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Abstract

In the changing landscape of the todays Internet, several solutions are under
investigation to allow efficient, flexible and scalable multihoming. One of the
proposals is shim6, a host-based multihoming solution based on the use of mul-
tiple IPv6 addresses on each host. In this work, we first describe the main
features of this protocol, then we explain our implementation of shim6, along
with the associated security mechanisms in the Linux kernel and, finally, we
evaluate its performance. In particular, we analyse the performance impact of
the security mechanisms used by shim6 and the impact of shim6 on the perfor-
mance of end-host systems, especially heavily loaded servers. We conclude by
discussing the remaining open issues for a widespread deployment of host-based
multihoming techniques such as shim6.
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1. Introduction

The current IPv4 Internet is facing several challenges. Firstly, the IP version
4 (IPv4) address space is limited and the latest projections 1 indicate that

during the year 2011 all IPv4 addresses will have been allocated. Secondly,
operators and researchers are becoming more and more concerned about the
limits on the scalability of the current Internet architecture [31].

For a number of years, several groups have tried to address these problems.
Within the IETF, the work on the development of a replacement for IPv4 started
more than 15 years ago with the work on IP next generation. This initiated
the development of IP version 6 (IPv6) that was expected to replace IP version
4 before the beginning of this century. Today, IPv6 is now supported by most
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host and server operating systems. However deployment by network operators
is still limited but appears to have been growing recently [25]. We can thus
expect that IPv6 will gain more and more importance over the next few years.

On the other hand, the Internet Architecture Board (IAB) has identified
several limitations of the current Internet architecture [31]. The first problem
is the scalability of the interdomain routing system. This is reflected by the
growth of the BGP routing tables and also the growth in the number of mes-
sages processed by BGP routers. This routing scalability issue is caused by
several main factors. An initial contributor is multihoming, i.e. when an IP
network is attached to several Internet Service Providers that need to adver-
tise the corresponding prefix to the global Internet. Another contributor to the
growth of the BGP routing tables are the various BGP-based traffic engineer-
ing techniques used by network operators to control the flow of their Internet
traffic [20, 41]. Finally, the allocation of IP addresses also contributes to the
BGP growth. In the early days of the Internet, IP address blocks were allocated
on a first-come first-served basis. This led to a huge consumption of address
blocks that are almost impossible to aggregate. Since the introduction of Class-
less Interdomain Routing (CIDR), IP address blocks are allocated by Regional
Registries (RIRs). There are two types of address block allocations: Provider
Independent (PI) and Provider Aggregatable (PA). In the early days, PI address
blocks were reserved for Internet Service Providers and customer networks could
not obtain such address blocks directly from the RIRs. This allocation policy
assumed that customer networks would be single homed and that they would
renumber their network each time they change provider. These assumptions do
not hold anymore and many enterprise networks insist on obtaining PI address
blocks, which contributes to the growth of the BGP routing tables [30].

The second problem is the overloading of IP address semantics. IP addresses
are used for two different purposes: identifiers and locators. In its identifier
role, an IP address, combined with a port number, identifies an endpoint of a
transport flow. In its locator role, an IP address identifies the paths to reach a
host via one of its interfaces through a network.

The large IPv6 address space offers several opportunities to solve these prob-
lems differently than with IPv4. Several years ago, after evaluating many al-
ternatives [17, 23], the IETF chartered the shim6 working group to develop a
host-based IPv6 multihoming solution [37]. The shim6 specifications are now
ready and, in this paper, we report our experience with one of the first complete
and publicly available implementations of this IPv6 multihoming technique in
the Linux kernel.

This paper is organised as follows. First, as shim6 is not yet widely known,
we describe its key features and benefits in section 2. This is followed by a
description of the architecture of our LinShim6 implementation in section 3 and
an evaluation of the performance of several of its key mechanisms. We conclude
by reflecting on the evolution of host-based multihoming techniques based on our
experience with shim6 in section 4 and a discussion of related work in section 5.
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2. Shim6 host-based IPv6 multihoming

Before delving into the details of shim6, consider that there are at least two
scenarios that can provide multihoming. The first type is when a single host
has two or more IPv6 addresses from two or more layer-2 interfaces connected
to separate networks. This can be the case of a laptop having both WiFi and
3G Internet interfaces, or servers having multiple Ethernet interfaces. In these
cases, the multihomed host would like to either be able to efficiently use both
interfaces simultaneously or use a primary interface, with automatic redirection
of all packets over another interface upon failure of the primary one.

The second type of multihoming occurs when a campus, corporate or ISP
network is attached to two different service providers. In such a network, each
host gets an address from each service provider, and is accessible over both. A
host in such a multihomed network can select, for itself, the provider to use for
a given flow, through appropriate selection of the source address. Shim6 was
designed with the latter form of multihoming in mind but also supports the
former.

