
SRv6Pipes: enabling in-network bytestream
functions

Fabien Duchene, David Lebrun, Olivier Bonaventure
ICTEAM, Université catholique de Louvain

Louvain-la-Neuve, Belgium
Email: firstname.lastname@uclouvain.be

Abstract—IPv6 Segment Routing is a recent IPv6 extension
that is generating a lot of interest among researchers and in
industry. Thanks to IPv6 SR, network operators can better
control the paths followed by packets inside their networks.
This provides enhanced traffic engineering capabilities and is
key to support Service Function Chaining (SFC). With SFC, an
end-to-end service is the composition of a series of in-network
services. Simple services such as NAT, accounting or stateless
firewalls can be implemented on a per-packet basis. However,
more interesting services like transparent proxies, transparent
compression or encryption, transcoding, etc. require functions
that operate on the bytestream.

In this paper, we extend the IPv6 implementation of Segment
Routing in the Linux kernel to enable network functions that
operate on the bytestream and not on a per-packet basis.
Our SRv6Pipes enable network architects to design end-to-end
services as a series of in-network functions. We evaluate the
performance of our implementation with different microbench-
marks.

I. INTRODUCTION

Middleboxes play an important role in today’s enterprise
and datacenter networks. In addition to the traditional switches
and routers, enterprise networks contain other devices that
forward, inspect, modify or control packets. There is a wide
variety of middleboxes [1], ranging from simple NAT, IP
firewalls, various forms of Deep Packet Inspection, TCP
Performance Enhancing Proxies (PEP), load balancers, Appli-
cation Level Gateways (ALG), proxies, caches, edge servers,
etc. Measurement studies have shown that some networks have
deployed as many middleboxes as the number of traditional
routers [2].

Those middleboxes were not part of the original TCP/IP
architecture. They are typically deployed by either placing
the middleboxes on the path of the traffic that needs to be
handled, e.g., on the link between two adjacent routers, or by
using specific routing configurations to force some packets to
pass through a particular middlebox. These two deployment
approaches are fragile and can cause failures that are hard
to diagnose and correct in large networks. Pothraju and Jain
have shown in [3] that middlebox failures are significant and
that many of them belong to a grey zone, i.e., they cause
link flapping or connectivity errors that are difficult to debug
and impact the end-to-end traffic. Researchers and vendors
have proposed Network Function Virtualization (NFV) [4] and

Service Function Chaining (SFC) [5] to solve some of the
problems caused by middleboxes.

In a nutshell, the NFV paradigm argues that all network
functions should be virtualised and executed on commod-
ity hardware instead of requiring specific devices. On the
other hand, SFC [5] proposes to support chains of network
functions which can be applied to the packets exchanged
between communicating hosts. Several realisations for SFC
are being discussed within the IETF. The SFC working group
is developing the Network Service Header [6]. This new
header can be used to implement service chains and replaces
already deployed proprietary solutions. Another approach is to
leverage the extensibility of IPv6. Given the global deployment
of IPv6 [7], several large enterprises have already announced
plans to migrate their internal network or their datacenters
to IPv6-only to avoid the burden of managing two different
networking stacks [8]. In addition to having a larger addressing
space than IPv4, IPv6 provides several interesting features to
support middleboxes in enterprise and datacenter networks.
One of these is the native support for Segment Routing [9],
[10]. Segment Routing (SR) is a modern variant of source
routing that enables network administrators to enforce specific
network paths.

In this paper, we demonstrate the benefits that the IPv6
Segment Routing (SRv6) architecture can bring to support
middleboxes in enterprise and datacenter networks. With
SRv6, middleboxes can be exposed in the architecture and
visible end-to-end. This significantly improves the manage-
ability of the network and the detection of failures while
enabling new use cases where applications can select to use
specific middleboxes for some end-to-end flows. This paper is
organized as follows.

In Section II, we describe some use cases that can benefit
from middleboxes. In Section III, we present SRv6Pipes,
a modular SRv6-based architecture to support arbitrary in-
network Virtual Functions, that can be applied on bytestreams
and chained together. In Section IV, we detail a prototype
implementation of our architecture, running on Linux. In
Section V, we demonstrate the feasibility of our approach and
evaluate the performance of our prototype through various
tests and microbenchmarks. Finally, we cover some related
work in Section VI and conclude in Section VII. Future work
is discussed in VIII.ISBN 978-3-903176-08-9 c© 2018 IFIP

II. USE CASES

Middleboxes can perform two different types of network
functions: per-packet and per-bytestream. The per-packet
functions operate on a per-packet basis. They include Network
Address Translation and simple firewalls. These functions
typically operate on the network and sometimes transport
headers. The per-bytestream functions are more complex, but
also more useful. These functions operate on the payload
of the TCP packets. For example, firewalls and Intrusion
Detection Systems (IDS) need to match patterns in the packet
payload while transparent compression and/or encryption need
to modify the payload of TCP packets. Such functions need
to at least reorder the received TCP packets but often need to
include an almost complete TCP implementation. We describe
some of these per-bytestream functions in more details in this
section.

A. Application-level Firewalling

To cope with various forms of packet reordering,
application-level firewalls and Intrusion Detection/Prevention
Systems need to at least normalize the received packets [11]
before processing them. Another approach is to use a transpar-
ent TCP proxy on the firewall to terminate the TCP connection
and let the firewall/IDS process the reassembled payload. An
end-to-end connection would thus be composed of two sub-
connections: one between the client and the middlebox and
another one between the middlebox and the server.

