
MultipathTester: Comparing MPTCP and MPQUIC
in Mobile Environments

Quentin De Coninck
UCLouvain, Belgium

quentin.deconinck@uclouvain.be

Olivier Bonaventure
UCLouvain, Belgium

olivier.bonaventure@uclouvain.be

Abstract—With the adoption of Multipath TCP by Apple for its
iPhones, there is a growing interest in using multipath transport
to seamlessly support different network interfaces on mobile
devices. In parallel, the IETF is actively developing the QUIC
protocol which could replace TCP for some types of applications
and multipath extensions for QUIC have already been proposed.
We design and implement MultipathTester, an iOS application
that enables researchers to compare the performance of different
multipath protocols on popular smartphones. Specifically, our
application compares the performance of iOS Multipath TCP
with Multipath QUIC with various traffic types and conditions.

I. INTRODUCTION

Many mobile devices such as smartphones, tablets or con-
nected cars are multihomed devices. They can be attached to
different networks such as cellular and Wi-Fi simultaneously.
This multi-homing capability enables mobile devices to switch
from one wireless network to another one without user in-
tervention. Unfortunately, TCP cannot spread connection data
over multiple network interfaces, as each connection is bound
to the 4-tuple (IPsrc, portsrc, IPdst, portdst).

Several solutions have been proposed to enable mobile
devices to switch from one network to another or use different
networks simultaneously, but only one of them, Multipath
TCP [1], has been commercially deployed, especially with
mobile devices. In a nutshell, Multipath TCP is a TCP ex-
tension that divides a connection into several TCP subflows.
Each TCP subflow carries a fraction of the TCP and the
receiver reorders the data received over the different subflows
to deliver them in sequence. Another benefit of Multipath TCP
is that it if one of these subflows fails, Multipath TCP can
seamlessly shift its connection on another subflow without
involving application intervention. This seamless handover
capability convinced Apple in 2013 to integrate Multipath TCP
to support the Siri voice-activated application, making iPhones
the largest deployment of Multipath TCP [2]. For four years,
Siri was the only application on iPhone that took advantage
of such multipath feature. But since September 2017, any
iOS11 application can now request the usage of Multipath
TCP. As of today, 97 % of the iPhones have been upgraded
to iOS11 or greater [3]. Several Android smartphones also
support Multipath TCP to seamlessly use Wi-Fi and LTE [2],
[4], but they are currently limited to specific countries.

Quentin De Coninck is a F.R.S.-FNRS Research Fellow.

Although smooth handovers are one of the key benefits
of Multipath TCP, its performance under those conditions
have not yet been analyzed in details. The first study of
those handovers [5] confirmed that the Linux implementation
of Multipath TCP could provide smooth handovers but it
did not analyze various networks environments. Most of the
scientific literature on Multipath TCP focused on its bandwidth
aggregation capabilities [6]–[8], despite the importance of
smooth handovers for mobile applications.

Recently, the networking community and the IETF have
worked on the design and implementation of the QUIC [9]
protocol aiming at providing the services of TCP, TLS and
HTTP atop UDP. QUIC is being finalized within the IETF [10]
and its first RFC is expected in July. This initial design will
support a single path for each connection. Once the initial
specification has been approved, the QUIC working group
will probably look at adding multipath support to the QUIC
protocol. An initial design for Multipath QUIC [11], [12] has
already been proposed. Similarly to Multipath TCP, Multipath
QUIC allows the simultaneous usage of multiple network paths
for a given connection. However, Multipath QUIC was only
evaluated in emulated environments [11] and its performance
in real networks has not been studied yet.

To encourage the evaluation of (Multipath) TCP and (Multi-
path) QUIC, we design and implement MultipathTester [13],
an iOS application that tests how these different protocols be-
have under various conditions. It provides two experimentation
modes. The first one generates different traffic patterns ranging
from bulk transfer to delay-sensitive request-response and
observes how Multipath TCP and (Multipath) QUIC operates
within stable network conditions. The second one requires the
user to move until it causes a network handover from Wi-
Fi to cellular networks and observes how multipath protocols
handle such changing network conditions. To our knowledge,
this is the first Internet-wide comparison of Multipath TCP and
Multipath QUIC. We believe our open measurement platform
would enable the community to study new QUIC extensions
in such mobile environments.

