
1

Computing Minimal Update Sequences
for Graceful Router-wide Reconfigurations

Francois Clad1, Stefano Vissicchio2, Pascal Mérindol1, Pierre Francois3 and Jean-Jacques Pansiot1

1Université de Strasbourg 2Université catholique de Louvain 3Institute IMDEA Networks
{fclad,merindol,pansiot}@unistra.fr stefano.vissicchio@uclouvain.be pierre.francois@imdea.org

Abstract—Manageability and high availability are critical
properties for IP networks. Unfortunately, with link-state routing
protocols commonly used in such networks, topological changes
lead to transient forwarding loops inducing service disruption.
This reduces the frequency at which operators can adapt their
network. Prior works proved that it is possible to avoid disrup-
tions due to the planned reconfiguration of a link by progressively
changing its weight, leading to a solution that does not require
changing protocol specification.

In this paper, we study the more general problem of gracefully
modifying the logical state of multiple interfaces of a router, while
minimizing the number of weight updates. Compared to single-
link modifications, the router update problem is k-dimensional
for a router having k neighbors. We also show that multi-
dimensional updates may trigger new kind of disruptions that
make the problem more challenging than the single link case.
We then present and evaluate efficient algorithms that compute
minimal sequences of weights enabling disruption-free router
reconfigurations. Based on analysis of real IP network topologies,
we show that both the size of such sequences and the computing
time taken by our algorithms are limited.

I. INTRODUCTION

IP networks need to frequently undergo topological modi-
fications, e.g., to support hardware replacement, software up-
grades, and configuration updates [1], [2]. Those modifications
can induce service disruptions, which, in turn, can reduce
the ability of operators to frequently and reactively perform
management operations [3] without affecting compliance to
Service Level Agreements. Some ISPs have defined proce-
dures to re-route the traffic out of a link [4] or a router [5]
before shutting it down for maintenance. However, forwarding
loops can still arise in spite of these procedures.

Typically, reconfigurations at a router granularity are among
the most frequent operations typically performed in IP net-
works [6]. For this reason, we focus on the problem of
supporting graceful reconfigurations in commonly used Link-
State (LS) Interior Gateway Protocols (IGPs) such as OSPF [7]
or IS-IS [8]. For the sake of simplicity, we focus on gracefully
removing a node from an IGP network, e.g., in order to
perform a software update on it without impacting traversing
traffic. By symmetry, our techniques straightforwardly apply

S. Vissicchio is postdoctoral researcher of the Belgian Fund for Scientific
Research (F.R.S.-FNRS). This work has been partially supported by the
European Community’s Seventh Framework Programme (FP7/2007-2013)
Grant No. 317647 (Leone).

to the router addition case. Easy variants of our techniques can
also be used to handle the reconfiguration of a subset of router
links, e.g., for maintenance of single or multiple line-cards.

In OSPF and IS-IS, the state of each link is reliably
flooded over the network. This way, each router can build a
weighted graph representing the network in order to compute
the forwarding paths as the shortest ones considering a given
metric. Each topological modification involves a convergence
process (i.e., to flood new LS information, recompute updated
paths, and install corresponding FIB updates) during which
transient forwarding loops may occur [9]. Such loops are due
to inconsistent routing states among routers that possibly cause
packet losses and delays increase [10], [11].

Fig. 1 exemplifies a transient loop in the case of a router
removal. Namely, Fig. 1a and Fig. 1c represent the initial and
final IGP topology, respectively, while Fig. 1b illustrates how
inconsistent information held by different routers may cause
transient forwarding loops during protocol convergence. The
red and green arrows respectively represent the next-hops for
destination 4 before and after the removal of node 0. Black
arrows represent next-hops that remain the same. If router c
updates its next-hop to 4 before d, then c starts forwarding
traffic for destination 4 to d, while d keeps forwarding traffic
to c. This creates a transient loop between c and d, which will
only be solved when d also has updated its next-hop.

In this paper, we propose practical solutions that do not
require changing any protocol specification, and apply to both
symmetric and asymmetric link weights. Our solutions are
based on a progressive modification of IGP link weights that
induces a loop-free ordering in the update of all the forwarding
paths. Practically, we split IGP convergence into multiple
steps. During each step, weight modifications are flooded to
all routers in the network through standard IGP Link-State
Advertisements (LSAs). To reduce the operational impact,
our algorithms minimize the number of convergence steps,
hence limiting the additional control-plane overhead. Note that
this marks a significant improvement of the naive strategy of
applying graceful operations on a per link basis. Indeed, such a
strategy can and typically do lead to long weight modification
sequences [12]. To this end, we rely on the possibility of
including weight changes for multiple links attached to a single
router in a single LSA. Note that our solutions only modify the
weight of links from the updated router to its neighbors such
that the reconfiguration is entirely controlled by the updated

2

0

1 3

b d

2

a e

c

4

1
1

1

1
10

10 2

5

20

5

1

1 1

5

10

5

(a) Before removal of 0.

0

1 3

b d

2

a e

c

4

(b) IGP convergence.

0

1 3

b d

2

a e

c

4

10

10 2

5

20

5

1

1

1

5

10

5

(c) After removal of 0.

Fig. 1: A transient forwarding loop can occur between nodes c and d for destination 4 during the routing convergence.

Intermediate
Transient Loops Forwarding Changes

with µloop delay GBA AGBAw/o µloop delay DGBH

TABLE I: Overview of our algorithmic contributions.

router. In the example in Fig. 1, if node 0, before its removal,
sends an LSA to update the weights of links (0, 1), (0, 2) and
(0, 3) to values 4, 2 and 4 respectively, then d will switch to
its final forwarding path while c will not. This guarantee no
transient loop between c and d when c updates its FIB.

Computing minimal weight modification sequences is chal-
lenging for three main reasons. First, all the destinations in the
network must be taken into account, as our goal is to minimize
the number of steps across them. Contrary to the link mod-
ification problem studied in previous work [13], the solution
space for the node shutdown problem is k-dimensional, with k
being the degree of the router to be updated. Second, applying
several weight increments in a single LSA may lead to the
use of next-hops that do not correspond to either initial nor
the final ones. It is then not sufficient to analyze the initial
and final routing states only to capture intermediate next hop
changes that may provoke a new kind of disruptions such as
flow deviations. In the example in Fig. 1, the updated node
0 may transiently use node 2 as next hop towards 4 during
the convergence if the weights of 0 are set to the previously
suggested values (4, 2 and 4, which are the minimal ones
to avoid the loop between c and d). Third, those intermediate
forwarding changes possibly lead to additional transient loops.
In the initial state given in Fig. 1, one of the shortest paths
from 2 to 4 includes 0, with 2 being in an Equal-Cost Multi-
Path (ECMP) state. Hence, a new kind of transient loop can
occur between 0 and 2, an intermediate loop that depends
on the LSA injected to avoid the potential loop between c
and d. Intermediate forwarding changes are necessary but not
sufficient conditions to trigger such loops. Eventually, note that
here a uniform increase of 3 on all links does not provoke such
a loop while also avoiding loops between c and d. However,
targeting minimal sequences generally comes at the cost of
applying non-uniform weight-increment LSA.

To deal with transient loops (intermediate and non), we
develop multiple algorithmic contributions, which are summa-
rized in Table I. Our algorithms target two different settings.

In the first setting, the next-hops of the reconfigured router

are kept constant during the entire IGP convergence by tem-
porarily disabling synchronization of the router data-plane and
control-plane, e.g., through the µloop delay feature [14]. In
this setting, no intermediate transient loop can occur, and the
graceful sequence minimization problem is optimally solved
by the Greedy Backward Algorithm (GBA). For every
destination, GBA extracts the constraints that prevent transient
loops resulting from the union of the initial and final forward-
ing paths. It then greedily computes minimal sequences of
weight changes that verify all the extracted constraints.

In the second setting, data-plane and control-plane remain
synchronized, and intermediate transient loops should be pre-
vented algorithmically. For this setting, we propose two exten-
sions of GBA. The first extension, called Adjusted Greedy
Backward Algorithm (AGBA), provably finds a minimal
sequence that prevents both transient loops and intermedi-
ate forwarding changes. In particular, to avoid intermediate
forwarding changes, it verifies that weight changes comply
with a system of linear inequalities. Note that AGBA can
also be used in the first setting if intermediate forwarding
changes have to be avoided. The second extension, called
Dynamic Greedy Backward Heuristic (DGBH), computes
sequences that prevent any kind of transient loops (including
intermediate ones) but not intermediate forwarding changes in
general. Intermediate transient loops are simply prevented by
augmenting the set of constraints. DGBH is a heuristic in the
sense that the sequences it computes are safe but not provably
minimal with respect to the loop prevention problem.

In this paper, we consider the case of a non-urgent router
update as for maintenance. Our approach can theoretically be
combined with fast-reroute techniques to address failure use
cases. However, investigating their practical interactions is out
of the scope of this paper. We also assume that no network
failure occurs while the sequence is applied on the network.

The rest of the paper is structured as follows. In Section II,
we introduce the notation and we formalize transient loop
constraints. In Section III, we describe our proposed solution,
i.e., GBA, in the presence of µloop delay. In Section IV, we
extend theory and GBA to algorithmically solve intermediate
disruptions. In particular, we provide details on our AGBA and
DGBH algorithms. In Section V, we report the results of our
experiments performed on several real IGP network topolo-
gies. Our evaluation shows the effectiveness and efficiency of

3

our algorithms, suggesting the possibility of including them
in current router OSes. Finally, in Section VI and VII, we
compare our contributions with related works and conclude.

