
Poster: Evaluating Android Applications with
Multipath TCP

Quentin De Coninck ∗, Matthieu Baerts ∗, Benjamin Hesmans †, Olivier Bonaventure †

Université catholique de Louvain, Louvain-la-Neuve, Belgium
∗first.last@student.uclouvain.be

†first.last@uclouvain.be

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication; C.2.3
[Computer-Communication Networks]: Network Ope-
rations—Network Management; C.4 [Performance of Sys-

tem]: Measurement techniques, Performance attributes

Keywords

Multipath TCP; smartphones; measurement; automation;
Android

1. INTRODUCTION
Smartphones are the most popular mobile multihomed de-

vices. End-user expects that thanks to their WiFi and cel-
lular interfaces, they are able to seamlessly use all available
networks. Unfortunately, reality tells us that seamless coex-
istence between cellular and WiFi is not as simple as what
the user expect.

Several cellular/WiFi coexistence technologies have been
proposed during the last years [4]. Some of them have been
deployed. Recently, Multipath TCP [3] received a lot of
attention when it was selected by Apple to support its voice
recognition (Siri) application. As of this writing, Siri is the
only deployed smartphone application that uses Multipath
TCP. and there is no public information about the benefits
of using Multipath TCP with it.

Multipath TCP is a TCP extension that allows to send
data from one end-to-end connection over different paths.
On a smartphone, Multipath TCP allows the applications
to simultaneously send and receive data over both WiFi and
cellular interfaces. It achieves this objective by establishing
one TCP connection, called subflow in [3], over each inter-
face. Once the subflows have been established, data can be
sent over any of the subflows. Researchers have analyzed the
performance of Multipath TCP in such hybrid networks [7,
1, 5, 2]. However, these analyses have been performed with
bulk transfers between laptops and servers. As of this writ-

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for third-party components of this work must be

honored. For all other uses, contact the Owner/Author(s). Copyright is held by the

owner/author(s).

MobiCom’15, September 7–11, 2015, Paris, France.

ACM ISBN 978-1-4503-3543-0/15/09.

DOI: http://dx.doi.org/10.1145/2789168.2795165.

ing, no detailed analysis of the performance of real smart-
phone applications with Multipath TCP has been published.

We fill this gap in this paper by proposing a framework
that automates user actions on Android smartphone appli-
cations to perform network measurements. We use it to
analyze how eight popular smartphone applications interact
with Multipath TCP.

2. AUTOMATING MEASUREMENTS
In order to collect a large number of measurements, we de-

veloped an automated tests framework that automates the
interactions with these applications1. It contains more than
4000 lines of code and is divided into two distinct parts: one
to control the smartphone and one to mimic user interac-
tions in a reproducible way. It was designed to be reusable,
modular using parameters and to cope with unexpected situ-
ations caused by the limited reliability of this kind of device.

2.1 Test scenarios
Our test scenarios can be divided into two categories: up-

load intensive and download intensive scenarios. Each test
takes less than 120 seconds.

Upload intensive We first consider two interactive ap-
plications: Facebook and Messenger. With the Facebook
application, our test first updates the news feed, then writes
a new status, takes and shares a new photo with a descrip-
tion and finally performs a new check out status. With
Messenger, it sends a text message, then puts a smiley and
finally sends a new photo. Then we consider two cloud stor-
age applications: Dropbox and Google Drive. For both, we
create a fresh file containing 20 MB of purely random data
and upload it.

Download intensive First, we use Firefox to browse
the main page of the top 12 Alexa web sites with an empty
cache. Our second application is Spotify. This is a music
delivery application. The test plays a new music (shuffle
play feature) for 75 seconds. Finally, we consider two popu-
lar video streaming applications: Dailymotion and Youtube.
For both applications, we play three different videos in the
same order and watch them for 25 seconds. Those videos
are available in HD and we fetch the best possible quality
even when using cellular networks.

2.2 Using Multipath TCP on smartphones
Several backports of the Multipath TCP kernel on An-

droid smartphones have been released in the last years. How-
ever, these ports were often based on older versions of the

1See: github.com/MPTCP-smartphone-thesis/uitests

http://dx.doi.org/10.1145/2789168.2795165
https://github.com/MPTCP-smartphone-thesis/uitests


0 100 101 102 103

Duration [s]
0

100

101

102

103

104

105

106

107

108
By

te
s 

on
 c

on
ne

ct
io

n Dailymotion
Drive
Dropbox
Facebook
Firefox
Messenger
Spotify
Youtube

Figure 1: The smartphone applications, each point corre-
spond to a connection for both upload and download traffic.

Multipath TCP kernel. Measurements with such ports are
not always representative of the current state of the imple-
mentation. For this work, we use the latest version 0.89v5
of the Multipath TCP Linux kernel that was backported on
a Nexus 5 running Android 4.4.4. We also modified Android
to enable the smartphone to use both interfaces simultane-
ously.