Network operators often configure access lists to associate
IP prefixes to some security checks performed by the IDS. For
example, students would be subject to different policies than
servers.

B. Multipath TCP Proxies

Multipath TCP [12] (MPTCP) is a recent TCP extension
that enables hosts to send packets belonging to one connection
over different paths. One of the benefits of MPTCP is that it
allows to aggregate the bandwidth of multiple connections.
This enables, e.g., network operators to bond xDSL and LTE
networks to better serve rural areas [13]. However, MPTCP
being an end-to-end protocol, the client and the server re-
quire an MPTCP-enabled kernels. To leverage the benefits of
MPTCP without modifying the client or server network stacks,
operators started developing MPTCP-aware proxies [13], [14]
to convert regular TCP to MPTCP and conversely.

To allow the bundling of xDSL and LTE, an NFV deploy-
ment could be leveraged to implement the same behavior, by
placing a proxy in the CPE to convert regular TCP to MPTCP
and a second proxy in the operator’s network to convert
MPTCP to regular TCP. This would allow non-MPTCP clients
and servers to use different networks simultaneously.

In practice, network operators could want to support dif-
ferent services on the same proxy, e.g. (i) a business proxy
that always maximizes bandwidth for business customers, (ii)
a low-cost proxy that only uses the LTE network when the
xDSL network is fully utilized or (iii) a gaming proxy that
always uses the network that provides the lowest delay. Such

proxies can be deployed by tuning the packet scheduler and
the path manager of Multipath TCP implementations.

C. Multimedia transcoding

Multimedia transcoding has been a research topic for a
long time [15], [16]. Since, it has been widely deployed by
companies like Amazon [17]. In this context, a proxy placed
between the client and the server that hosts the multimedia
file can be used to transcode the multimedia file hosted on the
server into a format compatible with the client. This allows
to distribute the computation intensive task of transcoding the
content over several proxies, while the server simply hosts the
original files. In this setup, parameters could be passed to the
proxy to specify for instance the maximum bitrate that a client
is entitled to (based on technical or subscription limitations),
the maximum number of streams allowed for this client or the
type of content authorized for this client.

III. ARCHITECTURE

Middleboxes and other in-network functions are installed,
configured, and managed by network administrators according
to business (e.g. security regulations impose the utilisation
firewalls) and technical (e.g. performance issues force the
utilisation of performance enhancing proxies, or addressing
issues force the utilisation of NAT) needs. Usually, network
administrators impose the utilisation of specific network func-
tions by configuring routing policies or placing physical boxes
on links that carry specific traffic (e.g. firewalls are often
attached to egress links). This is both cumbersome and costly
since all possible links must be covered by each intended
network function.

Like NFV, our architecture assumes that network functions
are software modules which can be executed anywhere in the
network. A firewall function that only needs to process the
external flows does not need to be installed on the egress
router, it can be executed on any server or router inside an
enterprise network. Each network function is identified by an
IPv6 prefix which is advertised by the equipment hosting the
function (see section III-C). For redundancy or load-balancing,
the same function can be hosted on different equipments in the
network.

To understand the different elements of our architecture,
let us consider a simple scenario. A client host needs to
open a TCP connection towards a remote server. The network
administrator has decided that the packets belonging to such
a connection must be processed by two network functions:
(i) a stateless firewall which blocks prohibited ports and (ii)
a DPI which inspects all external TCP connections. Three
elements of our architecture are used to support this sequence
of network functions in enterprise networks.

The first element is IPv6 Segment Routing (SRv6) [18].
Our architecture uses the SRv6 header (SRH) to enforce an
end-to-end path between the client and the server which passes
through the two equipments hosting the mandatory networking
functions. We describe SRv6 in more details in section III-A.

The second element of our architecture is how the client
learns the SRH suitable to reach a given destination. For this,
we modify the enterprise DNS resolver. Instead of simply
resolving names into addresses, our DNS resolver acts as a
controller [19], [20] which has been configured by the network
administrator with various network policies. When a client
sends a DNS request to the resolver, it replies with the intended
response and additional records which contain the SRH that
the client has to apply to reach the specified addresses.

Thanks to the SRH which is attached by the client, all the
packets belonging to the TCP connection will pass through the
stateless firewall and the DPI. Consider now what happens
if some packets are lost and need to be retransmitted. The
stateless firewall is not affected since it only processes the
network and transport headers that are present in each packet.
On the other hand, the DPI function needs to include a
TCP implementation to be able to detect out-of-order packets
or other TCP artifacts. Instead of requiring each network
function to include a TCP implementation, our architecture
leverages the TCP stack that is already present in the Linux
kernel. Each equipment that hosts a network function uses a
transparent TCP proxy that transparently terminates the TCP
connections and exposes bytestreams to the network functions
as in FlowOS [21]. This greatly simplifies the implementation
of per-bytestream network functions

A. IPv6 Segment Routing

Segment Routing (SR) is a modern variant of the source
routing paradigm, currently under standardization at the
IETF [18]. SR can be used on top of an MPLS or IPv6
dataplane to steer packets through an ordered list of segments.
SR is now well-supported on commercial routers [23] and
Linux hosts [24] and deployed by major ISPs [9].