II. MODEL AND NOTATIONS

In link-state IGPs, forwarding paths are computed as the
shortest paths on a weighted graph G = (N,E,w), such that
N is the set of IGP routers, E is the set of IGP adjacencies
between routers, and w : E → N maps each directed link
to its integer weight as defined by the IGP configuration. In
the following, we focus on the problem of avoiding transient
loops during the IGP convergence after a router removal. We
denote the initial IGP graph as G, the router to be removed
as 0, and the final IGP graph as G′ = G \ {0}.

Since multiple paths can have the same cost for any source-
destination pair, the set of shortest paths from each source to
a single destination forms a Directed Acyclic Graph, called
Reverse Shortest Path DAG (RSPDAG). Hence, we denote
as RSPDAG(d,X) the set of forwarding paths computed
by IGP routers towards a given destination d in a graph X .
Transient loops can occur during the transition from G to G′

if and only if RSPDAG(d,G) ∪RSPDAG(d,G′) contains
cycles (see, for example, Fig. 1). For the sake of simplicity,
we use RSPDAG(d) and RSPDAG′(d) as shortcuts for
RSPDAG(d,G) and RSPDAG(d,G \ {0}) respectively.

Our convergence technique relies on a progressive modifica-
tion of the IGP weights configured on the outgoing links of 0.
Formally, it consists in computing a sequence of intermediate
weighted graphs G0, G1, . . . , Gn, where G0 = G, Gn = G′,
∀ ∈ {1, . . . , n}, Gi = (N,E,wi), such that ∀ i ∈ {0, . . . , n−
1}, RSPDAG(d,Gi) ∪ RSPDAG(d,Gi+1)) contains no
cycle. We generally refer to differences between weights in an
intermediate graph Gi 6= G and initial weights in G as weight
increments, and we call a sequence {w1, . . . , wn} satisfying
the previous property as a weight increment sequence. The
term weight increment reflects our assumption that the weight
of any link outgoing from 0 is always greater or equal to
its initial weight. That is, since we aim at offloading traffic
from the node to be removed, we do not consider sequences
of weight modifications in which weights are decreased with
respect to the initial state, as this can only make 0 more
attractive. Nevertheless, we admit negative components in
weight increments, e.g., if following positive increments.

We model a weight increment as a vector v, having |v|
components. For any weight increment v, a component v[i]
corresponds to the weight increment applied to the i-th outgo-
ing link. Vectors of the same size can be compared, and partial
order relationships can be defined between them. In particular,
we say that two vectors v1 and v2 of size k ≥ 0 are equal,
i.e., v1 = v2, if ∀i ∈ {1, . . . , k} v1[i] = v2[i]. Similarly, >,
≥, <, ≤ relationships, hold on vectors if they hold on all the
corresponding components. In addition, given two vectors v1
and v2 (such that |v1| = |v2| = k), we say that v1 is positively
greater than v2, denoted v1 >+ v2 if ∀ i ∈ {1, . . . , k}{

v1[i] > v2[i] (if v2[i] ∈ N)
v1[i] ≥ 0 (if v2[i] ∈ Z<0)

We now define the concept of loop-constraint to formalize
property of the weight increment sequence that must hold
to avoid transient loops. More precisely, we define loop-
constraint, or simply constraint, as the weight increment
interval associated to a single loop. For any given transient
loop L, a loop-constraint l is a vector pair l := (l, l̄). Vectors
l and l̄ have one component per outgoing link of router 0
(i.e., |l| = |l̄| = k with k is the degree of router 0), and
respectively represent the set of minimum and maximal weight
increments that prevents L. To compute numerical values of
loop-constraints, we rely on delta vectors ∆. Given a router
x 6= 0 and a destination d, ∆d(x) is the vector of weight
increments such that the shortest paths from x to d include
both the initial and final paths (as computed in G and G′,
resp.). Let C ′(x, d) be the cost of the shortest paths from x
to d in G′, li be the i-th link outgoing from 0, and C(x, li, d)
be the cost of the shortest path (without cycles) from x to d
via li in G. By definition,

∆d(x)[i] = C ′(x, d)− C(x, li, d)

Let ~0 be the all-zero vector. Then, the loop-constraint l
associated to a loop L to a destination d is defined as

l := (l := min
∀x∈L

(∆d(x)), l̄ := max
∀x∈L

(∆d(x)))

Note that, for any destination d, the set of vectors ∆d(x)∀x ∈
N is totally ordered. Indeed, for any router x, we have
C(x, li, d) = C(0, li, d)−C(0, d)+C(x, d). This implies that
each x has the same offset among its ∆d(x) components for
each destination d. Moreover, note that ∆d(x) = ~0 may imply
an ECMP case on x potentially leading to an actual constraint.

By definition of ∆, the vector vx verifying ∀ i ∈
{1, . . . , k}, vx[i] = max(∆d(x)[i] + 1, 0) is the smallest set
of increments to be configured on the outgoing interfaces of
router 0, such that router x switches to its final state and
no longer uses 0 to reach d. Hence, in order to satisfy a
loop-constraint l such that l = ∆d(z) and l̄ = ∆d(y), an
intermediate vector v must be positively greater than ∆d(z),
but not greater than or equal to ∆d(y). Besides, if vx[i] = 0
the weight of li can be arbitrarily increased. The distance of
shortest paths from the node y to d verifying l̄ = ∆d(y) is
strictly shorter than the ones using li.

As an example of ∆ and constraint vectors, consider again
Fig. 1. In this figure, ∆4(c) = (4 2 4 − 2) and ∆4(d) =
(2 0 2 −4), where components respectively map to links (0, 1),
(0, 2), (0, 3), and (0, c). As an illustration, ∆4(c)[1] = 4 since
C ′(c, 4) = 11 and C(c, (0, 1), 4) = 7. Adding 4 to the weight
of link (0, 1) would make the path from c to 4 through (0, 1)
as long as its final ones. Similar computations are applied
to the other components of ∆4(c) and ∆4(d). According to
those computations, forwarding paths from c (resp., d) are then
ensured not to include 0 when weight increments greater than
∆4(c) (resp., ∆4(d)) are applied to the outgoing links from 0.
Moreover, the constraint l associated to the loop L between c
and d is formalized as l = (l = ∆4(d), l̄ = ∆4(c)).

By definition of l, applying weight increments positively
greater than l (resp. l̄) will cause the shortest paths from at
least one router (resp. all the routers) in L not to traverse 0

4

anymore. In the previous example, applying a weight incre-
ment positively greater than l = ∆4(d) will cause d, but not
necessarily c, to switch to its final shortest paths. Both c and
d are guaranteed to switch to their respective final paths when
the weight increments is positively greater than l̄ = ∆4(c). To
provably avoid a transient loop, we must then force weight
increments changing only to forwarding paths of d, e.g. a
relative increase of (3 1 3 0), before applying the final weights.

To formally state the problem of finding such intermediate
weight increments, we introduce the following terminology.
We say that a weight increment v meets a constraint (l, l̄)
if v >+ l and ∃ i ∈ {1, . . . , k} | v[i] < l̄[i]. We also
say that a weight increment v precedes a constraint l if
∃ i ∈ {1, . . . , k} | v[i] ≤ l[i] 6= 0, and that v follows
l if ∀ i ∈ {1, . . . , k} | v[i] ≥ l̄[i]. Given a constraint
l and a sequence of weight increments {v0, . . . , vn} with
v0 = ~0 (initial state of node 0) and vn containing all ∞ (as
after the removal of node 0), a pair of consecutive vectors
vi and vi+1 constitutes an unsafe transition if either i) vi
precedes l and vi+1 follows l̄; or ii) vi follows l̄ and vi+1

precedes l. Trivially, a pair of consecutive vectors is said to
form a safe transition with respect to a given constraint if
it is not unsafe. In the previous example, the sequence of
relative increments {~0, ~∞} contains an unsafe transition for
the constraint l = {(2 0 2 0), (4 2 4 0)}. On the contrary, both
transitions in {~0, (3 1 3 0), ~∞} are safe with respect to l since
the second vector (3 1 3 0) meets l. Note that MAX_METRIC
can be used in practice to enforce the final state ~∞.

A safe sequence contains safe transitions with respect to all
loop-constraints. The following theorem holds.

Theorem 1. A weight sequence s avoids a loop L if and only
if s contains only safe transitions with respect to the constraint
corresponding to L.

Intuitively, Theorem 1 implies that, for each constraint (l, l̄),
at least one vector must meet the constraint for each transition
from weight increments smaller than l to those greater than
l̄, and vice versa. Intuitively, always increasing sequences
seem to be the natural candidate for targeting minimality.
A sequence s = {v0, . . . , vm} is said always increasing if
∀ i ∈ {1, . . . ,m}, vi−1 ≤ vi. Each sequence step meets a
given subset of constraints cumulatively. A simplified version
of Theorem 1 holds for always increasing sequences.

Theorem 2. An always increasing weight sequence s avoids
a loop L if and only if s contains at least one vector meeting
the constraint corresponding to L.

In this paper, we study the problem of finding minimal safe
sequences with respect to all constraints. In particular, we
present algorithms to compute always increasing sequences,
that are provably minimal and safe. This also implies that
restricting to always increasing sequences does not limit our
ability to optimally solve the safe router update problem. In
other words, for any network and for any router removal, at
least one minimal safe sequence is always increasing.

