
Towards Test-Driven Software Defined Networking

David Lebrun, Stefano Vissicchio, Olivier Bonaventure
Université catholique de Louvain, ICTEAM
Email: firstname.secondname@uclouvain.be

Abstract—To configure, troubleshoot and operate their net-
works, operators often have no alternatives than relying on
error-prone manual procedures. The emerging Software Defined
Networking paradigm opens new possibilities for more structured
networking methodologies. We argue that provably-effective prac-
tices can be borrowed from more developed engineering fields,
especially software engineering.

In this paper, we propose an adaptation of test-driven soft-
ware development methodologies to software defined networks
(SDNs). To support our methodological guidelines, we propose
an expressive requirement formalization language. Further, we
describe a prototype tool able to check the compliance of an SDN
controller with requirements expressed in the proposed language.
Our evaluation of the prototype shows promising results on the
practical viability of our approach.

I. INTRODUCTION

Despite the criticality of computer networks, the tools used
by operators to design, operate and manage their networks are
still fairly basic. Mostly, operators rely on low-level configura-
tion files held by network devices, and they tend to miss high-
level network requirements and objectives. Often, the network
requirements themselves are imprecisely defined [1]. Indeed, it
is not rare that “specifications” produced by network operators
consists in a limited set of PowerPoint slides.

With the growing development of Software Defined Net-
working, computer networks are currently on the verge of an
epochal paradigm shift. If this shift occurred, networks would
be completely managed and operated by logically centralized
software controllers. The promise is to deploy a more flexible
interface to program the network behavior, and to unlock
vendor dependencies. Beyond providing those powerful man-
agement knobs, we argue that Software Defined Networking
offers the possibility of adapting software engineering prin-
ciples and practices to improve network design, configuration
and test. This would enrich the networking practices with solid
and effective methodologies like those defined by software
engineers to develop mission critical systems.

In this paper, we make a first step towards a test-driven
methodology for Software Defined Networks (SDNs). Our
methodology is inspired by software deployment best prac-
tices, that are based on the formal definition of requirements
and identify iterative testing practices as a guide [2], [3].
In those approaches, well-defined test suites are indeed used
to identify bugs as quickly as possible during the software
development and verify that code modifications do not dis-
rupt previously accommodated requirements. Similarly, in our

Stefano Vissicchio is a postdoctoral researcher of the Belgian fund for
scientific research (F.R.S.-FNRS).

methodology, a central role is played by automated network
testing of formalized requirements. The network testing activ-
ity is prescribed before applying any change to the (controller
of the) network. To enable frequent and safe network tests, we
rely on the reproducibility of SDNs to build a testing SDN
analogous to software test environments.

Our current proposal is tailored to data path requirements,
i.e., requirements on the shape of forwarding paths followed
by user traffic flows. Our choice is motivated by the primary
importance of this kind of requirements, which resemble func-
tional requirements in computer networks (e.g., by permitting
and denying communication between end hosts). Moreover,
they can be powerful enablers for network function virtual-
ization [4] and can reflect a wide range of important network
objectives, like fine-grained traffic engineering, security and
service chaining via traversal of middle-boxes [5], [6], [7].

After presenting an overview the test-driven methodology
(Section II), this paper develops the following contributions.

Firstly, to allow automation and reproducibility of network
tests, we define a high-level formal language that allows oper-
ators to express complex data path requirements as it would be
needed for SDNs (Section III). Our proposed language, which
we called Data Path Requirement Language (DPRL), extends
the previously proposed FML language [8] to support arbitrary
constraints on data paths. Such a support is provided by new
constructs and by the definition of a regular grammar allowing
the specification of network devices and links that have to be
traversed either in sequence or in alternative.

Secondly, we describe and evaluate a prototype require-
ment checker for automated testing of data path requirements
(Section IV). To ensure independence from hardware imple-
mentations, our prototype currently uses a Mininet emulated
network [9] as testing SDN. Starting from DPRL statements,
the checker generates the corresponding test packets, injects
them into the testing SDN, tracks the data path followed by
each test packet, and checks whether all the specified network
requirements are satisfied. In particular, to check requirement
accommodation, the prototype transforms DRPL statements
into automata, and verifies that the string representing the data
paths followed by each test packet is accepted by the corre-
sponding automaton. We perform an experimental evaluation
of our prototype. The prototype currently has limited testing
abilities, and our experiments were not targeted to a complete
evaluation of the tool itself. However, our evaluation highlights
functional correctness and good scalability properties of our
prototype, and shows the practical viability of automated pre-
deployment tests for SDNs.

Finally, we describe how our proposals complement re-
search efforts both in traditional networks and in SDNs (Sec-
tion V), and we draw the conclusions (Section VI).978-1-4799-0913-1/14/$31.00 c© 2014 IEEE

II. A METHODOLOGY FOR TESTING DATA PATH
REQUIREMENTS IN SOFTWARE DEFINED NETWORKS

One basic function of computer networks is to allow (or
deny) data exchanges between remote end points, e.g., hosts
and servers. By configuring network devices, operators can
decide paths on which data are forwarded. Different data paths
correspond to different performance and resource utilizations.

