
Design et implémentation d’un
logiciel de validation et de génération

de configurations réseaux

Grégory PARDOEN et Laurent VANBEVER

INL: IP Networking Lab
UCL, Louvain-la-Neuve, Belgium

Le 28 août 2008

Promoteur : Professeur Olivier BONAVENTURE

Table of contents
• Introduction

• Some facts

• Main objectives

• Principles

• VNG architecture

• High-level view

• Checking correctness

• Generation

• Demonstration

• Conclusion

Introduction

Some facts
• Today, most networks are still configured on a

“router-by-router” basis (telnet approach)

• This is error-prone and leads to misconfigurations
(e.g., AS7007 incident in ‘97, AS3561 in ‘01, YouTube in ’08...)

• Network manufacturers encourage engineers to
manually apply configurations changes

• Management costs keeps growing due to the
increasing complexity of network architectures

A new vision of network configuration is needed !

Main objectives

• A extensible and easy way of designing and
configuring correct networks

• Extensibility to be able to add and check new
network features

• Easy because network configuration tends to be
harder and time consuming

• Correct according to given specifications

• Similar to software engineering techniques
applied to network configurations

Principles
• Rules allow a network architect to specify

formally his objectives

• High-level objectives are design decisions (e.g., enforce
route reflectors redundancy)

• Low-level objectives are related to routers configurations
details (e.g., same MTU on both ends of a link)

• High-level language allows the writing of
an entire network configuration in a single
entity

• Implemented in a software: Validated Network
Generator or VNG

VNG architecture

Design
Errors &
Warnings

Juniper
Template

Alcatel
Template

Cisco
Template

Device
Configuration

INPUT OUTPUTPROCESSLegend:

Generator

ValidatorRules

Network
Representation

• A rule represents a condition that must be
met by the network (like in software
engineering)

• Rules check the correctness of the high level
representation

• Rules are applied on configuration nodes

• Rules are defined in a XML document

Checking correctness
Rule based approach

• A single entity represents the whole network

• Avoid as much as possible redundancy (e.g.
link parameters, protocols configurations)

• Eliminate duplication errors and reduce typing
faults

• Represented using a flexible and hierarchical
language: XML

• Structural constraints are defined in a XML
Schema

High-level representation

• Four types of rules were identified:

1. Presence

2. Non-presence

3. Uniqueness

4. Symmetry

• If a rule cannot be expressed as one of them:

• Custom

Checking correctness
Rule based approach

• Rules can be checked by using three techniques:

1. Structural constraints (XML Schema): Structural rules

2. Queries on the representation (XQuery): Query rules

3. A programming language (Java): Language rules

PRESENCE
NON-PRESENCE

UNIQUENESS SYMMETRY CUSTOM

STRUCTURAL
RULES

QUERY RULES

LANGUAGE
RULES

✓ ✓ ✓
✓ ✓ ✓ ✓

✓

Checking correctness
Rule based approach

Table 1. Type of rule in function of the advised technique

• The rules are expressed formally by
using the notions of scope and its
descendants

• A scope is a set of configuration
nodes

• descendants(x) is a set of selected
descendants of the scope’s element x

Routers

Interface
so-0/0/0

Interface
so-0/0/1

Scope: All routers

descendants(R2) :
all R2’s interfaces

descendants(R1) :
all R1’s interfaces

: Configuration node

Checking correctness

Interface
loopback

R1 R2

Interface
loopback

Interface
id : loopback

Interface
id: loopback

Check if certain configuration nodes are in the representation

Example: each router must have a loopback interface

Scope: All routers

Interfaces of R1 Interfaces of R2Interface
id : so-0/0/0

Interface
id: so-0/0/0

R2

Routers

Checking correctness
presence rules

∀x ∈ routers∃y ∈ interfaces(x) : y.id = loopback

Interface
id: loopback

: Seeked node

Interface
id: loopback

R1

∀x ∈ scope, ∃y ∈ descendants(x) : Cpresence(T, y)

Check if there is at least one configuration node respecting a
given condition in each descendants set.