The IPv6 flavor of Segment Routing (SRv6) leverages
a dedicated IPv6 routing extension header, named Segment
Routing Header (SRH) [10]. Each segment is an IPv6 address
representing a node or link to traverse, or an intermediate
function to be executed. The SRH contains a full list of
segments. The active segment is referenced by an index, the
segment pointer. As the list of segments is encoded in reverse
order, the index is first initialized to the last element of the list
(i.e., the first segment of the path), and decremented at each
segment endpoint. The segment pointer thus reaches zero when
arriving at the last segment of the path. The active segment is
also written as the destination address in the IPv6 header. As
such, transit nodes on the path to an active segment simply
needs to support plain IPv6 forwarding. SRv6 support is only
required at the segment endpoints.

In SRv6Pipes, we leverage the SRv6 architecture to steer
TCP flows through arbitrary network functions. See Figure 1
for an illustration. Consider that the client C establishes a
connection to a server S, with two intermediate network
functions at P1 and P2. To realise that, the client attaches
an SRH to its packets, containing three segments. The first
two segments represent the functions to be executed at resp.
P1 and P2. The third segment is the address of S. When the

C

P1 P2

S

Router
Endpoint

SR-steered path
Shortest IGP path

Fig. 1: Traffic steering through two off-path network functions
P1 and P2 (e.g., firewall and IDS).

Fig. 2: IPv6 address encoding.

packets are transiting between C and P1, and between P1 and
P2, their IPv6 destination address is thus the address of the
function to execute at the corresponding proxy. Between P2
and S, the segment pointer is decremented to zero and the
IPv6 destination address of the packets is the address of S.

B. Transparent TCP Proxy

The proxy is the core component of our architecture to
support per-bytestream network functions. It is transparent at
the network layer, meaning that even if the proxy actually
terminates the TCP connection with the client, the destination
server will receive packets coming from the client’s IP address,
and not from the proxy’s IP address. The transparent proxy
is placed on path using the IPv6 Segment Routing Header
(SRH) [10]. It intercepts each new connection that matches
a given pattern (e.g., a destination port) and terminates it.
Then, the proxy establishes a downstream connection to the
next segment specified in the SRH of the inbound connection.
When the proxy receives data from the client, it applies a trans-
formation function (i.e., the Virtual Function) to the received
data and forwards the result on its outbound connection to the
next segment of the path. This process is then repeated until
reaching the final destination of the path.

C. Encoding Functions and Parameters

As shown in section II, some parameters can be passed
to the per-bytestream function. Such parameters are usually
specified in the proxy configuration files. However, such
configurations can be large and complex if some parameters
can change on a per connection basis. Consider for example a
first proxy that encrypts the payload and a second that decrypts
it. Those encryption/decryption proxies would have to be
configured with the encryption/decryption keys for each flow.
A possible approach would be to define one key per host or set
of hosts. A better approach is to configure a set of keys on the
proxies and associate each key with a unique identifier. When
a connection starts, the encryption proxy selects a random key
and places the identifier of the chosen key in the SRH towards
the decryption proxy.

To enable such a granularity in the choice of transformation
functions and parameters, we leverage the large addressing
space available in IPv6. Each proxy announces one or more
IPv6 prefixes that correspond to the Virtual Functions it hosts.

Within the host part of the prefixes, we allocate a given
amount of bits to encode the identifier of the function to
apply as proposed in [25]. The remaining low order bits are
used to specify parameters of the virtual function such as the
decryption key in the above example. Consider Figure 2 for an
illustration. The proxies announce /80 prefixes. The first 80
bits of the address thus specify the proxy to traverse. The 16
following bits identify the function to apply to the payload, and
the low-order 32 bits contain the parameters of these functions.
The SRH then contains a list of proxies with their respective
functions and parameters. This approach allows the clients to
use any combination of function/parameter available in the
network.

Consider the network described in figure 1. In this network,
the client might require to encrypt the traffic between P1 and
P2. In our architecture, the client will use the function bits
of the address of P1 to specify the identifier of the encrypt
function, and the parameters bits to specify the identifier
of an encryption key. The same will be done in the address of
P2 with the decrypt function. This allows to have different
encryption keys for different connections without having to
store a configuration for each connection in the proxy. The
processing of the return traffic is discussed in IV-E.

D. SRv6 Controller

In our architecture, a TCP client is able to specify arbitrary
functions to apply to its traffic. However, keeping track of
all the functions, parameters, and proxies addresses represents
a significant amount of complexity. This complexity can be
abstracted by a central SDN-like controller. We leverage
the SDN Resolver, which is a DNS-based, SRv6 controller
introduced in [19], [20]. Before establishing a connection, the
client sends a request to the controller with the address of
the server and a list of functions to apply to the traffic. The
controller then computes a path that matches the request and
returns an SRH to the client. A key element of this controller
is that the SRH returned to the client does not contain the
full list of segments. Instead, it contains only one segment,
called the binding segment. The access router of the client is
configured by the controller to translate this binding segment
into the full list of segments. This abstraction enables the
clients to be oblivious to changes in the SRH induced by,
e.g., a network failure. The architectural and implementation
details of SDN Resolver are available in [19], [20]. Note that
the DNS protocol serves as an example, that can be replaced
by any ad-hoc application-facing protocol.