In the following, we refer with data path requirements to
constraints on the shape of data paths that have to be enforced
between pairs of sources and destinations in a network. An
example of data path requirement is reported in the bottom part
of Fig. 1, while the rest of the figure depicts the topology of
a network to which the requirement applies. The requirement
imposes the traversal of a sequence of middle-boxes, consisting
of one network monitor and one firewall. Note that some
middle-boxes (i.e., the two firewalls) can alternatively be
present in the data path.

Fig. 1. Example of data path requirement.

Data path requirements are crucial in many networks. A
basic data path requirement is represented by binary connec-
tivity between end points. Binary connectivity corresponds to
services like VLANs in switched Ethernet networks or VPNs
in service provider networks. Moreover, this constraint must
be enforced in many enterprise networks, often for security
reasons [5]. Nevertheless, network operators’ objectives go far
beyond binary connectivity. For example, when an operator
configures IGP weights, she indicates her preference for some
paths over others, typically for traffic engineering purposes.
In enterprise networks, operators often need to force traffic to
pass through specific middle-boxes [7] or avoid some parts of
the network [10]. For example, traffic to a server may always
need to traverse a firewall. In some networks, the traffic must
be load-balanced between several firewalls for performance
reasons. In banks, security policies might require access to
an e-banking server to pass through two consecutive firewalls
from different vendors. In other enterprises, Web access must
go through one of the enterprise proxies while IPSec traffic can
exit the network without constraint and other services must
pass through a socks proxy. This kind of policy steering
deserves more and more attention and promises to be a key
point in favor of SDN adoption [6].

Requirements

FORMALIZATION TESTING

SDN ControllerTesting SDN

DEPLOYMENT REVISION

Tests OK Tests KO

Production SDN

Fig. 2. Block diagram of our methodology.

Software Defined Networking promises to enable more
fine-grained control of traffic flows through network logic
centralization. In SDNs, centralized software controllers are
responsible for computing data paths for each incoming traffic
flow, and for configuring network devices accordingly. Logic
centralization effectively translates to the possibility to ac-
commodate more complex requirements, e.g., by exploiting
Network Function Virtualization [4]. However, implementing
and deploying an SDN controller that satisfies specific require-
ments are still open problems.

We propose to fill this gap for SDNs by relying on a
test-driven approach. In particular, we propose to rely on the
reproducibility of SDNs to check the compliance of SDN
controllers with given data path requirements. Indeed, SDN
logic centralization eases the construction of a testing network
which is a one-to-one copy of a given production network,
and to test the production software on such a testing network
(see, e.g., [11]). Testing networks represents controlled en-
vironments, similar to test software deployments, in which
unverified controllers do not disrupt user traffic. Moreover,
testing SDN do not need production-level equipment as they
can be built on emulation platforms like Mininet [9].

Fig. 2 shows an overview of our approach, as a block
diagram of the activities to be performed each time a change
occurs to network requirements or to SDN controllers. Activ-
ities are identified by rectangles, and precedence constraints
between activities are represented by solid arrows. The input
to each activity is specified using text in bold and dashed
arrows. The first step in our approach is to formalize the
data path requirements. The formalization has a documentation
function and enables automatic verification of requirements
on the testing network. Tests are prescribed to be run on the
testing network before the deployment of any change in the
network. A revision activity, to tweak the intended controller
modification, has to be performed if some tests failed.

By enabling verification of one requirement at a time, this
methodology supports an equivalent of software unit tests,
targeted to check the correctness of single software functions.
Moreover, our approach supports regression testing, i.e., check-
ing that the accommodation of new or modified requirements
does not negatively affect the satisfaction of all the unmodified
requirements. Indeed, the requirement specification can be
evolved over time following the evolution of requirements, and
comprehensive sets of tests can be run on the full requirement
specification each time a requirement is added or changed.

In order to show the viability of the proposed approach, we
define a formal language to express data path requirements, and
we developed a prototype software supporting the automatic
testing phase. We provide more details on those contributions
in the following sections.

III. A FORMAL LANGUAGE FOR DATA PATH
REQUIREMENTS

The first component for any test-driven methodology is a
model. According to [3], a model should be compact, predic-
tive, semantically meaningful and sufficiently general. Network
operators rarely use such models. They typically use graphs
with different types of attributes to represent their network
topology. However, the main complexity of the network lies in
the configuration of all the network devices. Such configuration
does not meet the requirements for a good model. In the
following, we propose a better model based on a tailored
language to express network requirements.

A. FML

The starting point of our proposal is the FML language pro-
posed in [8]. The basic building blocks in the FML language
are predicates and rules. A predicate is a symbol, or keyword,
associated with a fixed number of arguments. An FML rule is
defined as follows.

h⇐ [¬]b1 ∧ · · · ∧ [¬]bn

The left part of the rule, i.e., h, is called head and is a predicate.
The right part is the body of the rule. Each bi, with i = 1, . . . , n
is a boolean expression matching the value of a header field in
incoming packets. Intuitively, each rule represents an if-then
statement, in which the body defines the condition under which
the rule applies (the if) and the head defines the type of action
to be performed (the then).