III. MINIMAL SEQUENCE COMPUTATION

WITH GBA AND µLOOP DELAY

This section presents the Greedy Backward Algorithm,
GBA, that we devised to support graceful router update in case
µloop delay [14] is applied to the updated router 0. In this case,
all the transient loops to be prevented can be extracted from
the union of the initial and final RSPDAGs, since 0 postpones
its next hops changes. They are called static constraints. In
practice, at each transition, 0 freezes its own convergence
during a delay sufficiently large to ensure the convergence of
its neighbors. It allows to avoid intermediate transient loops,
that are equivalently local to 0, but not forwarding changes
in general (see Sec. IV). Hence, the problem of computing
minimal safe sequences can be formulated as follows.

Problem 1. Minimal Loop-free Problem (MLP): Given a
set cs = {(l1, l̄1), . . . , (ln, l̄n)} of static loop-constraints,
compute a minimal weight increment sequence which contains
no unsafe transition for any constraint in cs.

GBA is reported in Alg. 1. From a high-level perspective,
the algorithm iteratively performs the following macro-steps:

I- Extract the largest constraint corresponding to a potential
transient loop for each destination (POPMAX);

II- Backwardly compute a greedy weight increment that
meets the maximum of extracted lower bound of con-
straints and update the set of constraints still to be met
(UPMAX).

GBA stops when all the constraints are met.

We now provide more details on how the algorithm works.
First, GBA is destination oriented, in the sense that it ex-
tracts constraints for each destination independently, from the
merged DAG (mdag) obtained as the union of the initial
(RSPDAG) and final (RSPDAG’) RSPDAGs. Before each
intermediate vector computation, GBA only extracts the last
constraint for each destination, i.e. the largest lower bound
among the constraints associated to a destination. Second,
GBA computes weight increments in a backward fashion, i.e.
in the opposite order with respect to how they are to be applied.
Using such a reverse order makes it possible to greedily build
an update sequence of minimal length, as proved in [12]. Note
that a greedy forward-based exploration of weight increments
does not ensure minimality of the resulting sequence. This
significant difference with previous works on graceful link
operations [13] is due to an asymmetry in the way constraints
may be satisfied: a vector v meets a constraint (l, l̄) if and
only if v >+ l and v 6≥ l̄. While the first condition is a direct
transposition of the scalar >, requiring each value in v to be
greater than the value on same index in l, the second condition
allows all values but one to be greater than or equal to l̄. The
upper bound is far less restrictive than the lower one.

More precisely, GBA starts by computing the set of
affected destinations as the nodes that are reached through 0
by at least one source (other than 0 itself). Indeed, if node
0 is not used by any source to reach a given destination,
no transient loop could appear for that destination. Then,
for each affected destination d, our algorithm computes
RSPDAG(d), the initial forwarding graph towards d, while
marking as SRC the subset of source nodes reaching d

5

Algorithm 1 Greedy Backward Algorithm
1: function GBA_MAIN(G,n)
2: S = ∅
3: for d in affectedDestinations (G,n) do
4: dag, C, SRC = rspdag (G, d)
5: dag′, C′ = rspdag (G \ n, d, SRC)
6: mdag, list = INIT (dag, dag′, SRC, n)
7: mdag.POPMAX (list)
8: if mdag.lc > 0 then
9: for s in G.succ(n) do

10: C(n, s, d) = w(n, s) + C′(s, d)
11: mdag.offset[s] = C(n, s, d)− C(n, d)

12: MDags.append (mdag)

13: while MDags 6= ∅ do
14: v = ~0
15: for mdag in MDags do
16: for s in G.succ(n) do
17: v[s] = max (v[s],mdag.lc− g.offset[s])

18: S.append (v)
19: for mdag in Mdags do
20: m =∞
21: for s in G.succ(n) do
22: m = min (m, v[s] +mdag.offset[s])

23: if m < mdag.max then
24: mdag.UPMAX (m)
25: if mdag.lc = 0 then
26: MDags.remove (mdag)

27: return S

Destination 1 c1 = {a, b, a} S1 =
(
7 0 0 0

)
,

c5 = {b, c, c}
(
9 0 0 0

)
Destination 2 c2 = {c, d, c} S2 =

(
0 10 8 0

)
Destination 3 c3 = {c, d, c} S3 =

(
0 6 8 0

)
Destination 4 c4 = {c, d, c} S4 =

(
3 1 3 0

)
GBA

c1, c4 → c2, c3, c5 SGBA =

7
1
3
0

,

 9
10
8
0


TABLE II: Destination and global sequences for the removal of node 0

through 0. This subset makes it possible to avoid useless
calculations: GBA only focuses on the subgraph that may
evolve due to the removal of node 0. Thus, the merged
graph mdag(d), on which GBA detects cycles and their
associated constraints, is computed as follows: mdag(d) =
G(SRC(d), E(RSPDAG(d)

⋃
RSPDAG′(d))

⋂
(SRC(d) ×

SRC(d)). ∆ values are then computed and associated to
each node in mdag(d). At this stage, the POPMAX function
checks whether transient loops could appear and, if so,
computes the last constraint. If such a constraint exists, an
offset value is then computed for each outgoing link of node
0. Otherwise, it means that no transient loop could possibly
appear for this destination. This offset value reflects the
unattractiveness of a link, and is equal to the difference of
distance towards d through the associated link. Formally, we
define offset[d][x] = C(0, x, d) − C(0, d), where C(0, x, d)
represents the cost of the shortest elementary path in G from
0 to d through each successor x of 0. In the algorithm, we
generalize for each node n in N (to provide sequences for
all nodes n = 0). The purpose of such an offset is to avoid
manipulating vectors when not necessary. Indeed, performing
destination oriented operations does not require it since a
total order exists among ∆ for nodes in SRC. Eventually, the
mdag(d) is added to the global MDags set.

Once the MDags set is computed, our algorithm enters the
second phase. At each round of the global loop, a new greedy
vector v is computed (and added to the sequence S) as the
smallest one that is safe with respect to the last constraint for
all subgraphs in the MDags set. Then, for each destination
d, the actual distance update m associated to this vector is
computed in order to make mdag(d) evolve accordingly. Note
that a preliminary check is performed to know whether v
could have an impact on mdag(d). If m is not lower than the
maximum ∆ value among the nodes in mdag(d), no constraint
could have possibly been satisfied for d, so that it is not
necessary to compute anything more for this destination. On
the other hand, if m is lower than at least one ∆ value in
mdag(d), UPMAX is called (at least one node is impacted).
This function modifies the graph, now considering v as the
final weight assignment, and prunes all nodes that cannot be
involved in any cycle. It then extracts the new last constraint, if
any, and returns 0 otherwise. If there are no more constraints to
be satisfied for this destination, it is removed from the MDags
set. The main loop iterates this way until MDags is empty,
meaning that all constraints are satisfied by the sequence S.

Table II gives the sequences obtained by running GBA on
the graph described on Fig. 1, for each affected destination
separately, and the global one. In this case, our algorithm
provides a sequence that satisfies all loop constraints with
only two intermediate updates. Formal properties and proofs
demonstrating the safety and minimality of GBA are provided
and generalized for AGBA in the appendix. We also provide
algorithmic details for the internal procedures.

Let us now focus on the time performance of GBA. There
exist several ways to efficiently implement GBA, which can
be tuned for a particular deployment: inside a router or in a
management tool. While minimizing the worst case complex-
ity appears to be the main goal in the former case, the average
complexity becomes prevalent when considering the latter.

In order to ensure an efficient computation, GBA imple-
ments several “pruning processes” that reduce the number and
the size of the graphs to be considered. These improvements
also limit graph manipulations to the strict necessary. First,
the set of destinations to be considered by GBA is reduced
only to the ones that are initially reached through the removed
node. This is because increasing the weights configured on its
outgoing links will not make this node more attractive for
other destinations. An efficient way to compute this subset
of destinations consists in computing an SPDAG on each
neighbor of 0 beforehand. The set of affected destinations
corresponds to all nodes that are reached via 0 in such
SPDAG. Second, the calculations performed by GBA for
the remaining destinations are lightened thanks to a set of
subgraph reductions. First, source nodes that actually use
node 0 to reach the destination are tagged when computing the
initial routing graph. It allows to restrict further computations
to this subset of nodes only. Second, for each destination,
we maintain a variable containing the largest ∆ value among
the nodes that have not yet been concerned by previously
backwardly computed greedy vectors: their ∆ is lower or equal
to the greedy vector. Thanks to this variable it is possible to
check whether the next greedy vector has an impact on a given

6

destination mdag, and then limit each mdag manipulations
to useful cases. Finally, note that a natural ∆ order exists
among the nodes in an mdag (notations are described in details
in the appendix). Formally, for a given destination, we have
∆(prePred(x)) ≤ ∆(x) so that it is possible to limit the node
exploration with a BFS algorithm on the subgraph G induced
by initial forwarding states for nodes in SRC (defined with
edges in (x,prePred(x)), the predecessors in RSPDAG (d)).

At the microscopic view, the core component of GBA we
use is a cycle detection algorithm. It allows for initializing
the constraint system and to extract the last constraints at
each iteration of the main loop. This algorithm helps at two
levels: first, it gives GBA the ability to definitively remove
non relevant nodes and edges as soon as a given weight
assignment removes them from the constraint system; second,
it can be repeatedly applied on a clone of the remaining
graph in order to extract new last constraints. This constraint
extraction mechanism has a complexity of |E| and is never
called more than once for each node in an mdag.
Each procedure of GBA comes with a specific complexity:
• Last constraints extraction has a cost of O(|N | × |E|).

