
An enhanced socket API for Multipath TCP

Benjamin Hesmans, Olivier Bonaventure
ICTEAM, Université catholique de Louvain

Louvain-la-Neuve – Belgium
firstname.name@uclouvain.be

ABSTRACT
Multipath TCP is a TCP extension that enables hosts to
send data belonging to a single TCP connection over dif-
ferent paths. It was designed as an incrementally deploy-
able evolution of TCP. For this reason, the Multipath TCP
specification assumes that applications use the unmodified
socket interface. Given the growing interest in using Multi-
path TCP for specific applications, there is a demand for an
advanced API that enables application developers to con-
trol the operation of the Multipath TCP stack. Keeping
with the incremental deployment objectives of Multipath
TCP, we propose a simple but powerful socket API that
uses new socket options to control the operation of the un-
derlying stack. We implement this extension in the reference
implementation of Multipath TCP in the Linux kernel and
illustrate its usefulness in several use cases.

CCS Concepts
•Networks → Programming interfaces;

Keywords
MPTCP; network; API

1. INTRODUCTION
Multipath TCP [7] is a recent TCP extension that enables

hosts to send data belonging to a single connection over mul-
tiple paths. The design of this TCP extension was motivated
by the desire to allow modern endhosts to efficiently utilize
their different interfaces [6].

A typical example are today’s smartphones that are equip-
ped with cellular and WiFi interfaces. With regular TCP,
smartphones either use their cellular interface or their WiFi
interface to support applications and handovers result in the
termination of the established TCP connections. Multipath
TCP allows smartphones to behave differently. With Multi-
path TCP, a smartphone can simultaneously use its cellular
and WiFi interfaces to transfer data [16, 3, 12]. Multipath

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ANRW ’16, July 16 2016, Berlin, Germany

© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4443-2/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2959424.2959433

TCP is able to pool the bandwidth of the WiFi and cellular
interfaces [18]. This has motivated large network providers
in Korea to partner with smartphone vendors to include
Multipath TCP on several Android smartphones to pool the
cellular and WiFi bandwidth to reach up to 800 Mbps [21].
Given that Multipath TCP is not yet deployed on regular
Internet servers, these smartphones use Multipath TCP to
reach a SOCKS [11] proxy which then uses regular TCP to
interact with the remote servers. A similar approach is used
for the OverTheBox service being rolled out by OVH [13]
and there is ongoing work within the IETF to standardise a
solution with Multipath TCP proxies to enable operators to
efficiently combine different access networks such as xDSL
and LTE [2].

Pooling bandwidth is not the only benefit of Multipath
TCP on smartphones. In September 2013, less than nine
months after the publication of [7], Apple enabled Multi-
path TCP to improve the user experience with the Siri voice
recognition application on all iPhones and iPads. In this
case, Apple controls both the clients and the servers and
can thus use Multipath TCP in a real end-to-end deploy-
ment. The Siri application uses a long-lived TLS session
and Multipath TCP provides a very fast handover when the
cellular or WiFi interface becomes lossy.

Other use cases have been proposed for Multipath TCP :
datacenters [17], vehicular networks [23] and various forms
of Multipath TCP proxies [1].

The ongoing Multipath TCP deployments [1] have demon-
strated that the protocol can be deployed in today’s Inter-
net despite the presence of various types of middleboxes [10].
Given this deployment, there is a growing interest among ap-
plication developers and system designers to better control
the utilisation of the different paths that can be exploited
by Multipath TCP. However, as of this writing, there is no
standard API that enables developers to accurately control
the underlying Multipath TCP stack.

In this paper, we propose a simple and expandable ex-
tension to the socket API that enables applications to ef-
ficiently control the underlying Multipath TCP stack. We
first briefly describe in section 2 the basic principles of Mul-
tipath TCP and the existing APIs. We describe in section 3
our proposed socket options. We implement1 this API in
the reference implementation of Multipath TCP in the Linux
kernel [14] and use it in section 4 to illustrate its applicabil-
ity to different use cases. Section 5 concludes the paper and
discusses several directions for further work.