A context of predicates is associated to each rule. A rule
is well-formed if all the variables in the body appear in the
head, and if h does not contain any predicate g ∈ G, where G
is its associated context. Moreover, the first argument of the
head must be F , to indicate that the predicates apply to all
the flows F matching the conditions expressed in the body of
the rule. More precisely, F is defined as a vector containing
several values that can be used in the boolean expressions in
the body of any rule. Indeed, a rule applies to all and only
the flows whose values match the conditions expressed in the
body of the rule. In the following examples, we focus on the
source of the flow Hs, the destination of the flow Ht and the
protocol Prot.

An FML specification consists of the context definition
and of a list of rules. Network devices are identified by
unique names. In general, a flow can match the conditions
expressed by several rules. In such a case, there is a conflict
between rules to be applied to the flow. In the original FML
specification, a precedence between rules has to be defined
on a per-application basis. Then, for each flow, the conflict
resolution mechanism keeps only the constraints with the
highest priority. In the following, we always assume that a
sequential precedence between rules, i.e., the rules specified
before have higher preference.

B. DPRL

We extend the syntax of the FML language in several ways,
in order to support intuitive and high-level definition of non-
trivial data path requirements. We called the resulting language
Data Path Requirement Language (DPRL). In the following,
we discuss our extensions one at the time.

1) Expression of arbitrary data paths: FML defines pred-
icates to allow or deny binary connectivity, and to indicate
the need for a flow to traverse a single waypoint. However,
many current networks and future SDNs would need support
for more complex data path requirements, like traversal of
multiple middle-boxes in sequence or in alternative. To this
end, DPRL extends FML for capturing different kinds of data
path requirements, including (i) binary connectivity, (ii) strict
source routing across a fixed list of network nodes, (iii) loose
source routing in which traversal of specific nodes has to be
guaranteed (e.g., for traffic steering through middle-boxes), and
(iv) path length restriction (e.g., for performance purposes).

To express this wide range of data path requirements,
we add the path keyword to the allow and deny predicates
defined in FML for binary connectivity. The path predicate
takes one argument p in addition to the specification of the
matching flows F . Hence,

path(F , p)⇐ [¬]b1 ∧ · · · ∧ [¬]bn

The argument p is a string representing the valid paths for the
flows matching the bi boolean expressions. More precisely, p
is a string belonging to a tailored regular language which we
describe in the following.

Our regular language is defined on the alphabet Σ of the
language is constituted by the set of all the network device
identifiers, plus a special symbol . (dot), representing any
(unspecified) device. The language includes three operators.

• The concatenation operator “,” that applies to two
device identifiers and is equivalent to a logical con-
junction. In particular, given two device identifier s
and t, s, t indicates that t must follow s on the path.

• The union operator “|” that applies to two identifiers
and is equivalent to a logical disjunction. Given two
device identifier s and t, s|t translates to having either
s or t in the path.

• The Kleene star operator “∗” that matches the preced-
ing symbol zero or more times. For example, it can
be used in combination with the dot symbol to match
“any node, any times”.

Normally, the Kleene star operator has to be applied before
the union operator, which in turn has precedence over the
concatenation one. Parentheses are used to indicate custom
precedences between operators. For example, (a|b)∗ postpones
the application of ∗ after the evaluation of a|b.

Observe that strings of this regular language can be ana-
lyzed in linear time. This is the main reason why we decided
not to rely on standard regular expressions like those supported
by PCRE [12]. Indeed, the language generated by regular
expressions cannot be expressed by a Type-3 grammar in
the Chomsky hierarchy, hence making the analysis of regular
expressions computationally inefficient.

Also, note that, by definition of our regular language,
the path keyword generalizes the waypoint predicate defined
in FML to impose the traversal of a single device. Indeed,
waypoint(F , s) ⇐ . . . can be expressed by a DPRL rule
having path(F , ’.∗, s, .∗’) as head. However, the path keyword
can express more complex data path requirements like traversal
of multiple network nodes, in sequence or in parallel. For
example, the requirement in Fig. 1 is impossible to express
in FML, while it is straightforward to express with a DPRL
rule whose head is path(F , ’.∗,m, .∗, f1|f2, .∗, r’).

Other examples of data path requirements for the network
in Fig. 3 follow. Those examples are meant to illustrate
the expressive power of our regular language for practical
networking goals. For simplicity, all the requirements are on
the path to be followed from X to Y .

