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Abstract—MultiPath TCP (MPTCP) is a recent TCP extension
that enables hosts to send data over multiple paths for a single
connection. It is already deployed for various use cases, notably
on smartphones. In parallel with this, there is a growing de-
ployment of encryption and authentication techniques to counter
various forms of security attacks. Tcpcrypt and TLS are some
of these security solutions.

In this paper, we propose MPTCPsec, a MultiPath TCP
extension that closely integrates authentication and encryption
inside the protocol itself. Our design relies on an adaptation
for the multipath environment of the ENO option that is being
discussed within the IETF tcpinc working group. We then detail
how MultiPath TCP needs to be modified to authenticate and
encrypt all data and authenticate the different TCP options that
it uses. Finally, we implement our proposed extension in the
reference implementation of MultiPath TCP in the Linux kernel
and we evaluate its performance.

I. INTRODUCTION

The Transmission Control Protocol (TCP) [1] is the standard
reliable transport protocol. It is used by a wide variety of
applications. TCP was designed when hosts had a single
interface and TCP connections are bound to the IP addresses
of the communicating hosts. Despite that today’s hosts, e.g.
smartphones or laptops, have several network interfaces, once
a TCP connection has been created over one interface, all the
data belonging to this connection must be exchanged over this
interface.

Multipath TCP [2] is a major extension to TCP that solves
this limitation. With Multipath TCP, hosts can use different
interfaces or paths to exchange the data belonging to a single
connection. Multipath TCP has already seen significant adop-
tion since it is used on all Apple devices to support the Siri
voice recognition application. In Korea, high-end smartphones
use Multipath TCP to combine WiFi and LTE and achieve
higher bandwidth [3].

During the last decade, security has been a growing concern
for Internet protocols and various protocols have been exten-
ded to include encryption and authentication techniques. The
pace of deployment of these techniques has further increased
during the recent years [4]. The most successful deployments
are in the application layer with protocols like SSH or TLS [5].
In the network and transport layers, encryption and authentic-
ation have been less successful. The usage of IPsec remains
restricted to some Virtual Private Networks (VPN). In the
transport layer, progress has been slower. TCP has been tuned
to reduce its vulnerability to some segment injection attacks
[6, 7]. Two extensions add authentication to the TCP protocol

[8, 9]. However, they assume that a secret is shared between
the communicating hosts, which limits their applicability to
very specific use cases like the protection of BGP sessions. An-
other approach is tcpcrypt [10]. This recent TCP extension
adds opportunistic authentication and encryption to TCP. In
contrast with application layer solutions such as TLS, it does
not use certificates to authenticate the server, but enables the
client and the server to securely negotiate keys. This prevents
attacks such as pervasive monitoring [4] but does not address
man-in-the-middle attacks. The IETF tcpinc working group
is currently defining a TCP extension heavily inspired by
tcpcrypt [10].

Multipath TCP was not designed in order to be more secure
than TCP. While some mechanisms protect control information
in the protocol specification [11, 12], they assume that attack-
ers cannot capture nor modify the initial TCP handshake. The
encryption and authentication techniques used by application
layer protocols such as Transport Layer Security (TLS) [5] or
SSH can protect data stream but they remain vulnerable to
attacks that affect the underlying TCP (or MPTCP) protocol
(e.g., [13]).

In this paper, we propose the first security scheme specially
designed for Multipath TCP: MPTCPsec (MPTCP secure).
MPTCPsec brings two main improvements compared to using
application layer security protocols such as TLS or SSH above
MPTCP:

• MPTCPsec can detect and recover from packet injection
attacks by stopping to use a compromised path, in con-
trast with application layer protocols like TLS that just
close the underlying TCP connection when they detect
an attack.

• MPTCPsec protects the application data (with authentic-
ation and encryption) and authenticates the TCP options
that are used to control the Multipath TCP connection.
This prevents various types of attacks against the protocol
itself where an attacker could force data to be sent only
over paths that he controls.

We implement MPTCPsec within the reference implement-
ation of Multipath TCP in the Linux kernel implementation
[14]. Our implementation uses the Linux crypto API and
performs all cryptographic operations inside the kernel. Our
measurements show that it provides good performance and
reacts correctly to packet injection attacks.

