
Avoiding transient loops
during IGP convergence in IP networks

Pierre Francois, Olivier Bonaventure
Dept CSE, Université catholique de Louvain (UCL), Belgium

Email : {francois,bonaventure}@info.ucl.ac.be
http://www.info.ucl.ac.be

Abstract— When the topology of an IP network changes due
to a link failure or a link metric modification, the routing tables
of all the routers must be updated. Each of those updates may
cause transient loops. In this paper, we prove that by ordering
the updates of the routing tables on the routers, it is possible
to avoid all transient loops during the convergence of ISIS or
OSPF after a planned link failure, an unplanned failure of a
protected link and after a link metric modification. We then
propose a protocol that allows the routers to order the update
of their routing tables to avoid transient loops without requiring
any complex computation.

I. INTRODUCTION

The link-state intradomain routing protocols that are used
in IP networks [1], [2] were designed when IP networks
were research networks carrying best-effort packets. The same
protocols are now used in large commercial IP with stringent
Service Level Agreements (SLA). Today, for most Internet
Service Providers, fast convergence in case of failures is a
key problem that must be solved [3], [4].

Vendors are actively working on improving their implemen-
tations to achieve faster convergence [4], [5]. Solving the fast
convergence problem is complex as it involves detecting the
failure on the attached router, producing a new Link State
Packet (LSP) describing the failure, flooding this new LSP
and finally updating the routing tables in all the routers using
the failed resources in the network.

Achieving very fast convergence in an IP network will also
require temporary tunnels to quickly reroute traffic around fail-
ures, as in MPLS networks [6]. Several solutions to establish
those tunnels have been recently proposed in the literature [7]–
[10]. Unfortunately, in a pure IP network, using a protection
tunnel to locally reroute the traffic around the failed link is not
sufficient as transient microloops may occur during the update
of the routing tables of the other routers in the network. In
fact, a packet that goes in the protection tunnel might not be
forwarded on the shortest path to its destination and thus the
routers have to update their FIB by considering the topology
change in their SPT.

To understand this problem, let us consider the Inter-

Fig. 1: Internet2 topology with IGP costs

net2/Abilene backbone1. Figure 1 shows the IGP topology of
this network. Assume that the link between IPLS and KSCY
fails and that a protection tunnel is established between IPLS
and KSCY via ATLA and HSTN. When ATLA receives a
packet with destination KSCY, it forwards it to IPLS, which
forwards it back to ATLA, but inside the protection tunnel to
KSCY.

But this suboptimal routing should not last long, and thus
the routers must converge, i.e. adapt to the new shortest paths
inside the network and remove the tunnel. If the link is
protected, the reachability of the destinations is still assured
and thus the adaptation to the topological change should be
done by avoiding transient loops rather than by urging the
updates within each router. The new LSP generated by IPLS
indicates that IPLS is now only connected to CHIN and
ATLA. Before the failure, the shortest path from WASH to
KSCY, DNVR, STTL and SNVA was via NYCM, CHIN
and IPLS. After the failure, NYCM will send its packets
to KSCY, DNVR, STTL and SNVA via WASH, ATLA and
HSTN. During the IGP convergence, transient loops may
occur between NYCM and WASH when KSCY-IPLS fails
depending on the order of arrival of the LSPs describing the
failure. If NYCM updates its routing table before WASH, the
packets sent by NYCM to DNVR via WASH will loop on the
WASH-NYCM link. To avoid causing a transient loop between
WASH and NYCM, WASH should update its routing table

1This network is much smaller than large ISP backbones, but it is one of
the few networks whose detailed IGP topology is publically available. We
verified that similar transient loops could occur in larger ISP backbones, but
the size of those backbones and NDA issues prevented us from using them as
examples in this paper. Note that the IGP metricss have been rounded off to
facilitate the understanding of the topology. The round off does not influence
the routing tables of the network.

before NYCM for this particular failure. A detailed analysis
of the Internet2 topology shows that transient routing loops
may occur during the failure of most links, except STTL-
DNVR and STTL-SNVA. The duration of each loop will
depend on how and when the routing table of each router
is updated. Measurements on commercial routers have shown
that updating the routing table may require several hundred of
milliseconds [3], [4]. Thus, transient routing loops of hundred
milliseconds or more are possible [11]. Similar transient loops
can occur in MPLS networks using LDP depending on how
LDP is used [7], [9].

As shown with the simple example above, the transient
routing loops depend on the order in which the updates of the
routing tables are performed. In the remainder of this paper,
we first discuss in section II other types of changes to an
IP Network that must be handled without causing transient
routing loops. In section III, we prove that the updates of the
routing tables can be ordered to avoid transient loops after a
link failure, a link up, or a link metric modification. Then, in
section IV, we present a protocol that permits routers to respect
the proposed orders, without requiring complex computations
in the routers. At last, in section V, we review the solutions
that have already been proposed to enhance the convergence
of IGP. Note that the problem of transient routing loops has
been rarely tackled in the literature.

II. TOPOLOGY CHANGES IN IP NETWORKS

Several types of changes can occur inside the topology of
an IP network. The most common type of failure is the failure
of a link. A network typically contains point-to-point links and
LANs. Point-to-point links are typically used between Points
of Presence (POPs) while LANs are mainly used within POPs.
We focus on point-to-point links in this paper as there are
special techniques to protect LANs [12] used in ISP networks.

When a point-to-point link fails, two cases are possible.
If the link is not locally protected, the IGP should converge
as quickly as possible. If the link is protected with a special
tunnel or another technique [7]–[10], the IGP should converge
without causing transient loops as the traffic passes through the
tunnel during the IGP convergence. We will call such events
link down events in this paper.

