before the next step

safe update
problem divide

compute
sequence
for flow 1

compute
sequence
for flow N

… merge

(input)

FLIP is based on a divide-and-conquer approach

safe update
problem

operational
sequencedivide

compute
sequence
for flow 1

compute
sequence
for flow N

… merge

(input) (output)

safe update
problem

operational
sequence

compute
sequence
for flow 1

compute
sequence
for flow N

… merge

(input) (output)

divide

each time, consider
rules for a single flow

Breaking down the input problem is easy

divide
safe update

problem
operational
sequence

compute
sequence
for flow 1

compute
sequence
for flow N

…

(input) (output)

merge corresponding
steps of per-flow sequences

merge

Merging per-flow operational sequences is also easy

mergedivide
safe update

problem
operational
sequence

compute
sequence
for flow 1

…

(input) (output)

compute
sequence
for flow N

The heart of FLIP is computing per-flow sequences

maps violations to constraints

swaps alternative constraints

always finds a satisfiable set of constraints

As an example, we now apply FLIP

to our update problem scenario

extract
constraints

linear
program

solve per-flow
update

constraint
relations

swap
constraints

initial

final

requirements

packet delivery

firewall traversal

per-flow
problem

v

out

zu

u

per-flow
problem

linear
program

solve per-flow
update

constraint
relations

swap
constraints

w

extract
constraints

requirements

For every possible requirement violation,

FLIP extracts operation constraints

replace(v) < replace(z) OR
tag(v) & match(z) OR

tag(z) & match(v)

packet delivery

firewall traversalv z

linear
program

extract
constraints

The extracted constraints and

their relations are stored in a table

per-flow
problem

solve per-flow
update

swap
constraints

cause

loop v-z

active constraints

replace(v) < replace(z)

alternatives

match(z)
match(v)

constraint
relations

linear
program

extract
constraints

per-flow
problem

solve per-flow
update

swap
constraints

cause

loop v-z

firewall

active constraints

replace(v) < replace(z)

alternatives

match(z)
match(v)

match(z)

match(v)

constraint
relations

replace(u) < replace(v)

replace(z) < replace(u)

firewall

The extracted constraints and

their relations are stored in a table

firewall

constraint
relations

extract
constraints

The active constraints for rule replacements

are translated into a linear program

per-flow
problem

solve per-flow
update

swap
constraints

cause

loop v-z

firewall

alternatives

match(z)
match(v)

match(z)
match(v)

linear
program

active constraints

replace(v) < replace(z)

min u+v+z

v<z

u<v

z<u

u,v,z integer replace(u) < replace(v)

replace(z) < replace(u)

firewall replace(u) < replace(v)

replace(z) < replace(u)

active constraints

replace(v) < replace(z)

linear
program

constraint
relations

extract
constraints

Then, FLIP tries to solve

the generated linear program

per-flow
problem

per-flow
update

swap
constraints

cause

loop v-z

firewall

alternatives

match(z)
match(v)

match(z)
match(v)

min u+v+z

v<z

u<v

z<u

u,v,z integer

solve

unsolvable!

solvelinear
program

constraint
relations

extract
constraints

If the linear program is unsolvable, FLIP selects

one constraints in a set of unsatisfiable active ones

per-flow
problem

per-flow
update

cause

loop v-z

firewall

alternatives

match(z)
match(v)

match(z)

match(v)

swap
constraints

firewall

active constraints

replace(v) < replace(z)

replace(u) < replace(v)

replace(z) < replace(u)

solve

active constraints

replace(v) < replace(z)

linear
program

constraint
relations

extract
constraints

The selected constraint is swapped

with one of its alternatives

per-flow
problem

per-flow
update

cause

loop v-z

firewall

alternatives

match(z)
match(v)

match(z)

match(v)

swap
constraints

replace(u) < replace(v)

replace(z) < replace(u)

firewall

solve

active constraints

replace(u) < replace(v)

replace(z) < replace(u)

linear
program

constraint
relations

extract
constraints

The effects of the swap are also propagated

to other active constraints

per-flow
problem

per-flow
update

cause

loop v-z

firewall

alternatives

match(z)
match(v)

match(z)

match(v)

swap
constraints

firewall

replace(v) < replace(z)

swap
constraints

solve

match(z)

linear
program

extract
constraints

This phase leads to a

new set of active constraints

per-flow
problem

per-flow
update

cause

loop v-z

firewall

alternatives

match(z)

match(v)

active constraints

replace(u) < replace(v)firewall

constraint
relations

solve

swap
constraints

constraint
relations

extract
constraints

In turn, the new set of active constraints

is translated into a new linear program

per-flow
problem

per-flow
update

linear
program

match(z)

cause

loop v-z

firewall

alternatives

match(z)

match(v)firewall

active constraints

replace(u) < replace(v)

min u+v

u<v

u,v integer

linear
program

swap
constraints

constraint
relations

extract
constraints

When the set of active constraints is satisfiable,

a consistent sequence is generated

per-flow
problem

per-flow
update

solve

cause

loop v-z

firewall

alternatives

match(v)replace(u) < replace(v)firewall

u=1

v=2 match(z)

match(z)

active constraints

solvelinear
program

swap
constraints

constraint
relations

extract
constraints

If the active constraints are satisfiable,

a consistent sequence is generated

per-flow
problem

per-flow
update

cause

loop v-z

firewall

alternatives

match(v)replace(u) < replace(v)firewall

u=1

v=2 match(z)

match(z)

active constraints

[tag(v), match(z), replace(u), replace(v), replace(z)]

FLIP also manages many

algorithmic details and complications

with propagation of constraint-swap effects

with a heuristic approach

dependency between constraints

for middleboxing, NFV and performance

support for complex policies

assemble operations in one update step

We thoroughly evaluate FLIP

with 50,000 simulations on Rocketfuel topologies

with sub-paths longer than 2

consider complex policies

sources are 10% of the nodes

select one destination and several sources

In each simulation, we randomly

significantly modify paths

changing the weights of 80% of the links

FLIP overcomes limitations of state-of-the-art techniques

90% less than two-phase commit techniques

4-8 update steps computed in sub-second (95th perc.)

needs a few additional rules

75% more than ordered-replacement techniques

solves all update scenarios

quickly produces fast updates

code available at http://inl.info.ucl.ac.be/softwares/flip

combine rule replacements and additions

75% more effective than replacement-only

90% more efficient than addition-only

FLIP the (Flow) Table:

Fast LIghtweight Policy-preserving SDN Updates

new model, framework and heuristics

http://inl.info.ucl.ac.be/softwares/flip