ISP1 ISP2

src : ISP1.A
dest : ISPX.B

src : ISP2.A

c1

dest : ISPX.B

c2

Source

Destination

shim6 context 
after change

Initial shim6 context

ULID : ISP1.A
current loc. : ISP2.A
current peer loc. : ISPX.B

ULID : ISP1.A
current loc. : ISP1.A
current peer loc. : ISPX.B

ISP1.A
ISP2.A

'Host B', ISPX.B

'Host A'

Internet

Figure 1: Basic operation of a shim6 host

Today, in the IPv4 Internet, when a network is multihomed, it receives one
IPv4 address range, and uses BGP to advertise its IPv4 prefix to its upstream
providers which, in turn, advertise the network to the global Internet. This
contributes to the growth of the BGP routing tables. If a link between the
multihomed network and one of its providers fails, BGP re-converges, to ensure
that the multihomed network remains reachable via its other providers. How-
ever, a network relying on shim6 for its multihoming behaves differently. The
main difference from IPv4 multihoming is that each shim6 host has several IPv6
addresses, one from each of its providers or one on each of its interfaces. This is
illustrated in Figure 1. The corporate network shown at the bottom of the figure
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Figure 2: Networking stack with shim6

is attached to ISP1 and ISP2. Each ISP has allocated a prefix to the corporate
network. Each shim6 host has one IPv6 address inside each of these subnets.
From a BGP routing table viewpoint, the main advantage of shim6 host-based
multihoming is that AS1 and AS2 only need to advertise their global /32 IPv6
prefix and not the more specific prefixes allocated to their customers. However,
this also implies that if the link between the corporate network and ISP1 fails,
BGP will not announce the failure to the global Internet. This problem is solved
in shim6 by using a new failure detection and recovery mechanism, the REAP

protocol[4], that allows shim6 hosts to detect a failure and switch traffic to an
available working path.

In the following subsections, first we describe the shim6 architecture, then
explain how shim6 solves the security issues and finally describe the REAP pro-
tocol.

2.1. Shim6

A shim6 host has several IPv6 addresses. All these addresses are locators,
i.e. they identify where a network interface is located within the global routing
context. For example, in Figure 1, a packet whose destination is ISP1.A will be
delivered via ISP1. On the other hand, a packet whose destination is ISP2.A

will be delivered via ISP2. As current best practice [9] recommends that ISPs
verify the source address of packets received from their customers: a packet
produced by host A that contains ISP1.A as its source address must always be
sent via ISP1. Such a packet will never be forwarded by ISP2.

When an application on host A contacts an application on host B using an
upper-layer protocol (ULP), the default address selected [18] by host A is de-
termined to be the upper-layer identifier (ULID) to identify the transport flows
between the hosts. Conceptually, the shim6 sublayer belongs to the network
layer and the locators are attached to the lower part of the network layer while
the identifier is attached to the upper part of the network layer (Figure 2).

The main purpose of shim6 is to preserve established flows in spite of network
failures, while operating transparently to upper-layer protocols such as TCP or
UDP. This is illustrated in Figure 1. Host A has established a flow between
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<signature>
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         ISP2.A
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         ISPY.B

         ISPZ.B

Figure 3: Shim6 session establishment

ULID ISP1.A and destination ISPX.B. In addition to its ULID, host A also has
the ISP2.A locator. Upon failure of the path between ISP1.A and ISPX.B, host
A will use shim6 to switch its flow on the ISP2.A→ISPX.B path. For this, all
of host A’s packets destined to ISPX.B must be sent from source ISP2.A. Shim6
ensures the transparency of this operation to the applications.

The shim6 sublayer performs three different tasks. Firstly, two communicat-
ing shim6 hosts need to discover their respective locator sets. This is performed
during the establishment of the shim6 session. Secondly, during the lifetime of
a flow, it may be necessary to switch from the current path to an alternate, e.g.
after a failure. Thirdly, shim6 can be used to advertise any change in the set of
locators available on a host.

The first task is conducted at the beginning of a communication. When an
application is requested to initiate an exchange towards a host (i.e. a http or
other such request), the usual process is that its name is looked up from the
Domain Name System (DNS). The DNS answers with one or several addresses.
The application then initiates a connection with one of the obtained addresses
(through default address selection)[18, 35, 36].

A heuristic on one of the shim6-enabled hosts determines whether it is worth
the extra shim6 overhead to protect the communication flow. In the case where
the host decides that it is worth the effort, the end hosts communicate to each
other their entire set of locators. This is the shim6 initial exchange. After this
negotiation, each host has a set of local and peer addresses that it can use to
carry packets.

The establishment of a shim6 session is performed by using a four-way hand-
shake as shown in Figure 3. This handshake is based on the handshake used
by HIP [33]. It was designed [37] to protect against replay attacks, to ensure
that all announced addresses belong to the same peer, and to protect against
Denial-of-Service (DoS) attacks. More details about how and why the messages
are exchanged this manner are available in [37, §7]. However, to understand
this paper, it is sufficient to know that the most costly operation in a shim6
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negotiation (in terms of processing power) is the address signature (which can
be done in advance or offline) and verification. These operations are explained
in the next subsection.

Typically the second task is triggered when the associated REAP protocol has
detected a failure and found an alternate working locator pair. More generally,
any appropriately interfaced entity (an application interface for example [28])
could trigger a path change. Changing the path in the course of a communication
is made possible by rewriting the address pair in use. Obviously one particular
path is the one corresponding to the ULIDs. In this case the ULIDs and the
locators are identical and no rewriting is needed. In all other cases, rewriting is
needed and an extension header is added to the outgoing packets. The extension
header contains a context tag used to identify the flow at the receiver, so that
locators can be replaced by the correct ULIDs in the receiver.