• Source routing, e.g., the flow must traverse all and
only s1, s3, s4 and s6
path(F , ’s1, s3, s4, s6’)⇐ Hs = X ∧Ht = Y

• Middleboxing, e.g., the flow must cross s3
path(F , ’.∗, s3, . ∗ ’)⇐ Hs = X ∧Ht = Y

• Middleboxing with multiple waypoints, e.g., the flow
must pass through s3 and s4, in this order
path(F , ’.∗, s3, .∗, s4, . ∗ ’)⇐ Hs = X ∧Ht = Y

• Link traversal, e.g., the flow must traverse link (s3, s4)
path(F , ’.∗, s3, s4, . ∗ ’)⇐ Hs = X ∧Ht = Y

• Endpoint restriction, e.g., the data path must start at
s1 and end at s6
path(F , ’s1, .∗, s6’)⇐ Hs = X ∧Ht = Y

• Node avoidance, e.g., the flow must not cross s2
path(F , ’(s1|s3|s4|s5|s6) ∗ ’)⇐ Hs = X ∧Ht = Y

• Path length restriction, e.g., the data path must have
exactly 3 hops
path(F , ’., ., .’)⇐ Hs = X ∧Ht = Y

X Y

s1

s2

s3

s4

s5

s6

Fig. 3. Example network for path constraints

Observe that only the loose source routing with a single
waypoint can be expressed in FML, even if they could be
useful in realistic network settings.

2) Expression of alternative requirements: FML directly
supports the specification of one requirement per flow. Indeed,
if multiple requirements concern the same flow, they are solved
with a conflict resolution mechanism which keeps only one of
the matching requirements. However, in real-world cases, data
path requirements may be enforced in alternative. For instance,
this case occurs when requirements have to be specified on
backup paths, e.g., to be used in case of critical network load
or in case of a network failure, for the same flow. Moreover,
alternative requirements can apply to different flows. For
example, a network operator may want that a gateway g1 is

traversed either by all the flows from a source LAN L1 or
by all the flows from a source LAN L2, in order not to mix
flows from L1 and L2. Similarly, given a source LAN L, it
may be desirable that either all the flows from L traverse a
single gateway g1, or that half of the flows from L traverse
gateway g2 and the other half are routed through g3. This may
be due to performance or capacity restrictions of g2 and g3. To
support requirements on alternative data paths and alternative
requirements, we introduce prioritized sets of rules in DPRL.

Informally, a set is a group of rules that have to be satisfied
in a coordinated way. More precisely, a set is a group of rules,
such that each rule is assigned an integer value denoting the
subset it belongs to. A subset S′ of a set S is satisfied if all
the rules belonging to S′ are satisfied. A set is satisfied if one
and only one subset is satisfied. Each rule in a set is defined
as : set : subset : rule, where set is the name of the set
and subset is the name of the subset of the rule. Intuitively,
subsets correspond to alternative groups of requirements that
have to be satisfied at the same time. Consider, for example,
the set grptest defined by the following statements.

: grptest : 1 : h⇐ ...(a)

: grptest : 1 : h⇐ ...(b)

: grptest : 2 : h⇐ ...(c)

: grptest : 3 : h⇐ ...(d)

Subset 1 is satisfied if either rules a and b are both satisfied.
The subsets 2 and 3 are satisfied if rules c and d, respectively,
are satisfied. The entire set grptest is satisfied if one and only
one level is satisfied.

3) Syntactic sugar: Finally, in order for high-level specifi-
cations to be expressed more easily in DRPL, we add support
for custom aliases. An alias is a syntactic shortcut for a
boolean expression without variables. Formally, we denote
a : b an alias in which a is a shortcut for the boolean expression
b. Aliases can be used inside the body of DPRL rules, with
the purpose of making rules clearer and closer to requirement
definition. When a rule will be evaluated, however, aliases have
to be replaced using their respective definitions. The easiest
aliases substitute device identifiers As an example, an alias
firewalls : f1 ∨ f2 can be used to simplify the DPRL rule
corresponding to the requirement in Fig. 1. Protocols can also
be defined as aliases. For example, we can define HTTP
as HTTP : proto = tcp ∧ port = 80. Finally, boolean
expressions on paths can be grouped together using aliases.
Such path aliases can be passed to the path predicate as
arguments. This is often useful for readability and conciseness
if the same group of paths has to be imposed to several flows,
as in the following example.

paths1 = ’s1, s2, . ∗ ’ ∨ ’s3, s4, . ∗ ’
path(F , paths1)⇐ Hs = X ∧Ht = Y

path(F , paths1)⇐ Hs = X1 ∧Ht = Y1

path(F , paths1)⇐ Hs = Y ∧Ht = Y1

Path aliases are replaced by convenient sets at compilation
time. In the example above, for instance, the alias path1 has
to be replaced by a set with two subset containing ’s1, s2, .∗ ’
and ’s3, s4, . ∗ ’ respectively.

Fig. 4. A hospital network.

C. DPRL Example

To illustrate the expressiveness of DPRL, we now provide
a formalization of realistic requirements for a large hospital
network. The network is depicted in Fig. 4. The hospital has
three WAN connections, i.e., a primary, a backup, and a special
high availability (HA) WAN used for remotely controlled
surgeries. Each WAN is accessed via a different router (not
shown in the figure). The internal LANs comprise guests,
wireless staff, wired staff and operating rooms. The main
requirements are: (1) guests and staff connected through a
WLAN can only access the Internet, (2) hosts in the LAN
staff can access any other subnetwork but the remote surgery
one, (3) the remote surgery room cannot be accessed from
the outside, (4) the remote surgery can exchange only TCP
packets with destinations reachable through the WAN, (5) the
flows from and to the operating room must go through the
HA WAN connection, i.e., they can be forwarded through the
primary or backup connections if and only if the HA WAN
cannot be used to reach the flow destinations.