Note that the RSPDAG computation has a complexity of
O(|N | × (|N |log2(|N |) + |E|));

• The number of iterations of the main loop can be limited
to a given length parameter p << |N |2 (p being the
targeted maximal sequence size). Inside the loop we have:
– Vector manipulations for all destinations with a com-

plexity of pk|N | (k being the degree of node 0);
– The constraints update comes at a cost of O(min(p×
|N | × |E|), |N2| × |E|)) for all destinations.

Eventually, GBA has a worst case complexity in O(|N |4) if
node 0 has a degree of k = |N | (or if |E| ≈ |N |2 in general).
However, in practice it is worth noticing that p can be picked
as an arbitrary low value such as p ≤ 5 to limit the complexity
of GBA to O(|N |3).

IV. ALGORITHMIC EXTENSIONS FOR PREVENTING
DISRUPTIONS DUE TO INTERMEDIATE UPDATES

Applying non-uniform weight modifications on the outgoing
links of node 0 allows for minimizing the length of an
increment sequence. Indeed, using different weight increments
over several outgoing links of 0 can help to satisfy a subset
of constraints for different destinations in the same update
step. In some cases, there is no equivalent uniform weight
increase step. Unfortunately, such modifications can introduce
new intermediate disruptions, namely intermediate forwarding
changes and intermediate transient loops around 0.

In the following, we illustrate and describe those disruptions
and how to deal with them within the GBA algorithm. In
Sec. IV-A, we describe the Adjusted Greedy Backward Al-
gorithm (AGBA) that computes provably minimal sequences
preventing all kinds of intermediate disruptions. In Sec. IV-B
we present an algorithmic alternative to the µloop delay
feature, called DGBH, preventing all intermediate transient
loops at the cost of slightly longer sequences.

Fig. 2 depicts the shortest paths on the network in Fig. 1
when applying the first vector, (7, 1, 3, 0), computed by GBA

0

1 3

b d

2

a e

c

4

+7 +1 +3

+0

Fig. 2: Illustration of intermediate disruptions for destination 4.

for the removal of node 0. Aside from forcing node d to shift
to its final path, this weight increment also makes 0 update
its shortest paths to 4. More precisely, 0 starts using nodes 2
and 3 instead of 1 and 3 as next-hops, and forwarding traffic
on path (0 2 3 4), that it does not use either in G or in G′.
Note that, contrary to final paths that are expected to be used
after the modification, such an intermediate path may not be
sufficiently provisioned, hence leading to congestion. In this
example, node 3 may act as a bottleneck on the paths used by
0 to 4, which are no longer disjoint. Even worse, a transient
loop can occur between 0 and 2, since 2 was initially using
0, as highlighted by the red arrow from 2 to 0.

In the following, we will refer to any set of forwarding
paths used by 0 after the application of weight increments
and not coinciding with both its initial and final set of
paths as intermediate forwarding change. Beyond increasing
the risk of congestion, intermediate forwarding changes can
translate to experiencing multiple temporary paths between
some source-destination pairs before stabilizing on the final
ones. Depending on the latency of each intermediate path
with respect to the initial and final ones, this may increase
the probability of out-of-order packet delivery, delay and TTL
variations during the IGP convergence.

All those variations may have a negative impact on control
mechanisms implemented at the transport layer.

Intermediate forwarding changes can cause intermediate
transient loops, as the loop between 0 and 2 in the example
in Fig. 2. Those loops depend on the shortest paths on
intermediate forwarding graphs obtained by applying non-
uniform weight increments. As such, they do not correspond to
cycles in the graph RSPDAG∪RSPDAG′, with RSPDAG
and RSPDAG′ being the initial and final RSPDAGs to
a destination d, respectively. Note that these loops always
include node 0. These loops induce two complications. First,
intermediate transient loops are not captured by GBA, as
shown by the example in Fig. 2. Second, they map to dynamic
constraints depending on the increment sequence itself (as
opposed to the GBA constraints that can be computed through
a static analysis on the initial and final RSPDAGs).

A. Avoiding Intermediate Forwarding Changes with AGBA

Since the root cause of intermediate nexthops leading to
loops and new forwarding paths is induced by forwarding
changes on node 0, a sufficient and necessary condition to

7

Algorithm 2 AGBA-1 : Minimal Constraints Initialization
1: Minimal constraints matrix M = ∅
2: Initial successors subset S∗
3: for d in N do
4: S∗ = ∅
5: for x in n.succ() do
6: offset[d][x] = w(n, x) + C′(x, d)− C(n, d)
7: if offset[d][x] = 0 then
8: S∗.append(x)

9: for s in S∗ do
10: for x in n.succ() do
11: M [s][x] = min (M [s][x], offset[d][x])

Algorithm 3 AGBA-2 : Greedy Vector Adjustment
1: function ADJUST_VECTOR(n,M, gv)
2: indexes = n.succ()
3: while indexes 6= ∅ do
4: p = pop_max_index (indexes, gv)
5: for x in n.succ() do
6: if M [p][x] = 0 then
7: gv[x] = gv[p]
8: else if gv[x] ≤ gv[p]−M [p][x] then
9: gv[x] = gv[p]−M [p][x] + 1

10: return gv

avoid any intermediate edge consists in enforcing that 0
maintains its next-hops throughout the IGP convergence.

Consistently with the rest of the paper, we denote the initial
IGP graph as G. We also denote the component of a vector v
associated to a link (0, x) as v[x].

Definition 1. A node s is called initial successor of 0 to d
if (0, s) is the first edge of a path in RSPDAG(d,G). We
denote the set of initial successors of 0 to d as S∗(d).

Intuitively, initial successors are next-hops used by 0 to
reach d in G, In the example in Fig. 2, nodes 1 and 3 are
initial successors of 0 for destination 4, while 2 and c are not.

Definition 2. Let d be a destination, s∗ be an initial successor
of 0 to d, and v be a weight increment. We define the inter-
mediate forwarding Change Prevention Conditions (CPCs) as
the set of inequalities

v[s] = v[s∗]

v[x] > v[s∗]− offset[d][x]

for each initial successor s ∈ S∗(d) of 0, and for each other
neighbor x of 0 such that x 6∈ S∗(d).

As an illustration, consider again Fig. 2 and let s∗ = 1.
The CPCs for destination 4 consists of inequalities v[1] <
v[2] + 2 and v[1] = v[3]. Observe that CPCs are formulated
with respect to a single initial successor (i.e., 1 in the example
above). However, the correctness of the CPCs does not depend
on the considered initial successor.

Moreover, for each neighbor x 6∈ S∗(d), it must be
C(0, d) < C(0, x, d) by definition of initial successors. Hence,
offset[d][x] > 0, and the following property holds.

Property IV.1. Any CPC inequality can be written as v[s∗] ≤
v[x] +m, with m ≥ 0.

Intuitively, CPCs impose that, for a given destination, paths
via initial successors of 0 should be shorter than any other

paths via a non initial successor (i.e., we aim to adjust
their increments such that they do not results in intermediate
shortest paths). Hence, verifying CPCs for a destination d
guarantees that the shortest paths from 0 to d remain the same.
This implies the following theorem (whose proof is reported
in the Appendix).

Theorem 3. If a weight increment v satisfies the CPCs for all
destinations, no forwarding change occurs when v is applied.

Since intermediate transient loops cannot occur in the
absence of forwarding changes, the following corollary holds.

Corollary 1. If a weight increment v satisfies the CPCs for
all destinations, no intermediate transient loop occurs.

We now show a GBA generalization, called Adjusted GBA
or AGBA, that guarantees prevention of intermediate edges
by enforcing accommodation of CPCs for all network desti-
nations. More precisely, AGBA solves the following problem.

Problem 2. Minimal intermediate Change-free and Loop-free
Problem (MCLP): Given a set C of loop-constraints and a set
A of CPCs, compute a minimal weight increment sequence
that contains no unsafe transition for any constraint in C, and
no weight increment that violate any condition in A.

Provided that all the loop-constraints and the CPCs are
correctly enumerated, solving an MCLP instance implies pre-
venting all possible convergence loops and forwarding changes
in the corresponding network as per Theorems 1 and 3.

To solve the MCLP problem, at each iteration, AGBA post-
process each weight increment gv as computed by GBA. To
this end, AGBA adds two main algorithmic steps to each
iteration of GBA. One in its initialization, the other within
the main loop iteration to adjust the greedy vector.

First, AGBA computes every offset values and optimizes
them across all destinations, as shown in Alg. 2. In particular,
for each destination, it computes all the offsets and identifies
the initial successors (see lines 5–8 in Alg. 2). Moreover, for
each pair initial successor and neighbor of 0, it only keeps the
smallest offset (see lines 9-11 in Alg. 2), as it corresponds to
the most constraining CPCs.