This paper is organised as follows. We first describe the
key parts of Multipath TCP in Section II. We then detail



Host A Host B

SYN + MP_JOIN(Token-B, R-A)

Address A1 Address A2 Address B1
SYN + MP_CAPABLE(Key-A)

SYN/ACK + MP_CAPABLE(Key-B)

ACK + MP_CAPABLE(Key-A, Key-B)

SYN/ACK + MP_JOIN(HMAC-B, R-B)

ACK + MP_JOIN(HMAC-A)

ACK

Figure 1. MPTCP three-way handshake (between addresses A1 and B1) and
subflow establishment (between addresses A2 and B1). R-A (resp. R-B) is the
random number of Host A (resp. Host B). HMAC-A (resp. HMAC-B) is equal to
HMAC(R-A+R-B, Key-A+Key-B) (resp. HMAC(R-B+R-A, Key-B+Key-A)).

the main design choices of MPTCPsec in Section III. Section
IV describes our implementation of MPTCPsec in the Linux
kernel and we demonstrate in Section V. Finally, we compare
MPTCPsec with related work in Section VI.

II. MULTIPATH TCP

MultiPath TCP [2] was initially designed with multihomed
hosts in mind. A typical example is a smartphone that wants
to send the data belonging to one connection over both its
WiFi and LTE interfaces. Each Multipath TCP connection is
composed of a set of TCP connections that are called subflows
in [2]. A subflow is created on each path that is used to support
a given connection. The number of subflows that compose
a Multipath TCP connection is not constant. Subflows can
appear and disappear during the lifetime of a connection. For
example, a smartphone can create a new subflow each time it
attaches itself to a new WiFi access point. By using several
subflows, Multipath TCP supports both mobility [15] and
resource pooling [16]. A detailed overview of Multipath TCP
may be found in [17]. We focus here on the TCP options that
are used by Multipath TCP and are relevant for understanding
the security of Multipath TCP [11, 12].

A. Connection and subflow establishment

A Multipath TCP connection starts with a three-way hand-
shake. The Multipath Capable (MP_CAPABLE) option
is used, as shown in the top of Figure 1, to negotiate the
usage of MPTCP and exchange 64-bit keys. These keys are
sent in clear during the handshake of the first subflow1. These
keys are then used for three different purposes. Firstly, MPTCP
hosts derive a token that uniquely identifies the Multipath TCP
connection from a hash of the key [2]. Secondly, the Initial
Data Sequence Number (IDSN) of a connection is also
derived from these keys. Thirdly, the keys are used to au-
thenticate the establishment of subflows with the MP_JOIN
option.

1They also appear in RST segments that carry the MP_FASTCLOSE option
see Section II-D.
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Figure 2. Format of the DSS option.

The Join (MP_JOIN) option is used to attach new sub-
flows to an existing Multipath TCP connection. This option
appears during the three-way handshake that establishes the
additional subflow. An example is shown in Figure 1. When
a host receives a SYN segment with the MP_JOIN option, it
extracts its Token to map the subflow establishment attempt to
an existing Multipath TCP connection (Token B in Figure 1).
To prevent attacks, the client and the server authenticate the
establishment of additional subflows with a HMAC computed
over random numbers exchanged during the handshake (R-A
and R-B in Figure 1) with the keys (Key-A and Key-B
in Figure 1) that were exchanged during the initial TCP
handshake.

B. Data transfer

The Data Sequence Signal (DSS) option, shown in
Figure 2, enables the transmission of data over different
subflows. In a nutshell, Multipath TCP uses two levels of
sequence numbers: (i) the regular TCP sequence numbers at
the subflow level and (ii) the Data Sequence Numbers (DSN)
at the connection level. Each byte sent over a Multipath TCP
connection is identified by one DSN that indicates its position
in the bytestream. The DSN option maps these DSNs onto the
TCP sequence numbers that are used in the TCP headers of
the different subflows. Each DSS option maps a block of Len
bytes from the DSN space to the subflow’s sequence number. It
also contains a cumulative acknowledgement field (Data ACK
in Figure 2) and an optional Checksum that is used detect
middlebox interference [2].

Thanks to the DSS option, it is possible to retransmit over a
subflow data initially transmitted over another subflow. When a
packet is lost, Multipath TCP first retransmits it over the same
subflow. This retransmitted packet contains the same DSS
option as the original one. If a subflow fails, unacknowledged
data previously sent on this subflow must be retransmitted on
another subflow. This is called a re-injection [2]. In this
case, a new DSS option is computed to map the retransmitted
data onto the new subflow.

The DSS option contains a series of flags whose semantics is
detailed in [2]. In this paper, we only consider the DATA_FIN
(F flag in Figure 2). It marks the end of the bytestream and
plays for a Multipath TCP connection the same role as the
FIN flag in TCP.