The rewriting function of shim6 is located in a new IP-sublayer in the net-
working stack, as shown in Figure 2. Anything located above the shim6 layer
sees stable addresses (ULIDs). This includes parts of the IP layer such as IPsec
or fragmentation, so that those functions can operate on stable ULIDs, even
though shim6 may have had to rewrite the packet header. Conversely, the for-
warding functionality of the IP layer must be located below the shim6 layer, so
that the locators chosen by shim6 are correctly used to select a path. The effect
of address rewriting over the chosen path is illustrated in Figure 1.

The third task is locator update. This is useful if a new locator appears
after the initial exchange, that is, after the set of locators has been announced
by each peer. This could happen should another Ethernet or WiFi interface
become operational. If a locator appears or disappears on a host, it is possible
to tell the peer about an updated locator set, so that changes in available paths
are taken into account. These locator updates may be useful in some IP mobility
scenarios [42].

In task one, we briefly mention the use of cryptographic mechanisms. These
mechanisms have been carefully designed [37] to prevent an attacker from in-
jecting fake addresses, and thus use this attack vector as a basis for new types
of attacks. We summarize the critical parts in the next subsection, and address
them in more detail later in the paper.

2.2. Securing locator sets

A key problem faced by host-based techniques that rely on multiple locators
is that the receiver of that packet must be able to verify the origin of a packet
that uses a new locator. RFC4218 [38] describes in details the threats that must
be considered while designing any IPv6 multihoming solution. The way shim6

responds to those attacks is described in section 16 of [37]. While the solution
to many of the threats resides in using well-known protection mechanisms, one
particular type of attack, namely address injection, is addressed by a new mech-
anism that is worth describing here. Address injection consists of an attacker
presenting a modified address set to one of the communicating hosts (either by
sending fake announcements or modifying existing packets).
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The first option proposed by [37] to solve this issue is to use Cryptograph-
ically Generated Addresses (CGAs) [6]. This method relies on the use of a
signature to prove that all signed addresses have been generated by the same
entity. Rather than using certificates to bind an identity to the signature (which
would require a trusted third-party to sign the certificate), the CGA approach
is to bind the ULID itself to the signature. For a given public/private key pair,
the private key is used to sign the locator set, while the public key is hashed
so as to generate the 64 low order bits of the ULID. The length of the hash is
artificially extended (see [6]) so that the actual hash length is not 64 bits, but
instead 59 + 16 ∗ sec bits (where sec is a tunable parameter). Consequently,
the security is dependent on an attacker not being able to find a hash collision
with a self-generated public key. This property of the hash function is called
“pre-image resistance", and the time needed to find a collision when the sec

parameter is as low as 1 makes such an attack infeasible in short timescales.
Over time, when Moores law does eventually make such an attack practical, or
for servers that keep a stable address over time, the attack complexity can be
increased further by incrementing the security parameter (sec) on the host that
generates the signature [6]. With each increase in the security parameter, the
complexity required to generate a collision will increase by 216∗sec iterations.
This increases the cost of address generation, and thus of brute-force attacks,
while keeping the cost of address verification constant.

The second option is to bind all addresses together, without using a signa-
ture. This type of address is called Hash Based Addresses (HBA) [7]. The 64
low order bits of each address is the result of a hash computation over all the
prefixes of the set. An attacker who wishes to inject his own address into the
locator set would need to find an input to the hash function that produces, at
least, the locator used for forwarding as part of the generated locator set. Since
this is made easier by the short length of the hash, HBA uses the same security
parameter as CGA to tune the cryptographical strength of the locator set.

HBA is computationally cheaper than CGA, but it also has less flexibility.
Its main drawback is that the addition of a new address in a locator set requires
regenerating the whole set. This is where CGA-compatible HBA addresses are
useful. In that case the hash input includes both a public key and the set of
prefixes. This is initially seen by the peer as normal HBA addresses, but if a
new prefix must be added afterwards, it can be signed with the public key.

With both these mechanims in place, shim6, as part of the initial context
establishment, verifies that the host claiming to be representing ISP2.A (for
example, see Figure 3) can be cryptographically tied to that locator (using either
the CGA or HBA mechanisms). While an attacker can generate a new address
from a subnet prefix and a public key, this attacker cannot impersonate another
hosts address. This is, of course, based on the premise that it is currently beyond
the capability of an attacker to harness enough computing power to generate a
collision in either the HBA or CGA hash functions.
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2.3. Failure detection and recovery

REAP is responsible for suggesting to shim6 when to change the current path,
as well as for finding an alternate path when the current one becomes unavail-
able. REAP is closely tied to shim6 because it uses its state to monitor the active
flows. REAP can be divided in two main features: Flow monitoring and path
exploration.

Flow monitoring is started immediately after the shim6 initial locator dis-
covery. It is designed in such a way as to minimise the amount of active probing.
The main mechanism that allows for reaching that goal is called Forced Bidirec-
tional Detection (FBD). The communication is forced to be bidirectional in the
sense that if an end-host receives Upper Layer Protocol (ULP) data, but does
not send anything, then control packets (keepalives) are automatically gener-
ated. Given this, it can be concluded that a failure has occurred if a host is
sending ULP packets without receiving back any data or keepalives2. A host
decides that a failure has occurred if its Send Timer expires. The default expiry
time Tsend is defined as 15s in [4]. That timer is stopped whenever a packet
enters the networking stack. In addition to the Send timer, a host maintains
a Keepalive Timer, that sends a keepalive packet on expiry. This is to ensure
that the peer does not think that a failure occurred when in fact the application
just stopped sending data. The requirement for a Keepalive Timer is to have
an expiry time that verifies Tka + one-way delay < TSend. Currently we set
Tka as one third of Tsend, as recommended in [4].