E. Security Considerations

The ability to execute and chain arbitrary functions in the
network has obvious security implications. To restrict the
privilege of using SRv6Pipes proxies, we can leverage the
central controller presented in the previous section, as well
as its binding segment mechanism. By configuring all access
routers to accept only SRHs with known binding segments,
we can effectively prevent an uncontrolled usage of network
functions. The decision to accept or deny the use of a given

set of functions is made by the controller, which can identify
clients through independent channels [19].

IV. IMPLEMENTATION

To demonstrate the feasibility of our approach, we imple-
mented a prototype of our solution by extending the imple-
mentation of IPv6 Segment Routing in the Linux kernel [24].
The main new component of our prototype is a transparent,
SR-aware, TCP proxy. For this, we extended the kernel imple-
mentation of SRv6 with a new type of function. An overview
of the various data paths in our prototype is shown in Figure 3.

To ensure that our proof of concept could easily be used to
reproduce our results on any off-the-shelf hardware, we im-
plemented it using the regular Linux mechanisms. Alternatives
solutions are discussed in Section VIII

A. Transparent SR-Aware TCP Proxy

The core objective of our proxy is to process and relay
TCP streams between two segments of a segment routed path.
To achieve this, the proxy must (i) intercept and terminate
incoming TCP flows, (ii) optionally apply transformation
functions to the bytestreams, and (iii) initiate and maintain
the corresponding TCP flows to the next segment of the path.

To intercept TCP flows, the proxy must accept connections
towards pairs of IP/port that are not local to the machine,
which is not possible by default. The Linux kernel provides
the TPROXY iptables extensions, enabling such interceptions.
It works by redirecting all packets matching an iptables rule
towards a local IP/port pair. The proxy is then able to intercept
the corresponding TCP flows by listening to this local pair.

Once a TCP flow is intercepted and terminated, the proxy
needs to retrieve the associated SRH, decrement its segment
pointer, and install it on the corresponding outbound socket.
The IPV6_RECVRTHDR socket option could be used to fetch
any attached Routing Header (RH) as ancillary data, using
the recvmsg() system call. However, this feature is only
implemented for datagram protocols such as UDP, where
a single RH is associated to each datagram. In bytestream
protocols such as TCP, packets can be merged and the 1 : 1
mapping to RHs is lost. In our prototype, we rely on the
SRH included in the SYN packet of a given TCP flow. As
the kernel does not expose Routing Headers for TCP flows,
we leverage the NFQUEUE iptables extension to capture SYN
packets in user space. The proxy opens a netlink channel with
the kernel and receives through it all SYN packets matching
the corresponding iptables rule. Then, the proxy extracts the
5-tuple and the SRH from the SYN packet and stores them in
a flows_srh map. Finally, the packet is reinjected into the
kernel. Following its normal data path, the SYN packet will
trigger a connection request to the proxy. Using the 5-tuple,
the proxy is then able to retrieve the SRH previously stored in
the flows_srh map. While capturing every packet in user
space can severely degrade the performances, our solution does
not suffer from such degradation as we only capture the first
packet of each flow.

(a) Traversal of a SYN packet through
the proxy. The SRH is recorded for the

5-tuple.

(b) Traversal of data packets. (c) Traversal of return packets.

Fig. 3: Overview of possible data paths within SRv6Pipes.

After having intercepted a TCP flow and extracted its SRH,
the proxy must establish the corresponding TCP flow to the
next iteration of the path. To achieve this, the proxy creates
the outbound socket and attaches to it the corresponding
SRH. Additionally, the connection must appear as originating
from the actual source of the flow. Using the IP_FREEBIND
socket option, the proxy is able to bind to a non-local IP/port
pair. Finally, the connection is established and data can be
exchanged.

Once both connections (inbound and outbound) are es-
tablished, the proxy only needs to forward data coming
from one socket to the other one, after going through an
optional transformation function. In our prototype, we use an
application-level buffer to transfer data from one connection
to the other. Another possible solution would be to use the
splice() system call to let the kernel directly move data
between file descriptors. However, this solution prevents the
proxy from actually modifying the data. Our approach allows
the implementation of arbitrary transformation functions. The
termination of connections is straightforward. Once one socket
is closed, any in-flight data is flushed and the other socket is
also closed.

We implemented a multi-threaded architecture, enabling the
proxy to scale with the load. One dedicated thread handles the
NFQUEUE channel, receives the SYN packets, and populates
the flows_srh map accordingly. A configurable number
of threads (typically one per CPU thread) accept incoming
connections, establish the outbound connection, and process
the data exchanged between them. Each of these threads
leverages the SO_REUSEPORT socket option, enabling them
to simultaneously listen to the same local IP/port. The result
is that the kernel maintains distinct accept queues for each
thread. Consequently, incoming connections are equally load-
balanced across the running threads.

B. Kernel Extensions

When a packet to be processed by the proxy enters the
kernel, its IPv6 destination address corresponds to the local
proxy function. However, the TCP checksum was originally
computed for the actual destination of the packet. As such,
it is transiently incorrect, due to the SR-triggered change of

destination address. Additionally, the packet will be associated
to the proxy’s local socket by the TPROXY module, and
subsequently injected in the local stack. However, the segment
pointer of the associated SRH is non-zero. The packet will
thus enter the SRH processing and the kernel will attempt
to forward it to the next segment, bypassing the local TCP
processing [24].