It should be noted that link down events are often caused by
manual operations [13] and thus can be considered as planned
events. Surveys conducted by a large ISP [3] revealed that,
over a five month period, 45 % of the failure events occurred
during maintenance hours. Another ISP [14] indicates that
over one month, 75 % of the IS-IS events were caused by
maintenance operations. Another study [15] mentions that 20
% of all link down events were planned. Those planned events
should not cause transient routing loops [14].

It is also important to consider the increasing integration
between the IP network and the underlying optical network.
As the integration with the optical layer increases, the topology
of IP networks will change more frequently than today. For
example, [16] proposed to allow routers to dynamically estab-
lish optical links to handle traffic spikes. Several approaches

have been proposed with MPLS tunnels. Once a new optical
link or MPLS tunnels becomes active, an IGP adjacency will
be established between the attached router and the link will
be advertised in the IGP [17]. Unfortunately, the addition and
removal of each of those tunnels can cause transient loops in
the network.

Another source of changes in IP networks are the IGP
metrics. Today, network operators often change IGP metrics
manually to reroute some traffic in case of sudden traf-
fic increase. Furthermore, several algorithms have also been
proposed to automate this tuning of the IGP metrics for
traffic engineering purposes [18]. Today, those algorithms are
mainly implemented in network planning and management
tools [19]. However, ISPs are still reluctuant to use such tools
to frequently change their IGP metrics as each change may
create transient routing loops in their network.

A second type of important events are those that affect
routers. Routers can fail abruptly, but often routers need to
be rebooted for software upgrades. For example, figure 6 of
[15] shows that during September and October 2002, many
links of the Sprint network “failed” once per week during
maintenance hours. Those failures are probably due to planned
software upgrades of all routers in the network.

When an IS-IS router needs to stop forwarding IP packets,
IS-IS can flood a new LSP indicating the router as overloaded
[2]. Some ISPs have even defined operational procedures [14]
to bring routers down by changing link metrics and setting
the overload bit, but those procedures are not sufficient
to ensure that transient loops will not occur during the IGP
convergence. The graceful restart extensions [20]–[22] could
be used when a router is rebooting. However, those extensions
cannot apply if the maintainance operation jeopardises traffic
forwarding in the router. For example, routers that do not have
the forwarding plane and control plane separated cannot use
those extensions.

As shown by the above discussion, there are many different
types of changes in IP networks that should be handled without
risking to create transient routing loops in the network. If a
protection tunnels is used in the case of a sudden link failure,
the event can be also considered as non-urgent because the
reachability of the nodes is still assured although the protection
paths to reach them can be sub-obtimal.

III. AN ORDER FOR LINK EVENTS

In this section, we show how to handle non-urgent topology
changes. In order to let routers perform the updates of their
Fowarding Information Base (FIB) that correspond to those
topology changes without creating routing loops, we define an
order on the FIB updates on the routers that are impacted by
the topology change. Conceptually, the FIB is a data structure
that reflects the forwarding information contained in the IP
routing table, and that is maintained in each interface of the
router. When the FIB of all the routers are such that they
cannot cause routing loops or loose traffic in a ”blackhole”,
we say that routing is consistent.

Firstly, we introduce some general considerations about the
proposed rerouting schemes. We then present an order to
preserve routing consistency during the convergence phase that
follows a non-urgent link down event. Next, we explain how
to deal with link up events, and, at last, we explain how a link
metric modification can be handled by respecting the same
orders than the ones presented for link up and down events.
Due to space limitations, we do not present the orders on the
FIB updates that follow a router down or a router up event.
However, those orders and corresponding protocols are very
similar to the ones that are described for link events and thus
we give the intuition of these when we present the protocols
for link events.

The proposed orders always allow each router to perform all
the FIB updates corresponding to the event in one shot, once it
has been authorized by its neighbors to do it. In other words,
a router will have to wait for clearance to update the whole set
of destinations that are concerned by the event. This approach
is much appreciated since it does not require to maintain and
propagate state information about all the concerned prefixes
in each concerned routers. For example, when a router R has
to gracefully reroute packets passing through a link (X → Y)
that will be shut down, R will have to wait until a particular
subset of its neighbors have updated their FIB. Once R has
been authorized to update its FIB for this event, it will update
its forwarding information for all the prefixes that are impacted
by the failure of link X ↔ Y , in one shot. Note that X and
Y will update their FIB after all other rerouting routers, and
that the link will only be shut down once both routers have
updated their FIB and thus once packets are not forwarded on
the link anymore.

The proposed orders are not inspired by loop-free distance-
vector routing mechanisms [23]. They come from properties
of the Shortest Path Trees that are computed in all the routers
implementing IS-IS or OSPF. This implies that only small
modifications to the current implementations are required to
implement the order. In fact, the protocol presented in section
IV only needs a read access to the shortest path tree that is
already computed in currently deployed routers.

A. Managing link down events

When an operator shuts an interface down, link state packets
are sent by the attached routers. Some routers of the network
will need to update their FIB to take the topology change
into account. Those routers are said to be rerouting routers for
this topology change. We assume that when a link is being
gracefully shut down, it could remain operational for a short
while in order to let the IGP converge without causing transient
loops nor packet loss. In the case of the failure of a protected
link, the concerned packets arriving at the failing link will
be sent in the tunnel to finally reach their destination, and
thus the IGP convergence should also be performed without
causing transient loops nor packet loss in that case.

Firstly, we introduce a few notations and basic properties of
the IGP routing dynamics. We will then use those properties
to prove the correctness of the proposed order. We always

assume that routing is consistent when the considered event
occurs.

SPTN is the shortest path tree, rooted on N and computed
from the current link state database of N .

P init
A→B is the path followed by packets from A with desti-

nation B, before the event. This path does not contain a loop,
as we assume routing consistency before the event.

P ′
A→B is the path followed by packets from A to B,

immediately after the FIB update of A. By using an order on
the FIB updates, we will prove that this path cannot contain
a loop.