1Our code will be available on https://multipath-tcp.org

http://dx.doi.org/10.1145/2959424.2959433
https://multipath-tcp.org

2. MULTIPATH TCP
Multipath TCP [7] includes a variety of techniques to en-

able data belonging to one connection to be transmitted
over multiple paths. Detailed information about the opera-
tion of the protocol may be found in [7, 18]. Due to space
limitations, we only discuss the interactions between an ap-
plication and Multipath TCP and leave the protocol details
outside this paper.

From an architectural viewpoint, a Multipath TCP can be
seen as a set of TCP connections, called subflows in [7], that
are grouped together and managed by the two endpoints of
the Multipath TCP connection. This set of subflows is not
static and subflows can be established and terminated dur-
ing the lifetime of a Multipath TCP connection. Multipath
TCP uses various different TCP connections to exchange
control information. A detailed overview of these options
is outside the scope of this section, but we mention two of
these that are discussed later in the text. The ADD_ADDR op-
tion allows to advertise the addresses assigned to a host. For
example, a dual stack server will use this option to advertise
its IPv6 address over the Multipath TCP connections that
client have initiated over IPv4. The REMOVE_ADDR option is
used to indicate that a previously advertised addressed does
not anymore belong to the host. For example, a smartphone
will send this option on its established Multipath TCP con-
nections when it looses connectivity to its WiFi access point.

User Space

Kernel Space

Socket

Meta Socket

MPTCP cb

TCP sk

MPTCP sk

TCP sk

MPTCP sk

TCP sk

MPTCP sk

NULL

MPTCP sk

Figure 1: MPTCP socket structure

On the Linux implementation [14], when an application
creates a Multipath TCP connection, two data structures
are created in the kernel : a meta socket and a subflow
socket. The meta socket is the only data structure that is
directly linked to the socket that is visible by the applica-
tion as presented on figure 1. All data sent and received on a
Multipath TCP connection passes through this socket. The
meta socket contains pointers various structures including
the linked list of the established subflows. The sockets cor-
responding to these subflows are not directly visible by the
application with the current Linux implementation [14]. In
this implementation, the subflows are managed by a plug-
gable kernel module called the path manager. These path
managers react to events such as the activation/deactivation
of an interface by creating/removing the required subflows,
but they do not expose an API to the application. The
current Linux implementation was designed to allow an un-
modified socket application to benefit from Multipath TCP

/* socket creation */
s = socket(AF_MULTIPATH, SOCK_STREAM, IPPROTO_TCP);

/* creation of first subflow */
sa_endpoints_t endpoints;
/* any source interface */
endpoints.sae_srcif = 0;
/* any address of the client */
endpoints.sae_srcaddr = NULL;
endpoints.sae_srcaddrlen = 0;
/* server address */
endpoints.sae_dstaddr = (struct sockaddr *)

daddr->ai_addr;
endpoints.sae_dstaddrlen = daddr->ai_addrlen;

int rc = connectx(s, &endpoints, SAE_ASSOCID_ANY,
0, NULL, 0, NULL, NULL);

Figure 2: Using Multipath TCP on iOS and OS/X

without any possibility to precisely control the utilisation of
the interfaces.

2.1 Multipath TCP APIs
To our knowledge, there are currently only three proposed

APIs to control a Multipath TCP stack. The MPTCP WG
of the IETF developed a minimum set of extensions to the
socket API in [19]. However, this simple API has not yet
been adopted by implementors [5].