C. Address advertisement

To establish subflows between their different interfaces,
Multipath TCP hosts must learn the IP addresses of the



remote host. Multipath TCP relies on two TCP options for
this purpose. The Add Address (ADD_ADDR) and Remove
Address (REMOVE_ADDR) options enable hosts to advertise
and remove addresses on which subflows can be established.
These options are typically included in pure acknowledge-
ments. The host that receives an option can decide to create a
subflow or not towards the advertised address. The ability to
advertise addresses creates a security threat that is discussed
in [11, 12]. The latest Multipath TCP draft [18] has added a
HMAC in the ADD_ADDR option to authenticate it.

D. Connection release

A Multipath TCP connection can be closed gracefully by
using the DATA_FIN flag or abruptly with the Fast Close
(MP_FASTCLOSE) option. When a host sends a RST segment
containing the MP_FASTCLOSE, it requests the abrupt release
of the corresponding Multipath TCP connection (and also of
all the corresponding subflows). This creates a security risk if
an attacker has been able to send a spoofed RST segment con-
taining this option. To mitigate this risk, the MP_FASTCLOSE
option must be authenticated by including the security key that
has been exchanged during the establishment of the initial
subflow.

III. DESIGN OF MPTCP SECURE

Multipath TCP was designed as a replacement for TCP.
From a security viewpoint, the security objectives were that
Multipath TCP should not be worse than regular TCP.

Possible attacks on MPTCP fall under 3 categories: eaves-
dropping, data modification (including injection and trunca-
tion) and Denial of Service. The latter group includes all at-
tacks consisting in MPTCP option forgery, replay and removal.
For instance, an attacker, if he controls one of the subflows,
can block new subflows by removing any ADD_ADDR option
or by forging REMOVE_ADDR options to remove addresses.

Single-path security solutions existing today (like TLS or
SSH) tackle eavesdropping and data modification but they do
not tackle DoS attacks since they were designed to work above
TCP (and they cannot be modified to protect MPTCP options
without being merged to the TCP stack).

Moreover, a new risk of denial of service is added by
security solutions initially designed to work above TCP: if
an attacker modifies data of one segment and successfully
injects it (that’s easy if he controls one of the paths used by
MPTCP), an authentication error is raised at the security layer
(e.g., in TLS or SSH) and the entire MPTCP connection is
closed. Indeed, the segment was already accepted and acked
by MPTCP and the other host will never retransmit it.

This problem can be solved by checking the validity of a
segment before acknowledging it and if invalid, closing the
attacked subflow. This is possible only if we design a secure
protocol inside MPTCP (instead of above), taking advantage of
the multipath environment. We not only address eavesdropping
and data modification but we also use the specificity of
Multipath TCP to provide solutions to many Denial of Service
attacks (i.e., by MPTCP option protection and avoidance of the

attacker by using several subflows), resulting in more robust
connections than what would be obtained from the use of an
application layer security protocol.

In general, three phases can be observed in protocols using
cryptography to carry data above TCP. This section is thus
organized around these phases:

• The TCP connection establishment (Section III-A). We
use it to negotiate MPTCP and extend TCP-ENO [19] to
negotiate encryption in MPTCP.

• The secure handshake (Section III-B): this step is used
to define unique session identifiers, to create the keying
material that is needed for the authenticated encryption
scheme used for data transfer, and possibly to check
identities (e.g., through certificates).

• The protected data transfer (Section III-C): MPTCP
secure (MPTCPsec) chooses to protect both data and
MPTCP options.

A. Encryption suite negotiation

TCP does not include encryption and authentication. Within
the tcpinc working group, the IETF is working on TCP-
ENO [19], a generalized and backward compatible mechanism
for incrementally deploying encryption. TCP-ENO is a TCP
option that can be used in the SYN segment to negotiate
the utilisation of a specific encryption/authentication scheme
for a TCP connection. Its first use is to support tcpcrypt
as described in [20], but the specification is open to other
protocols that can meet similar security requirements, like TLS
1.3. We extend TCP-ENO to use it within a Multipath TCP
connection.

MPTCP is negotiated by using the MP_CAPABLE op-
tion, which must be included once in each segment of any
successful three-way handshake. In MPTCP, this option is
also used to negotiate (in clear) keys that will be used to
protect some of the options, on other subflows in particular.
Exchanging keys in clear is obviously insecure when massive
surveillance is a central concern. Therefore, we remove the
keys from the MP_CAPABLE option and use the spared space
to encode our MultiPath TCP Encryption Scheme Negotiation
(MPTCPesn) option. Our MPTCPesn relies on the chosen
encryption scheme to derive the necessary keys.