This paper is organized as follows. Section II presents the
architecture of our measurement platform. Then, Section III
provides initial results about the usage of QUIC in real
networks with stable conditions. Section IV summarizes our
first results on how Multipath TCP and Multipath QUIC
handle handovers. Finally, Section V concludes this work.



II. DESIGN OF MULTIPATHTESTER

In this section, we introduce MultipathTester, an iOS ap-
plication aiming to evaluate the performance of multipath
protocols. Our framework enables researchers to observe how
multipath protocols behave under our different test modes
we present first. We then elaborate on our measurement
infrastructure and implementation details. We finally provide
a few statistics about the usage of our application.

A. Test Modes

MultipathTester relies on active measurements performed
by voluntary users. For this purpose, at the first run and
before performing any measurement, the application provides
a consent form describing its research purpose to the user.
Once agreed, the user can explicitly start generating active
network traffics. Two kinds of experiments are available. First,
the stable network mode benchmarks the connectivity using
different traffic patterns. Second, the mobile mode studies the
impact of network handovers on multipath protocols.

1) Stable Network Mode: During a stable network test,
the user is expected to stay at the same place so that the
smartphone remains attached to the same network during
the entire test. In these stable conditions, we benchmark the
access point(s) to check if the studied transport protocols
behaves correctly in these networks. MultipathTester monitors
the network connectivity during the test to detect user moves.
It relies on the Reachability API [14] to keep the list of
available network interfaces from the device point of view. If
during its run, the availability of one network interface changes
(e.g., Wi-FI being declared as lost by the device, cellular
just getting Internet connectivity,...), the test is interrupted and
classified as invalid.

Different traffic patterns can be used with this mode. Stable
network tests launch these traffic patterns sequentially, one
transport protocol at a time. The order of the runs are ran-
domized to avoid possible traffic correlation. MultipathTester
provides a common interface to define traffic patterns. We
currently explore four simple patterns, yet easy to explain:
ping, bulk, iperf and interactive.

Ping. This test simply sends a stream of five HTTP GET
requests for a 10-byte file, and computes the median delay.
It is mainly used to check the connectivity and to select
the server with which further experiments will be performed.
Our experiment servers are currently located on different
continents: Europe (France), North America (Canada) and
Asia (Japan).

Bulk. This test performs an HTTP GET request for a 10-
MB file, and records the download time.

IPerf. This test generates traffic similar to the iperf tool.
The client sends new data as fast as possible for a few seconds.
We currently use it to estimate the uplink bandwidth. The
downlink support is part of our future work.

Interactive. This traffic simulates a user interacting with a
voice-activated application such as Siri while listening to an
Internet radio. To achieve this, the traffic pattern follows a
bi-directional request/response fashion as shown in Figure 1.

Fig. 1: Interactive traffic.

Fig. 2: Mobility enables handover tests.

Every 100 ms, both the client and the server send a 2KB
request to the peer that replies with a 750 bytes response.
On both data streams, the receiving host returns a short
application-level acknowledgment that confirms the reception
of each 2KB chunk. The sending host then computes the delay
between the request and the corresponding acknowledgment.
With such low-volume exchanges, we do not expect any
interference with the receive nor the congestion windows.
Notice that we had to implement this traffic pattern differently
for Multipath TCP and Multipath QUIC. With (Multipath)
TCP we use two independent connections to prevent head-
of-line blocking where a lost response blocks the delivery
of the next request. With (Multipath) QUIC we use a single
connection that carries two independent data streams.

2) Mobile Mode: Our mobile tests focus on the situation
presented in Fig. 2. A user is initially connected to both Wi-
Fi and cellular networks while sending and receiving data
simultaneously using the interactive traffic pattern. Then, the
device moves away from the Wi-Fi access point. After some
time, as the Wi-Fi connectivity is fading, multipath transport
protocols switch to the cellular one. This network handover sit-
uation is one of the motivating cases for supporting multipath
in the transport layer, as they can migrate connections from
one network to another one without notifying the application.
We simultaneously evaluate multipath protocols, meaning they
compete for the network interfaces at the same time. However,
due to the low total generated traffic volume (55 KB/s uplink
and 55 KB/s downlink), we believe that the impact on the ob-
served delays should be negligible. Furthermore, running them
simultaneously enables us to evaluate protocols within the
same singular network conditions due to the device mobility.
We expect the impact of the handover to be as low as possible
on the applications, especially when they are latency-sensitive.
To encourage users to perform this test, we present it as a
Wi-Fi reachability estimator where the smartphone computes
the range of the Wi-Fi access point. The test completes when
either the operating system tears down the Wi-Fi network, or
the SSID of the Wi-Fi network changes.