When Apple decided to adopt Multipath TCP to sup-
port Siri, they opted for a special API to enable and use
Multipath TCP. To our knowledge, this API has not been
publicly documented, but several open source files released
by Apple contain code examples that use Multipath TCP2 .
On iOS and OS/X, Multipath TCP is enabled by creating
a socket that uses the AF_MULTIPATH address family. The
sa_endpoints_t structure is used to represent the endpoints
of a TCP subflow. It also contains an interface identifier.
The connectx system call replaces the classical connect call.
It takes as main parameters a socket and a sa_endpoints_t

data structure that specifies the destination address of the
connection and optionally the source interface and/or the
source address. This system call can be used with both IPv6
and IPv4 addresses. If the server (or a middlebox on the
path) does not support Multipath TCP, connectx returns
an error and the application can convert the connection to
a TCP connection by using the undocumented peeloff sys-
tem call. If the server supports Multipath TCP, then the
application can send and receive data through the normal
send/receive system calls. An additional subflow can be at-
tached to the connection by using again the connectx system
call on the same socket but with a different sa_endpoints_t
data structure. This new subflow can be created by specify-
ing a different source interface, source address or destination
address than the initial subflow. Figure 2 provides a short
sample code that shows how Multipath TCP can be used by
an OS/X application.

The Linux implementation [14] takes a different approach.
When Multipath TCP is enabled through a sysctl, it re-
places TCP for all applications. When an application cre-
ates a TCP socket, it is automatically promoted as a Mul-
tipath TCP socket. The establishment of the subflows is

2See http://opensource.apple.com/source/network cmds/
network cmds-457/mptcp client/mptcp client.c or http://
opensource.apple.com//source/netcat/netcat-20/netcat.c

http://opensource.apple.com/source/network_cmds/network_cmds-457/mptcp_client/mptcp_client.c
http://opensource.apple.com/source/network_cmds/network_cmds-457/mptcp_client/mptcp_client.c
http://opensource.apple.com//source/netcat/netcat-20/netcat.c
http://opensource.apple.com//source/netcat/netcat-20/netcat.c

controlled by a kernel module called the path manager. The
full-mesh path manager creates a subflow between all pairs
of addresses of the client and the server addresses that it has
learned through the ADD_ADDR option. The server does not
create subflows because the client could be behind a NAT or
firewall. This path manager is well adapted for smartphones
that interact with single-homed servers. The ndiffports path
manager was designed for single homed clients in datacen-
ters [17]. It creates n subflows with different source ports
towards a single-homed server.

In [9], a new netlink path manager has been proposed.
Instead of reacting directly to various kernel events it re-
lays them trough a new specific netlink family to an user
space daemon. Among others, events presented through the
netlink socket include: the creation of a new connection
and its identifier, the confirmation of the establishment of a
subflow, the termination of a subflow deletion with a reason
code, the availability of a new remote address, . . . Since the
kernel module does not react to the kernel events, the spe-
cific netlink family is also able to receive commands from
the user space daemon to the kernel module to control each
Multipath TCP connection. The set of commands usable by
the daemon through netlink includes the creation, deletion
and prioritization of subflows. In this case all the logic is
ported in the user space but not directly in the application
itself. The application cannot directly influence the kernel
stack because the daemon handles transparently all Multi-
path TCP connections. It is however not excluded for an
application to communicate with the daemon but no mech-
anism has been defined in [9] for this purpose.

3. A SOCKET API FOR MPTCP
The path managers used by the Linux Multipath TCP im-

plementation implement simple behaviours that may not be
adapted to all applications. To fully benefit from Multipath
TCP, advanced applications should be able to query the un-
derlying Multipath TCP stack for the following information
:

• How many subflows are established ?
• What is the state of the active subflows ?