Figure 3 shows the modified MP_CAPABLE option. It uses
the traditional Type-Length-Value format imposed by TCP.
As stated in [2], the Kind indicates MPTCP type while the
Subtype indicates which MPTCP option it is (in this case, it
indicates the subtype of MP_CAPABLE). In order to indicate a
MPTCPesn negotiation, the version field value is changed (into
second version). This modified MP_CAPABLE option contains
a list of sub-options, whose format is identical to TCP-ENO
sub-options (see [19] for more details). One of the sub-options
is used to perform out-of-band signalization to applications
that would be aware of MPTCPsec, while the others are used
for the negotiation of cipher suites.

Our MP_CAPABLE option is used as in MPCTP and TCP-
ENO: it is used in the three segments of the TCP handshake,
and provides a transcript and connection roles that can later
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Figure 3. MP_CAPABLE option modified for MPTCPesn

be used to authenticate the negotiation. Furthermore, it aims
at negotiating an encryption spec meeting all the requirements
included in TCP-ENO, including to provide an authenticated
encryption mechanism with minimum 128-bit security, and
a unique session ID. In addition to defining the session ID,
MPTCPesn also requires the encryption scheme to provide the
MPTCP tokens and IDSN that are necessary for the MPTCP
connection.

As in TCP-ENO, our MP_CAPABLE option does not prevent
an on-path attacker (or a middlebox) from removing the
MP_CAPABLE option itself from the handshake. In this case,
no encryption will be negotiated and the application may
choose to close the connection in order to prevent attacks.

B. Secure handshake

The MPTCP Secure (MPTCPsec) design can be used with
the shared secret establishment method belonging to another
secure protocol (e.g., tcpcrypt [20] and TLS 1.3 [21]). This
shared secret establishment method must create keying mater-
ial (and possibly nonces or IVs) that can be used for AEAD
algorithms [22], which are required to be used for securing
data in TCP-ENO. We describe below how we use this keying
material in MPTCPsec.

Once the TCP three-way handshake is over, the chosen
secure protocol can be run above the freshly established TCP
subflow (since the token is not yet chosen, other subflows
cannot be established). The difficulty is to introduce the
MPTCPesn transcript in the keying material generation. TLS
(in [23]) has already proposed a solution by providing an
interface to use only its handshake to derive some keying
material and by letting the application add some context to
the computation: we can thus give the MPTCPesn transcript.
Tcpcrypt [20] does not have this problem since its handshake
already includes the TCP-ENO transcript.

From this keying material, must be derived the keys and
the session ID, which TCP-ENO requires to contain at least
33 bytes. There is no additional operation to do in tcpcrypt.
In TLS, we simply ask for more bytes from the TLS Keying
material exporter and use the first part for the keys and the
second part for the session ID. The same mechanism is used
with TLS in order to produce the MPTCP connection tokens
and the Initial Data Sequence Numbers (IDSN). For tcpcrypt,
we apply HKDF [24] on the session ID to derive a uniform
sequence of bits.

C. Securing data and control

This section gives an overview of how MPTCPsec protects
data and options.

1) Protecting data: All data are protected through the use
of Authenticated Encryption with Associated Data (AEAD)
algorithms: following [22], an encryption algorithm takes data
and associated data as inputs (which will be options in our
case), and guarantees the integrity of both types of data and the
confidentiality of the data only. These guarantees are provided
only if a shared secret key is used and if a fresh nonce is used
for every invocation of the encryption algorithm.

In order to guarantee the uniqueness of the nonce used for
data protection, we define it as a constant of 2 bits (00 for the
data) followed by the DSN and padded with zeros to the right
in order to have a 128-bit nonce.

MPTCPsec does not use records like TLS, tcpcrypt and SSH
do, but it uses DSS options. A block of encrypted data is
covered by one and only one DSS. The ciphertext length is
given by the Data-Level Length field. It enables to fragment a
ciphertext into several segments by covering all these segments
by only one DSS. Since these fragments are mapped by a
single DSS option, they must be sent over the same subflow.

2) Protecting TCP Options: Multipath TCP uses a variety
of TCP options. In order to protect them, we have chosen to
authenticate the TCP options but we do not encrypt them. This
is a different design than the one chosen by the designers of
QUIC [25]. In QUIC, all control information is both encrypted
and authenticated to prevent interference with middleboxes.
Experience with Multipath TCP has shown that it can cope
well with a variety of middleboxes. Some of these middle-
boxes have valid reasons to analyse the control information
exchanged in the Multipath TCP options. For this reason,
we have opted for authenticating but not encrypting the TCP
options.