The second feature of REAP is path exploration. Due to its flow monitoring
capability, REAP can react to failures by probing the known paths (address com-
binations). The probing process, described in detail in [4], allows for finding an
alternate working path, for each direction of the communication. It can even
result in the use of different paths for each direction, as it is able to detect
unidirectional paths.

3. Implementation

In this section, we first describe the architecture of our LinShim6 implemen-
tation. Then we use measurements to evaluate its performance and motivate
some of our design choices. We also take into account related simulation-based
studies [15], and provide further insight on those results based on our imple-
mentation.

3.1. Architecture overview

We have explained already that shim6 is transparent to applications, how-
ever, it should also be economical with system resources. While any implemen-
tation will, of necessity, consume resources, efforts to minimise this have been

2Note that the number of control packets is kept minimal since no keepalive is needed if
data exchange is either bidirectional or paused.
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Figure 4: Shim6 overall architecture

made in LinShim6. This means that special care was taken with parameters that
may impact performance. Those parameters are mainly identified as per-packet
processing, state management and cryptographic operations. In this section we
describe each of those parameters and the approach taken for the LinShim6
implementation. Note that the following explanations are based on Figures 4
and 5. While Figure 4 shows the module interconnections, Figure 5 clarifies
the particular ations undertaken by each of them (described below), based on a
common scenario.

Considering the separation between kernel space and user space, per-packet
processing must be kept in the kernel, as doing otherwise would be very ex-
pensive in terms of performance, requiring a context switch for each packet
that enters or leaves the system. On the other hand, state management and
cryptographic operations are better placed in user space, to allow for ease of
maintenance and to avoid kernel bloat.

Per-packet processing can itself be further sub-divided into shim6 trigger
heuristic, REAP flow monitoring and address rewriting. For efficiency reasons,
all three functions are implemented in the kernel. The shim6 trigger heuris-
tic uses the Netfilter hooks IP6_LOCAL_IN and IP6_LOCAL_OUT. However, Lin-
Shim6 does not initiate a new shim6 session each time a packet is sent to a
new destination. For each new flow, a shim6 negotiation is triggered if either
Trigger bytes of data have passed (we suggest a default of Trigger=2KB based
on our measurements), or one minute has elapsed with data flowing between
two hosts. These values were chosen because they avoid engaging shim6 un-
less the data flow is either significantly large, or of long enough duration to
warrant it. REAP flow monitoring and address rewriting both use the xfrm

framework. This framework [50] allows for ease of integration of new layers in
the networking stack. xfrm (meaning transform) is designed to allow efficient
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support for multiple transformations of packets in any order. Originally cre-
ated for IPsec, where packets must be modified according to certain policies,
this framework was later used for Mobile IPv6. In LinShim6 we defined a new
type of xfrm transformer, capable of rewriting addresses, inserting the shim6

extension header and detecting failures. Furthermore, we have implemented a
variant of LinShim6, called Multipath LinShim6, that handles several paths si-
multaneously. We use a more efficient approach for this than the one proposed
in [37]. [37] defines a concept of context forking, which consists of using one
fork of the original Shim6 state per additional path that an application wants
to use simultaneously with the first one. This is costly because each additional
context needs to be negotiated and occupies space in the system, mostly dupli-
cated from the original context. Instead, our Multipath LinShim6 adds only a
few lines of code in the kernel (compared to pure LinShim6) to give the xfrm

entity the knowledge of all paths, and attaching a label (called a path index)
to them. Any multipath-aware upper layer (transport or application) can then
impose a particular path to Shim6 by attaching a path index to each outgoing
packet. An application of Multipath LinShim6 is described in [47, §4].

State management is actually the shim6 control plane. It starts a shim6

negotiation when asked by the shim6 trigger heuristic. When notified about a
failure by the xfrm module, it starts a REAP exploration, and informs the xfrm
transformer when a new path has been found, so that the corresponding address
rewriting can be performed by the kernel. If a new path is discovered (new prefix
available on an interface), it updates the peer host with this information.

Finally, the last task performed by LinShim6 are the cryptographic opera-
tions. These functions are the most costly from a CPU viewpoint, and must
be done as much as possible in advance. Cryptographic operations include the
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generation and verification of addresses, as well as signing and verification of
important shim6 messages. In the LinShim6 design, a separate tool allows for
CGA/HBA address generation3. The tool can be configured to favour either
speed of address generation, versus the strength of generated addresses, in-
curring extra computational cost for the latter. Also, address generation can
optionally be run on a configurable number of parallel processor threads, thus
taking advantage of multi-core processors. Much of this address generation code
was originally written by DoCoMo [26] for SEcure Neighbour Discovery [3], it
was integrated into LinShim6 for the purposes of address generation, and thus
it is very similar to the SEND implementation, although our tool features HBA
generation as well.