Once the application gathers enough data, it should be
able to take decision and then it should be able to issue
commands to the Multipath TCP stack to perform the fol-
lowing actions :

• Create a new subflow
• Terminate a new subflow
• Change subflows priorities
• Control subflows like an application would control sim-

ple TCP connection

In order to be usable, the API should be designed with
three objectives in mind. First, it should be as compatible as
possible with regular TCP so that existing applications can
benefit from MPTCP without any change. This new API
should not break any existing application. Second, it should
provide advanced facilities that are easy to use for a devel-
oper who only knows the standard socket API. Unnecessary
complex APIs are meant to be unused. Third, it should be
expandable. A good API should be able to easily evolve as
the developers needs change. In the rest of this section, we
propose an MPTCP API that has been implemented above

struct mptcp_sub_status {

__u8 id;

__u16 slave_sk:1,

fully_established:1,

attached:1,

low_prio:1,

pre_established:1;

};

struct mptcp_sub_ids {

__u8 sub_count;

struct mptcp_sub_status sub_status[];

};

Figure 3: Structure to retrieve subflow list

the existing getsockopt and setsockopt system calls. A
summary of our implemented socket options is provided in
table 1.

3.1 Querying the MPTCP socket
A simplified version of the kernel view of a socket is pre-

sented on figure 1. Underneath the meta socket visible by
the application lie severals subsockets, one for each subflow.
The head of the list of subflows is accessible via the mptcp_cb
structure. The next subflow in the list is then indirectly ac-
cessible via the mptcp_sk structure. The application is not
aware of those subsockets. To expose this information to
the application, the socket option MPTCP_GET_SUB_IDS fills a
mptcp_sub_ids struct (see figure 3) with a list of subflows

identified by their ID. This ID is used in subsequent calls to
specify the subflow on which an action is performed. Spe-
cific subflow status is present in the structure. For instance
the back up status of the subflow : low_prio. It is possible
to extend this structure to expose more subflow specific in-
formation. The ID used by the kernel to identify a subflow
may not always link to the same subflow. The number of
subflows in the Linux kernel is limited to 32 [14] and the ID

is assigned in a range from 0 to 31 because it is mapped to
a 32 bit field. It is thus impossible to have more that 32 si-
multaneous established subflows associated to one MPTCP
connection. However, it is possible to have more than 32
non-simultaneous subflows and this has been observed on
long Multipath TCP connection [4]. In this case IDs will be
recycled by the kernel. A given ID can thus correspond to
different subflows at different times.

3.2 Get subflow tuple
Because multiple sockets can lie behind a socket descriptor

in user space, the semantics of system calls like getsockname
and getpeername becomes less clear. According to [19], they
should return the IP addresses of the initial subflow even if
it does not exist anymore, at least for applications that are
unaware of Multipath TCP. For applications that are aware
of Multipath TCP, we implement the MPTCP_GET_SUB_TUPLE

option that allows to retrieve the four tuple (source and
destination addresses and ports) of a given subflow. When
using getsockopt, the application fills the structure with the
id of the subflow of interest and the kernel fills the struct

with the pairs of addresses and ports of this subflow. This
structure (called sub_tuple in our implementation) can later
be reused to create another subflow.

Name Input Output Description

MPTCP_GET_SUB_IDS - subflow list Get the current list of subflows viewed by the kernel
MPTCP_GET_SUB_TUPLE id sub tuple Get the pair ip and ports used by the subflow identified by id
MPTCP_OPEN_SUB_TUPLE tuple - Request a new subflow with pair of ip and ports
MPTCP_CLOSE_SUB_ID id - Close the subflow identified by id
MPTCP_SUB_GETSOCKOPT id, sock opt sock ret Redirects the getsockopt given in input to the subflow identi-

fied by id and return the value returned by the operation
MPTCP_SUB_SETSOCKOPT id, sock opt - Redirects the setsockopt given in input to the subflow identi-

fied by id.

Table 1: Implemented MPTCP socket options

3.3 Creating subflows
In the current implementation of MPTCP in the linux

kernel, an application cannot directly create or terminate
subflows within a connection. There are situations where an
application has more information than the kernel to decide
whether a new subflow should be created. For example,
an application that uses HTTP could use the size of the
HTTP object indicated in the response to decide whether
it is useful to create another subflow. Another example is
an application knowing the monetary cost associated with
the utilization of each interface and only using the most
expensive one when it has no alternative. Another typical
use case, is an application that is not time critical and knows
that one interface should not be used by default.