Data are encrypted independently of their headers (which
need to be adapted depending on the subflow that is used)
but, in order to link the data with these headers, MPTCPsec
computes the option authentication tag based on the concat-
enation of the options and the data authentication tag. It is
then appended to the ciphertext in the payload (i.e., after the
encrypted data and its authentication tag). The format of the
nonce used for the option protection (with the exception of
pure acknowledgments) is a constant of 2 bits (01) followed by
a subflow id (because options change in a re-injection and the
nonce must be different) and the DSN. We define the subflow
id as the concatenation of the first 31 bits of both HMAC
exchanged during the MP_JOIN messages, and set the id of
the first subflow to 0. Figure 4 represents this segment format
(assuming that the used AEAD algorithm puts the tag at the
end of the ciphertext).

The two calls to the AEAD encryption mode may seem
sub-optimal, since we just need to encrypt the data and then
authenticate the ciphertext and headers – something that seems
to map to a single AEAD encryption. However, the AEAD API
does not allow defining associated data after the encryption
process. Furthermore, this is not even possible for the AEAD
modes listed in tcpcrypt and TLS (i.e., GCM, CCM and
CHACHA20 POLY1305) without requiring a full pass on the
ciphertext every time a header modification happens (which



Table I
PROTECTION OF THE MPTCP OPTIONS AND HANDLING OF REINJECTIONS.

Options Protection Re-injection
MP CAPABLE MPTCPesn transcript Cannot be re-injected

MP JOIN HMAC exchanged in the options Cannot be re-injected

DSS Included in the option tag SSN must be modified. Data ACK and DSN can be truncated or not
(i.e., flags a and m can change).

ADD ADDR Included in the option tag Nothing can be changed
REMOVE ADDR Included in the option tag Nothing can be changed
MP FASTCLOSE HMAC in the option Nothing can be changed

header with DSS encrypted data data tag option tag

Figure 4. Segment format (assuming that the AEAD algorithm puts the tag
at the end of the ciphertext), with tag the authentication tag produced by the
AEAD.

would happen if a ciphertext needs to be retransmitted on
a different subflow). Other modes (e.g., OCB) could lead to
more efficient solutions, but with a non blackbox use of the
AEAD.

There is an important issue for the protection of the ac-
knowledgments. With the current protocol, as ACK segments
contain a DSS option, they also contain an authentication tag,
in the payload. Thus, they always contain data (there are
no pure ACK segments in MPTCPsec), and this data must
be acknowledged at the MPTCP level. In other words, each
ACK segment must be acknowledged itself by another ACK
segment. This could become an endless loop. To solve this
issue, in case of a pure ACK segment, MPTCPsec still puts
the option tag in the payload but does not map its bytes onto
DSNs, so that no further MPTCP ACK will be triggered. The
format of the nonce used for the acknowledgment protection
is a constant of 2 bits (11) followed by the value of the ”a”
flag of the DSS option (because the Data-ACK in the segment
can be either fully written or truncated) and the Data-ACK
value (of 64 bits).

Table I summarises how the MPTCP options are protected
and explains how they can or must be modified in case of re-
injection (in order to keep the same semantics). As shown in
this figure, DSS, ADD_ADDR and REMOVE_ADDR options are
protected by using the option tag. The MP_CAPABLE option
is protected by the MPTCPesn transcript (described in Section
III-A). It cannot be protected by the option tag since the keys
are not yet defined at that time.

Since MP_JOIN already uses authentication in its hand-
shake, MPTCPsec does not authenticate the MP JOIN option.
But the B bit (indicating if this subflow will be a backup
subflow or not) and the Address ID fields must be included
in the HMAC to prevent attackers from modifying them. It
is also better to include the reserved flags (for future use).
Each host includes, in the HMAC that it sends, the B bit, the
reserved flags and the Address ID it has received from the
other host.

The key used by the MP_FASTCLOSE option in [2] is
no more available with MPTCPsec. MPTCPsec sends the

HMAC of the remote key, using the local key as secret.

To summarize (as shown in Table II), these mechanisms
guarantee that:

• data is confidential and authentic, thanks to the AEAD;
• DSS, ADD_ADDR and REMOVE_ADDR options are au-

thentic, and linked to the data, thanks to the use of the
associated data feature of the AEAD;

• the only effect of an attack on one subflow will be to close
this subflow and retransmit the data on another subflow,
without the need of renegotiating fresh keying material.

IV. IMPLEMENTATION

To demonstrate the feasibility of adding authentication
and encryption to Multipath TCP, we extend the reference
implementation of Multipath TCP in the Linux kernel with
the mechanisms described in this paper. Our prototype imple-
mentation lies entirely in the kernel. It significantly extends
the Multipath TCP stack since our patch2 contains 5130 lines.