Also, for the purposes of LinShim6, the xfrm framework has been extended
by adding the possibility to link two xfrm states that correspond to the two
uni-directional communication paths of a data flow. A lookup method based on
the context tag has also been added. Details on the working of xfrm and our
extensions can be found in [12].

3.2. HBA/CGA

CGA and HBA addresses, which are used to secure shim6, are an integral
part of the protocol. At the time of writing and to the best of our knowledge,
LinShim6 is the only implementation with full support of HBA and CGA. Sup-
porting these addresses raises operational and performance challenges. From a
performance viewpoint, using CGA and HBA addresses may lower the perfor-
mance of shim6 when compared to normal IPv6. HBA and CGA operations
are the most computationally costly parts of LinShim6. We evaluate here the
computational impact of using those addresses, first at the generation time (can
be done offline), then at the signature and generation time (always online).

HBA/CGA address generation: As the CGA addresses depend on a
public/private key pair, our implementation automatically generates such a key-
pair during its installation. This is done so that LinShim6 will work “out-of-the-
box”, without complex configuration effort from the user. LinShim6 configures
itself automatically with CGA addresses by using this public/private key-pair.
It is, of course, perfectly possible to manually configure several public/private
key pairs, and also to define any number of HBA-sets. For LinShim6, as CGA
addresses can be generated as soon as the host discovers the IPv6 prefix for a
network interface, we selected CGA addresses as the default. This implies that
CGA addresses are useable on laptops that move regularly, whereas HBA’s are
not for reasons mentioned previously in 2.2.

As explained in [6], the cost of the CGA generation is of 216∗sec iterations in
the worst case, where sec is the security parameter (a larger sec increases the
security but also the time required to generate an address). The same worst case
cost applies to HBA generation [7]. The worst case complexity for an attacker

3Address generation could potentially be done on a completely separate, more powerful
machine
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Figure 6: HBA/CGA generation time

to find a matching hash for the address is of the order of 259+16∗sec iterations [6],
which means that the generator has 259 iterations of an advantage in computa-
tional cost over the attacker. That said, in general, as processing power increases
one should consider increasing the value of the security parameter to protect
against brute-force attacks.

To evaluate the cost of generating HBA and CGA addresses, we used a
Sunblade x6440 equipped with 4 AMD Opteron 8431 processors, each with 6
cores, clocked at 2.4GHz. Figure 6 shows the mean time required to generate
HBA or CGA addresses, each bar being the mean of 100 trials. Each bar shows
the mean generation time of two addresses, in log scale. The first two sets of
bars are generated with a security parameter of 1. The other bars were generated
with a security parameter of 2. It is worth noting that the standard deviation
(not shown in the figure) is very large, because of the brute-force algorithm [6]
used in the generation process. For the results presented in Figure 6, we observed
a standard deviation ranging from 23% to 77% of the reported mean.

The address generation tool [26] is able to use any number of concurrent
threads. This capability was retained and extended in order to support HBA.
With the security parameter set to 2, multithreading is necessary in order to
obtain a result in a reasonable time. Hence using a security parameter of 1 is
the only option on current commodity hardware. When the computational time
increases due to a required higher security level, it is clearly beneficial to use as
many threads as possible (see the results with 8 threads in the figure, and note
that the scale is logarithmic). On the other hand, multithreading gives slightly
worse results when the security parameter is 1, because the threading overhead
takes a higher proportion of the processing time.

While Figure 6 shows the generation time for two addresses, we note that
if the number of generated addresses is increased, the CGA generation time
increases linearly with the number of addresses. On the other hand, there is
a barely perceptible increase in HBA generation time. This is because the
expensive part (called modifier generation in [6]) is conducted only once for the
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whole set, in the HBA case.
Address signature and verification: Both operations take place dur-

ing the initialisation of a shim6 exchange, or when one of the peers announces
changes in its locator set. To evaluate the cost of these cryptographical opera-
tions we measured the time needed to carry a shim6 negotiation with different
security mechanisms. These tests were performed between two hosts on a 100
Mbps Ethernet. The initiator was a Pentium 4 dual core, 2.6GHz with 1GB
RAM while the responder was a Pentium 3, 600MHz with 256MB RAM.

The results are reported in Figure 7. For each security configuration, the
case of each peer announcing 2, 5 or 10 addresses in its locator set is compared.
The negotiation time is defined as the time elapsed between the transmission
of the first I1 message, and the reception of the last negotiation message (R2)
(see Figure 3). Note that the negotiation time includes two signatures and two
verifications, that is, one for each peer. Each bar shows the median negotiation
time over 20 consecutive runs.

Looking at the right hand side of Figure 7, we note that there is a strong
correlation between the length of the RSA key used for signing messages and the
negotiation time. Conversely, HBA addresses involve a negotiation time that is
almost the same as if no security were used at all. This is because no signature
is needed in the case of HBA addresses.

An important consideration, discussed previously, is that HBA addresses
require the knowledge of all the prefixes before commencing a shim6 negotiation.
This motivates the use of CGA-compatible HBA addresses which are defined
in [7]. While pure HBA addresses use a random number as input of the SHA-
1 hash used during the generation process, CGA-compatible HBA addresses
use a public key instead of such a number. However, no signature is needed
until the host learns of a new prefix that can be used. At this point a CGA
address is generated based on the new prefix, and the key used to generate the
previous HBA set. A signed message can be sent to the peer, which will use
the already known public key to verify the locator update. In Figure 7, the
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bar labelled hbacompat shows the negotiation time needed when an HBA set
generated based on a 1024-bit public key is used.