Collect server

Test serverSmartphone

1. Fetch metadata

2. Perform tests

3. Send results

Fig. 3: The infrastructure used by MultipathTester.

B. Measurement Infrastructure

Our measurement infrastructure involves three different
nodes, as shown in Figure 3. On one side, there is the
smartphone running MultipathTester. On the other side, we
use two different servers. The test servers are contacted by the
smartphone to perform the experiments. We currently use three
test servers located in Europe, Asia and America. Second,
the collect server gathers the measurement results. Each user-
triggered measurement is carried out as follows. First, the
smartphone contacts the collect server to fetch metadata, such
as the URL of available test servers and the list of experiments
to launch. Then, once the user requests it, the application
interacts with the closest test server to perform experiments. At
the end of the test runs, the smartphone sends the test results to
the collect server. These results include primary traffic-specific
metrics (delays for interactive, download completion time and
file fetched for bulk,...), device and network information (name
and type of the network accesses, version of the application,...)
and dumps of the transport protocol states. These dumps are
periodically collected. For (Multipath) TCP, we rely on both
the TCP_INFO and the ioctl SIOCGCONNINFO interfaces.
Our (Multipath QUIC) implementation itself logs its internal
variables using a dedicated thread in a file.

On both smartphone and test servers, we use our mp-quic
implementation to serve (Multipath) QUIC [11]. This imple-
mentation is based on a old GQUIC version using a different
network format than IETF QUIC. However, except for the
QUIC connectivity, we do not expect much difference with
IETF QUIC in terms of (multipath) performance. Test servers
use the Multipath TCP implementation in the Linux kernel
4.14 [15] with default parameters (default low-RTT scheduler,
fullmesh path manager and the OLIA congestion control
scheme [16]). The smartphones use the native implementation
of (Multipath) TCP provided by the Darwin kernel [17].

On iOS, applications can explicitly request the usage of
Multipath TCP using the iOS API. Apple provides three modes
of operation for Multipath TCP, each with different objectives:
handover, aggregate and interactive. The handover mode aims
to provide seamless handover from Wi-Fi to cellular networks
for long-lived or persistent connections. The aggregate mode
uses all network connectivities to increase the throughput
of the connection. The interactive mode attempts to use
the lowest-latency connectivity and is advised for latency-

sensitive, low-volume connections. Nonetheless, the ability
to use the LTE network while the Wi-Fi one might still
be available raises concerns about cellular data consumption.
Users typically expect the device to use the Wi-Fi network
when available, even if it provides lower throughput and/or
larger latency than the cellular one. This is why Apple restricts
the aggregate mode to developer phones only. Since we want
our application to be as accessible as possible, we do not
support the aggregate mode.

When requested, the smartphone uses the interactive Mul-
tipath TCP mode. We focus on this mode rather than the
handover one as it is advised for latency-sensitive applica-
tions, which matches our interactive traffic. We inferred its
operations based on its source code [17]. The interactive mode
prioritizes the Wi-Fi network over the cellular one, marking the
latter one as a backup subflow. The iOS packet scheduler sends
data only on the Wi-Fi subflow, unless one of the following
conditions occurs.

1) The smoothed RTT of the Wi-Fi subflow is above a
threshold initially set to 600 ms, while the cellular path
is not over this threshold;

2) The Wi-Fi path is experiencing RTO, i.e., the timer has
fired and no acknowledgment was received since that
event, and the phone wants to push new data;

3) The Wi-Fi RTO value is over a threshold initially set to
1500 ms, while the cellular path is not.

Notice that the threshold values can be decreased by the
Apple’s WifiAssist application when it considers the Wi-Fi
network as ”bad”. However, this system is closed-source,
making it difficult to understand its operation.

To avoid being unfair with regard to Multipath TCP, we
configured the Multipath QUIC scheduler such as it also
advertise all cellular paths as backup ones. This prevents QUIC
from using the cellular path directly. If the smartphone notices
RTO on the Wi-Fi path or some data being in-flight for more
than 600 ms, it starts using the cellular path.