Our implementation is a proof-of-concept that includes the
different mechanisms described in this paper except the secure
handshake. As explained in Section III-B, MPTCPsec has been
designed to support different secure handshake mechanisms,
including TLS 1.3 and tcpcrypt. The secure handshake is
only used to derive the shared secret on the communicating
hosts. In our experiments, we use a socket option to pass
the same shared secret on the two hosts once the MPTCPsec
connection has been established.

We first describe the operation of our implementation at a
high level and then explain how the AEAD operations interact
with the transmission and the reception of Multipath TCP
segments.

When sending or receiving segments, our implementation
follows a precise order for the operations in order to ensure
the security properties.

• First transmission of a segment: firstly, our implement-
ation executes the AEAD on the data to be sent. Then the
Multipath TCP scheduler chooses the subflow on which
the segment will be sent. It is only at this point that we
can create the TCP header, including the different options
and compute the authentication tag. The entire segment
is then ready to be transmitted on the chosen subflow.

2The starting point for our implementation is the mptcp_trunk branch,
kernel version 4.1 and MPTCP version 0.90. The code is available at https:
//bitbucket.org/mptcpsecteam/mptcpsec.



Table II
ATTACK VECTORS AND THEIR MITIGATIONS.

Eavesdropping Data modification Option modification Option replay
Secure handshake v v v

AEAD on data v v
AEAD on options v v

HMAC in MP FASTCLOSE v
HMAC in MP JOIN v v

• Retransmission of a segment: we store the segments that
have not yet been acknowledged. When such a segment
needs to be retransmitted, it is sent with the same header
and the same tags, on the same subflow.

• Segment reinjection: Multipath TCP can decide to re-
transmit an unacknowledged segment over a different
subflow for different reasons [17]. When a segment is
reinjected, our implementation modifies the DSS and
possibly the other options included in the segment. Then
it recomputes the authentication tag of the options, but
does not modify the ciphertext. We also fragment the
segment if the MTU of the new subflow is smaller than
the length of the reijnected segment.

• Reception of a segment: our implementation checks
whether the segment is in the MPTCP receive window
and has not already been received (otherwise it is simply
dropped). Then it decrypts the ciphertext and checks the
option tag. If the tag is valid, it processes the options
contained in the segment. Otherwise, the subflow where
the invalid segment was ready is closed. This does not
terminate the Multipath TCP connection since such a
connection can gather different subflows. The decrypted
data is passed to the application in sequence.

It is important to note that when receiving a segment, we
not only check the authentication of the options but we also
decrypt and authenticate the data. Otherwise, an attacker could
replay the options, by using the following method:

• Host A sends a segment with a ADD_ADDR (for instance).
• The attacker corrupts one bit of the encrypted data (i.e.,

not the data tag nor the option tag).
• Host B sees that options are authenticated correctly and

applies directly the ADD_ADDR option. But after attempt-
ing to process the data, it realizes that it is corrupted and
therefore, drops the segment and closes the subflow.

• Host A re-injects the segment on another subflow with
the same ADD_ADDR option.

• Host B sees again that options are authenticated correctly
and applies a second time the ADD_ADDR option. This
time, the data are accepted and thus, host B will not apply
a third time this option.

A more precise order of the interpretation of the option is
shown in Figure 5. Pure ACK segments and MP_FASTCLOSE
options do not contain MPTCP data and can thus be directly
handled. The DSS option is partially interpreted before the
option authentication check. Most MPTCP options, and the
Data-ACK of the DSS, can be interpreted only after the

Figure 5. Timeline of the interpretation of the MPTCP options.

data decryption, as explained above. The DATA_FIN is only
interpreted once the previous data have been received.

A. AEAD integration in the input flow

We use the GNU/Linux CryptoAPI [26] of the kernel to
implement the cryptographic operations. This will enable our
implementation to support other AEAD algorithms in the
future with minor modifications to the code.

The GNU/Linux CryptoAPI requires the AEAD operations
to be asynchronous. This is the most efficient choice given that
cryptographic operations are costly from a CPU viewpoint.
However, this API was designed to support the encryption/-
decryption of independant packets. Using it for a stream
protocol such as Multipath TCP poses special implementation
challenges. One of them is that we have no guarantee that
the first execution of the AEAD algorithm will be finished
before the next ones. Moreover, any received segment must
be dropped if its verification fails (and its subflow must be
closed). For these reasons, our implementation uses two new
queues: the Decrypt queue that stores the segments in
sequence (w.r.t. DSN) which are not yet decrypted and the
Decrypt out-of-order queue for those that are not
in sequence.