All these requirements can be simply expressed in
DPRL as in Fig. 5. Lines starting with # identify com-
ments. Moreover, prim wan id range, bak wan id range
and ha wan range id indicate a range of host identifiers
(e.g., IP prefixes) reachable through the primary, the backup
and the HA WAN respectively. Note that expressing the same
requirements in FML would have been impossible because of
the absence of aliases, sets and the path keyword.

IV. FROM REQUIREMENTS TO TESTS

Section III describes a language to formalize network
requirements. We now describe how to automatically translate
formalized requirements in pre-deployment tests.

A. Design and Implementation

To evaluate the feasibility of a test-driven methodology in
SDNs, we developed a prototype checker, which we called
TASTE (Toolkit for Automated Sdn TEsting) [13]. The goal
of TASTE is to test compliance of an input SDN controller

Define aliases for hosts
wlan : wlan ap id

staff : h1 ∨ · · · ∨ hm

surgery : i1 ∨ · · · ∨ in

ha wan : ha wan id range

wan : prim wan id range ∨ bak wan id range ∨ ha wan

WLAN access restrictions

allow(F)⇐ Hs = wlan ∧Ht ∈ wan

allow(F)⇐ Hs ∈ wan ∧Ht = wlan

deny(F)⇐ Hs = wlan

Isolate operating room

allow(F)⇐ Hs = surgery ∧Ht ∈ wan ∧ Proto = TCP

allow(F)⇐ Hs ∈ wan ∧Ht = surgery ∧ Proto = TCP

∧ Tcp syn = 0

deny(F)⇐ Ht = surgery

operating room flows go via HA connection if possible

: out : 1 : path(F , ’s ha’)⇐ Hs = surgery ∧Ht ∈ ha wan

: out : 2 : path(F , ’.∗, s prim’)⇐ Hs = surgery ∧Ht ∈ wan

∧Ht 6∈ ha wan

: out : 3 : path(F , ’.∗, s bak’)⇐ Hs = surgery ∧Ht ∈ wan

∧Ht 6∈ ha wan

: in : 1 : path(F , ’s ha’)⇐ Ht = surgery ∧Hs ∈ ha wan

: in : 2 : path(F , ’.∗, s prim’)⇐ Ht = surgery ∧Hs ∈ wan

∧Hs 6∈ ha wan

: in : 3 : path(F , ’.∗, s bak’)⇐ Ht = surgery ∧Hs ∈ wan

∧Hs 6∈ ha wan

Fig. 5. Requirements for the hospital network in Fig. 4.

with given formalized requirements. To this end, our prototype
generates test packets from DPRL rules, injects those packets
in an emulated network, and collects and analyzes test packet
traces. The tool is designed by assuming that it is logically
separated from the tested controller and that it can connect to
all the switches in the testing SDN.

Our prototype runs on top of the Mininet platform [9]. The
software has been implemented from scratch and is composed
of about 2,500 lines of python code. The source code of our
prototype is available at [13]. Our implementation includes the
following components. Two basic components of the tool are
devoted to the support of languages and protocols. The first of
those two components implements a subset of the OpenFlow
protocol to interact with OpenVSwitch. The second one is a
parser of network requirements expressed in DPRL. It supports
all the constructs described in Section III and uses an input
file to map DPRL device identifiers to MAC addresses of
OpenFlow switches. However, it currently supports comparison
on a subset of flow values, namely the source of the flow Hs,
the destination of the flow Ht and the protocol Prot. While
this would be a major limitation for a real tool, we considered
it as tolerable since we focused on showing the feasibility of
our proposed test-driven approach.

The core components of the prototype are the ones respon-
sible for generating and running the network tests. Fig. 6 shows

Fig. 6. TASTE architecture.

an overview of those core components and of their interactions.

To generate test packets, our prototype includes a test
generator module. The test generator maps each DRPL rule to
test packets that match the conditions expressed by the body
of rule. Moreover, it is responsible for limiting the number of
generated test packets. In our prototype, test packets are UDP
packets destined to the port of the protocol specified in the
considered rule. If no protocol is specified, then we use port
64242, i.e., an arbitrary port which is not a well-known one.
Observe that this approach is sufficient to check whether a
single protocol (or basic communication) is allowed or denied
between a given pair of hosts. However, in some cases, more
test packets per rule may be needed, e.g., to guarantee that all
possible protocols are denied between a certain pair of hosts.
As a first step to limit the duration of the testing phase, the
generator currently includes a simple test reduction technique
that uses only one test packet for checking all the DRPL rules
with the same body. We plan to improve our prototype in
future work, by investigating efficiency and scalability issues
related to the number of test packets, and adding support for
more refined network test reduction techniques (e.g., [14], [15],
[16]).