MultipathTester also integrates basic visualizations on most
interesting variables for the user, either while running the test
or when looking at results. The application contains ∼9250
lines of code (without comments), whose ∼ 7000 are Swift,
1000 are Objective-C and ∼1250 are Go code.

C. Usage Statistics

Since the first public release of MultipathTester on March
8th, 2018 until April 30th, 2019, we collected 1098 test runs
coming from 264 unique devices. 43% of the runs are mobile
tests. The distribution of test loads between Europe, Asia and
America is 65%, 17% and 18%, respectively. MultipathTester
has been used in 72 different mobile carriers and 288 different
Wi-Fi SSIDs.

III. STABLE NETWORK RUNS

In this section, we briefly describe some interesting results
obtained during stable network tests. We first provide single-
path findings and then expand on multipath ones.



1.000.4 0.5 0.6 0.7 0.8 0.9 2.0 3.0 4.0 5.0

Ratio (Duration QUIC IPv4 / Duration QUIC IPv6)
0.0

0.5

1.0
CD

F
American server

Fig. 4: In America, we observe that IPv6 offers better results
than IPv4, probably due to NAT64.

IPv6 Connectivity. Proportionally, the American server
observes the largest proportion of IPv6 compatible hosts, with
65% of smartphones having an IPv6 address. In comparison,
the European one only observes 43% of the devices with IPv6
addresses, and on the Asian one, this number drops to 29%.
However, we also observe that having an IPv6 address does
not guarantee QUIC connectivity using IPv6. On the European
server, if we select the devices having both IPv4 and IPv6
addresses, we observe a QUIC connectivity success rate of
89% using IPv4, but this rate decreases to 58% over IPv6.
When digging into the tests where the IPv4 QUIC handshake
succeeded but not the IPv6 one, we notice two kinds of error
equally balanced. The first one is simply the QUIC handshake
in IPv6 that timeouts. Most of the times, this happens when
IPv6 is provided by the Wi-Fi network. Indeed, this issue
arose in 12 different Wi-Fi networks, while only 2 different
cellular ones suffered from such timeouts. The second error
cause is the QUIC client that encounters a ”no route to host”
error while trying to send the packet to an IPv6 address.
This typically occurs when the smartphone selects the Wi-
Fi network as its default interface while it only provides IPv4
connectivity, even though an IPv6 address is present at the
cellular interface. Such routing issue is probably due to a bad
interaction between iOS and the QUIC implementation.

Performance of QUIC using IPv4 vs. IPv6. When QUIC
is usable over both IPv4 and IPv6, we do not observe much
difference in terms of performance using the different traffic
patterns on the European server. However, on the American
one, we see better results with IPv6 than with IPv4. For in-
stance, Figure 4 provides the ratio of the download completion
times of a 10MB file between QUIC IPv4 and QUIC IPv6.
In 75% of the measurements, using IPv6 leads to shorter
completion times than using IPv4. Using the same test set
and looking at the interactive traffic pattern, we observe lower
maximum experienced delays with QUIC IPv6 than QUIC
IPv4. This might be related to the high deployment of IPv6 in
American networks, where the IPv4 connectivity is provided
by NAT64. Other studies [18]have shown that IPv6 was faster
than IPv4 in mobile networks.

Usage of QUIC on unofficial ports. QUIC usually runs on
port 443, but some middleboxes might expect other protocols
such as DTLS on this port and could interfere with QUIC
[9]. To detect the presence of such middleboxes, we also run
our ping traffic with QUIC on the non-standard port 6121 to
observe if it experiences connectivity issues. Globally, we do

Reason RTT Thres. Under RTO RTO Thres. Other
Test (%) 2.2% 67.0% 11.0% 19.8%

TABLE I: Multipath TCP reason to start using the cellular.

not observe much difference using port 6121 and the standard
443 one.

Performance of MPQUIC vs. MPTCP. When the smart-
phone can use both Multipath TCP and Multipath QUIC,
we observe similar performance for each protocol with our
different traffic patterns. This is expected as we applied the
same scheduling strategy preferring the Wi-Fi network on
both protocols. However, especially with the iperf traffic
pattern, we notice that when the network offers a large upload
bandwidth, i.e., over 50 Mbps, Multipath TCP achieves a much
higher throughput than Multipath QUIC. This is probably
related to the implementation overhead. Multipath TCP in the
Darwin kernel is much more optimized than the gomobile
framework making the link between Swift code and the
mp-quic implementation written in Go.

