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SDN controller



Operators’ requirements are an 

input for SDN controllers 

requirements
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firewall traversal



To satisfy input requirements, 

the controller programs rules on the switches
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By applying such rules, 

switches can process incoming packets
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firewall traversal
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Switch rules have to be (frequently) updated 

e.g., for traffic surges, maintenance, new policies

v

out

zuin



How to update rules on switches 

safely, robustly and efficiently?



requirements are not 
violated during the update

How to update rules on switches 

safely, robustly and efficiently?



independently of uncontrollable factors 
(messages lost, switch installation time, etc.)

How to update rules on switches 

safely, robustly and efficiently?



quickly and with 
low resource utilization

How to update rules on switches 

safely, robustly and efficiently?



Limitations of prior works

Additional degrees of freedom
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Previous techniques cannot do it!

How to update rules on switches 

safely, robustly and efficiently?



Previous techniques belong to two main families

add final rules to initial ones 
apply rules consistently, with packet tags

replace initial with final rules 
in a carefully-computed order

ordered rule replacements [McClurg15]

two-phase commit [Reitblatt12,Jin14]



Previous techniques belong to two main families

add final rules to initial ones 
apply rules consistently, with packet tags

replace initial with final rules 
in a carefully-computed order

ordered rule replacements [McClurg15]

two-phase commit [Reitblatt12,Jin14]

not always 
applicable
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Ordering rule replacements 

is not possible in our example
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firewall traversal
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Final rules cannot be installed 

on any switch among u, v and z
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Case 1) Installing final rule at u 

would violate our security policy

install 
final rule
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Case 2) Installing final rule at v 

would violate our security policy

install 
final rule

packet delivery
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out

firewall traversal

flow F

Case 3) Installing final rule at z 

would prevent packet delivery

install 
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Simultaneous rule replacements are not robust 

e.g., like in time-based approaches [Mizrahi16]
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install final 
rules at t

v zu

In our example, we could instruct u, v and z 

to replace their rules at the same time t



However, this can lead to transient problems at t 

e.g., because of per-switch installation time
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up to several 
seconds [Jin14]



w

firewall traversal

Also, we can trigger permanent problems at t 

e.g., if a switch does not apply a command
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v zuin

flow F



Previous techniques belong to two main families

add final rules to initial ones 
apply rules consistently, with packet tags

replace initial with final rules 
in a carefully-computed order

ordered rule replacements [McClurg15]

two-phase commit [Reitblatt12,Jin14]
inefficient
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packet delivery

firewall traversal

flow F

Two-phase commit techniques 

are not efficient in our example
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firewall traversal

flow F

Indeed, they are based on maintaining 

both initial and final rules on internal switches
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firewall traversal

flow F

So that switches keep applying initial rules…
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… as long as packets are not tagged at the ingress
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When packets are tagged at the ingress, 

all switches consistently use the final rules 
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However, these techniques consumes 

precious and expensive memory (TCAM) entries
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How to update rules on switches 

safely, robustly and efficiently?

We can do it!



The key intuition is to combine 

rule replacement and additions



requirements

packet delivery

firewall traversal

flow F

Let’s take back our example 

and start from the initial state
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flow F

We can start tagging packets at v, 

at the very beginning of the update
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flow F

This does not change the applied rules 

(since no switch matches the tag yet)
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requirements

packet delivery

firewall traversal

flow F

We can then match the tag at z, 

still without changing the forwarding
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Tagging at v and matching at z 

unlock rule replacement at u

F:

install 
final rule

u
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Indeed, the resulting forwarding loop 

is traversed only once by packets
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F,𝝉:
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firewall traversal

flow F

We can then instruct v to apply its final rule 

(even in parallel with u)
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F:

F:
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and complete the update 

by cleaning z’s configuration
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use final rule
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contrary to ordered rule replacement

solves our update problem

rollbacking before affecting safety

ensures robustness

Using both rule replacements and additions 

is more powerful than restricting to any of them

33% with respect to two-phase commit 

uses additional rules only on z



Using both rule replacements and additions 

makes the update problem more challenging 

e.g., we must distinguish loops that prevent 
packet delivery from the good ones 

we must consider combinations of rule 
replacements and additions 

larger search space

tricky interactions in intermediate states



Limitations of prior works

Additional degrees of freedom

FLIP the (Flow) Table: 

Fast LIghtweight Policy-preserving SDN Updates

Our approach



We propose a framework to systematically 

combine rule replacements and additions

to compute safe operational sequences

including a comparison with the state of the art

FLIP algorithm

of problem, search space, and solutions 

formalization & modeling

evaluation



safe update 
problem

operational 
sequencedivide

compute 
sequence 
for flow 1

compute 
sequence 
for flow N

… merge

(input) (output)

FLIP

We released a prototype implementation of our approach

code available at http://inl.info.ucl.ac.be/softwares/flip

http://inl.info.ucl.ac.be/softwares/flip


safe update 
problem

operational 
sequencedivide

compute 
sequence 
for flow 1

compute 
sequence 
for flow N

… merge

(input) (output)

initial and final rules

forwarding correctness

policies: a flow must traverse path P1 or path P2 or … Pn

In our formalization, we allow complex policies…



… and combinations of rule replacements and additions

operational 
sequence

(output)

Each step includes replacements 
and additions safe to apply

in any relative order

before the next step

safe update 
problem divide

compute 
sequence 
for flow 1

compute 
sequence 
for flow N

… merge

(input)