P final
A→B is the path followed by packets from A to B, after

all the routers of the network have converged. This path cannot
contain a loop, as the final routing state is consistent once all
routers have updated their FIB.

If the event makes a node S reroute the packets with
destination D to its neighbor N , then {S, P final

N→D} = P final
S→D .

This is explained by the fact that S will forward packets with
final destination D to N , after its FIB update, and given the
definition of P final

N→D.
Let us assume that link X ↔ Y is going to fail in the

network. The routers having directed link X → Y or Y → X
in their SPT are the affected nodes and will need to compute
a new SPT. They may have to update their FIB, in order to
reflect the changes in their SPT. The routers that do not use
link X ↔ Y in their SPT are not affected by the failure.
The packets transmitted by those routers will be consistently
routed before, during, and after convergence, as none of their
paths to any destination contains link X ↔ Y . This property
is rendered by Lemma III.1. From this lemma, we can deduce
that any rerouting node S never creates routing loops when
it reroutes packets to a node N that is not affected by the
failure, as these packets will always be routed by N (and by
its downstream nexthops) as if the link X ↔ Y never existed.
This is expressed by Proposition III.2.

Lemma III.1

∀S | X → Y /∈ SPTS and Y → X /∈ SPTS :

∀D : P init
S→D = P final

S→D

Proposition III.2

∀N | X → Y /∈ SPTN and Y → X /∈ SPTN :

P ′
S→D = {S, N, . . . , D} ⇒ P ′

S→D = P final
S→D

As an example, let us consider the topology of Figure 1. If
the link SSTL↔ SNV A fails, traffic from DNV R will not
suffer as SSTL↔ SNV A /∈ SPTDNV R. We thus have ∀D :
P init

DNV R→D = P final
DNV R→D. When STTL will perform its FIB

update, it will reroute packets on link STTL→ DNV R. As
∀D : P init

DNV R→D = P final
DNV R→D, this rerouted traffic will

reach its destination.
Next, let us notice that a router S, having the link X → Y

in its SPT, can always reroute compromised packets (packets
to D | D is downstream of X → Y in SPTS), to a neighbor
N that has link Y → X in its SPT, without creating routing

loops. In fact, if those packets passed through link X → Y , N
cannot use link Y → X to reach their destination. Otherwise,
before the failure, those packets would have passed through
both links X → Y and Y → X . This is impossible since
this would imply a routing loop between X and Y before
the event, although routing is assumed to be consistent at
that moment. We thus know that the packets rerouted by a
node using directed link X → Y , to a node using directed
link Y → X , reach a router that is not impacted by the
failure, for this destination, and from which routing to this
destination will thus remain consistent during the convergence
phase. Combining this property with lemma III.1, we obtain
the lemma III.3. It expresses the fact that if a router reaches
a destination D via link X → Y , then routers having link
Y → X or routers that do not have link X ↔ Y in their
SPT are not rerouting routers for destination D, when the link
X ↔ Y fails, and packets with final destination D arriving to
them will be consistently routed towards D.

Lemma III.3

∀D : ∃S | X → Y ∈ P init
S→D :

∀N | Y → X ∈ SPTNorX ↔ Y /∈ SPTN :

P init
N→D = P final

N→D

The proof is done by contradiction. Its reasoning was
presented above.

From this lemma, we can deduce a second proposition,
expressing that any node S using directed link X → Y can
always reroute packets with final destination D to another node
N that does not have the link X → Y in its SPT , without
causing routing loops.

Proposition III.4

∀D, S | PS→D = {S, . . . , X, Y, . . . , D} :

P ′
S→D = {S, N, . . . , D} and X → Y /∈ P init

N→D

⇒ P ′
S→D = P final

S→D

This proposition directly comes from Lemma III.1 and
Lemma III.3, and Proposition III.2

As an example, let us consider the topology of figure 1.
We can see that NY CM → WASH ∈ SPTIPLS and
that WASH → NY CM ∈ SPTATLA. If link NY CM ↔
WASH fails, packets rerouted by ATLA to IPLS have a
final destination which is downstream of link WASH →
NY CM in SPTATLA. Those destinations are reached by
IPLS without using the link NY CM ↔ WASH and
thus the forwarding of packets rerouted by ATLA on link
ATLA→ IPLS will arrive at destination, as they are routed
from IPLS without using the link that will fail.

Thus, it is always safe to reroute traffic to a node that does
not use the failing link, or to a node that uses it, but in the
other direction. We thus may also say that transient routing
loops can only be created between routers sharing the directed
failing link in their SPT.

Now, let us look at rSPTX→Y (Y), the reverse SPT of Y ,
cut at link X ↔ Y . More precisely, this graph is the graph that
contains all (and only) the shortest paths to Y that terminate
with link X → Y . This graph represents all the paths to
Y (and implicitly all the paths through Y) that are affected
by the failure of link X → Y . rSPTX→Y (Y) is an acyclic
graph2 without oriented loops. It contains all the nodes that
use link X → Y to reach Y , and possibly some destinations
downstream of Y 3. The subtree of rSPTX→Y (Y), rooted on a
node A, contains all the routers that use link X → Y to reach
Y , and that reach this link via A. A router R, having no child
on this tree, has thus no neighbor that uses link X → Y and
that reaches it via R. Note that in that case, it is impossible
to find a router of the network that uses link X → Y and
that reaches it thanks to R. If R performs rerouting, after the
failure, it will reroute packets to routers that

• do not use link X → Y , or
• use link X → Y but do not use R to reach it

If a router that is a leaf on rSPTX→Y (Y) performs a FIB
update, it will not cause a routing loop. In fact, the routers
that do not use link X → Y will forward the packets on paths
that remain valid during and after the convergence, and the
routers that use link X → Y but do not use R to reach it will
forward the packets on the compromised but still consistent
paths to their destination.