To address those two issues, we extend the SRv6 kernel
implementation available in Linux 4.14 and add a new type of
function called End.VNF. This function takes one parameter
(an egress interface) and performs the following actions. First,
it updates the destination address of the packet to its final
destination. Then, it sets the segment pointer to zero1. Finally,
it injects the resulting packet into the specified egress interface
using netif_rx(). In our prototype, we leverage a virtual
dummy interface (nfv0). As a result, all packets to be
intercepted by the proxy are received through this particular
interface and are thus easily distinguished from background
traffic.

C. System Configuration

To instantiate the proxy, a non-trivial configuration of
iptables and routing tables is required. An example of this
configuration is shown in Figure 4. The first two lines create
the nfv0 interface to receive all packets to be intercepted
by the proxy. Lines 3 − 5 create a DIVERT iptable chain
that sets the mark 1 on packets and accepts them. Line
6 creates an NFQUEUE rule that matches all SYN packets
whose destination address corresponds to the local proxy
(PROXY_FUNC_ADDR) and sends them to the queue number
0. Line 7 matches all TCP packets received on interface nfv0
and sends them to the TPROXY target. The latter will set
the mark 1 on those packets and will associate them to a
socket bound on a local PROXY_LOCAL_PORT port. Line 8
matches all TCP packets that can be associated to an open
socket and sends them to the previously configured DIVERT
chain. In practice, this rule will catch the inbound return
packets that are not caught by the two previous rules. Line

1As the SRH of the SYN packet was previously extracted by the proxy,
this information is not lost.

1: ip link add nfv0 type dummy
2: ifconfig nfv0 up
3: ip6tables -t mangle -N DIVERT
4: ip6tables -t mangle -A DIVERT -j MARK --set-mark 1
5: ip6tables -t mangle -A DIVERT -j ACCEPT
6: ip6tables -t mangle -A PREROUTING -d \$PROXY_FUNC_ADDR -p tcp --syn -j NFQUEUE --queue-num 0
7: ip6tables -t mangle -A PREROUTING -i nfv0 -p tcp -j TPROXY --tproxy-mark 0x1/0x1 --on-port \$PROXY_LOCAL_PORT
8: ip6tables -t mangle -A PREROUTING -p tcp -m socket -j DIVERT
9: ip -6 rule add fwmark 1 table 100
10: ip -6 route add local ::/0 dev lo table 100
11: ip -6 route add \$PROXY_FUNC_ADDR/128 encap seg6local action End.VNF oif nfv0 dev eth0
12: sysctl net.ipv6.conf.nfv0.seg6_enabled=1

Fig. 4: System configuration for the proxy.

9 creates a routing rule instructing the kernel to lookup table
100 for all packets having the mark 1. Line 10 creates a single
routing entry into table 100 that matches all packets and sends
them in the local stack (instead of forwarding them). Line 11
creates an SRv6 routing entry that matches all packets towards
PROXY_FUNC_ADDR and applies the End.VNF function,
using nfv0 as the egress interface2. Finally, line 12 enables
the processing of SRv6 packets on interface nfv0.

D. Modular Transformation Functions

To support transformation functions in a modular way, our
SRv6Pipes proxy leverages Linux dynamic libraries. Func-
tions can be compiled in .so (shared object) files. Those
files are independent modules that can be loaded and un-
loaded at run-time by the proxy. Each module exports an
all_funcs symbol. This symbol refers to an array of
func_desc structures. Each of those structures describes a
single transformation function, through the following symbols.
The func_init() symbol is called once, on module load.
It registers the function with a given function identifier, which
is passed in the IPv6 destination addresses (see Section III-C).
The func_spawn() symbol is called each time a new
intercepted TCP flow matches the function identifier. Any
parameter passed in the low-order bits of the IPv6 destination
address is passed as argument. The role of this symbol is
to initialize per-connection data. The func_process()
symbol is the actual transformation function. It reads data
from an input buffer and writes the transformed data in an
output buffer. The func_despawn() symbol is called at
connection termination and it frees previously allocated per-
connection data. Finally, the func_deinit() symbol is
called at module unload and de-registers function identifiers.

Such an architecture enables to easily add, modify, and re-
move transformation functions, without updating nor restarting
the proxy’s binary.

E. Return Traffic

The previous sections detailed the processing of the up-
stream traffic (from client to server). However, if the middle-
boxes are not located in-path, the downstream traffic (from the
server to client) must also be augmented with an SRH. This

2While this interface is considered egress from the point of view of
End.VNF, packets are actually received on that interface and it is thus
considered ingress for the next components in the datapath.

is also necessary to enable asymmetrical processing functions,
i.e., using different transformation functions depending on the
direction of the traffic. To achieve this, multiple options exist.

The straightforward option is to simply "reverse" the SRH
received from the client or from the previous proxy. Each
proxy can simply apply the segments of the initial SRH in
reverse order. While this solution is simple and does not incur
a significant overhead, it as a major limitation: the segments
must necessarily be symmetrical, making asymmetrical pro-
cessing functions impossible.

To enable asymmetrical processing functions, another op-
tion is to embed the return SRH in a TLV extension of the
initial SRH. With this solution, after inserting the SRH, the
client inserts a TLV to the socket before establishing the
connection. Then, each proxy and the server extract the SRH
to be used on the return path from the TLV received in the
initial packet (SYN). The TLV could also be transmitted with
every upstream packet, but this would increase the overhead.
With this TLV, it is important to note that the return path must
include every proxy that is present in the upstream path, but
that others segments, e.g. corresponding to specific paths or
routers, can be added or suppressed.