Second, AGBA modifies the greedy vector gv as computed
by GBA, applying the following operations. 1) vector sorting,
in which the components of gv are considered from the biggest
to the smallest one (this corresponds to consider all the CPCs
in decreasing order). The goal is to retrieve the up to date
pivot component p (line 4 in Alg. 3); and 2) vector adjusting,
in which the current component of gv is modified to satisfy
all the sorted CPCs. AGBA enforces the CPCs by imposing:

v[s] = md

v[x] = md − offset[d][x] + 1

where s ∈ S∗(d), x /∈ S∗(d), and md = max∀s∈S∗(d)(v[s]).
That is, given a weight increment, AGBA calculates the
maximum component corresponding to an initial successor,
which we call pivot component, and imposes that all the other
components of the vector must enforce the CPCs with respect
to such a pivot component. Consider again the example in

8

Fig. 2. The pivot component of the shown weight increment
v is v[1] and m4 = 7. AGBA imposes that v[1] = v[3] = 7,
v[2] = 6 and v[c] = 2. Eventually, the complete sequence
computed by AGBA on the network in the figure is

SAGBA =




3
2
3
3

 ,


7
6
7
7

 ,


8
7
8
8

 ,


9
10
9
9




which is two increments longer than the GBA one but one
lower than the uniform sequence {3, 7, 8, 9, 10}. While it may
appear as a large sequence increase in practice, our experi-
ments reported in Sec. V show that the sequence increase is
not significant in many realistic cases.

To conclude, the following theorems show that AGBA finds
minimal increment sequences solving the MCLP problem.
Proofs are included in the Appendix.

Theorem 4. For any MCLP instance I =< C,A >, AGBA
always terminates in O(|C|) iterations.

Theorem 5. The weight sequences computed by AGBA pre-
vent both transient loops and forwarding changes.

Theorem 6. AGBA computes a minimal sequence solving
any given MCLP instance.

Intuitively, AGBA is correct and optimal because CPC
constraints are statics in the same vein as transient loops ones.
The greedy behavior of GBA is then still ensured with respect
to an additional kind of static constraints, i.e., the “minimal”
resolution of a linear inequation system.

B. Avoiding Intermediate Loops with DGBH

AGBA enforces strong consistency guarantees during IGP
convergence at the cost of increasing the sequence length.
In the following, we explore a different trade-off between
consistency guarantees and sequence length. In particular, we
investigate an algorithm that prevents transient loops but not
necessarily intermediate forwarding changes, i.e., solving the
following problem.

Problem 3. Minimal Intermediate Loop-free Problem (MILP):
Given a set C of loop-constraints, compute a minimal weight
increment safe sequence that does not result in any interme-
diate transient loop on 0.

Since the MILP problem allows 0 to change its forwarding
paths during the application of the increment sequence, we
now face dynamic loop constraints, i.e., depending on the
sequence being computed. In order to deal with those con-
straints, our greedy heuristic, called DGBH, potentially adds
loop constraints at each iteration. In practice, it simply extends
GBA to enable UPMAX, POPMAX and their related cycle
detection functions to retrieve cycles including node 0 before
the computation of each greedy vector. This way it computes
lower bounds of last constraints related to intermediate loops.
Note that those additional operations require neither any extra
information nor dedicated computation process, keeping a time
efficiency similar to the original GBA.

While sequences computed by DGBH are correct, they are
not guaranteed to be minimal. Consider again the network in
Fig. 1. DGBH computes the following sequence.

SDGBH =




1
0
1
0

 ,


3
1
3
0

 ,


7
3
5
0

 ,


9
10
8
9




Vector (1 0 1 0) avoids the intermediate loop between 0 and
2. The given sequence is not minimal with respect to MILP.
Indeed, consider the case in which (3 3 3 0) is used as second
vector, preventing 0 to change its path (using an approach
similar to the AGBA one). This vector would have prevented
both the loop between c and d, and the intermediate one
between 0 and 2, hence leading to a loop-free sequence with 3
metric increments. Nevertheless, adjusting vectors to prevent 0
to change its path forces some solutions of the MILP problem
to be discarded, which can in turn lead to non-minimal
sequences in other cases. Even worse, such adjustments can
induce new intermediate loops while preventing some others.

Generally speaking, from a GBA-based perspective, two
strategies can be adopted to prevent intermediate loops,
namely, 1) modify the current greedy vector to avoid the
intermediate change at 0; OR 2) add a constraint to the
computation of the next greedy vector, to force another node
participating in the loop to not use 0 before it switches.
Unfortunately, none of the two strategies always leads to
minimal sequences when applied independently. While the
presence of alternative strategies at each step seems to force
a combinatorial space exploration, the theoretical problem of
efficiently solving MILP is left open. However, our evaluation
(see Sec. V) shows that a heuristic based only on the second
strategy, i.e., DGBH, computes sequences as short as GBA
in the vast majority of our experiments.

V. EVALUATION

In this section, we evaluate the performance of our algo-
rithms based on real IP networks, using the actually configured
link weights. Our evaluation criteria are twofold. We first
present the length of weight sequences resulting from our three
algorithms, for the case of node removal. Second, we evaluate
the computing time gains of our implementation improvements
to GBA, on a very large IGP network.

We evaluated our algorithms on a wide set of IGP network
graphs of various shapes and sizes. However, due to space
limitations, we chose to restrain the presented results to only
our three largest topologies. These are real Tier-1 and Tier-2
networks that we anonymized for confidentiality reasons (the
number of nodes and edges are also rounded). Sequence length
evaluation for smaller networks, as well as comparison with
the single-link solution can be found in [12]. We performed
those experiments by running a freely available C implemen-
tation of our algorithms1, on common hardware (2.5 GHz CPU
and 4GB RAM) and software (Debian 7).

1http://sourceforge.net/projects/metric-incr/

9

1 2 3 4 5 6 7 8 9 10
Number of intermediate updates

70

75

80

85

90

95

100
C

D
F

(%
)

GBA
AGBA
DGBH

(a) ISP1 (140 nodes, 410 edges)

1 2 3 4 5 6 7 8 9 10
Number of intermediate updates

60

65

70

75

80

85

90

95

100

C
D

F
(%

)

GBA
AGBA
DGBH

(b) ISP2 (210 nodes, 780 edges)

1 2 3 4 5 6 7 8 9 10
Number of intermediate updates

86

88

90

92

94

96

98

100

C
D

F
(%

)

GBA
AGBA
DGBH

(c) ISP3 (1200 nodes, 4000 edges)
Fig. 3: Sequence length distribution. DGBH has no significant impact on sequence lengths, while AGBA produces slightly longer sequences.

A. Sequence length

On Fig. 3, we show the proportion of node removal oper-
ations that could be safely performed with at most x inter-
mediate updates, using our different algorithms. In particular,
we highlight the proportion of sequences containing at most
5 intermediate updates with each algorithm. Note that the
length of the sequence has a linear influence on the time an
operator has to wait before actually performing the planned
operation. In the case of a maintenance event, we assume that
the operation can be slightly delayed as we choose a sequence
length of 5 as an arbitrary, yet realistic, upper bound.

On ISP1 (Fig. 3a), 5 intermediate vectors are sufficient for
almost 93% of the nodes to be safely removed if a data plane
freezing mechanism is available. If not, as many intermediate
vectors are still enough to prevent any transient loop for 91.5%
of the nodes (DGBH) or all possible disruptions for more than
88% of them (AGBA). On ISP2 (Fig. 3b), 83% of the nodes
can be removed with no transient loop using 5 intermediate
vectors or less, whether or not a data plane freezing solution is
available. Disruption freeness is ensured in 78.5% of the cases.
This proportion of nodes requiring a short enough sequence is
even larger on ISP3 (Fig. 3c), with more than 93% for GBA
and DGBH, and 92.7% for AGBA. Overall, these figures
show that, whatever the algorithm, most node removal opera-
tions could be safely performed with only a few intermediate
updates. Intuitively, this is due to the high connectivity of
typical network designs, as it tends to limit potential loops to
the neighbors of the node to be removed. Consequently, both
the number of loop constraints and sequence size lengths are
much smaller than their theoretical upper bounds.

The second interest of this figure is to evaluate the overhead,
in terms of sequence length, of the algorithms handling local
disruptions, namely DGBH and AGBA, compared to standard
GBA. We notice that DGBH, even if not providing guarantees
of minimality, generally produces sequences of almost the
same length as GBA. Besides, disruption free sequences ob-
tained with AGBA are only slightly longer, hence permitting
to do without a data plane freezing mechanism at a slight cost.

B. Computing time

ISP3 being by far our largest evaluation topology, we chose
to present computing time measurements focusing on this
graph. Note that computing times on smaller topologies, such
as ISP 1 and 2, are of a few milliseconds.

0 20 40 60 80 100

ICDF (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

C
om

pu
ti

ng
ti

m
e

(s
)

Standard GBA
Affected destinations
Subgraph reductions
Combination

Fig. 4: Computing time distribution on ISP3

On Fig. 4, we evaluate the time required to compute a
sequence for the removal operation of all nodes in the graph,
and the practical efficiency of our algorithmic improvements.
Although these results are obtained using standard GBA, opt-
ing for another variation (DGBH or AGBA) has no significant
effect on the computing times (time curves are superposed).

With a basic GBA implementation (solid blue line), com-
puting such sequences usually takes from 1.75 to 2.5 seconds,
but may require up to 4 seconds for worst cases. However,
these computing times can be dramatically reduced by imple-
menting a few algorithmic improvements. On the first hand,
we can reduce the set of destinations to be considered by
GBA only to affected destinations. This results in a strong
decrease of the computing time for more than a third of the
nodes. However, for nodes having a large degree and being
used to reach most of the destinations in the network, the cost
of the preliminary phase may exceed the benefits it provides,
having thus slight negative effects in some cases. On the
second hand, the time required to compute a sequence in
worst cases can be almost halved by re-using intermediate
results and limiting redundant calculations within GBA sub-
functions. These subgraph reductions additionally reduce the
computing time for all nodes by about 250 ms. Eventually,
both improvements can be used together in order to combine
their positive effects (combination). Indeed, the drawback
of computing affected destinations fades away when it is
associated with the other subgraph improvements.