Another important task of the generator is to modify
the flow tables of the switches in testing SDN so that the
path followed by test packets can be tracked. In particular,
the generator configures the switches in the testing SDN
to send a truncated copy of transmitted packets to another
component of the tool, i.e., the collector module. Observe
that the packet tracking mechanism we implemented is similar
to the NDB tool described in [17]. However, we generate
the packets corresponding to the specified requirements while
NDB processes only the regular packets transmitted inside the
network. Moreover, NDB directly outputs the collected data
to the user (e.g., packet backtrace), while our approach is to
use them as an input for automatic requirement compliance
checks.

The collector module has two main responsibilities. First, it
injects test packets in the testing SDN, once the test packets are
generated and the switches are properly configured to support

packet tracking. Second, it collects all the truncated copies of
all the injected packets.

Finally, the checker component is responsible to check
compliance of collected traces with the specified requirements.
From the traces, it reconstructs the path taken by each test
packet and checks that they do not violate any requirement.
Moreover, our implementation supports the test of any data
path requirement defined in Section III. In particular, binary
connectivity constraints are verified by checking that the first
switch in the path is connected to the source host and the
last switch is connected to the destination host. If this is
the case, then the allow constraint is verified. Conversely,
if the edge switches are not connected to the source or
destination hosts, the deny constraint is satisfied. Indeed, a
switch sends a packet copy to the controller if and only if
the original packet is actually forwarded by the switch. To
check generic path constraints, we exploit the regularity of our
constraint language. Namely, the checker component builds
a deterministic finite automaton corresponding to each path
constraint. The automaton is able to accept or reject any path
in linear time [18]. The construction of the each automaton is
performed in three steps. First, the expression is transformed
into a NFA (Nondeterministic Finite Automaton) by using the
Thompson algorithm [19]. Second, this NFA is transformed
into a DFA (Deterministic Finite Automaton). Finally, the
DFA is optimized by removing unreachable states or merging
indistinguishable states.

By design, our prototype is suitable for checking whether
a given data path requirements is accommodated by a set
of forwarding rules (e.g., the ones configured on production
network devices), or by a stateless SDN controller whose logic
does not depend on previous traffic received by the SDN.
Moreover, it supports testing of advanced SDN functions like
arbitrary header field re-writing. Indeed, if tests are performed
sequentially, then each test packet can always be tracked in the
testing SDN, independently of the modifications it undergoes.
Finally, it can be used to check distributed SDN controllers,
i.e., it does not rely on any assumption on the number of
controllers installing rules in the same network.

On the flip side, our current prototype does not immediately
fit the case of stateful controllers which behave differently
depending on incoming traffic flows. In this case, additional
modules are needed, i.e., to extract (for example, through
symbolic execution) the conditions (for instance, the number
of incoming flows) under which the given stateful controller
installs different entries in the switches, and to recreate those
conditions in the testing network. Similarly, we expect that the
current architecture can be extended to test other requirements.
For example, a measurement module can be added to check
dynamic load balancing requirements, e.g., traffic split over
a set of middleboxes depending on the number of incoming
flows. Since in this paper we aim at showing the feasibility
of an SDN test-driven approach for data path requirements, a
full investigation of such architectural extensions are left for
future work.

B. Evaluation

We evaluated our prototype by performing functional,
performance and scalability analyses. We stress that the goal of

our evaluation is to show the viability of a test-driven approach
for networking, and not to fully evaluate the performance of
our prototype software. All the tests were performed with
Mininet in a virtual machine with 1.5GB of RAM and a
CPU i7 620M @ 2.67GHz (two cores, four threads with
HyperThreading, all four were allocated to the virtual machine
as virtual CPUs). Our prototype used Python 2.7.1. For the
sake of brevity, we now report a part of the evaluation we
performed on our prototype. Other results can be found in [13].
They show the ability of our prototype to pinpoint mismatches
between DPRL rules and SDN controller implementation and
apply to different topologies.

We performed functional and performance analyses of our
tool with respect to specific network topologies. In all our
tests, we used rather simple topologies, since effectiveness and
scalability of our prototype do not depend on topology design
nor on the SDN implementation, that are both treated as black
box in our approach. Consider the topology shown in Figure 7,
on which the following constraints must hold.

1) The path between s1 to s4 must go through s2 and
the reverse path via s3.

2) The path from s1 to s5 must go through s3 and the
reverse path via s2

3) The path from s2 or s3 to s6 must go through s4
or s5.

4) All the paths must contain the minimum number of
hops.

s1

s2 s4

s6

s5s3

h11

h12

h21 h22 h41 h42

h61

h62

h51 h52h31 h32

Fig. 7. Test network for path constraints

We coded an OpenFlow controller that modifies the con-
figuration of the switches upon the arrival of new flows. Then,
we verified the correctness of such an OpenFlow controller by
running our prototype checker. Table I reports the time required
(in milliseconds) to generate, inject, collect and verify the test
packets.