To create a new subflow, an application can use the MPTCP

_OPEN_SUB_TUPLE socket option. The application must fill a
struct sub_tuple with the pair of addresses and the des-
tination port for the new subflow. The ID allocated by the
kernel will be returned using the struct and the setsockopt
return value indicates if the subflow has been created.

3.4 Terminating subflows
On the other hand, some applications may want to close

a subflow. One of the proposed use case is the following :
a security application could decide to use a specific inter-
face to negotiated its encryption keys and use another less
costly interface to exchange encrypted data. For this, it sim-
ply needs to let the kernel create the first subflow over the
costly interface, negotiate the keys and then create another
subflow over the cheap but less secure interace. To terminate
a subflow, the application can use the MPTCP_CLOSE_SUB_ID

socket option. This option takes as parameter the id of the
subflow that must be closed.

3.5 socket options
Socket options play an important role in modern TCP

stacks. The Linux TCP stack contains a dozen of non-
standard socket options. These options are used by ad-
vanced applications to configure or retrieve information from
the stack. In Linux, socket options can be passed at different
levels, namely the socket itself, TCP or IP. We modified the
setsockopt system call to preserve this genericity and allow
an application to set an option at any level. We provide
the struct mptcp_sub_setsockopt whose content is shown
in figure 4 to encapsulate a socket option that needs to be
delivered to a specific subflow.

As an illustration, figure 5 shows how the DSCP of a par-
ticular subflow can be set by an application. Our MPTCP_SUB_
SETSOCKOPT option uses a generic structure which can encap-
sulate any socket option operating at any level. The appli-

struct mptcp_sub_setsockopt {

__u8 id;

int level;

int optname;

char __user *optval;

unsigned int optlen;

}

Figure 4: Subflow socket option structure

unsigned int optlen, sub_optlen;

struct mptcp_sub_setsockopt sub_sso;

int val = 12;

optlen = sizeof(struct mptcp_sub_setsockopt);

sub_optlen = sizeof(int);

sub_sso.id = sub_id; // subflow id

sub_sso.level = IPPROTO_IP; // option level

sub_sso.optname = IP_TOS; // socket option

sub_sso.optlen = sub_optlen;

sub_sso.optval = (char *) &val; // value

error = setsockopt(sockfd, IPPROTO_TCP,

MPTCP_SUB_SETSOCKOPT, &sub_sso, optlen);

Figure 5: Passing a socket option to a specific subflow

cation developer simply needs to specify the option name,
level, and value (with the associated length) and the subflow
on which is must be applied. A variant of this call allows
to set the same option on all subflows of a Multipath TCP
connection in a single call.

Another example is the TCP_INFO socket option. This
Linux specific socket option can be used to retrieve the state
of the underlying TCP connection and various statistics in-
cluding the current value of the congestion window, the num-
ber of bytes transmitted, the retransmission timer, . . . Some
applications use this socket option to detect underperform-
ing TCP connections. With our enhanced API, they could
query all the subflows associated to a give Multipath TCP
connection to detect the underperforming ones and possibly
terminate them.

4. USE CASES
We illustrate the flexibility of our enhanced socket API

by using it to implement several applications that demon-
strate how the Multipath TCP stack can be controlled by
an application.

rotate_tresh = X

rotate_count = 1

tot_bytes = 0

while (n = read()) != 0 do

tot_bytes += n

if tot_bytes > rotate_count * rotate_tresh then

refresh_sub()

rotate_count ++

Figure 6: Subflow refresh algorithm

4.1 Refreshing subflows
Our first example is an application that replaces the cur-

rent subflow with a new one after having received x bytes of
data. This type of control could be motivated by security
(e.g. an ssh session moves from one interface to another
to make interception more difficult) or performance reasons
(e.g. a mobile network uses a rate limiter that slows down
long TCP connections). We modify curl and include the
very simple algorithm shown in figure 6 to create new sub-
flows. This modification requires 96 lines of code in our test
application.