FLIP is based on a divide-and-conquer approach

safe update 
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… merge

(input) (output)



safe update 
problem

operational 
sequence

compute 
sequence 
for flow 1

compute 
sequence 
for flow N

… merge

(input) (output)

divide

each time, consider 
rules for a single flow

Breaking down the input problem is easy



divide
safe update 

problem
operational 
sequence

compute 
sequence 
for flow 1

compute 
sequence 
for flow N

…

(input) (output)

merge corresponding 
steps of per-flow sequences

merge

Merging per-flow operational sequences is also easy



mergedivide
safe update 

problem
operational 
sequence

compute 
sequence 
for flow 1

…

(input) (output)

compute 
sequence 
for flow N

The heart of FLIP is computing per-flow sequences 

maps violations to constraints

swaps alternative constraints

always finds a satisfiable set of constraints



As an example, we now apply FLIP 

to our update problem scenario

extract 
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linear 
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update

constraint 
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per-flow 
problem

linear 
program

solve per-flow 
update

constraint 
relations

swap 
constraints

w

extract 
constraints

requirements

For every possible requirement violation, 

FLIP extracts operation constraints

replace(v) < replace(z) OR 
tag(v) & match(z) OR 

tag(z) & match(v)

packet delivery

firewall traversalv z



linear 
program

extract 
constraints

The extracted constraints and 

their relations are stored in a table

per-flow 
problem

solve per-flow 
update

swap 
constraints

cause

loop v-z

active constraints

replace(v) < replace(z)

alternatives

match(z)
match(v)

constraint 
relations



linear 
program

extract 
constraints

per-flow 
problem

solve per-flow 
update

swap 
constraints

cause

loop v-z

firewall

active constraints

replace(v) < replace(z)

alternatives

match(z)
match(v)

match(z)

match(v)

constraint 
relations

replace(u) < replace(v)

replace(z) < replace(u)

firewall

The extracted constraints and 

their relations are stored in a table



firewall

constraint 
relations

extract 
constraints

The active constraints for rule replacements 

are translated into a linear program
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replace(v) < replace(z)

min u+v+z 

v<z 

u<v 

z<u 

u,v,z integer replace(u) < replace(v)

replace(z) < replace(u)



firewall replace(u) < replace(v)

replace(z) < replace(u)

active constraints

replace(v) < replace(z)

linear 
program

constraint 
relations

extract 
constraints

Then, FLIP tries to solve 

the generated linear program
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loop v-z
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min u+v+z 

v<z 

u<v 

z<u 

u,v,z integer 

solve

unsolvable!



solvelinear 
program

constraint 
relations

extract 
constraints

If the linear program is unsolvable, FLIP selects 

one constraints in a set of unsatisfiable active ones
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swap 
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active constraints

replace(v) < replace(z)

replace(u) < replace(v)

replace(z) < replace(u)



solve

active constraints

replace(v) < replace(z)
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The selected constraint is swapped 

with one of its alternatives
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solve

active constraints

replace(u) < replace(v)

replace(z) < replace(u)
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The effects of the swap are also propagated 

to other active constraints
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swap 
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swap 
constraints

solve

match(z)

linear 
program

extract 
constraints

This phase leads to a 

new set of active constraints
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cause

loop v-z

firewall
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match(v)

active constraints

replace(u) < replace(v)firewall

constraint 
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solve

swap 
constraints

constraint 
relations

extract 
constraints

In turn, the new set of active constraints 

is translated into a new linear program

per-flow 
problem

per-flow 
update

linear 
program

match(z)

cause

loop v-z

firewall

alternatives

match(z)

match(v)firewall

active constraints

replace(u) < replace(v)

min u+v 

u<v 

u,v integer 



linear 
program

swap 
constraints

constraint 
relations

extract 
constraints

When the set of active constraints is satisfiable, 

a consistent sequence is generated

per-flow 
problem

per-flow 
update

solve

cause

loop v-z

firewall

alternatives

match(v)replace(u) < replace(v)firewall

u=1 

v=2 match(z)
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solvelinear 
program

swap 
constraints

constraint 
relations

extract 
constraints

If the active constraints are satisfiable, 

a consistent sequence is generated

per-flow 
problem

per-flow 
update

cause

loop v-z

firewall

alternatives

match(v)replace(u) < replace(v)firewall

u=1 

v=2 match(z)

match(z)

active constraints

[tag(v), match(z), replace(u), replace(v), replace(z)]



FLIP also manages many 

algorithmic details and complications

with propagation of constraint-swap effects

with a heuristic approach

dependency between constraints

for middleboxing, NFV and performance

support for complex policies

assemble operations in one update step



We thoroughly evaluate FLIP 

with 50,000 simulations on Rocketfuel topologies

with sub-paths longer than 2

consider complex policies

sources are 10% of the nodes

select one destination and several sources

In each simulation, we randomly

significantly modify paths

changing the weights of 80% of the links



FLIP overcomes limitations of state-of-the-art techniques

90% less than two-phase commit techniques 

4-8 update steps computed in sub-second (95th perc.)

needs a few additional rules

75% more than ordered-replacement techniques

solves all update scenarios

quickly produces fast updates



code available at http://inl.info.ucl.ac.be/softwares/flip

combine rule replacements and additions

75% more effective than replacement-only 

90% more efficient than addition-only

FLIP the (Flow) Table: 

Fast LIghtweight Policy-preserving SDN Updates

new model, framework and heuristics

http://inl.info.ucl.ac.be/softwares/flip