In our prototype, we implemented the second solution by
modifying the Linux kernel to add support for such a TLV.
When a new TCP socket is created after receiving an SR-
enabled SYN packet containing the return-path TLV, this
return path is extracted and installed as an outbound SRH for
the newly created socket. If the proxies are located in-path, our
prototype can also work without an SRH on the return path.
This is realized using the DIVERT rules shown in figure 4. In
Section V, we evaluate this on-path mode.

V. EVALUATION

In this section, we use microbenchmarks to evaluate the
performance of our prototype in our lab. For this evaluation,
we use three Linux PCs connected with 10Gbps interfaces as
shown in figure 5.

Fig. 5: Lab setup. M1 can be configured as router or proxy.

The client is a 2,53Ghz Intel Xeon X3440 with 16GB of
RAM. M1 and the server use the same hardware configuration
but with only 8GB of RAM. They are all equipped with
Intel 82599 10Gbps Ethernet adapters and use 9000 bytes
MTU. They all use our modified version of the latest IPv6
Segment Routing kernel based on the Linux kernel version
4.14. The server runs lighttpd version 1.4.35. The client
uses wrk [26] 4.0.2-5 to load the server with HTTP 1.1
requests. We slightly modified wrk to add an IPv6 SRH as
a socket option when creating TCP connections. M1 can be
configured either as a router or with our transparent proxy.
When used as a router, we create static routes and use the
standard Linux IPv6 forwarding.

A. Maximum throughput

First, we compare the performance of one of our proxies
against the performance of a Linux router running on the same
platform. In this setup, our client uses wrk [26] to simulate
200 web client downloading static web pages of given sizes
during 120 seconds. It uses 8 threads with 25 connections per
thread. The proxy was configured with a virtual function that
directly copies that bytestreams without any processing.

Fig. 6: Raw throughput.

Figure 6 shows the total transfer rate when the client is
downloading web pages. This figure shows that there is no
significant difference in transfer rates between our proxy and
the router. With 10MB files, our proxy reaches a throughput
of 9841 Mb/s where the router achieves 9838 Mb/s. A closer
look at the small page sizes in figure 6, shows that our proxy
slightly underperforms the router. With 1KB files, our proxy
achieves a rate of 253 Mb/s, while the router achieves a rate
of 272 Mb/s.

In term of requests per second, for 1KB files, our proxy
completes 26634 requests per second, while the router com-
pletes 28613 requests per second. This difference in perfor-
mance between large and small files can be explained by the
fact that when our proxy receives a new connection from the
client, it needs to establish a new connection to the server
before starting to forward packets. With smaller files, there are
significantly more three-way handshakes to perform, making
this overhead more important while this cost is amortized for
larger files. With 100KB files, the number of requests per

seconds is already on par at ≈11945 requests per second for
both the proxy and the router.

B. Impact of packet losses and latency on the proxies

The previous section explored the maximum rate that our
proxies can sustain. In those measurements, the TCP stack
running on M1 did not have to buffer packets or handle re-
transmissions. As those operations can affect its performance,
we added netem to simulate different delays and different
packet loss ratios.

We start by adding a 1% loss and a 25ms delay on the
four links of figure 5. This corresponds to an end-to-end loss
of ≈4%, and an end-to-end latency of 100ms. The results
of this measurement are shown on figure 7. Under such
circumstances, our proxy outperforms the router. This is not
surprising since in this setup, our proxy acts as a Performance
Enhancing Proxy (PEP). While figure 7 clearly shows a large
improvement for large file sizes, our measurements indicated
that this is also true for small file sizes. This can be explained
by the fact that when M1 is configured as a router all packet
losses need to be recovered end-to-end. When a packet is lost
on the same link with our proxy, the retransmission is done
by the proxy.

Fig. 7: Transfer rate with 1% of loss and 25ms of latency per
link.

To confirm our findings, we run the same measurement, but
adding latency and loss only on the link between the server
and the proxy, the objective being to mimic a network where
the loss would happen only on the link between the proxy and
the server. To replicate our previous configuration, we add 2%
of loss per link, to get an end-to-end loss of ≈4%, and 50ms
of latency per link to get an end-to-end latency of 100ms.
As shown by figure 8, under such conditions, the proxy and
the router are both significantly affected by the performance
degradation in the same fashion, confirming our findings.

C. CPU-intensive Virtual Functions

With our architecture, various types of Virtual Functions
can be implemented. Some like a PEP simply proxy the
connections and do not need to process the payload. Others
like DPIs, transparent compression or transparent encryption
need to process the payload and thus consume CPU cycles. To

Fig. 8: Transfer rate with 2% of loss per link and 50ms of latency
per link between the proxy and the server.

measure the impact of the Virtual Function on the performance
of our proxy, we developed a simple microbenchmark that
performs 2 × n passes over the bytestream and XORs each
byte with a key at each pass. This VF leaves the bytestream
unmodified, but consumes both CPU and accesses memory.