This shows very similar results to the use of pure HBA. The small increase in
time is explained by the fact that pure-HBA uses a random number formatted
as a 384-bit RSA key, as defined in [7]. A final observation is that the impact
of the number of announced addresses (2, 5 or 10 in the figure) is insignificant
compared to the security mechanism used.

From the above observations, we conclude that from a performance point
of view, there is a strong argument to be made for using HBA addresses, or
even better, CGA-compatible HBA addresses. LinShim6 allows for generation
of HBA/CGA addresses in advance of their use4. Once they are generated,
they become active only when configured in the system, either manually or by
auto-configuration through the cgad daemon. By default, LinShim6 disables
the standard IPv6 auto-configuration mechanism, in order to avoid having both
unsecured addresses and HBA/CGA addresses in the system. This mechanism
is replaced by the cgad daemon, that listens for Router Advertisements, and
configures the appropriate addresses when a new prefix is received.

3.3. Improving failure recovery time

The REAP Failure detection mechanism has been evaluated by simulations
in [15]. We have evaluated the performance of the implemented path exploration
mechanism in [11]. In [15], de la Oliva et al. emphasise that the TCP exponen-
tial backoff has a negative impact on the recovery time seen by an application.
The reason is that after a failure, TCP tries to retransmit until a response is re-
ceived. The delay between successive retransmissions is exponentially increased.
Consequently, when REAP finds a new path, TCP unnecessarily waits for its
next retransmission before noticing that the communication path is operational
again. [15] suggests informing TCP when a new path is found so that it im-
mediately retransmits and recovers. Figure 7 of [15] provides simulation results
that show the effect of the improvement.

In LinShim6, the authors have added a mechanism that allows for notifi-
cations to be issued when any multihoming event occurs. This uses the Linux
netevent framework. Any module in the kernel can register for such notifi-
cations, without the knowledge of the shim6 module. This is important for
maintaining the layer separation inside the kernel. TCP thus registers for the
PATH_UPDATE event, and receives a notification when a path has been updated.
It reacts by resetting all its RTO (Retransmission TimeOut) timers for the TCP
sessions that use that path. LinShim6 is also modular enough to support exter-
nal control from informed entities (such as network monitoring daemons), for
example to force a change to another path. One of us (Ronan) has written such
a controlling daemon to take ECN information into account [43].

We tested that implementation in our testbed consisting of a Juniper M10i,
as the router, with two Dual Pentium III Blade servers with 512MB of Ram

4By default LinShim6 will generate CGA addresses on installation
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Figure 8: Shim6 testbed

Figure 9: Tsend impact on ART

and Gigabit Interfaces (Figure 8). Both computers were running the IPerf tool
for traffic generation. To simulate link failures, links were switched off in the
Juniper router via expect scripts. The gain in recovery time is presented in
Figure 9. This figure is deliberately very similar to Figure 7 of [15]. The goal
was to compare the simulation results with the implementation results. We
measure the Application Recovery Time (ART), defined in [15] as the time
elapsed between the last packet reception before a failure, and the first packet
received after the recovery. The measurement is repeated for different values of
TSend (Failure detection timeout). Each point in the figure is the median of
45 measurements performed in the same conditions. Errorbars with percentiles
5 and 95 are also shown.

With our testbed setup, an Application Recovery Time (ART) cannot be
below Tsend, because the time of the last packet received is almost equal to
the time of the last packet sent (due to the configured packet rate), and the
path exploration starts Tsend seconds after the last packet has been sent. In
the more general case the lower bound for an ART can be slightly lower as
explained in [15].

Figure 9 confirms the simulation results from [15]. We observe an ART
that increases linearly with Tsend if the RTO (TCP Retransmission TimeOut)
is reset. On the other hand, in the absence of RTO reset, we observe steps
in the curve that are due to TCP waiting for its RTO before performing a
retransmission.

Regarding the path exploration, our implementation separates the address
pairs used for sending probes into two sets, each one randomised. The first set
contains all pairs that are completely distinct from the current (stalled) address
pair. The second set contains all other address pairs. The first probes sent
use address pairs from the first set, in the hope that using an orthogonal path
increases the chance our implementation can find a working path on the first
attempt. Indeed, in the testbed setup, this proved to be the case. This also
confirms what was simulated in [15].

While many things are common between our figure and Figure 7 of [15], all
our experiments (either with or without RTO reset) reveal a faster ART than
the one obtained in [15]. One explanation is that while [15] sends a probe to the
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Figure 10: I2 generation time under high load

current address pair before actually triggering an exploration, our implementa-
tion begins exploration immediately upon expiration of the Send timer.

Probing the current locator pair, before commencing the exploration process,
is useful when there is some doubt about the failure. For example, a host could
receive a spoofed ICMP destination unreachable message, which should trigger
a probe on the current pair, but not an exploration. This is so that the host
can attempt to detect whether it was a genuine ICMP message or not. In
our instance of Figure 9 and Figure 7 of [15], there is a timer expiry that
indicates that no traffic has been seen during Tsend seconds. Since REAP
ensures (through keepalives) that the Tsend timer expires only when there is
truly a network failure, we argue that this is a sufficient condition to immediately
start the path exploration, with the benefit of lowering the ART.