IV. MOBILE EXPERIMENTS

In this section, we focus on the performance of multipath
protocols when the user moves. MultipathTester currently uses
only the interactive traffic pattern while the user moves. This
section is split into two parts. We first focus on the interactive
mode of iOS Multipath TCP and evaluate whether it achieves
its low-latency goal. Then we provide a first comparison of
the performance of Multipath QUIC with Multipath TCP.

A. Multipath TCP and its Interactive Mode

We consider here a dataset of 231 experiments performed
between April 23rd, 2018 and April 30th, 2019. Our mobile
dataset includes 44 distinct cellular networks and 84 different
Wi-Fi ones.

Multipath TCP often waits for Wi-Fi RTO before
using cellular. The Multipath TCP interactive mode follows
the algorithm described in Sect. II-B to decide when the
smartphone should start using the cellular backup path. Thanks
to the periodic collection of Multipath TCP internal state, we
can infer which condition triggered the usage of the cellular
path by the smartphone. Table I shows that two-third of the
tests started to use the cellular because new data arrived while
the Wi-Fi subflow was experiencing an RTO. This might be
related to our interactive traffic pattern that generates
data every 100 ms. In comparison, handovers caused by high
smoothed RTTs are rare. This might be related to the high
initial threshold of 600 ms. Notice that the reason for 20%
of the cellular switches cannot be determined using the three
first conditions. We suspect that WifiAssist has declared the
Wi-Fi network as ”bad” and decreased the RTT and RTO
thresholds. However, these thresholds are not exposed by the
Darwin kernel, making impossible to confirm this hypothesis.

A Multipath TCP handover is not an abrupt process. As
the smartphone moves away from the Wi-Fi access point, its
performance will eventually decrease, leading to a network



Fig. 5: Example of a possible network handover.

−100 0 100 101 102

Delta Time with First Phone Cellular Packet (s)
0.0

0.5

1.0

CD
F

wrt. last WiFi packet sent
wrt. last WiFi packet received

Fig. 6: Duration of the WiFi to cellular handover.

handover to the cellular network. However, this switch is
not necessarily instantaneous. Consider the situation shown in
Fig. 5. The connection starts over the Wi-Fi network, and after
some time, it experiences retransmissions due to weaker signal.
The phone then decides to use the cellular path to retransmit
the lost request as it experienced an RTO on Wi-Fi, while
still retransmitting the packet over the Wi-Fi path too. These
retransmissions might eventually succeed, leading to reusing
the Wi-Fi path. Therefore, there is a time interval during
which both Wi-Fi and cellular networks are still functional
and being used by the connection. We call this transient state
the handover duration.

The ability of using both networks concurrently enables the
smooth handover. To quantify its duration, we measure the
delay between the first data packet sent on the cellular network
and the last activity observed on the Wi-Fi network. The end of
the Wi-Fi liveliness can be measured as either the transmission
time of the last packet (data or TCP acknowledgment) sent by
the phone or the reception time of the last packet received.
The advantage of the second metric is that it provides a
better view about the actual availability of the Wi-Fi network.
Figure 6 shows when smartphones move, they simultaneously
use the Wi-Fi and cellular networks. Indeed, only 10% of
the test runs experiences an abrupt switch from Wi-Fi to the
cellular network, i.e., the Wi-Fi stopped working before the
smartphone started to use the cellular path. This corresponds
to the negative values in Figure 6. On the other hand, 58%
of the experiments observe a handover duration of at least 10
seconds. This illustrates that in mobile scenarios, the network
handover is not an abrupt process.