The results with this microbenchmark are shown in figure 9.
When our VF performs two passes on the bytestream, the
maximum throughput is similar to the one we obtained without
bytestream modification in figure 6. When the VF performs
four passes on the bytestream, the maximum throughput with
pages larger than 100KB is divided by 2. This throughput
continues to drop with the CPU load on the VF. To confirm
that the reduction in throughput was due to the CPU intensive
computations, we ran perf [27] that yielded 96% of cycles
spent in the XOR function.

Fig. 9: Maximum throughput with Virtual Functions performing
n passes over the bytestream.

D. Chaining middleboxes

With our architecture, middleboxes can be used in chains
where one middlebox performs the opposite function of the
previous one. Typical examples include transparent compres-
sion/decompression or transparent encryption. To demonstrate
this use case, we implemented a VF that simply XORs each
byte of the bytestream with a constant. When two such
middleboxes are used in sequence, the bytestream output of

the downstream one is the same of the input of the upstream
one. This is illustrated in figure 10.

Fig. 10: Demonstration of middlebox chaining with simple XOR
transformations.

Due to limitations of our lab, we could only perform this
experiment over 1 Gbps links. Figure 11 shows that with the
two chained middleboxes, the maximum throughput was the
same as when passing through two routers. This is expected
given the results of figure 9 with 10Gbps interfaces.

Fig. 11: Transfer rate of wrk with 2 proxies applying a XOR.

VI. RELATED WORK

AbdelSalam et al. propose in [28] to use IPv6 Segment
Routing to support Virtual Network Function Chaining and
implement a prototype as a Linux kernel module. They lever-
age namespaces to support virtual network functions but only
support packet-based functions while our solution leverages
the Linux TCP stack to provide a bytestream abstraction to the
network functions. In FlowOS, Bezahaf et al. [21] proposed
a Linux kernel module that exposes a bytestream abstraction
to network functions but they do not describe how flows are
routed through the network functions. NetVM [29] leverages
virtualization techniques and a user-space packet processing
platform to provide fast, chainable network functions in virtual
machines. Their work focuses on packet processing and does
not consider bytestream functions. Other solutions such as
XOMB [30] focus on the system aspects of implementing
virtual functions to support middleboxes through a flexible
programming model. Our architecture leverages IPv6 Segment
Routing to forward the packets to the middleboxes. Another
related work is /dev/stdpkt proposed by Utsumi et al
in [31]. /dev/stdpkt uses the Linux Kernel Library to
implement virtual functions that can be chained together.

VII. CONCLUSION

Given its ability to enforce precise network paths for specific
flows, IPv6 Segment Routing appears to be an excellent

candidate to support middleboxes in entreprise networks. We
leverage this IPv6 extension in our architecture designed for
enterprise networks. Its main benefit is that the middleboxes
are explicitly exposed. This significantly improves the man-
ageability of the network. Our architecture supports both
middleboxes that operate on a per-packet basis (e.g. NAT,
stateless firewalls) and those that need to process bytestreams
(e.g. DPI, Application Level Gateways, . . .). For the latter, we
use transparent TCP proxies that process the IPv6 Segment
Routing Header. We implement3 this architecture in the Linux
kernel and evaluate its performance with various benchmarks
in our lab. Our measurements indicate that our architecture is
well suited to support middleboxes that process bytestreams.

VIII. FUTURE WORK

In this paper, we implemented a proof of concept using the
regular Linux mechanisms. While kernel bypass techniques
such as DPDK or user-space TCP stacks like mTCP allow
significant performance boosts, they are often specific to a
subset of network hardware. By leveraging the kernel data-
path, our solution remains generic and can be deployed on
any Linux-supported hardware, ranging from high-end servers
to home routers. Should an operator require performance only
available through kernel bypass techniques, our high-level
network architecture would remain identical and our userspace
implementation of the proxy would require minimal changes
to plug-in with a DPDK-like library. These modifications can
be realized as future work.

IX. ACKNOWLEDGEMENTS

This work was partially supported by the ARC-SDN project
and a Cisco URP grant.

REFERENCES

[1] B. Carpenter and S. Brim. Middleboxes: Taxonomy and Issues. RFC
3234 (Informational), February 2002.

[2] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia
Ratnasamy, and Vyas Sekar. Making middleboxes someone else’s
problem: network processing as a cloud service. ACM SIGCOMM
Computer Communication Review, 42(4):13–24, 2012.

[3] Rahul Potharaju and Navendu Jain. Demystifying the dark side of the
middle: a field study of middlebox failures in datacenters. In Proceedings
of the 2013 conference on Internet measurement conference, pages 9–22.
ACM, 2013.

[4] Kaustubh Joshi and Theophilus Benson. Network function virtualization.
IEEE Internet Computing, 20(6):7–9, 2016.

[5] J. Halpern and C. Pignataro. Service Function Chaining (SFC) Archi-
tecture. RFC 7665 (Informational), October 2015.

[6] P. Quinn, U. Elzur, and C. Pignataro. Network Service Header (NSH).
Internet draft, draft-ietf-sfc-nsh-28, November 2017.

[7] Mehdi Nikkhah and Roch Guérin. Migrating the internet to ipv6:
an exploration of the when and why. IEEE/ACM Transactions on
Networking, 24(4):2291–2304, 2016.

[8] Mat Ford. Landmark ipv6 report published: State of deployment
2017. CircleID, http://www.circleid.com/posts/20170606_landmark_
ipv6_report_published_state_of_deployment_2017/, June 2017.