Our implementation leverages our new socket options. In
particular, we use MPTCP_GET_SUB_IDS to retrieve the id of
the active subflow and MPTCP_GET_SUB_TUPLE to retrieve its
corresponding tuple. Then we use MPTCP_OPEN_SUB_TUPLE

to create a new subflow. Once this subflow is active, we use
MPTCP_CLOSE_SUB_ID to close the previous one.

In our test application we download a file over HTTP and
use 1024 for rotate_tresh. Our application creates up to
56 successive subflows to download the file.

4.2 Delayed subflow establishment
Our second example is motivated by the fact that mea-

surement studies have shown that, with the default path
manager, the Linux Multipath TCP implementation often
creates subflows that do not transfer any data [4]. A typical
example are the short HTTP requests. We modify curl to
parse the Content-Length header and only create a second
subflow if the HTTP object is larger that a given thresh-
old. This modification required only 10 lines of code. If
this small change was deployed on Multipath TCP enabled
smartphones, it could significantly reduce the number of es-
tablished subflows [4].

A second example is a streaming application. These appli-
cations work provided that data is received at a regular rate.
Many video streaming applications operate over HTTP and
download chunks of video frames at a regular rate. To dis-
play the video to the user, it needs to receive the chunks at
a regular rate. We modify curl to simulate such a stream-
ing application and set a deadline for each requested HTTP
object. If the application knows the acceptable delay d to
download a chunk of data of size s, it checks after d/2 that
at least half of the data have been received. If it is not the
case then it decides to open a new subflow over a secondary
interface to speed up the download. A more generic vari-
ant of this solution could be to check more regularly if the
download rate is sufficient to achieve the download in the
acceptable delay for the application. If the application has
a delay d to download a file of size s. If the download started
at t0, at any point in time tn, given the size of the chunk al-
ready download sn, if sn/(tn− t0) < s/d then a new subflow
should be open.

5. DISCUSSION
Different solutions have been proposed to enable applica-

tions to control a multipath stack. SCTP can be controlled
through an enhanced socket API but also control messages
and other system calls [22]. For Multipath TCP, two ap-
proaches described in section 2 have already been imple-
mented. Apple opted for a new type of Multipath TCP
socket with dedicated system calls. The SMAPP path man-
ager proposed in [9] relies on a new netlink family to ex-
pose the path manager functions to user space. With this
approach a userspace daemon can control the entire opera-
tion of the underlying stack. We now compare these three
approaches.

Our first point of comparison, is the simplicity of the ap-
proach from a developer’s viewpoint. New system calls and
the Netlink solution force the developers to learn a way to
organise their code. This will force the developer to maintain
two different versions of the application : one using regular
TCP and one supporting Multipath TCP. The Netlink so-
lution is more transparent to the developer since the user
space daemon can take a decision on behalf of the applica-
tion without any change, agreement or communication with
it. However, the daemon needs to be adapted every time a
new behaviour is requested for a given application. Our en-
hanced socket is less transparent to the developer, but most
developer are already used to using socket options and the
change is very limited.

A second point of comparison is the level on control brought
by the solution to the application. The system call solution
brings a really fine control over the stack. The Netlink so-
lution brings also a lot of control, but this control is kept
at the daemon level, and the link between the daemon and
the application remains to be done. On the other hand,
our enhanced socket options provide a level of control that
should be sufficient for many applications. A disadvantage
of our socket API compared to the Netlink solution is that
is does not currently allow the application to directly react
to specific events such as the failure of one interface or the
expiration of retransmission timers.