But, one could wonder if this loop-free property remains
true when the leaves of rSPTX→Y (Y) perform concurrent
updates of their FIB. Moreover, it must be proved that, when
a router R transiently becomes a leaf in this tree, as all the
routers that were using it to reach X → Y have updated their
FIB, it can update its FIB without creating routing loops.

Keeping the previous lemmas and propositions in mind, we
thus need to prove the theorem III.5. This theorem completely
describes the proposed order on the FIB updates to handle a
link failure without causing transient loops.

Theorem III.5 To avoid transient routing loops during the
entire IGP convergence phase following the failure of the link
X → Y , any rerouting router should update its FIB only after
all of its children in rSPTX→Y (Y) have performed their own
FIB update.

Let us assume that the proposed order is respected and let
us consider the forwarding of packets that were previously
forwarded through link X → Y and that reach node R, which
had link X → Y in its SPT , before the event.

If R has not updated its FIB yet, then all the routers on
all the paths from R to X have not updated their FIB yet, as
they respect the proposed order. Note that, by definition of the
SPT, those routers also have the link X → Y in their SPT. R
is thus forwarding compromised packets on the outdated but
consistent paths, passing through link X → Y , and reaching

2If Equal Cost Multipath is not used, rSPTX→Y (Y) is a tree, otherwise
it is an acyclic graph.

3In the case of a network with symetrical link metric assignment,
rSPT (Y) = SPT (Y), by the definition of a shortest path.

their final destination, according to Lemma III.3 and as Y
cannot have link X → Y in its SPT . Note that in the case
of ECM, R may also forward those compromised packets on
paths that do not contain the link X → Y . Those paths will
remain consistent during the convergence phase, according to
Lemma III.1, and will still be used after the IGP convergence.
Proposition III.6 renders this property.

Proposition III.6 If link X → Y ∈ SPTS and S has not
updated its FIB at time t, and if the order defined by Theorem
III.5 is respected by the routers of the network, then

∀D,P t
S→D = P init

S→D

If R has already updated its FIB, we are sure that all the
routers that were using R to reach link X → Y , have already
updated their FIB, as R is respecting the proposed order. R is
now forwarding compromised packets to a new set of nexthops
{N1, N2, . . . , Ni}. Let us look at each particular nexthop Nj .
If Nj has not updated its FIB yet, we are in the case depicted in
the preceding paragraph. Packets rerouted to Nj will not loop
back to R as this router has not updated its FIB yet and thus
its paths to destinations that are reached by passing through
link X → Y , remain used and valid as they are composed of
routers that have not yet updated their FIB (Proposition III.6).
Note that those paths cannot contain R, as R has been allowed
to update its FIB. The other paths from Nj , to compromised
destinations, that do not pass through link X → Y remain
valid during and after convergence. Note that Nj could also
be a router that did not have the link X → Y in its SPT. In that
case, packets rerouted to Nj will be consistently routed until
the end of the convergence phase, according to lemma III.3. If
Nj has already updated its FIB, its case matches the case of R,
depicted in this paragraph. But we can see that packets with
a given destination D cannot loop between routers that have
already updated their FIB or that are non rerouting routers for
destination D. It is obvious, as the contrary would mean that
packet forwarding would remain inconsistent between those
routers when the convergence phase is completed.

Thus, remembering that compromised packets arriving at a
router that has not updated its FIB is proved to be consistently
forwarded to its final destination (Proposition III.6), and as
compromised packets reaching a node that did not use the
oriented link X → Y are proved to be consistently forwarded
to their final destination (Lemma III.3), we can deduce that
packets sent by a node that has already updated its FIB will
follow a (possibly empty) loop-free path crossing nodes that
have already updated their FIB, then it will arrive at a node
that uses link X → Y and that has not updated its FIB or it
will arrive at a node that does not use link X → Y . In both
cases, those packets are proved to be consistently routed to
their final destination.

We have proved that routers respecting the proposed order
cannot bring routing inconsistency during the convergence
phase following an event that must be gracefully handled,
when they perform their FIB update.

In section IV, we describe a protocol that let routers comply
with the presented order on the FIB updates, in the case of a
graceful link shutdown.

B. An order for link-up events

In order to avoid routing loops in the case of a link-up event
(let us assume link X → Y goes up), routers should wait for
the neighbors to which they will reroute some traffic to have
completed a FIB update that considers the link-up. This order
is based on the same observations of the SPT dynamics as for a
link-down event. This time, the rSPT that describes the order
for the FIB updates on the routers is computed by taking the
topology change into account. If link X → Y comes up, X
and Y can update their FIB immediately. But a distant router
has to wait for its parents in rSPT final

X→Y (Y) to have completed
their FIB updates. By proceeding like this, packets are only
rerouted to routers that already use the upcoming link, and thus
traffic inconsistencies cannot happen. This is explained by the
fact that the parents of a rerouting router S in rSPTnew

X→Y (Y)
are the sole routers that will receive rerouted traffic from S,
after the update of S’s FIB. Thus, if all of them have updated
their FIB before S, the FIB update on router S will cause
rerouting to routers that are already using the new link in
their FIB. Thus, packets will follow a path containing ”up to
date” routers, and the packets will thus reach link X → Y .
As X and Y are, by definition of the order, the first routers
that update their FIB, rerouted packets arriving at link X →
Y will be consistently routed to their final destination. The
following proposition expresses this order. Its proof is quite
straightfoward, it is based on the same reasoning.

Proposition III.7 In order to avoid routing inconsistencies
during the convergence phase following the link up of X → Y
in a network, routers should always update their FIB after
their parents in rSPT final

X→Y (Y)

C. Considering metric updates

In the previous sections of this document, we only consid-
ered link-down and link-up events. But, in practice, simple
updates of link metrics can also happen, for example, for
traffic engineering purposes [18]. This kind of events can be
gracefully treated, as they do not imply a direct inconsistency
in the global routing state of the network. In other words,
reachability is still assured between the event and the first
reactions of the routers to this event.