Figure 6 shows an example of a possible state of the queues
of the input flow. These queues belong to different socks. In
TCP, a sock is the kernel equivalent to the socket in Linux.
In MPTCP, there is not only one sock like in TCP :

• The meta sock (already created) is the interface used by
the application’s socket. All data sent or received by the
application pass through it.

• The master sock (created here) is a TCP sock that is in
charge of the first TCP subflow established.

• The slave socks are also standard TCP socks but they
handle the subflows created with MP_JOIN option.

When new segments arrive, they are queued in the sub-
flow’s Receive queue if they are received in se-
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Figure 6. Example of state of the modified MPTCP input flow’s structures.
In Figure 6e and Figure 6f, the intervals in italic contain SSN while the other
ones contain DSN.

quence. Otherwise, they are queued in the subflow’s
Out-of-order queue. After that, the segments inside
the subflow’s Receive queue are transferred to the
Decrypt queue if they are in sequence (w.r.t. DSN) or to
the Decrypt out-of-order queue otherwise. In both
cases, the AEAD decryption and authentication checks are
performed. Nevertheless, these segments cannot already be in
the Decrypt queue, in the Decrypt out-of-order
queue or in the meta sock’s Out-of-order queue.

If an authentication check fails, the segment is dropped. If it
was in the Decrypt queue, the next segments of this queue
are transferred to the Decrypt out-of-order queue
since they are not in sequence anymore.

B. AEAD integration in the output flow

As for the AEAD decryption and verification, the AEAD
encryption and authentication must be performed asynchron-
ously. Our implementation uses two queues to organise this
processing:

• An Encrypt queue (Figure 7a) that acts a bit like
a Write queue. The difference is that it contains all
segments that are not yet encrypted (instead of not yet
acknowledged), either because the AEAD algorithm has
still not been launched (the first of these segments is
pointed by encrypt_head) or because AEAD is still
running.

• An Encrypt out-of-order queue (Figure 7c)
stores segments that are encrypted and authenticated
while the previous ones are not.

When data arrives from the application’s socket, segments
are created and placed on the Encrypt queue. When the
segment is sufficiently filled, the negotiated AEAD algorithm
is launched on the segment’s payload and encrypt_head
points to the next segment.
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(a) Encrypt queue
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Figure 7. Example of state of the modified MPTCP output flow where the
intervals are the Data Sequence Numbers covered by the segments

As soon as the authentication and encryption of a segment
finish, the segment is removed from the Encrypt queue.
If it is not the first of the Encrypt queue, it is placed
in the Encrypt out-of-order queue. Otherwise it is
appended at the end of the meta sock’s Write queue (Figure 7b)
and the segments of the Encrypt out-of-order queue
that become in sequence are also moved to the meta sock’s
Write queue.

The Write queues of the meta sock and subflow socks
(Figure 7b, Figure 7d and Figure 7e) are handled exactly like
regular MPTCP.

MPTCP options are authenticated before sending the seg-
ments on the subflow and, thus, do not require additional
queues.

V. EVALUATION

In this section, we compare the performance of our imple-
mentation with plain MPTCP and TLS 1.2 (using OpenSSL)
over MPTCP. The main objective of this evaluation is to
demonstrate that MPTCPsec works correctly. Its code has not
been as optimised as the OpenSSL and the MPTCP codes.
A lower performance of MPTCPSec is thus expected, even if
encryption and authentication are computed inside the kernel
while OpenSSL operates entirely in userspace.

We perform our evaluation with two low-end x86 servers
running Linux 4.1 (with MPTCP version 0.90) and connec-
ted back-to-back via two Gbps Ethernet interfaces. We use
AES128-GCM AEAD for both MPTCPsec and OpenSSL and
disabled the hardware offload on the Ethernet interfaces. The
two x86 servers used for the tests had AMD CPUs and did
not include the instructions to implement AES in hardware.

We first perform bulk data transfers. The client application
sends a given amount of data (from 100MB to 1GB) from
memory to the server application by blocks of 4096 bytes.



There is no interruption of the data transfer. Our test applic-
ation collects a timestamp for each block. Each transfer was
repeated 15 times and we plot the mean of the throughput
measurements in Figure 8. In our testbed, MPTCP can reach
roughly 1.6 Gbps. When we enable TLS, using OpenSSL
version 1.0.2g, the throughput drops to about 700 Mbps. This
reflects the cost of encrypting and authenticating the data. With
MPTCPsec instead of MPTCP, the throughput drops to 350
Mbps. This lower performance is not surprising since our code
has not been optimised in the same manner as the OpenSSL
code that is used in production by many servers.