Multipath TCP network handovers can affect the ap-
plication. The main objective of the interactive mode of
Multipath TCP is to enable the application to automatically
use the lowest-latency interface while keeping the usage of the
cellular one as low as possible. To this end, we focus on the
maximum delay observed by the sending host for both upload
and download streams of the interactive traffic pattern, i.e.,

101 102 103 104 105

Maximum application delay (ms)
0.0

0.5

1.0

CD
F

Upload stream
Download stream

Fig. 7: Multipath TCP maximum observed application delays.

two maximum delays are collected per test and per protocol.
Despite the interactive mode, Figure 7 shows that more than
60% of the test cases have a maximum application delay that
is longer than a second for both data streams. To exemplify
our results, imagine that the download stream represents an
Internet radio while the upload one simulates a voice-activated
application such as Siri. With the median value at 2.6 s, this
means that the user would have experienced a music stall
in 50% of the experiments if the playback buffer was not
at least 2.5-second long. Similarly, with 70th percentile of
6 s, the Siri application would have been unresponsive for
at least 6 s, possibly raising a connectivity error to the user.
From our experiments, we observe that upload connections
tend to have lower application delays than download ones,
especially between percentiles 50th and 90th. This is likely
because the phone has a better view of the network, as it
is easier for it to detect a weak Wi-Fi than the server. As
in the upload connection, the phone is sending the data, it
can adapt its packet scheduler thanks to its local information.
On the opposite, the server needs to rely on retransmissions.
We also observe a tail reaching hundreds of seconds. This is
due to the iOS implementation of Multipath TCP that does
not support the Multipath TCP ADD_ADDRESS option [1] for
privacy reasons. Our test servers have both IPv4 and IPv6
addresses. With the happy eyeballs process, if the connection
starts on the Wi-Fi using IPv6 while the cellular is IPv4-only,
the transfer remains stuck on the Wi-Fi. Note that this issue
does not occur in the converse situation (IPv4 Wi-Fi with IPv6-
only cellular), as the iPhone includes a NAT64 daemon.

B. Comparison with Multipath QUIC

With the built-in support of Multipath TCP in iOS and
Multipath QUIC provided by our application, MultipathTester
can compare how both protocols handle network handovers
when the user moves. Here, we study a subset of the pre-
viously described dataset where both protocols were usable.
This dataset contains 104 experiments, involving 40 cellular
networks and 61 Wi-Fi ones.

To compare their performance, we consider the maximum
delay experienced by each of the protocol over the same
run. We then compute for each mobile test the ratio between
the maximum delay of Multipath TCP and Multipath QUIC.
Figure 8a shows that when Multipath QUIC uses the same
scheduling strategy as Multipath TCP, we do not observe a
clear trend in favor of one protocol over the other. Each of
them tends to start using the cellular interface at the same



10−2 10−1 100 101 102

Max delay ratio (MPTCP / MPQUIC)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F 
ov

er
 m

ob
ile

 te
st

s
Upload
Download

(a) Ratio of max delays between
MPTCP and MPQUIC.

101 102 103 104 105

Multipath TCP (ms)

101

102

103

104

105

M
ul

tip
at

h 
QU

IC
 (m

s)
(b) Upload stream max delays.
Each point represents a test.

Fig. 8: The performance of the two protocols mainly depend
on the network conditions.

time. In addition, Fig. 8b indicates that for a same test run,
we can observe very different experienced maximum delays
between Multipath TCP and Multipath QUIC. This result is
both surprising and encouraging. Although Multipath TCP
is included in iOS11, it does not seem to detect handovers
better than our application. This indicates that smartphone
applications that will include Multipath QUIC in the future
could reach similar handover efficiencies as Multipath TCP.

As Multipath TCP is implemented in the kernel, applications
cannot easily tune it according to their needs. As explained
earlier, Apple does not support the utilization of both Wi-Fi
and cellular for bulk transfers with Multipath TCP. However,
this limitation does not exist for UDP. An iOS11 application
that uses Multipath QUIC could thus use both Wi-Fi and
cellular simultaneously. It could also easily use another packet
scheduler such as those that were proposed for Multipath
TCP or a different congestion control scheme. MultipathTester
could thus enable a wide range of multipath experiments.

V. CONCLUSION

In this paper, we presented MultipathTester, an iOS ap-
plication acting as a measurement platform to compare the
performance of Multipath TCP and (Multipath) QUIC. Our
application enables users to perform two kinds of experiments.
First, the stationary mode evaluates how the studied protocols
behave in real Wi-Fi and cellular networks under stable
network conditions. We notably noticed some connectivity
issues with QUIC using IPv6, but in America we observed
better performance using IPv6 rather than IPv4. Second, the
mobile mode evaluates the impact of network handovers on
a delay-sensitive application running atop Multipath TCP
and Multipath QUIC. We learned that the Wi-Fi to cellular
handover process often takes more than a second and that with
similar scheduling strategies, Multipath TCP and Multipath
QUIC achieves similar results.