3.4. Cost of state maintenance

Shim6 requires state to be maintained at both the initiator (client) and
responder (server). Obviously servers usually manage many connections simul-
taneously, this would then mean that a server could potentially have to manage
many shim6 contexts. In order to reduce the load on a server, it may be prefer-
able to disable the LinShim6 heuristic. i.e. the context establishment trigger
mechanism. That way, the server will never initiate a shim6 negotiation, but
only respond to context creation requests from clients. The first step of a shim6

context initialisation would be the sending of an I1 message by the client. The
server would reply with an R1 without creating state. Finally the client would
send an I2, at which point context state would be created in the server. The I2
message holds the list of locators from the client, secured with a signature that
the server is required to verify. If the I2 message is found to be valid, the server
would then create a new context, and reply with an R2 message containing it’s
own signed locator set. As the locators of a server generally do not change all
that often, our implementation computes the signatures in advance, in order to
spare computing time during the context negotiation.

In our testbed (the same one as used to generate Figure 7), we evaluated
the I2 processing time, the results of which can be seen in Figure 10. Our

16



 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500  600  700  800
c
d

f 
(%

)

Number of simultaneous Shim6 contexts

SMTP server - out
A web server at UCLouvain

Main UCLouvain web server
UCLouvain mail server

SMTP server - in

Figure 11: Case study of state maintenance on selected servers

tests consisted of the following. Every 50ms, a client initiated a new context
negotiation, each client used a different CGA source address, in order to force
the creation of a new context in the server. The CGA was generated with a
1024-bit public key. 1000 such contexts have been created, and the I2 processing
time measured. The x-axis shows the number of the clients (and hence context
creation requests), sorted in chronological order (context 1000 is created 1000 ∗

50ms = 50s after the first one). The figure shows that even when a hosts has
1000 active contexts, the I2 processing time remains at around 2 milliseconds.

Figure 11 shows the result of a case study of shim6 context management
in our university. The netflow traces of several critical servers in our campus
have been analysed (Full IPv4 netflow). Traffic was collected from the 1st to the
7th of August, 2008. In our analysis, we assume that each peer would trigger
a shim6 negotiation immediately after the first packet is exchanged and that
servers are configured with a garbage collection time of 10 seconds (that is, if
no traffic is seen during 10 seconds related to a particular context, then the
server decides that it is no longer used and removes it. Peers having more than
10 seconds of idle time then need to renegotiate their context). By comparing
with Figure 10, we can infer that the I2 processing time (cost of creating a new
context) would not exceed 2ms for any of those servers. We also observe from
Figure 11 that even in the worst case where each peer would trigger a shim6

context establishment, the number of concurrent shim6 contexts that need to
be maintained is less than 800. Note that in case an administrator wants to
reduce the observed number of simultaneous Shim6 contexts, he can lower the
garbage collection time, in order to more aggressively drop Shim6 states. This
tuning corresponds to moving state from the server to the network: the more
aggressive a server is in dropping contexts, the more often clients will need to
refeed the context data through network messages.

Having just explained that servers can avoid unnecessary context creation
by simply disabling the shim6 heuristic, and only create contexts upon request
from the clients, one simple method that clients could use to reduce their shim6
activity would be to introduce into the heuristic “hints” about whether the peer
supports shim6. In particular we know that, currently, the majority of IPv6
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addresses correspond to auto-generated MAC-based addresses. Those addresses
can easily be detected thanks to their format, i.e. ff:fe in the middle of the
interface identifier. If the peer uses such an address, most probably it has no
support for shim6, because the use of multiple addresses by shim6 requires
their format to be either HBA or CGA. Heuristics can be implemented as a
kernel module, and a user can define his/her own (or indeed modify the existing
one), without having to modify the core implementation. So, for example, a
heuristic could be defined to ignore auto-generated addresses, or to limit to
some maximum the number of simultaneous shim6 contexts.

4. Open Issues with Shim6 Multihoming

From a standardisation viewpoint, most of the work on shim6 is finished
with several RFC’s now published [37, 4, 7]. Our implementation supports all
the important features of shim6. However, there are still several outstanding
issues to be solved before there will be a widespread deployment of shim6.

A primary issue is that shim6 requires IPv6. As of this writing, the Internet
still mainly uses IPv4, but given the expected exhaustion of the IPv4 address
space, more and more networks are seriously considering IPv6 and have started
deployments [25]. Shim6 could be a very useful feature for multihomed networks.
Initially, shim6 could be used for important flows such as VPN, e-commerce or
IP telephony servers where rapid recovery from link or interface failures is im-
portant. An important advantage of shim6 over other multihoming solutions
such as HIP or SCTP, is that shim6 does not require any change to the appli-
cations running on hosts. Thus, applications can benefit from shim6 without
being aware of it. Simulations studies performed during the early phases of the
shim6 development have shown that host-based multihoming techniques such
as shim6 allow hosts to use many more paths to send their packets than tra-
ditional IPv4 BGP-based multihoming [16]. Furthermore, measurements have
shown that by using these additional paths, it is possible to achieve much better
performance, e.g. lower delays [16].