A third point of comparison is the evolvability of the so-
lution. System calls are not really meant to evolve rapidly
because each new system call must be learned by the appli-
cation developer. From the Netlink perspective, new even-
t/commands can be introduced easily but new bindings be-
tween the daemon and the applications need to be created.
Our socket option uses an approach that is already well know
by most developers and new socket options can be easily in-
troduced if needed.

Our proposed socket options are well adapted to send com-
mand from user space to kernel space and to retrieve infor-
mation of the kernel state into user space. However it is not
well suited to deliver events to an application. There are
some situations where an application could want to receive
events from the underlying stack instead of regularly polling
it. Our further work will be to enhance the sendmsg(2) and
recvmsg(2) system calls and use the ancillary data to ex-
change information about events in the stack. Examples of
events include: a new interface is available, a subflow has
been destroyed before the end of the connection, a retrans-
mission timer has expired, . . .

Another point that still requires our attention is the han-
dling of the address advertisements. The Linux implemen-
tation handles the ADD_ADDR messages inside the path man-

ager module. Some path managers may store all received
ADD_ADDR messages while others could react to the reception
of such messages by creating a subflow without storing it.
Unfortunately, there is currently no generic API to retrieve
the list of addresses received through ADD_ADDR messages.
One solution could be to remove the storage responsibility
from the path manager module and make it a generic fea-
ture. Another solution would be to use control message to
pass the information to the application and to not rely on
the storage of address advertisements inside the kernel.

We expect that our enhanced socket API will be very use-
ful to various users of Multipath TCP. Developers of native
Multipath TCP running on smartphones could use it to tune
their applications. The SOCKS clients and servers that are
deployed in various countries [21, 13] would also benefit from
this API. It could also be used to implement richer APIs like
socket intents [20, 8]. Our implementation confirms that this
API can be implemented in a Multipath TCP stack and we
have initiated discussions with the designers of the other
Multipath TCP implementations to propose a common en-
hanced socket API within the IETF.

6. ACKNOWLEDGMENT
This work was partially supported under the Cisco Uni-

versity Research Program Fund. We would like to thank
Quentin De Coninck for his participation during the discus-
sions that led to this paper.

7. REFERENCES
[1] O. Bonaventure, C. Paasch, and G. Detal. Experience

with Multipath TCP. Internet-Draft
draft-ietf-mptcp-experience-01, IETF Secretariat,
Mar. 2015. I-D Exists.

[2] M. Boucadair et al. An MPTCP Option for
Network-Assisted MPTCP Deployments: Plain
Transport Mode. Internet draft,
draft-boucadair-mptcp-plain-mode-07, work in
progress, May 2016.

[3] Y.-C. Chen, Y.-s. Lim, R. J. Gibbens, E. M. Nahum,
R. Khalili, and D. Towsley. A measurement-based
study of MultiPath TCP performance over wireless
networks. In Proceedings of the 2013 Conference on
Internet Measurement Conference, IMC ’13, pages
455–468, New York, NY, USA, 2013. ACM.

[4] Q. De Coninck, M. Baerts, B. Hesmans, and
O. Bonaventure. A first analysis of multipath tcp on
smartphones. In Passive and Active Measurement,
pages 57–69. Springer, 2016.

[5] P. Eardley. Survey of MPTCP Implementations.
Internet-Draft
draft-eardley-mptcp-implementations-survey-02, IETF
Secretariat, July 2013.

[6] A. Ford, C. Raiciu, M. Handley, S. Barre, and
J. Iyengar. Architectural Guidelines for Multipath
TCP Development. RFC 6182 (Informational), Mar.
2011.

[7] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure.
TCP Extensions for Multipath Operation with
Multiple Addresses. RFC 6824 (Experimental), Jan.
2013.

[8] K.-J. Grinnemo, T. Jones, G. Fairhurst, D. Ros,
A. Brunstrom, and P. Hurtig. Towards a flexible

internet transport layer architecture. To appear in
IEEE LANMAN 2016, Rome, June 2016.