[9] Clarence Filsfils et al. The segment routing architecture. In 2015 IEEE
Global Communications Conference (GLOBECOM), pages 1–6. IEEE,
2015.

3To ensure the reproducibility of our results, our implementation and the
measurement scripts will be released on http://segment-routing.org/index.php/
SRv6Pipes at publication time.

[10] Stefano Previdi et al. IPv6 Segment Routing Header (SRH). Internet-
Draft draft-ietf-6man-segment-routing-header-07, Internet Engineering
Task Force, July 2017. Work in Progress.

[11] Christian Kreibich, Mark Handley, and V Paxson. Network intrusion
detection: Evasion, traffic normalization, and end-to-end protocol se-
mantics. In Proc. USENIX Security Symposium, volume 2001, 2001.

[12] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP Extensions
for Multipath Operation with Multiple Addresses. RFC 6824 (Experi-
mental), January 2013.

[13] Olivier Bonaventure and SungHoon Seo. Multipath TCP deployments.
IETF Journal, 2016, November 2016.

[14] Olivier Bonaventure, Mohamed Boucadair, Bart Peirens, SungHoon
Seo, and Anandatirtha Nandugudi. 0-RTT TCP Converter. Internet-
Draft draft-bonaventure-mptcp-converters-02, Internet Engineering Task
Force, October 2017. Work in Progress.

[15] Elan Amir, Steven McCanne, and Randy Katz. An active service
framework and its application to real-time multimedia transcoding. In
ACM SIGCOMM Computer Communication Review, volume 28, pages
178–189. ACM, 1998.

[16] Jun Xin, Chia-Wen Lin, and Ming-Ting Sun. Digital video transcoding.
Proceedings of the IEEE, 93(1):84–97, 2005.

[17] Amazon Elastic Transcoder. https://aws.amazon.com/fr/
elastictranscoder/. Accessed: 2018-04-05.

[18] Clarence Filsfils, Stefano Previdi, Les Ginsberg, Bruno Decraene,
Stephane Litkowski, and Rob Shakir. Segment Routing Architecture.
Internet-Draft draft-ietf-spring-segment-routing-14, Internet Engineering
Task Force, December 2017. Work in Progress.

[19] David Lebrun. Reaping the Benefits of IPv6 Segment Routing. PhD the-
sis, UCLouvain / ICTEAM / EPL http://hdl.handle.net/2078.1/191759,
October 2017.

[20] David Lebrun, Mathieu Jadin, François Clad, Clarence Filsfils, and
Olivier Bonaventure. Software resolved networks: Rethinking enterprise
networks with ipv6 segment routing. In SOSR’18: Symposium on SDN
Research, 2018.

[21] Mehdi Bezahaf, Abdul Alim, and Laurent Mathy. Flowos: A flow-
based platform for middleboxes. In Proceedings of the 2013 Workshop
on Hot Topics in Middleboxes and Network Function Virtualization,
HotMiddlebox ’13, pages 19–24, New York, NY, USA, 2013. ACM.

[22] Bhavish Agarwal, Aditya Akella, Ashok Anand, Athula Balachandran,
Pushkar Chitnis, Chitra Muthukrishnan, Ramachandran Ramjee, and
George Varghese. Endre: An end-system redundancy elimination service
for enterprises. In NSDI, pages 419–432, 2010.

[23] Clarence Filsfils, Francois Clad, Pablo Camarillo, Jose Liste, Prem
Jonnalagadda, Milad Sharif, Stefano Salsano, and Ahmed AbdelSalam.
Ipv6 segment routing. In SIGCOMM’17, Industrial demos, August 2017.

[24] David Lebrun and Olivier Bonaventure. Implementing IPv6 Segment
Routing in the Linux Kernel. In Proceedings of the 2017 Applied
Networking Research Workshop. ACM, July 2017.

[25] P. Camarillo et al. Srv6 network programming. Internet draft, draft-
filsfils-spring-srv6-network-programming-02, work in progress, October
2017.

[26] wrk - a HTTP benchmarking tool. https://github.com/wg/wrk. Accessed:
2017-12-31.

[27] perf: Linux profiling with performance counters. https://perf.wiki.kernel.
org/. Accessed: 2018-03-29.

[28] Ahmed AbdelSalam, Francois Clad, Clarence Filsfils, Stefano Salsano,
Giuseppe Siracusano, and Luca Veltri. Implementation of virtual
network function chaining through segment routing in a linux-based nfv
infrastructure. In IEEE Conference on Network Softwarization (NetSoft),
Bologna, Italy, July 2017.

[29] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. Netvm: High
performance and flexible networking using virtualization on commodity
platforms. In Proceedings of the 11th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’14, pages 445–458,
Berkeley, CA, USA, 2014. USENIX Association.

[30] James W. Anderson, Ryan Braud, Rishi Kapoor, George Porter, and
Amin Vahdat. xomb: Extensible open middleboxes with commodity
servers. In Proceedings of the Eighth ACM/IEEE Symposium on
Architectures for Networking and Communications Systems, ANCS ’12,
pages 49–60, New York, NY, USA, 2012. ACM.

[31] Motomu Utsumi, Hajime Tazaki, , and Hiroshi Esaki. /dev/stdpkt:
A service chaining architecture with pipelined operating system in-
stances in a unix shell. In AINTEC ’17: Asian Internet Engineering
Conference, Bangkok, Thailand, November 20–22 2017.