<rule id="LOOPBACK_INTERFACE_ON_EACH_NODE" type="presence">
<presence>
  <scope>ALL_NODES</scope>
  <descendants>interfaces/interface</descendants>
  <condition>@id='loopback'</condition>
</presence>
</rule>

Query Rules are defined in a XML document

Example : each router must have a loopback interface

Checking correctness
presence rules

∀x ∈ routers∃y ∈ interfaces(x) : y.id = loopback

Check the uniqueness of a field value in a set of
configuration nodes

Routers

R1 R2

Interface
id: so-0/0/0

Interface
id: so-0/0/1

Interface
id: loopback

Interface
id: so-0/0/1

Scope : All routers

Checking correctness
uniqueness rules

Example : uniqueness of routers interfaces’ identifiers

Ids of R1’s interfaces are unique.

Interface
id: loopback

Interface
id: so-0/0/0

Ids of R2’s interfaces are not unique
The rule will failed.

Interface
id: so-0/0/1

Interface
id: so-0/0/1

∀x ∈ routers, ∀y ∈ interfaces(x) : ¬(∃z !=y ∈ interfaces(x) : y.id = z.id)

∀x ∈ scope ∀y ∈ descendants(x) : ¬(∃z !=y ∈ descendants(x) : y.field = z.field)

<rule id="UNIQUENESS_INTERFACE_ID" type="uniqueness"> 
<uniqueness>
  <scope>ALL_NODE</scope>
  <descendants>interfaces/interface</descendants>        
  <field>@id</field>
</uniqueness>
</rule>

Example: uniqueness of interfaces’ identifiers

Checking correctness
uniqueness rules

Check if there is no two configuration nodes with an
identical value of field

• Check the equality of fields of configuration
nodes

• Such rules can be checked implicitly by the
high level representation (i.e., using structural
rules)

• Example : MTU must be equal on both ends of a link

• It can be checked by representing the MTU once on the
link level instead of twice at the interfaces level

• Hypothesis: the duplication phase is correct

Checking correctness
symmetry rules

• Custom rules are needed because some
expressions are complicated and cannot be
written easily

Area 0

Area 1 Area 2

<rule id="ALL_AREAS_CONNECTED_TO_BACKBONE_AREA" type="custom">
    <custom>
        <xquery>
            for $area in /domain/ospf/areas/area[@id!="0.0.0.0"]
            let $nodes := $area/nodes/node
            where count(/domain/ospf/areas/area) > 1 
            and not(some $y in $nodes satisfies /domain/ospf/areas/
                    area[@id="0.0.0.0"]/nodes/node[@id=$y/@id])
           return
               <result><area id="{$area/@id}"/></result>
        </xquery>
    </custom>
</rule>

Example: All OSPFs areas must be connected to the backbone

Checking correctness
custom rules

• A rule can be written in few lines

• Simple XML syntax

• Complex rules can also be expressed

• An operator can write as many rules as he want

Checking correctness
Summary

Generation
• High level representation is not intended to be

translated easily into configuration files

• Intermediate representations are needed

• It could be seen as the result of a preprocessing phase

• Templates allow the translation of
intermediates representations in configuration
files

• Templates of any configuration or modeling language can
be written (e.g., Cisco IOS, Juniper JunOS, etc.)

• Written in XSLT

Generation

interfaces {
    lo0 {
        unit 0 {
            family inet { 
                address 198.32.8.200/32;
            }
            family inet6 { 
                address 2001:468:16::1/128;
            }
        }

Generator
Juniper

Template
XSLT

<node id="SALT">
<interfaces>

<interface id="lo0">
<unit number="0">

<ip type="ipv4" mask="32">198.32.8.200</ip>
<ip type="ipv6" mask="128">2001:468:16::1</ip>

     </unit> 
   </interface>
</interfaces>

</node>

Demonstration

Conclusion

Conclusion
• Our tool is a first step towards a extensible

and easy way of designing and configuring correct
networks

• Easy to:

• Add new protocols, equipments, parameters...

• Add rules to check specific needs or new features

• Add new constructors to generate appropriate configlets

• Further works

• Automatically produce high level representation of a network

• Extend the prototype to a broader range of cases

• Allow VNG to interact directly with the routers

Any questions ?