All the popular smartphone applications use TCP to in-
teract with servers managed by the application developers.
As of this writing, it is impossible to convince them to install
Multipath TCP on their servers. To overcome this issue, we
configured the smartphone to use a Multipath TCP capable
SOCKS proxy server for all its connections. Each connec-
tion initiated by the smartphone is thus redirected to, and
terminated at, the proxy server. The proxy server then es-
tablishes a regular TCP connection to the server. Thanks
to this setup, the smartphone can use Multipath TCP over
the cellular and WiFi interfaces while interacting with legacy
servers. The SOCKS server itself is ShadowSocks and is con-
figured to use the simplest encryption scheme to reduce the
overhead. On the smartphone, we use the standard Shad-
owSocks client.

This setup allows us to capture all the packets sent by
both the smartphone and the SOCKS server. We captured
more than 85,000 connections over about 1200 tests con-
ducted in February and March 2015 carrying more than
15 GBytes of data. The entire dataset is publicly avail-
able2.

3. MEASUREMENTS
We first analyze the characteristics of the TCP connec-

tions that are used by smartphone applications. Figure 1
plots the TCP connections created by our studied appli-
cations when the smartphone uses only its WiFi interface.
Each point on this figure represents one captured TCP con-
nection. The x-axis (in logarithmic scale) is the connection
duration in seconds while the y-axis is the number of bytes
exchanged on the connection. Firefox is clearly the appli-
cation that uses the largest number of connections (63.9 %
of all connections) which is not surprising given that our

2See: multipath-tcp.org/data/Mobicom15

0 100 101 102 103 104 105 106 107 108

Bytes on connection
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 b

yt
es

 o
n 

ce
llu

la
r

Dailymotion
Drive
Dropbox
Facebook
Firefox
Messenger
Spotify
Youtube

Figure 2: When the default route points to the WiFi in-
terface, Multipath TCP mainly uses WiFi in upload for the
short connections

Firefox scenario contacts the 12 top Alexa web sites. Drop-
box (31.75%), Youtube (29.7%), Drive (19.9%), Dailymo-
tion (9.6 %) and Spotify (4.96 %) are the applications that
exchange the largest volume. On the other hand, our Face-
book scenario generates long TCP connections that do not
exchange too many bytes.

Some of the connections that we observed are caused by
the utilization of a SOCKS proxy. We observe hundreds
connections that last up to tens of seconds but only transfer
seven bytes of data. After investigation, Firefox preventively
opens new TCP connections but sometimes never uses them.
The seven exchanged bytes correspond to the command sent
by the SOCKS client. Most of the short connections that
only transfer about 100 bytes are the DNS requests that are
sent over TCP by the SOCKS client.

In our experiments, the connections can be categorized in
3 types: (i) the short ones with around 75% of all connec-
tions that last less than 1 second, (ii) the long ones that
carry 98.5% of the overall volume, and (iii) long-lived ones
with around 18% of all connections that do not carry a lot
data (less than 10 KB).

Another important factor for TCP is the measured round-
trip-time. In the upstream direction, we measured a median
round-trip-time of 42.6 msec (50 msec for the mean). In the
downstream direction, the median RTT is only 38.1 msec.
On WiFi, 60% of the connections have a RTT shorter than
15.4 msec. There is some bufferbloat on the cellular network,
mainly in the upstream direction, but bufferbloat remains
reasonable compared to other networks.

3.1 Multipath measurements
We now enable Multipath TCP on our smartphone and

perform the same measurements to understand how our
eight applications interact with Multipath TCP. The first,
but important, point to be noted is that we did not observe
any incompatibility between the applications and Multipath
TCP.

When a cellular and a WiFi interface are pooled together
it is interesting to analyze how the smartphone balances its
sending traffic over which interface. With the Multipath
TCP implementation in the Linux kernel [6], this balancing

http://multipath-tcp.org/data/Mobicom15


0 100 101 102 103 104 105 106 107 108

Bytes on connection
0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n 
of

 b
yt

es
 o

n 
ce

llu
la

r

1

2

Dailymotion
Drive
Dropbox
Facebook
Firefox
Messenger
Spotify
Youtube

Figure 3: When the default route points to the cellular inter-
face, lot of connections are aspired by Wifi in upload traffic.

depends on the interactions between the congestion control
scheme, the packet scheduler, the underlying networks and
the application.

On figure 2, we observe that 92.4% of all the connections
only use the WiFi interface, but these connections only carry
1.1% of all data bytes. There are several factors that ex-
plain why Multipath TCP does not use the cellular net-
work for these connections. The first one is the configured
default route. When an application initiates a connection,
Multipath TCP sends the SYN over the interface with the
default route, in our case over WiFi. Preferring WiFi is
the standard configuration of Android smartphones. If the
Multipath TCP connection is short and only transfers a few
KB, then most of the data fits inside the initial congestion
window and can be sent over the WiFi interface while the
second subflow is established over the cellular interface. Fur-
thermore, the RTT over the WiFi interface is shorter than
over the cellular interface. Thus, as long as the congestion
window is open over the WiFi interface, Multipath TCP’s
RTT-based scheduler [8] prefers to send packets over WiFi.
Indeed, 94.88% of connections in that case have a better av-
erage RTT on WiFi than 4G (this percentage is 75.44% if
the maximal RTT seen is considered).