However, there are also some forces against a widespread deployment of
shim6. At present, Internet Service Providers are very reluctant to consider
it [44]. Their main concern with shim6 is that it allows hosts to influence the
path used to send and receive packets towards any multihomed destination.
ISP operators have become accustomed to performing traffic engineering by
refining their BGP configurations to take into account business policies. Con-
sequently many consider that the deployment of shim6 would limit their traffic
engineering capabilities and make the network more difficult to manage [44].
We disagree with such statements. Shim6 provides benefits to both ISPs and
their clients. ISPs can benefit from a much more scalable interdomain routing
system while clients can benefit from a much larger number of paths providing
better performance and more redundancy.

In fact, peer-to-peer applications are also exploiting these alternate paths.
Network operators could market shim6 has an added value service to their cus-
tomers willing to obtain improved performance or reliability. This service could
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be combined with a path selection service provided by the ISP that allows its
clients to easily determine the best path to reach a given destination. This type
of service is already being developed to support peer-to-peer applications [1].
Recently, the IETF has chartered the ALTO working group to work on such a
service [45] which would be very useful for shim6 to integrate with.

A second issue concerning a widespread deployment of shim6 is that many
corporate networks insist on using Provider Independent IP addresses, even for
IPv6, instead of Provider Aggregatable addresses [39]. This is because most
operators consider that renumbering a network is too complex. Despite a lot
of discussions on this topic [14], the IETF does not provide a solution to easily
renumber a corporate network. Thanks to DHCP and IPv6’s stateless auto-
configuration, most hosts can easily change their address, but for servers and
routers this remains difficult. For the specific case of shim6, a complete renum-
bering solution is not necessary. To easily support provider changes, a corporate
network could use private addresses internally (e.g. for the routers and the man-
agement servers) and simply add the prefixes allocated by their providers to all
their routers. Solutions to address this issue have been proposed in [29].

5. Related Work

The closest related work are the two prototype implementations developed
by Park et al. [40] and Ahrenholz and Henderson [2]. These two implementations
have also been developed on the Linux platform. They are mainly user-space
implementations with netfilter hooks to capture the shim6 packets and pro-
cess them in user space daemons. In contrast, our implementation uses the xfrm
framework and is implemented partially in the kernel with the non time-sensitive
functions in user space. Another important difference is that our implementa-
tion completely supports the security mechanisms designed for shim6.

Other solutions have been developed to solve the multihoming problem. The
SCTP transport protocol [46] was initially designed to support signaling servers
in IP telephony environments. It has now been extended to support wider de-
ployment scenarios and is supported by several operating systems. Another
example is the Host Identity Protocol (HIP) [32]. HIP has been developed to
evaluate the benefits and drawbacks of using a new cryptographical identifier
namespace on top of IP. HIP has been extended to support multihoming and
mobility [34] and there are several implementations of HIP available [27]. Com-
pared to these solutions, the main benefit of shim6 is that it does not require
any change to the applications. This is very important for a new technique that
needs to be incrementally deployed.

Several years ago, based on the recommendation from [31], the Routing
Research Group of the Internet Research Task Force (IRTF) was rechartered
to consider the evolution of the Internet architecture. Several of the techniques
being evaluated within this working group [5, 19, 48] rely on separating the
identifier and locator roles of the IP addresses, as in shim6. Although the
details between these protocols and shim6 vary, the experience gained by the
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implementation and utilisation of shim6 will be beneficial for the development
of these new protocols.

For some, the issue of mobility is related to multihoming. Briefly, mobility
consists of using several addresses in sequence, while multihoming consists of
using them in parallel. Several issues are shared by both approaches as raised
by Bagnulo et al. [8]. One of the authors (Barré), has evaluated a similar ap-
proach to [8] for managing mobility and multihoming in one shared solution.
This resulted as well in a new implementation based on LinShim6, called Mip-
Shim6 [13].

Finally, recently an IETF working group has been created (MPTCP) to
design a modified version of TCP, called Multipath TCP [22], that is able to
failover from one path to another, and to spread one single transport flow across
several paths. This is achieved by appropriately rethinking the congestion con-
trol algorithms. This is a promising approach to achieve better resource pooling
in the Internet [49]. The architecture of the new MPTCP protocol [21] sup-
ports any technology that is able to expose multiple paths to the end-host,
shim6 being one of them. One of us (Barré) is also the author of the reference
implementation for MPTCP [10]. Although the IETF requested that such a
reference implementation be independent of Shim6, the multipath version of
LinShim6 (see section 3.1) can be plugged into that implementation to provide
a path management service for the MPTCP transport layer.

6. Conclusion

Multihoming is one of the problems that limits the scalability of the current
Internet architecture, because it is currently obtained through injection of addi-
tional routes in the BGP system. In this paper, we have described and evaluated
our implementation in the Linux kernel of the shim6 host-based multihoming
technique developed within the IETF. We have first explained the basics of this
technique including the defined security mechanisms. Then, we detailed the
architecture of our LinShim6 implementation along with the motivations for
our main design choices. We have then evaluated the performance impact of
the main security mechanisms of shim6. Finally, we have discussed the issues
that remain open for a widespread deployment of shim6, while recognising that
LinShim6 is currently the only complete and publicly available shim6 implemen-
tation. The modularity of LinShim6 has been shown already by its applications
to mobility and multipath. This efficient, modular kernel architecture can be
reused in the design of future protocols based on locator/id separation.
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