While the experimentation with Multipath TCP is limited to
the API exposed by iOS, there is no restriction with Multipath
QUIC. We expect that our platform could be used to evaluate
new QUIC extensions. For instance, a possible next step

could be to include a Forward Erasure Correction extension to
QUIC [19] and assess how applications could leverage it when
experiencing network handovers. Once Multipath TCP will
be integrated in the mainstream Linux kernel, we could also
extend MultipathTester to the Android platform and explore
how the smartphones’ vendors tune their multipath algorithms.

Artifacts. Our iOS application, the traffic pattern imple-
mentations in Go and the collection server are available at
https://github.com/multipathtester.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers and our shepherd Brian
Trammell for his valuable comments.

REFERENCES

[1] A. Ford et al., “TCP Extensions for Multipath Operation with Multiple
Addresses,” RFC 6824, Internet Engineering Task Force, January 2013.

[2] O. Bonaventure and S. Seo, “Multipath tcp deployments,” IETF Journal,
vol. 12, no. 2, pp. 24–27, 2016.

[3] D. Smith, “iOS Version Stats,” May 2019. [Online]. Available:
https://david-smith.org/iosversionstats/

[4] Z. Cao, “Multi-path transport deployment on smartphone apps,” March
2019, presentation at IETF104, MPTCP working group.

[5] C. Paasch et al., “Exploring mobile/wifi handover with multipath tcp,”
in CellNet’12. ACM, 2012, pp. 31–36.

[6] S. Deng et al., “Wifi, lte, or both?: Measuring multi-homed wireless
internet performance,” in IMC’14. ACM, 2014, pp. 181–194.

[7] A. Nikravesh, Y. Guo, F. Qian, Z. M. Mao, and S. Sen, “An in-
depth understanding of multipath tcp on mobile devices: measurement
and system design,” in Proceedings of the 22nd Annual International
Conference on Mobile Computing and Networking. ACM, 2016, pp.
189–201.

[8] Y.-C. Chen et al., “A measurement-based study of multipath tcp perfor-
mance over wireless networks,” in IMC’13. ACM, 2013, pp. 455–468.

[9] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar et al., “The quic transport
protocol: Design and internet-scale deployment,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication.
ACM, 2017, pp. 183–196.

[10] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and
Secure Transport,” Internet Engineering Task Force, Internet-Draft draft-
ietf-quic-transport-20, Apr. 2019, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-20

[11] Q. De Coninck and O. Bonaventure, “Multipath quic: Design and
evaluation,” in Proceedings of the 13th International Conference on
emerging Networking EXperiments and Technologies. ACM, 2017,
pp. 160–166.

[12] Q. D. Coninck and O. Bonaventure, “Multipath Extensions for
QUIC (MP-QUIC),” Internet Engineering Task Force, Internet-
Draft draft-deconinck-quic-multipath-02, Mar. 2019, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-deconinck-quic-multipath-02

[13] Q. D. Coninck, “Multipathtester,” 2019. [Online]. Available: https:
//itunes.apple.com/us/app/multipathtester/id1351286809?mt=8

[14] Apple, “Reachability,” 2016. [Online]. Available: https://developer.apple.
com/library/archive/samplecode/Reachability/Introduction/Intro.html

[15] C. Paasch, S. Barre et al., “Multipath tcp in the linux kernel,” 2009-2018,
http://www.multipath-tcp.org.

[16] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec, “Mptcp is not
pareto-optimal: performance issues and a possible solution,” IEEE/ACM
Transactions on Networking (ToN), vol. 21, no. 5, pp. 1651–1665, 2013.

[17] Apple, “Xnu kernel source code,” 2018. [Online]. Available: https:
//opensource.apple.com/source/xnu/

[18] A. Dhamdhere, M. Luckie, B. Huffaker, A. Elmokashfi, E. Aben et al.,
“Measuring the deployment of ipv6: topology, routing and performance,”
in Proceedings of the 2012 Internet Measurement Conference. ACM,
2012, pp. 537–550.

[19] F. Michel, Q. De Coninck, and O. Bonaventure, “Quic-fec: Bringing the
benefits of forward erasure correction to quic,” in 2019 IFIP Networking
Conference (IFIP Networking) and Workshops. IEEE, 2019.