When setting the default route via the cellular interface,
Figure 3 shows that most of short connections still use this
one (as annotated as 1), but it concerns only 53.22% of
all connections. It seems that even if the cellular interface
is the default one, connections still mainly use WiFi, even
for connections exchanging less than 1 KB. This occurs for
connections that do not push data as fast as possible data.
If the connection lasts more than two RTT, Multipath TCP
has enough time to establish the second subflow. The packet
scheduler will select the flow with the lowest RTT — 82.74%
of all connections have a WiFi flow with a lower maximal
RTT than the cellular one.

This explains the bottom of figure 3 (annotated as 2):
a set of Firefox connections transferring fewer than 10 KB
uses nearly exclusively the WiFi interface. A closer look
at the packet trace reveals that these connections are part
of the connection pool managed by Firefox. This behav-
ior does not happen with other applications. When Firefox
creates a connection in the pool, the initial handshake and

the SOCKS command to our SOCKS server are sent. These
packets are exchanged over the cellular interface and Fire-
fox does not immediately send data over these established
connections. This leaves enough time to Multipath TCP to
create the subflow over the WiFi interface and measure its
RTT. When Firefox starts to transmit data over such a con-
nection, the RTT-based scheduler used by Multipath TCP
prefers the WiFi subflow and no data (except the initial
SOCKS command) is sent over the cellular one.

When the applications push more data over the Multipath
TCP connection, the distribution of the traffic between the
cellular and the WiFi interface also depends on the evolu-
tion of the congestion windows over the two subflows. If
the application pushes data at a low rate, then the packet
scheduler will send it over the lowest-RTT interface (WiFi in
our case). However, this can be fragile. If one packet is lost,
then the congestion window is reduced and the next data
might be sent over the other interface. If the application
pushes data at a higher rate, then the congestion window
over the lowest-RTT interface is not large enough and the
packet scheduler will send data over the second subflow.

4. DISCUSSION
In this paper, we have proposed and implemented3 a mea-

surement testing framework that enables researchers to con-
duct reproducible experiments with traffic generated by real
applications. We have used it to evaluate how these ap-
plications interact with Multipath TCP. Our initial results
show that smartphone applications work well with Multi-
path TCP. However, they also show that Multipath TCP
uses too many subflows for short connections and that the
default route has an impact on the traffic distribution. Our
measurement framework will enable researchers to assess the
impact of proposed modifications to Multipath TCP on real
applications.

5. REFERENCES
[1] Chen, Y.-C., et al. A Measurement-based Study of

Multipath TCP Performance over Wireless Networks.
In IMC’13 (2013).

[2] Deng, S., et al. WiFi, LTE, or both?: Measuring
multi-homed wireless internet performance. In IMC ’14
(2014), ACM, pp. 181–194.

[3] Ford, A., et al. TCP Extensions for Multipath
Operation with Multiple Addresses. RFC 6824, January
2013.

[4] Lee, K., et al. Mobile data offloading: How much can
wifi deliver? In SIGCOMM ’10 (2010).

[5] Lim, Y.-s., et al. How green is Multipath TCP for
mobile devices? In AllThingsCellular ’14 (2014), ACM.

[6] Paasch, C., Barre, S., et al. Multipath TCP in the
Linux kernel. http://www.multipath-tcp.org.

[7] Paasch, C., et al. Exploring Mobile/WiFi Handover
with Multipath TCP. In ACM SIGCOMM CellNet
workshop (2012), pp. 31–36.

[8] Paasch, C., et al. Experimental evaluation of
Multipath TCP schedulers. In CSWS ’14 (2014).

3All our code has been released on multipath-tcp.org

https://dl.acm.org/citation.cfm?id=2504751
https://dl.acm.org/citation.cfm?id=2504751
http://doi.acm.org/10.1145/2663716.2663727
http://doi.acm.org/10.1145/2663716.2663727
http://www.rfc-editor.org/rfc/rfc6824.txt
http://www.rfc-editor.org/rfc/rfc6824.txt
http://doi.acm.org/10.1145/1851182.1851244
http://doi.acm.org/10.1145/1851182.1851244
http://doi.acm.org/10.1145/2627585.2627596
http://doi.acm.org/10.1145/2627585.2627596
http://www.multipath-tcp.org
http://doi.acm.org/10.1145/2342468.2342476
http://doi.acm.org/10.1145/2342468.2342476
http://doi.acm.org/10.1145/2630088.2631977
http://doi.acm.org/10.1145/2630088.2631977
http://www.multipath-tcp.org

	Introduction
	Automating measurements
	Test scenarios
	Using Multipath TCP on smartphones

	Measurements
	Multipath measurements

	Discussion
	References