From our evaluation, we can conclude that our algorithms

10

generally produce sequences of limited length, regardless
of the GBA variation, in a much reasonable time. These
results encourage us to consider the use of this solution on
production routers. In the case of planned operations, transient
inconsistencies could thus be avoided at the cost of a slightly
extended convergence time.

VI. RELATED WORKS

Protocol based solutions have been investigated in the past,
notably oFIB [15]. oFIB is a proposal to order the FIB
update in rerouting routers in a way that ensures forwarding
consistency during the convergence process. oFIB can prevent
loops in the case of link and node shutdown, as well as during
corresponding up events. However, the networking community
acknowledged that such a solution requires complex modifi-
cations to the specification of OSPF and ISIS, and require
support in all routers of the network in order to be applicable.
The technique presented in this paper achieves the same
goal (handling both link and node reconfigurations) without
protocol modification.

An alternate solution, PLSN, is described in [16]. It achieves
loop avoidance one hop away from a rerouting router, by
controlling the time at which the rerouting router updates its
FIB. With PLSN, a rerouting router delays, by a fixed amount
of time, a FIB update for a given destination if its new next-
hop is not loop-free for the destination. PLSN can be seen as a
reduced version of oFIB that does not require router-to-router
synchronization, at the cost of reduced applicability.

Hitless network migration techniques such as [17] could
be considered as alternatives to the solution described in this
paper. They are however focused on network-wide changes, as
they require to temporarily maintain two IGP configurations in
the whole network, and switch from the initial to the final one
on a per router basis. As such, it implies higher management
overload, and longer reconfiguration processes. The technique
explained in this paper reduces the operational impact of single
router reconfigurations.

Similarly, operations on single routers can be gracefully
performed by applying safe single-link techniques [13] se-
quentially on each link maintained by the router. However,
our evaluation shows that such an approach is far from being
optimal from a reconfiguration duration point of view.

Solutions have also been investigated for the case of routing
software upgrades on recent router architectures, which are
able to fully dissociate the routing and forwarding engines.
The I’ll Be Back capability [18] allow the router to continue
forwarding packets even if the routing process is down, while
preventing possible forwarding loops. Our approach enables
to solve the same problem (graceful router software upgrades)
without requiring modifications of current routing protocols
and with minimal control-plane overhead. This however comes
at the cost of local traffic shifts.

This paper extends a preliminary version of our work that
appeared in [12]. Our extensions include (i) algorithmic details
of GBA, which help to understand how the algorithm can be
implemented efficiently; (ii) proposal of a generalization of
GBA, AGBA, that optimally solves the problem of avoiding

any disruption in the absence of local delay; (iii) generalized
proofs, showing correctness and optimality of both GBA and
AGBA for their respective problems; and (iv) wider evaluation
of our algorithms, including time efficiency analysis.

Our algorithms for graceful router-wide updates remain safe
in networks with multiple routing domains connected through
route redistribution [19].

Recent works [20] show that the application of IGP weight
increments can trigger anomalies in BGP, due to its interaction
with IGP. Further, it presents sufficient conditions that guaran-
tee BGP anomalies not to occur. In this paper, we implicitly
assumed those conditions. In particular, we rely on ingress-
to-egress packet encapsulation to avoid transient loops for
BGP traffic. The numerous benefits of encapsulation in transit
networks and the fact that it is commonly used by service
providers make this assumption realistic.

VII. CONCLUSIONS

In this paper, we described techniques to support graceful
router updates in link-state routing protocols. Our techniques
do not require changes to IGP specifications and are based on
efficient algorithms finding minimal sequences of link weight
increments that avoids transient forwarding loops. While we
focused on router removal, our techniques can also address
other use cases, like router addition (by applying the computed
sequence in the reverse order), and arbitrary sets of weight
increase or decrease on links maintained by a given router (by
applying part of the sequences computed by our algorithms).

We first presented the GBA algorithm, which is correct and
optimal when used in conjunction with local delay [14]. We
then introduced AGBA, a generalized version of GBA that
computes minimal sequences avoiding the use of intermediate
paths. AGBA does not require local delay. Furthermore, we
discussed a heuristic, DGBH, aimed at providing shorter
sequences than AGBA while still not requiring local delay.

By extensive evaluation, we showed the practicality effec-
tiveness of our algorithms. Even on large Tier-1 networks,
they need few seconds to compute safe weight increment
sequences, which are likely shorter than 5 steps. Such time
efficiency indicates the possibility of including our algorithms
in current routers’ software.

REFERENCES

[1] P. Pongpaibool, R. Doverspike, M. Roughan, and J. Gottlieb, “Handling
IP Traffic Surges via Optical Layer Reconfiguration,” in OFC, 2002.

[2] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah,
Y. Ganjali, and C. Diot, “Characterization of Failures in an Operational
IP Backbone Network,” IEEE/ACM Trans. Netw., vol. 16, pp. 749–762,
August 2008.

[3] J. Martin and A. Nilsson, “On Service Level Agreements for IP
Networks,” in INFOCOM, 2002.

[4] R. Teixeira and J. Rexford, “Managing Routing Disruptions in Internet
Service Provider Networks,” IEEE Communications Magazine, vol. 44,
no. 3, pp. 160 – 165, March 2006.

[5] D. McPherson, “Intermediate System to Intermediate System (IS-IS)
Transient Blackhole Avoidance,” IETF, RFC 3277, April 2002.

[6] A. Medem, R. Teixeira, N. Feamster, and M. Meulle, “Joint analysis of
network incidents and intradomain routing changes,” in CNSM, 2010.

[7] J. Moy, “OSPF Version 2,” IETF, RFC 2328, April 1998.
[8] D. Oran, “OSI IS-IS Intra-domain Routing Protocol,” IETF, RFC 1142,

February 1990.

11

[9] H. Ito, K. Iwama, Y. Okabe, and T. Yoshihiro, “Avoiding Routing Loops
on the Internet,” Theory of Computing Systems, vol. 36, pp. 597–609,
2003.

[10] H. Pucha, Y. Zhang, Z. M. Mao, and Y. C. Hu, “Understanding Network
Delay Changes Caused by Routing Events,” SIGMETRICS Performance
Evaluation Review, vol. 35, no. 1, pp. 73–84, June 2007.

[11] Y. Zhang, Z. Morley Mao, and J. Wang, “A Framework for Measuring
and Predicting the Impact of Routing Changes,” in INFOCOM, 2007.

[12] F. Clad, P. Merindol, S. Vissicchio, J.-J. Pansiot, and P. Francois,
“Graceful Router Updates for Link-State Protocols,” in ICNP, 2013.

[13] F. Clad, P. Merindol, J.-J. Pansiot, P. Francois, and O. Bonaventure,
“Graceful Convergence in Link-State IP Networks: A Lightweight Algo-
rithm Ensuring Minimal Operational Impact,” IEEE/ACM Transactions
on Networking, vol. 22, no. 1, pp. 300–312, February 2014.

[14] S. Litkowski, B. Decraene, and P. Francois, “Microloop prevention by
introducting a local convergence delay,” IETF, Internet-Draft, 2013.

[15] P. Francois and O. Bonaventure, “Avoiding transient loops during the
convergence of link-state routing protocols,” IEEE/ACM Trans. Netw.,
vol. 15, no. 6, pp. 1280–1292, December 2007.

[16] M. Shand and S. Bryant, “A Framework for Loop-Free Convergence,”
IETF, RFC 5715, January 2010.

[17] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and O. Bonaventure,
“Lossless Migrations of Link-State IGPs,” IEEE/ACM Trans. Netw.,
vol. 20, no. 6, pp. 1842–1855, December 2012.

[18] A. Shaikh, R. Dube, and A. Varma, “Avoiding Instability During Grace-
ful Shutdown of Multiple OSPF Routers,” IEEE/ACM Trans. Netw.,
vol. 14, no. 3, pp. 532–542, June 2006.

[19] S. Vissicchio, L. Vanbever, L. Cittadini, G. Xie, and O. Bonaventure,
“Safe Routing Reconfigurations with Route Redistribution,” in INFO-
COM, 2014.

[20] L. Vanbever, S. Vissicchio, L. Cittadini, and O. Bonaventure, “When the
cure is worse than the disease: the impact of graceful igp operations on
bgp,” in INFOCOM, 2013.

APPENDIX

A. Algorithms

We now provide more information on GBA internal proce-
dures reported in Algorithm 4.

Function INIT initializes an mdag structure by computing,
for the affected source nodes in SRC, the merging of the two
RSPDAGs and the list of ∆ values. This function also sets the
first swallowing list with all nodes in SRC that have either no
successors or no predecessors in mdag.

Function SWALLOW iterates over nodes in the prepared
swallowing list, removing from the mdag each node in the
list and, recursively, all their neighbors that have either no
successors or no predecessors when removing them from the
current mdag. In addition, the function maintains a variable
with the largest ∆ value among the removed nodes (l. 11)
and, if necessary2, a list of roots containing, for each removed
node, its predecessors in the initial routing graph that are still
in mdag (l. 12). The root list allows for efficiently exploring
the remaining graph.