Respecting the same orders as the one described for graceful
link-up and link-down events will assure routing consistency
for link metric decrease and link metric increase, respectively.
In fact, the former orders can be considered as worst cases
for the latter since link-down/up events are metric updates.
Those updates imply rerouting for a set of destinations that
is included in the set of the affected destinations if the event
had been a link-up/down event. So, respecting an order that
assures routing consistency for a “larger” set of destinations
than the actual one, will lead to consistent transient routing
states.

D. Considering router events

The FIB update order to respect when a router is shut down
or comes back up, comes from the same properties of the IGP
routing dynamics. When a router N is shut down, a rerouting
router R should reroute only when all the routers that were
using it to reach N have updated their FIB.

By proceeding like this, compromised packets reaching a
router that has not updated its FIB yet will be fowarded to
routers that have not performed their FIB update either. Those
packets will thus reach a neighbor of N , that will send the
packets to N in the case of a graceful router shutdown, or in
the protection tunnnel in the case of a protected sudden router
failure. As packets that do not reach an ”outdated” router are
proved to reach their destinations, the order to respect is thus
well described by rSPT (N); i.e. a router belonging to this
tree is allowed to update its FIB once its children in the tree
have updated their own FIB.

When N comes back up, a router R will only update its FIB
when all the routers on its new paths to reach N have updated
their FIB. The order to respect is thus also well described by
rSPT (N), but, this time, a router R is allowed to update its
FIB once its parents in the tree have updated their own FIB.

IV. A PROTOCOL TO ORDER FIB UPDATES

To respect the orders on the FIB updates proposed in
section III, a router does not need to compute any graph, tree,
or other complex data structure. When an event occurs, it only
needs to use to the SPT that it already maintains, and exchange
messages with its neighbors.

We first note that it is easy to modify the encoding of the
LSPs to indicate that a link change should be treated gracefully
by all routers inside the network. This information can be
placed in the LSP by defining a new type of TLV field or
by using the syntax proposed in [24]. A router receiving a
LSP containing this TLV will easily determine the change by
comparing the new LSP with the previous one.

To compute the order on the FIB updates, we utilise the
IS-IS4 HELLO PDUs that are regularly exchanged between
neighbouring routers. Usually, those messages are exchanged
to establish the IS-IS adjacency and to detect link or router
failures. This failure detection is achieved by a regular trans-
mission of the HELLO PDUs and the associated Holding-
Timer [2]. However, nothing prevents an IS-IS router from
transmitting HELLO PDUs more often than required by its
HelloTimer. Since HELLO PDUs can also contain sub-TLVs
[2], they can be used to allow the routers to compute the
ordering of the FIB updates described in the previous section.

We define a new type of “event” TLVs that can be optionally
included inside HELLO PDUs. Those “event” TLVs will be
used by a router to determine when it can safely update its
FIB without risking to create transient loops.

The link event TLV is used to indicate a change in the
metric of directed edge upstream→ downstream.

4A similar extension can be defined for OSPF.

It contains the following information : a FIB bit, the LSP
id of the upstream node attached to the link, the LSP id of
the downstream node attached to the link, the old ISIS metric
(a value of MAX_METRIC indicates a new adjacency) and the
new ISIS metric (a value of MAX_METRIC indicates that an
adjacency is being shutdown)

Each router will analyse the FIB bit of the HELLO PDUs
received from its neighbors to determine when it can safely
update its FIB without causing a transient loop.

When router R receives a LSP containing one (or more)
graceful link changes it shall first flood the LSP. All the
graceful changes indicated in the LSP will be placed in a
special memory before being inserted in the LSDB to be used
to compute the SPT and to update the FIB. A router should
only start to handle a graceful change once the LSP describing
the change has been acknowledged by all its neighbors.

Before explaining the protocol, we need to introduce a few
notations. The two types of events that we consider in this
paper are :

• N1 ↑ N2 : the metric of the directed link N1 → N2

increases
• N1 ↓ N2 : the metric of the directed link N1 → N2

decreases
HELLO(E,F) is a shorthand for a HELLO PDU that

contains the event TLV for event E and the FIB bit set to F .
Neighbours(R) is the set of routers that are adjacent to router
R. SPT (R) is the shortest path tree computed by router R,
based on its current LSDB. Nexthops(R,N1) is the set of
neighbors that router R uses as nexthops to reach node N1.
This set may contain several nodes when Equal Cost Multipath
(ECM) is used. We will also use Nexthops(R,N1 → N2)
to indicate the set of nexthops that router R uses to reach
link (N1 → N2). W (E) is the waiting set containing all the
neighbors from which our router must receive a confirmation
before updating its FIB for event E. There is one waiting set
per event being handled. I(E) is the set of nodes to which
our router must send a confirmation after having updated its
FIB for event E.

A. Metric increase events

Let us remember that, in the case of the failure of the link
X → Y , routers are not allowed to update their FIB before
their children in rSPTX→Y (Y). Thus, a router S must wait
for its neighbor N if N is one if its child in this tree. By
definition, this can only be the case if N uses link X → Y
(thus if X → Y ∈ SPTN) and S is the nexthop from N to
X . Thus, N is able to identify the neighbor(s) that will be
allowed to update their FIB only after it has updated its own
one. Note that N could reach link X → Y via S, but reach
S via another path (PN→S) than the link N → S. S will
nevertheless wait for N as S will have to wait for the routers
composing this path, and those routers will have to wait for
N before updating their FIB.