Figure 8. Throughputs achieved by MPTCP, TLS/MPTCP and MPTCPSec
for long transfers

The main benefit of MPTCPsec compared to TLS over
MPTCP is its reaction to different types of attacks. As
explained earlier, MPTCPsec also authenticates the MPTCP
options while TLS only authenticates and encrypts the data.
Thanks to this, MPTCPsec can efficiently react to a range
of attacks. To demonstrate the capabilities of MPTCPsec, we
consider the following scenario. The client application sends
1MB to the server by blocks of 4096 bytes. A Linux PC,
acting as a router is placed between the client and the server
to perform a man-in-the-middle attack. More precisely, we use
scapy [27] to capture the packets sent by the client. Once 500
KB have been transferred, the attacker modifies one byte of
the payload of one segment and updates its checksum. This
models a very simple packet injection attack. Researchers have
identified various middleboxes that inject data in established
TCP connections in mobile networks [28].

We perform experiments with both TLS 1.2 over MPTCP
and MPTCPsec. In both cases, two subflows are established
between the client and the server. Figure 9 shows the evolution
of the DSN with both TLS/MPTCP and MPTCPsec. When
TLS detects the authentication error, shortly after 500 KB,
it immediately closes the connection and stops the transfer.
MPTCPsec on the other hand detects the problem and only
closes the affected subflow. As shown in Figure 9, the secure
data transfer continues after the attack.

VI. RELATED WORK

Encryption and authentication have traditionally been imple-
mented either in the application [5] or in the network layer.

Figure 9. When a packet injection attack occurs, TLS/MPTCP closes the
connection and stops the transfer while MPTCPSec closes the affected subflow
and continues the transfer.

Application layer solutions have been quite successful and a
growing fraction of the Internet traffic is encrypted and authen-
ticated. Compared to application layer solutions, MPTCPsec
provides several advantages. First, application layer protocols
close the underlying connection as soon as some data has been
injected in the underlying connection. This is a strong risk of
denial of service. MPTCPsec reacts to such attacks by either
ignoring the injected segments that are not authenticated or by
closing the subflow, but not the entire connection.

Within the IETF, two drafts are related to MPTCPsec :
MPTLS [29] and Secure MPTCP [30]. These two drafts pro-
pose initial ideas that have not yet been implemented. MPTLS
proposes to couple Multipath TCP and TLS together. It uses
Encrypt-then-MAC and places the HMAC computed by TLS
for each record inside the DSS option. MPTCPsec leverages
AEAD to secure both data and options. Secure MPTCP [30]
discusses how tcpcrypt could be included inside Multipath
TCP, but only at a high level. Other researchers have proposed
to use a key derived by a secure handshake to authenticate
the establishment of the Multipath TCP subflows [31]. This
solution does not provide encryption or authentication for
the data and the other Multipath TCP options. An earlier
work, [32] proposed to use hash chains to secure the control
part of Multipath TCP instead of the HMAC solution chosen
by the IETF. To our knowledge, this solution has not been
implemented.

In 2012, Andrea Bittau and his colleagues proposed to
extend TCP in order to support opportunistic encryption [10].
With their tcpcrypt proposal, hosts negotiate keys securely
at the beginning of the connection and encrypt and authenticate
all the data exchanged. The IETF has formed the tcpinc
working group to standardise a solution that is heavily inspired
from this work. MPTCPsec has three main differences with
tcpcrypt. First, tcpcrypt can only work with TCP and
thus, cannot use multiple paths. Second, tcpcrypt cannot
protect control data since it is included in the TCP header.
Indeed, TCP is an old protocol and many middleboxes may
modify control information included in the TCP header. Fi-
nally, MPTCPsec can use either the TLS or the tcpcrypt



handshake (Section III-B).

VII. CONCLUSION

The traditional TCP/IP protocol stack is not sufficient for
today’s Internet users. On one hand, they expect better se-
curity and require the utilisation of cryptographic encryption
and authentication techniques to secure their data transfers.
On the other hand, they use mobile devices that include
multiple interfaces. In this paper, we have proposed and
implemented MPTCPsec, an extension to Multipath TCP that
relies on authentication and encryption to counter various
security attacks. Our design is composed of three parts. Firstly,
MPTCPesn adapts TCP-ENO to Multipath TCP and allows
to negotiate different security protocols during the three way
handshake. Secondly, MPTCPsec authenticates and encrypts
the data transported over a connection while still supporting
their reinjection over other subflows. Thirdly, MPTCPsec
authenticates the MPTCP options to prevent several types of
denial of service attacks. To demonstrate the feasibility of
our approach, we implement MPTCPsec entirely in the Linux
kernel. Our further work will be to port the tcpcrypt and TLS
1.3 secure handshakes inside MPTCPsec.
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