[9] B. Hesmans, G. Detal, S. Barré, R. Bauduin, and
O. Bonaventure. Smapp: Towards smart multipath
tcp-enabled applications. In CoNEXT’15, 2015.

[10] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh,
M. Handley, and H. Tokuda. Is it still possible to
extend TCP? In Proceedings of the 2011 ACM
SIGCOMM Conference on Internet Measurement
Conference, IMC ’11, pages 181–194, New York, NY,
USA, 2011. ACM.

[11] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and
L. Jones. SOCKS Protocol Version 5. RFC 1928
(Proposed Standard), Mar. 1996.

[12] Y.-s. Lim, Y.-C. Chen, E. M. Nahum, D. Towsley, and
R. J. Gibbens. How green is Multipath TCP for
mobile devices? In Proceedings of the 4th Workshop
on All Things Cellular: Operations, Applications,
& Challenges, pages 3–8. ACM, 2014.

[13] OVH. Overthebox.
https://www.ovhtelecom.fr/overthebox/, 2016.

[14] C. Paasch, S. Barre, et al. Multipath TCP in the
Linux Kernel. available from
http://www.multipath-tcp.org.

[15] C. Paasch and O. Bonaventure. Multipath TCP.
Commun. ACM, 57(4):51–57, Apr. 2014.

[16] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and
O. Bonaventure. Exploring Mobile/WiFi Handover
with Multipath TCP. In ACM SIGCOMM CellNet
workshop, pages 31–36, 2012.

[17] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh,
D. Wischik, and M. Handley. Improving Datacenter
Performance and Robustness with Multipath TCP. In
ACM SIGCOMM 2011, 2011.

[18] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda,
F. Duchene, O. Bonaventure, and M. Handley. How
hard can it be? Designing and implementing a
deployable Multipath TCP. In Proceedings of the 9th
USENIX Conference on Networked Systems Design
and Implementation, NSDI’12, pages 29–29, Berkeley,
CA, USA, 2012. USENIX Association.

[19] M. Scharf and A. Ford. Multipath TCP (MPTCP)
Application Interface Considerations. RFC 6897
(Informational), Mar. 2013.

[20] P. S. Schmidt, T. Enghardt, R. Khalili, and
A. Feldmann. Socket intents: Leveraging application
awareness for multi-access connectivity. In Proceedings
of the Ninth ACM Conference on Emerging
Networking Experiments and Technologies, CoNEXT
’13, pages 295–300, New York, NY, USA, 2013. ACM.

[21] S. Seo. KT’s GiGA LTE. Presentation at IETF’93, see
https://www.ietf.org/proceedings/93/slides/
slides-93-mptcp-3.pdf, July 2015.

[22] R. Stewart, M. Tuexen, K. Poon, P. Lei, and
V. Yasevich. Sockets API Extensions for the Stream
Control Transmission Protocol (SCTP). RFC 6458
(Informational), Dec. 2011.

[23] N. Williams, P. Abeysekera, N. Dyer, H. Vu, and
G. Armitage. Multipath TCP in Vehicular to
Infrastructure Communications. Technical Report
140828A, CAIA, Swinburne University of Technology,
August 2014.

https://www.ovhtelecom.fr/overthebox/
http://www.multipath-tcp.org
https://www.ietf.org/proceedings/93/slides/slides-93-mptcp-3.pdf
https://www.ietf.org/proceedings/93/slides/slides-93-mptcp-3.pdf

	Introduction
	Multipath TCP
	Multipath TCP APIs

	A socket API for MPTCP
	Querying the MPTCP socket
	Get subflow tuple
	Creating subflows
	Terminating subflows
	socket options

	Use cases
	Refreshing subflows
	Delayed subflow establishment

	Discussion
	Acknowledgment