The problem becomes easy to solve. When a router S
receives the LSP describing the failure of link X → Y , it
checks if it is affected by the event (X → Y ∈ SPTS). If it

is, it must identify the routers that it has to wait for. For this,
it sends a special HELLO PDU to each of its neighbors. This
message contains the description of the event, and the FIB bit
which is unset if S uses the neighbor to reach X → Y . A
neighbor N of S will reply to this message to announce S
if it uses it to reach X → Y (by setting the FIB bit or not).
When S received all the answers to its messages, it is able to
identify the neighbors that are its children in rSPTX→Y (Y)
at a distance of one hop. If it is a leaf in this tree, S will only
receive answers with the FIB bit set. It can thus update its
FIB. Once this update is done, it must send a new message,
with the FIB bit set, to the routers to which it previously
sent a message with an unset FIB bit. By doing this, S will
indicate its parents in rSPTX→Y (Y) that S and its children
in rSPTX→Y (Y) have all updated their FIB. If S received
replies with an unset FIB bit from a neighbor N , S must wait
for N to have updated its FIB and sent a new message with
a set FIB bit before it becomes allowed to update its FIB.

Thus, the basic principle of the protocol in the case of
metric increase events is that a router that uses a link whose
metric increases gracefully will not update its FIB until it has
received a HELLO PDU with the FIB bit set to 1 from all
its neighbors.

A typical implementation of this protocol would have to
react to three types of events : the arrival of the LSP indicating
the change, the arrival of a HELLO PDU and the recovery
from lost HELLO PDUs. Figure 2 shows how router R reacts
to a metric increase for link X → Y received in a LSP.
Figure 4 will explain how router R responds to the received
HELLO PDUs and figure 6 describes the utilization of timers
to recover from the possible loss of HELLO PDUs.

Metric increase event for link X → Y :
if (X → Y) ∈ SPT (R) then

W (X ↑ Y) = Neighbours(R);
N(X ↑ Y)=Nexthops(R, X → Y);
foreach N ∈ W (W ↑ Y) do

if N ∈ N(X ↑ Y) then send(N, HELLO(X ↑ Y, 0));
else send(N, HELLO(X ↑ Y, 1));

end
start timer(Timer(X ↑ Y));

end
else

/*No update of the FIB required */
insert(change(X ↑ Y),LSDB);

end

Fig. 2: Processing of link metric increase event

As shown in figure 2, two cases must be considered by a
router processing a metric increase event. If the changing link
is not contained in the router’s SPT, then the router does not
utilize this link. Thus, its FIB is by definition already up-to-
date and the change is inserted in its LSDB. Otherwise, the
router will send HELLO PDUs with the FIB bit set to 0
to the neighbors that it uses to reach the changing link and
HELLO PDUs with the FIB bit set to 1 to the neighbors that
it does not utilize to reach the changing link. The router will
wait until it has received a HELLO PDU with the FIB bit set

to 1 from all its neighbors. This is implemented by using the
W (X ↑ Y) waiting set in figure 4. This set initially contains
all the neighbors of router R. It is updated (see figure 4) each
time a HELLO(X ↑ Y, 1) PDU is received.

The pseudocode of figure 2 can be better understood by
considering for example the graceful failure of link A ↔ B
in a network with four routers (figure 3). When this link
fails, A and B will flood their LSP reporting a metric of
MAX_METRIC for this link. In this network, the RSPT of
router A is C → A ← B ← D (and D → B ← A ← C
for B’s RSPT).

Figure 3 shows the HELLO PDUs that are sent by the
four routers of the simple network when link A ↔ B fails
gracefully. Router C only uses directed link A → B in its
SPT5. Thus, C can already install the change for link B → A
in its LSDB. For the change of link A → B, router C’s
nexthop is A. Router C sends HELLO(A ↑ B, 0) to router
A. This HELLO PDU indicates that router C is a child of
A in rSPTA→B(B). Router C sends HELLO(A ↑ B, 1) to
router D since C does not use D to reach the failed link. The
waiting set of router C for the A ↑ B change initially contains
its neighbors, routers A and D.

Fig. 3: Transmission of the first HELLO PDUs in the simple
network

The order of the FIB updates is defined by the reception of
the HELLO(X ↑ Y, 1) PDUs. Figure 4 shows how a router
will reply to the HELLO PDUs that it receives. A router will
remove a neighbor from its waiting set W (X ↑ Y) once it has
received HELLO(X ↑ Y, 1) from this neighbor. When this
set becomes empty, the router can update its FIB. After the
FIB update, it sends HELLO(X ↑ Y, 1) to all its neighbors.

Figure 5 shows the first wave of the HELLO PDUs sent
in response to the PDUs shown in figure 3. Router C sends
HELLO(B ↑ A, 1) to router D as router C does not
utilize this directed link. For the same reason, router A sends
HELLO(B ↑ A, 1) to router B. As router C has received
HELLO(A ↑ B, 1) from router A, it removes A from
its waiting set for this event, W (A ↑ B). Router A sends
HELLO(A ↑ B, 1) in response to the HELLO(A ↑ B, 0)
sent by router C since C is not used by A to reach link
A→ B.

5As noted earlier, a router cannot utilize both directed links A → B and
B → A in its SPT.

Arrival of HELLO(X ↑ Y, F) from neighbor N :
if FIB ⊂ change(X ↑ Y) then

1 if F==0 then send(N ,HELLO(X ↑ Y, 1));
end
else

/*change(X ↑ Y) is being handled */
if F==1 then

remove(N ,W (X ↑ Y);
if W (X ↑ Y) = ∅ then

insert(change(X ↑ Y),LSDB);
compute(SPT (R));
update(FIB(R));
foreach N ∈ N(X ↑ Y) do
send(N, HELLO(X ↑ Y, 1));

end
end
else

2 if N /∈ N(X ↑ Y) then
send(N, HELLO(X ↑ Y, 1));

end
else
/*If such a HELLO PDU is received, the
LSDBs are inconsistent and the change
should be handled as a normal urgent
change */