Function POPMAX starts by permanently pruning from the
mdag all nodes that are not, or no longer, involved in any
transient loop (l. 2). Then, this function clones this current
state of the mdag (l. 3) and repeatedly performs swallowing
operations on a temporary copy in order to extract the new last
constraint. At each iteration, the minimum ∆ value among
the remaining nodes in the copy is extracted (l. 5) and the
associated nodes are added to the next swallowing list (l. 6–
8). It iterates this way until no cycles appear. Eventually, the

2Note that the modifications on this root list have an actual impact only
when performing a SWALLOW operation on the original mdag, and lines 12–
13 could be skipped on the copy.

Algorithm 4 GBA internal procedures
1: function DAG.INIT (dag, dag′, SRC, n)
2: mdag.nodes = merge (dag, dag′, SRC)
3: for u in SRC do
4: mdag.∆[u] = C′(u, d)− C(u, d)
5: if mdag.succ(u) = ∅ or mdag.pred(u) = ∅ then
6: list.append (u)
7: mdag.roots = {n}
8: return mdag, list
1: function MDAG.SWALLOW (list)
2: for LF in list do
3: for s in succ(LF) do
4: pred(s).remove (LF)
5: if pred(s) = ∅ then
6: list.append (s)
7: for p in pred(LF) do
8: succ(p).remove (LF)
9: if succ (p) = ∅ then

10: list.append (p)
11: max = max (max,∆[LF])
12: roots.append (prePred(LF))
13: roots.remove (LF)
14: remove (LF)

1: function MDAG.POPMAX (list)
2: SWALLOW (list)
3: GF = graphClone()
4: while GF.nodes 6= ∅ do
5: GF.lc = GF.min∆ ()
6: for n in GF.nodes do
7: if ∆[n] == GF.lc then
8: min_ns.append (n)

9: GF.lc = GF.lc+ 1
10: GF.SWALLOW (min_ns)
11: max = GF.max
12: lc = GF.lc
1: function MDAG.UPMAX (m)
2: list = ∅
3: for r in roots do
4: if ∆[r] > m then
5: list.append (r)
6: roots.remove (r)
7: roots.append (prePred(r))

8: POPMAX (list)

minimum ∆ value computed at the last step is stored as the
next last constraint to be considered by GBA (l. 12).

Function UPMAX initializes the next swallowing list with
each node in roots whose associated ∆ value is greater than m
(l. 4–6). Those nodes depitcs routers that have already satisfied
loop constraints (if any). Besides, the predecessors in the initial
routing graph (prePred) of each node to be swallowed are
added to the root list (l. 7). UPMAX iterates this way until all
its elements have been treated.

B. Problem Statement Properties
The following properties hold by definition of ∆ vectors

and loop constraints. We refer to a generic loop L consdering
a given destination d, its corresponding constraint c, and a
given weight increment v applied to links outgoing from 0.
For any router x, we denote its successors in RSPDAG(d,G)
and RSPDAG(d,G′) as its initial and final next-hops to d,
respectively.

Property A.1. Given a constraint c, ∀i ∈ {1, . . . , |c|}, c̄[i] ≥
c[i] + 2.

Property A.2. If v meets c, there exist at least two routers
x, z ∈ L such that (i) x uses its final next-hops y1, . . . , yn to
d, with y1, . . . , yn 6∈ L because ∆d(x) = c; and (ii) z uses
its initial next-hops w1, . . . , wn to d, with w1, . . . , wn 6∈ L
because ∆d(z) = c̄.

12

Property A.3. All routers x ∈ L use their respective (i) initial
next-hops to d if v precedes c, and (ii) their final next-hops to
d if v follows c.

The following theorems about safety of a sequence follows
from the properties above.

Theorem 1. A weight sequence s avoids a loop L if and only
if s contains only safe transitions with respect to the constraint
corresponding to L.

Proof: Let c = (c, c̄) and d respectively be the loop
constraint and the destination associated to loop L. We prove
the statement in two steps.
• if s includes an unsafe transition (vi vi+1) for c, then
s does not prevent L. Indeed, by definition of unsafe
transition, we have two cases: (i) vi precedes c and vi+1

follows c̄, and (ii) vi follows c and vi+1 precedes c̄. All
the routers in L will switch from their initial to their final
next-hops to d in the first case, and from their final to
their initial next-hops in the second case. In both cases,
the transition from vi to vi+1 can cause L to occur by
definition of transient loop.

• if s only includes safe transitions for c, then s prevents
L. Indeed, by definition of safe transition, for each pair
of weight increments vi and vj , where vi precedes c,
vj follows c and j > i, there must exist a vector vk
such that i < k < j and vk meets c. By Property A.2,
this means that each time routers in L switch from their
initial to their final next-hops, there is an intermediate
step (corresponding to vk) in which some routers switch
before others in such a way that the possible loop is
prevented. A symmetric argument can be applied to the
case in which vi follows c and vj precedes c.

The two cases prove the statement.

Theorem 2. An always increasing weight sequence s avoids
a loop L if and only if s contains at least one vector meeting
the constraint corresponding to L.

Proof: Let c = (c, c̄) be the constraint corresponding to
any loop L. By definition of always increasing sequence, s is
a concatenation of three subsequences, s = l m h, where l is
composed by vectors preceding c, m contains vectors meeting
c, and h includes vectors following c̄. By hypothesis, m cannot
be empty. Thus, s does not contain unsafe transitions for c.
The statement then follows by Theorem 1.

Also, the following theorem follows by the definition of
intermediate forwarding CPC (see Section IV).

Theorem 3. If a weight increment v satisfies the CPCs for all
destinations, then no forwarding change occurs.

Proof: Assume by contradiction that a forwarding change
occurs for a destination d when v is applied, even if v verifies
all the CPCs for d. By definition of forwarding change, a node
x̄ must exist such that one of its shortest paths to d after the
application of v is not included either in the initial nor in the
final ones. Since only the weights of the links outgoing from
0 are changed by v, the paths from x̄ to 0 are the same as
the initial ones. This means that 0 must also have changed its

shortest paths to d.
By definition of CPCs, all the paths from 0 to d via initial

successors have the same length after the application of v.
Thus, for a forwarding change on 0 to occur, it must exist a
path (0 x . . . d) shorter or equal than the shortest paths from
0 to d via any initial successor s∗. Since only the weights
of the links outgoing from 0 are changed by v, this means
that v[s∗] + C(0, d) ≥ v[x] + C(0, x, d), i.e., v[s∗] ≥ v[x] −
offset[d][x]. This inequality contradicts the hypothesis that
all CPCs are verified by v, thus proving the statement.

C. Safety and minimality proofs

We now prove correctness and optimality of the AGBA
algorithm with respect to the MCLP problem (see Section IV).
Since MLP is a sub-problem of MCLP and GBA coincides
with AGBA when CPCs are not enforced, the following proofs
also show correctness and optimality of GBA with respect to
the MLP problem (see Section III), as already proved in [12].

In our proofs, we use the term before iteration j to denote
all iterations that are lower than j. We also say that a constraint
is unsatisfied (resp., satisfied) at an iteration j if it is not met
(resp., it is met) by any vector computed by AGBA before
j. Finally, given an increment vector v and a set of CPCs,
we recall that the pivot component is the biggest component
of v appearing in the left side of any CPC inequality, i.e.,
a component corresponding to an initial successor (see Sec-
tion IV). For simplicity, we restrict to the case of a single pivot
component per vector. However, lemmas and theorems can be
easily generalized to multiple pivot components.

Our proofs leverage the following properties of AGBA
which hold by definition of the algorithm.

Property A.4. At each iteration j, AGBA computes a vector
v such that v >+ c for all the constraints c = (c, c̄) still
unsatisfied before j.

Property A.5. Given any AGBA iteration j, let v be the
vector that AGBA computes before the adjusting phase. For
each component i of v, a constraint c = (c, c̄) still unsatisfied
before j exists such that v[i] = max(c[i] + 1, 0).

Property A.6. AGBA computes always increasing sequences.

Property A.7. AGBA stops as soon as all the constraints are
met. Each constraint is met by one vector in the sequence.

Properties A.4 and A.5 are ensured by the greedy vector
computation (plus the fact that AGBA only increases some
components of the vector during the adjusting phase). Prop-
erty A.6 is the result of both vector computation and constraint
removal. Properties A.7 derives from the constraint removal
mechanism.

First of all, we show that AGBA always terminates.

Lemma 1. For any AGBA iteration, the pivot component
of the computed vector remains bigger than any component
appearing in the left side of any CPC inequality during the
adjusting phase.

Proof: The statement hold at the beginning of the adjust-
ing phase by definition of pivot component.

13

Now, assume by contradiction that the statement holds until
a given step s during the adjusting phase, but not after s. That
is, at step s AGBA computes a vector in which at least one
component m is bigger than the pivot component j, and m
appears in the left side of some CPC inequalities. Let w and
z be the vectors computed by AGBA respectively before and
after step s. By hypothesis, ∀i w[i] ≤ w[j] while z[m] > z[j].

This hypothesis implies that AGBA has increased the m-
th component of w at step s. By definition, AGBA increases
a component only if it appears in the right side of an CPC
inequality. Thus, the inequality considered by AGBA in s must
be v[l] ≤ v[m] + k, with k ≥ 0 and l 6= m. To accommodate
this inequality, by definition, AGBA enforces z[l] = z[m]+k,
that is, z[l] ≥ z[m] since k ≥ 0. All the other components are
left unmodified, hence z[l] = w[l] and z[j] = w[j].