Phase Elapsed time (in ms)
Test Generation 69.27
Packet Injection 53.37
Packet Collection 38.72
Checking 4.73

TABLE I. BREAKDOWN OF THE TIME TAKEN BY OUR PROTOTYPE FOR
REQUIREMENT VERIFICATION ON THE NETWORK IN FIG. 7.

We also performed scalability analyses. Observe that the
test generation and checking phases are the most critical ones
from a scalability point of view. The test packet generation
depends on the number and type of requirements and on the
size of the testing SDN. However, generation of many tests
can be factorized over multiple runs of the tool. Indeed, test
packets associated to each requirement (i.e., DPRL rule) can
be stored after the first time they are generated, so that they
do not have to be re-generated for each single change of a
requirement or of the network topology.

The checking phase depends both on the requirements and
on the size of the network. In turn, translating requirements
into automata is a critical operation of the checker from
a performance viewpoint. With a naive implementation, the
dot character would be replaced by a union of all possible
switches. As such, the complexity of the checking phase would
rapidly grow with the number of devices in the network. For
example, with this naive approach, the building time of an
automaton containing one dot character over a alphabet of
512 symbols (e.g., switches) takes about 360 seconds. We
optimized the construction of the automaton by considering
the dot character as any other symbol, i.e., not expanding it.
Moreover, a dot character overrides any other transition from
a given state. With our optimization, the construction time for
an automaton with one dot character over an alphabet of 512
symbols then drops to less than one millisecond.

Requirements Checking time (in sec)
13,699 2.82s
109,600 12.74s
986,409 103.4s

TABLE II. CHECKING TIME ON LARGE NUMBERS OF DATA PATH
REQUIREMENTS (EACH REQUIREMENT IMPOSES A GIVEN DATA PATH).

We performed further scalability tests of the checking
phase by generating a large number of paths and defining
one requirement per path. Table II reports the results of
those scalability experiments. The table shows reasonably low
checking times even for huge numbers of requirements, i.e.,
around 100 seconds for almost 1, 000, 000 requirements. We
stress that those results suggest that the total time taken by our
prototype for the checking phase seems to increase linearly
with respect to the number of requirements.

V. RELATED WORK

Our main contributions span a networking methodology, a
formal language to express network requirements, and a testing
framework, and link them together. Previous contributions
typically focus on one of those three areas, hence we analyze
them separately in the following.

Design and deployment methodologies are rarely the main
target of research efforts. Moreover, the few papers in this area
often restrict to limited and specific use cases (see, e.g., [20]).
As such, methodologies available to operators are often the
ones proposed by vendors on the basis of their consultancy
activity. Despite those methodologies retain a great experience
value, they often resemble old software methodologies and
cost-efficient testing techniques (see, e.g., [21], [22]).

In particular, current network methodologies overlook re-
quirement formalization. Recently, several research efforts
aimed at progressively filling this gap by proposing high-level
languages tailored to SDNs [8], [23], [24]. Some of those
efforts also focuses on some data path requirements [5], [6],
[25]. This paper is mainly complementary to those works.
On one hand, our DPRL language can express more complex
data path requirements, like alternative requirements on backup
paths, than previously proposed languages. On the other hand,
the automated generation of SDN controllers, which is the
main target of that works, can be easily encompassed in our
test-driven methodology and would be strengthened by our
testing framework.

The current lack of methodologies and requirement formal-
ization is also reflected in the limitation of current network
testing practices. There are no well-established theory and
tools that enable to efficiently design and run network tests.
Most operators rely on lab tests that are often described as
a sequence of manual operations [22]. Moreover, the network
tests performed by operators are often limited to run commands
as simple as ping and traceroute, to manually double-
check device configurations or to debug which routes are
received by which devices. Unsurprisingly, configuration errors
are often the cause of network misbehavior and downtime [26].

Shortcomings in current testing practices are attracting
more and more attention from both the industrial and the
research community. In the last years, various testing tech-
niques have been proposed. Some of them (e.g., [27], [28],
[29]) analyze the configuration of traditional networks and are
hard to extend to SDN controller verification, e.g., because
bound to specific network protocols. Others propose testing
frameworks targeted to SDN (e.g., [30], [16]). However, they
are typically tailored to efficient reactive testing, i.e., to timely
detect SDN policy violations. This approach is comparable to
admitting latent errors in software, and may not be suitable
for some network objectives, e.g., security or strict perfor-
mance constraints. We argue that well-established and effective
proactive testing is also needed, both to ensure accommodation
of crucial requirements and to improve network design and
management practices. Finally, techniques based on model
checking and symbolic execution have been proposed to assess
the correctness of SDN controller software (e.g., [31], [32]).
Our framework includes a more expressive and high-level
formal language to express correctness properties (stated as
snippets of Python code in [31]), and our approach is more
flexible, e.g., it directly applies to distributed SDN controllers.
Nevertheless, we plan to explore the integration of previous
testing techniques in our framework in future work, e.g., to
improve efficiency and scalability of our prototype.

VI. CONCLUSIONS

Software Defined Networks (SDNs) are expected to change
the way networks are configured and managed. This opens new
possibilities for more formal and structured methodologies to
be introduced in network design and operation.