end
end

Fig. 4: Processing of a HELLO PDU containing a metric
increase link-event TLV

Besides the reception of the HELLO(X ↑ Y, 1) PDUs that
empty the waiting set, two other cases must be considered.
First, router R could receive a (retransmitted) HELLO PDU
from one of its neighbors after having updated its LSDB
and FIB. In this case, it should reply only if the received
HELLO PDU had its FIB bit set to 0 (line 1 of figure 5).
Second, router R may receive a retransmitted HELLO PDU
with the FIB bit set to 0 (line 2 of figure 5). If this PDU
is received from a neighbor that router R does not use as
a nexthop to reach the changing link, R should reply with
HELLO(X ↑ Y, 1). If router R receives HELLO(X ↑ Y, 0)
from a neighbor that it uses as a nexthop to reach the changing
link, then the LSDBs are inconsistent since there is a potential
routing loop between R and this neighbor. This can happen if
routing was inconsistent when the considered event occured.
For example, this can happen if another event is being treated
urgently, causing transient routing loops, meanwhile routers
are consistently rerouting for the considered event.

Upon reception of HELLO(A ↑ B, 1) from router D, C
will remove D from its waiting set. Since this set becomes
empty, C is allowed to update its FIB. After this update,
router C will send HELLO(A ↑ B, 1) to router A. Upon
reception of HELLO(B ↑ A, 1) from router C, D will
remove C from its waiting set. Since this set becomes empty,
D is allowed to update its FIB. After this update, router D
will send HELLO(B ↑ A, 1) to router B. Upon reception of
HELLO(A ↑ B, 1), the waiting set of router A will become
empty and A will update its FIB. After this update, A will
send HELLO(A ↑ B, 1) to router B. This last HELLO
PDU sent by A will indicate that the A ↑ B event has been

Fig. 5: The first wave of reply HELLO PDUs when link A→
B fails gracefully

gracefully handled. At that time, A knows that it will not send
anymore packets on this link. Before physically shutting down
the link, A should indicate to B that it does not utilize this
link anymore. This could be achieved by sending a HELLO
PDU with the Hold time set to zero as proposed in [25]. A
would then wait until it has received a similar HELLO PDU
from router B to physically shut down the interface.

The last part of the protocol to be considered is the recovery
from the losses of HELLO PDUs. Those losses can be
recovered by protecting the waiting set for each event with a
timer. The default value for this timer should be larger than the
time required to compute the SPT and update the FIB. Figure 6
shows that when this timer expires, the router will retransmit
HELLO PDUs to its neighbors that are still inside its waiting
set. It will send HELLO(X ↑ Y, 0) to the members of the
waiting set that it uses as nexthops to reach link X → Y and
HELLO(X ↑ Y, 1) to the other members of W (X ↑ Y)

Expiration of Timer(X ↑ Y) at router R:
foreach N ∈ W (X ↑ Y) do

if N ∈ N(X ↑ Y) then send(N, HELLO(X ↑ Y, 0)); else
send(N, HELLO(X ↑ Y, 1));

end
start timer(Timer(X ↑ Y));

Fig. 6: Expiration of the timer associated to a metric increase
event

B. Protocol Extension for router events

Such a protocol can be easily adapted to handle router down
events. Roughly, the reverse shortest path tree that defines the
order on the FIB updates in the case of a link down, is ”cut” at
a particular link, as described in III-A. In the case of a router
down event, the whole reverse shortest path tree describes
the order that must be respected. Thus, a router event TLV
can be defined, and the same protocol as the one proposed
for a link event can be applied. In this case, a router R can
compute the subset of its neighbours that will have to wait
for it by computing the value of Nexthops(R,X). In the
case of the link down of X ↔ Y , it was an empty set,
Nexthops(R,X → Y) or Nexthops(R, Y → X), according
to the presence and direction of this link in SPTR.

C. Metric decrease events

In the case of a metric decrease of the link X → Y , a
router S is allowed to update its FIB once all its parents in
rSPT final

X→Y (Y) have updated their FIB. Those parents are the
nodes to which S will forward traffic that will pass through
link X → Y . The neighbors which are parents in this acyclic
graph are thus easy to identify; if X → Y is in the updated
SPT (the SPT that considers the link up), then those parents
are the nexthops used to reach X in this SPT. As those parents
will also wait for their parents, S is allowed to update its FIB
once it knows that its neighbouring parents have updated their
FIB. To be aware of those updates, S can send a message to
its parents. This message contains the description of the event,
and a FIB bit which is unset to announce that the router has
to wait for this neighbor. A neighbor that receives a message
with the FIB bit unset from S will have to advise S once it
has updated its FIB. Once all the parents of S for this event
have sent a message to announce that they have updated their
FIB, S can update its FIB and send a message of the same
kind to the routers that announced to S that they had to wait
for it.

When the metric of a directed link decreases or a link comes
up, two cases must be considered. In the case of a simple
metric decrease, the procedure defined below shall be applied
upon reception of the LSP describing this change. If a link
comes up, the situation is slightly different due to the two-way
connectivity check [2]. An IS-IS router will only consider the
link as up upon arrival of the second LSP describing the link
has been received. In the case of a link up event, the procedure
defined below shall be applied to both LSPs describing the new
link upon reception of the second LSP.

The basic principle of the protocol used to handle a metric
decrease event is that each router that uses the changing link
will first recompute its SPT, according to IS-IS specification.
This new SPT allows a router R to determine whether it will
utilize the changing link or not. If it will, R will also compute
the neighbours that it utilizes as nexthops to reach this link.
The router will send HELLO(X ↓ Y, 0) to those neighbours
since it must wait for their confirmation before updating
its FIB. It will only update its FIB once it has received
HELLO(X ↓ Y, 1) from all those nexthops. After having
updated its FIB, the router will send HELLO(X ↓ Y, 1) to
all its neighbours that sent it a HELLO(X ↓ Y, 0) PDU.