We have two cases. If l = j, then z[l] ≥ z[m] implies z[j] ≥
z[m], which contradicts the definition of z. Otherwise, if l 6= j,
then it must be w[l] = z[l] ≥ z[m] > z[j] = w[j] , i.e., w[l] >
w[j], which contradicts the definition of w. In both cases, we
contradict the hypothesis, which yields the statement.

Lemma 2. The pivot component is never modified by AGBA
during the adjusting phase.

Proof: Let p be any vector before the adjusting phase,
and let p[j] be its pivot component. We now show that AGBA
never modifies p[j].

In the adjusting phase, AGBA iterates once on the sorted set
of CPC inequalities, considering one inequality at the time and
increasing some components of the vector if needed. Consider
any step s in this iteration. Let w be the vector at the beginning
of s. The following cases apply to the CPC inequality that
AGBA considers at s.
• v[j] does not appear in the inequality, hence it is not

modified, by definition of AGBA.
• v[j] appear in the left side of the inequality, which has

the form v[j] ≤ v[i] + k, with i 6= j and k ≥ 0. If
the inequality is satisfied, AGBA will not modify any
component of w. Otherwise, by definition, AGBA will
only increase the value of w[i] while not modifying w[j].

• v[j] appear in the left side of the inequality, which has
the form v[l] ≤ v[j] + q, with l 6= j and q ≥ 0. By
Lemma 1, it must be w[l] < w[j]. Hence, the inequality
is already satisfied by w, and by definition, AGBA does
not modify any component of w.

In all the cases, AGBA does not modify w[j]. The statement
follows by applying the same argument to all the steps
performed by AGBA during the adjusting phase.

Lemma 2 implies that at least one constraint is satisfied by
AGBA at each step. Indeed, the following lemma holds.

Lemma 3. At each iteration, AGBA computes a vector v that
meets at least one constraint not met before.

Proof: Consider any AGBA iteration i. Let C be the set
of unsatisfied constraints at the beginning of i, let v be the
computed vector before the adjusting phase, and let v[j] be
its pivot component. By Property A.4 and A.5, one constraint
c = (c, c̄) ∈ C must exist such that v >+ c and v[j] = c[j]+1.
By Property A.1, it must also be v[j] < c̄[j], that is, c is met

by v. The statement follows by noting that v[j] is unmodified
by AGBA in the adjusting phase, by Lemma 2.

We now leverage Lemma 3 to prove that AGBA always
terminates in a finite number of iterations.

Theorem 4. For any MCLP instance I =< C,A >, AGBA
always terminates in O(|C|) iterations.

Proof: By Property A.7, AGBA stops when all the initial
constraints C are met. Hence, the statement directly follows by
Lemma 3.

We now show that the sequences computed by AGBA are
guaranteed to be safe and to avoid intermediate edges.

Lemma 4. In AGBA, adjusting a vector according to a given
CPC does not invalidate previously satisfied CPCs.

Proof: Assume by contradiction that AGBA invalidates
a previously satisfied CPC inequality (1) v[l] ≤ v[m] + k to
satisfy another CPC inequality (2) v[i] ≤ v[j]+q. By definition
of CPC, k, q ≥ 0. Let w and z be the vectors computed during
the adjusting phase immediately before and immediately after
considering (2), respectively. Our assumption translates to
having w[l] ≤ w[m] + k, z[i] ≤ z[j] + q, and z[l] > z[m] + k.
One of the following cases must hold.

• w is already compliant with (2). Then, by definition,
AGBA does not modify any component of the current
vector w, hence z[l] = w[l] and z[m] = w[m]. By
definition of w, this means that it must be z[l] ≤ z[m]+k,
which contradicts the assumption.

• w is not compliant with (2) and j 6= l. By definition,
AGBA only increases the j-th component of w, i.e.,
z[j] > w[j] but z[l] = w[l] and z[m] = w[m]. By
definition of w, this implies that z[l] ≤ z[m] + k, which
contradicts the assumption.

• w is not compliant with (2) and j = l. Since (1) has
been considered by AGBA before (2), then it must be
w[l] = w[j] > w[i] by definition of the sorting phase in
AGBA. This means that (2) has been already satisfied by
w, contradicting the hypothesis of this case.

All cases lead to a contradiction, yielding the statement.

Theorem 5. The weight sequences computed by AGBA
prevent both transient loops and intermediate edges.

Proof: Let I be any MCLP instance, and let s be the
sequence computed by AGBA on I . By Property A.6, s is
an always increasing sequence. By Lemma 3, each constraint
is met by at least one vector in s. Thus, Theorem 2 ensures
the prevention of transient loops. Moreover, by definition of
the AGBA adjusting phase and by Lemma 4, all the CPCs
inequalities are satisfied by each weight increment in s. Hence,
Theorem 3 guarantees the prevention of intermediate edges.

Finally, we prove the minimality of the sequences computed
by AGBA.

Lemma 5. Let I be any MCLP instance, s = (s1 . . . sn) be
any sequence solving I , and g = (g1 . . . gm) be the sequence
computed by AGBA on I , with possibly n 6= m. The last
vectors of the sequences verify vn ≥ gm.

14

Proof: Let I =< C,A >. Assume by contradiction that
sn[i] < gm[i] for a given component i. We have two cases.
• AGBA did not modify the i-th component in the adjusting

phase of its first iteration. Then, by Property A.5, there
must exist at least one constraint c = (c, c̄) ∈ C such that
gm[i] = c[i] + 1. This implies that sn[i] < c[i] + 1, hence
c is not met by sn.

• AGBA modified the i-th component in the adjusting phase
of its first iteration. Then, by definition of adjusting phase,
A must include an CPC inequality v[j] ≤ v[i]+y. Since i-
th component was actually adjusted by hypothesis, it must
be y > 0, and AGBA enforced gm[j] = gm[i] + y, i.e.,
gm[j] < gm[i]. Moreover, for s to prevent intermediate
edges, sn[j] ≤ sn[i] + y. Since sn[i] < gm[i] by hypoth-
esis, it must be sn[j] < gm[i] + y, hence sn[j] < gm[j].

In the second case, we can iterate the argument above starting
from j-th component. Each time the second case applies,
we end up with a component of gm strictly bigger than the
previously considered one. Thus, the second case can hold
until we reach the biggest component of gm that appears in the
left side of any CPC inequality. By Lemma 1, this component
is the pivot component. Thus, Lemma 2 ensures that the first
case eventually applies.

Hence, at least one constraint c is not met by sn. This
means that s contains an unsafe transition for c, since sn is the
last weight increment in s and the final weight assignment is
greater or equal than c̄. Theorem 1 implies that s does not solve
I , contradicting the hypothesis and yielding the statement.

Lemma 6. Let I be any MCLP instance, s = (s1 . . . sn) be
any sequence solving I , and g = (g1 . . . gm) be the sequence
computed by AGBA on I , with possibly n 6= m. All the loop
constraints met by sn (and possibly more) are also met by gm.

Proof: Let I =< C,A >. Assume by contradiction that
a constraint c is met by sn, but not by gm. By Property A.4,
gm >+ c. Hence, for gm not to meet c, it must be gm >+ c̄.
Also, in order for sn to meet c, it must exist a component i
such that sn[i] < c̄[i]. As a result, sn[i] < c̄[i] < gm[i]. This
contradicts Lemma 5, hence yielding the statement.

Theorem 6. AGBA computes a minimal sequence solving
any given MCLP instance.

Proof: Consider an MCLP instance I =< C,A >.
Let s∗ = (s∗1 . . . s

∗
n) and g = (g1 . . . gm), with n ≤ m,

be respectively any minimal solution of I and the sequence
computed by GBA on I . If m = 1, n must be equal to 1 as
well, and the statement directly follows. Otherwise, we know
by Lemma 6 that if gm meets a set C1 ⊆ C of loop con-
straints, then s∗n meets a subset of constraints in C1. Consider
now the sequences (s∗1 . . . s

∗
n−1) and (g1 . . . gm−1). Again by

Lemma 6, gm−1 meets at least the same set of constraints as
s∗n−1. This implies that the sequence (gm−1 gm) meets at least
the same constraints met by (s∗n−1 s

∗
n). By iterating the same

argument, we can show that (gm−n+1 . . . gm) meets at least
the same set of constraints as (s∗1 . . . s

∗
n). Thus, by definition

of s∗, (gm−n+1 . . . gm) meets all the constraints in C. Also,
Property A.7 ensures that AGBA stops at gm−n+1. Hence, it
must be m− n = 0 and |g| = |s∗|, yielding the statement.

Note that AGBA is minimal even if the MCLP instance
allows relative weight modification in Z while GBA ensures
minimality for the MLP only if globally relative weight
modifications stays in N.

	Introduction
	Model and Notations
	Minimal Sequence Computation with GBA and loop Delay
	Algorithmic Extensions for Preventing Disruptions due to Intermediate Updates
	Avoiding Intermediate Forwarding Changes with AGBA
	Avoiding Intermediate Loops with DGBH

	Evaluation
	Sequence length
	Computing time

	Related Works
	Conclusions
	References
	Appendix
	Algorithms
	Problem Statement Properties
	Safety and minimality proofs