In this paper, we explored an adaptation of test-driven
techniques commonly used in software engineering. Because
of their primary importance, our methodology is tailored
to data path requirements. To realize this methodology, we

identified two main missing building blocks, and we presented
proposals to fill this gap. First, we defined a formal language
which is powerful enough to express the wide variety of data
path requirements. Second, we designed, implemented and
evaluated a testing framework to check the accommodation
of requirements expressed in the proposed language. As such,
our framework complements recent efforts for network config-
uration generation and efficient post-deployment testing.

While we focused on data path requirements, our vision is
broader. Indeed, our long-term goal is to deploy methodolog-
ical and practical support for a complete test-driven method-
ology that enables network operators to formalize and pro-
actively test all their requirements, including performance and
resource optimization ones. We argue that this would improve
network design capabilities and significantly help preventing
human errors that are the most common source of network
mis-behaviors and downtime [26].

ACKNOWLEDGEMENT

This work has been supported by the ARC grant 13/18-054
from Communauté française de Belgique.

REFERENCES

[1] J. D. McCabe, Network analysis, architecture, and design. Morgan
Kaufmann, 2010.

[2] A. van Lamsweerde, “Requirements engineering: from craft to disci-
pline,” in SIGSOFT, 2008.

[3] M. Pezze and M. Young, Software testing and analysis: process,
principles, and techniques. John Wiley & Sons, 2008.

[4] M. Chiosi et al., “Network functions virtualisation - introductory white
paper,” in SDN and OpenFlow World Congress, 2012.

[5] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation: a
slice abstraction for software-defined networks,” in HotSDN, 2012.

[6] Z. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “SIMPLE-
fying middlebox policy enforcement using SDN,” in SIGCOMM, 2013.

[7] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network
processing as a cloud service,” in SIGCOMM, 2012.

[8] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,
“Practical declarative network management,” in WREN, 2009.

[9] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in CoNEXT, 2012.

[10] X. Sun, S. G. Rao, and G. G. Xie, “Modeling complexity of enterprise
routing design,” in CoNEXT, 2012.

[11] S. Jain et al., “B4: experience with a globally-deployed software defined
wan,” in SIGCOMM, 2013.

[12] P. Hazel, “PCRE - Perl-compatible regular expressions,” Available at
http://www.pcre.org/pcre.txt.

[13] D. Lebrun, “TASTE - a Toolkit for Automated Sdn TEsting,” available
at http://inl.info.ucl.ac.be/softwares/taste.

[14] K. Claessen and J. Hughes, “Quickcheck: A lightweight tool for random
testing of haskell programs,” SIGPLAN Not., vol. 35, no. 9, pp. 268–
279, Sep. 2000.

[15] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “Automatic test
packet generation,” in CoNEXT, 2012.

[16] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in NSDI, 2012.

[17] N. Handigol, B. Heller, V. Jeyakumar, D. Mazieres, and N. McKeown,
“Where is the debugger for my software-defined network?” in HotSDN,
2012.

[18] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages and Computation. Addison Wesley, 2001.

[19] A. V. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques
and Tools. Addison Wesley, 1986.

[20] Y.-W. Sung, X. Sun, S. Rao, G. G. Xie, and D. Maltz, “Towards
systematic design of enterprise networks,” IEEE/ACM Trans. Netw.,
vol. 19, no. 3, pp. 695–708, Jun. 2011.

[21] P. Oppenheimer, Top-Down Network Design, ser. Networking Technol-
ogy. Pearson Education, 2010.

[22] A. Sholomon and T. Kunath, Enterprise Network Testing: Testing
Throughout the Network Lifecycle to Maximize Availability and Per-
formance, 1st ed. Cisco Press, 2011.

[23] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: a network programming language,”
SIGPLAN Not., vol. 46, no. 9, pp. 279–291, Sep. 2011.

[24] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Com-
posing Software-Defined Networks,” in NSDI, 2013.

[25] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “FatTire: declarative
fault tolerance for software-defined networks,” in HotSDN, 2013.

[26] Juniper Networks Inc., “What’s Behind Network Downtime?” 2008.
[27] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. Elbadawi, “Network

configuration in a box: towards end-to-end verification of network
reachability and security,” in ICNP, 2009.

[28] L. Cittadini, M. Rimondini, S. Vissicchio, M. Corea, and G. Di Battista,
“From theory to practice: Efficiently checking BGP configurations for
guaranteed convergence,” IEEE Trans. Netw. and Serv. Man., vol. 8,
no. 4, pp. 387–400, 2011.

[29] A. X. Liu and A. R. Khakpour, “Quantifying and verifying reachability
for access controlled networks,” IEEE/ACM Trans. Netw., vol. 21, no. 2,
pp. 551–565, 2013.

[30] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” in HotSDN, 2012.

[31] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford, “A NICE
Way to Test Openflow Applications,” in NSDI, 2012.

[32] M. Kuzniar, M. Canini, and D. Kostic, “OFTEN Testing OpenFlow
Networks,” EWSDN, 2012.