Figure 7 shows the procedure used by a router R to handle
a metric decrease event. Router R first computes its new SPT
taking the change into account. If the changing link does not
belong to this SPT, router R’s FIB is already up to date.
Otherwise, router R will send HELLO(X ↓ Y, 0) to all
the neighbours that it uses to reach link X → Y in its new
SPT. Those PDUs indicate that R is waiting for a confirmation
from these nodes before updating its FIB. W (X ↓ Y) is the
set of neighbours from which a HELLO(X ↓ Y, 1) must
have been received to perform the FIB update. I(X ↓ Y) is
the set of neighbours that are waiting for a confirmation (i.e.
HELLO(X ↓ Y, 1)) from this router to update their FIB.

Metric decrease event for link X → Y :
compute(SPT (R) with change(X ↓ Y));
if (X → Y) ∈ SPT (R) then

W (X ↓ Y)=Nexthops(R, X → Y);
I(X ↓ Y) = ∅;
foreach N ∈ W (X ↓ Y) do
send(N, HELLO(X ↓ Y, 0)); start timer(Timer(X ↓ Y));

end
else

/*No update of the FIB required */
insert(change(X ↓ Y),LSDB);

end

Fig. 7: Processing of a link metric decrease event

Figure 8 shows the HELLO PDUs that are sent by the four
routers in our simple network, when link A ↔ B comes up.
In this example, router C sends HELLO(A ↓ B, 0) to router
A since A is its nexthop to reach the new link. Router A sends
HELLO(A ↓ B, 0) to ensure that the new link is correctly
up.

Fig. 8: The first wave of HELLO PDUs when link A → B
comes up in the simple network

The processing of the HELLO(X ↓ Y, F) PDUs by router
R is described in figure 9. If the change indicated in the
HELLO PDU has already been installed in R’s LSDB and
FIB, it shall reply with HELLO(X ↓ Y, 1) if the FIB bit
was set to 0. This case can happen if R is closer than N to
the changing link. Otherwise, if the HELLO PDU received
from node N had its FIB bit set to 1, it indicates that R
does not need to wait for N to update its FIB. Router R
updates its FIB as soon as its waiting set, W (X ↓ Y), is
empty. After the update, router R sends HELLO(X ↓ Y, 1)
to all the neighbours that it must inform. Those neighbours are
contained in the I(X ↓ Y) set which is updated every time
router R receives HELLO(X ↓ Y, 0).

In our example, the HELLO PDUs shown in figure 8 will be
handled as follows. Router A will place router C in its I(A ↓
B) set upon reception of HELLO(A ↓ B, 0). The waiting set
of A for the new link, W (A ↓ B) initially contains router B.
When router B receives HELLO(A ↓ B, 0) from router A,
it immediately replies with HELLO(A ↓ B, 1) since router
B does not utilize link A → B. For the symetrical reason,
router A sends HELLO(B ↓ A, 1) to router B. The arrival
of HELLO(A ↓ B, 1) allows router A to remove B from
its waiting set. Since its waiting set is empty, router A can
update its FIB and sends HELLO(A ↓ B, 1) to router C

Arrival of HELLO(X ↓ Y, F) from neighbour N :
if FIB ⊂ change(X ↓ Y) then

if F==0 then send(N ,HELLO(X ↓ Y, 1));
end
else

/*change(X ↓ Y) is being handled */
if F==1 then

remove(N ,W (X ↓ Y));
if W (X ↓ Y) = ∅ then

insert(change(X ↓ Y),LSDB);
compute(SPT (R));
update(FIB(R));
foreach N ∈ I(X ↓ Y) do
send(N, HELLO(X ↓ Y, 1));

end
end
else

/*F==0 */
insert(N ,I(X ↓ Y));

end
end

Fig. 9: Processing of a HELLO PDU containing a link-event
TLV indicating a metric decrease event

which belongs to I(A ↓ B). Upon reception of this HELLO
PDU, router C is allowed to update its FIB. For the symetrical
reason, router B will send HELLO(B ↓ A, 1) to router D. At
that time, all routers have updated their FIB without causing
transient routing loops.

As for the metric increase events, the last issue to consider
is how to recover from losses of the HELLO PDUs. As shown
in figure 10, this can be achieved by protecting the waiting set
with a timer and retransmitting the HELLO(X ↓ Y, 0) to the
nodes belonging to this set upon expiration of this timer.

Expiration of Timer(X ↓ Y) at router R:
foreach N ∈ W (X ↓ Y) do

send(N, HELLO(X ↓ Y, 0));
end
start timer(Timer(X ↓ Y));

Fig. 10: Expiration of the timer associated to a metric decrease
event

V. RELATED WORK

The problem of avoiding transient loops during IGP con-
vergence has rarely been studied in the literature although
many authors have proposed solutions to provide loop-free
routing. An existing approach to loop-free rerouting in a link-
state IGP [23] require that the rerouting routers take care
of routing consistency for each of their compromised desti-
nations, separately. In fact, those mechanisms were inspired
by distance-vector protocols loop-free routing mechanisms.
With this kind of approach, a router should ask and wait
clearance from its neighbors for each destination for which
it has to reroute. This implies a potentially large number of
message exchanged between routers, when many destinations
are impacted by the failure. Every time a router receives
clearance from its neighbors for a given destination, it can
only update forwarding information for this particular one.

Thus, those mechanisms require to design routers that are able
to perform incremental updates of their FIB. Our solution
is much simpler, uses fewer messages and can be easily
integrated in existing IGPs. Morevover, they also disregard the
problem of traffic loss in the case of a planned link shutdown.

In [26], a new type of routing protocol allowing to improve
the resilience of IP networks was proposed. This solution
imposes some restrictions on the network topology and ex-
pensive computations on the routers. Moreover, they do not
address the transient issues that occur during the convergence
of their routing protocol. In [27], extensions to link-state
routing protocols are proposed to distribute link state packets
to a subset of the routers after a failure. This fastens the IGP
convergence, but does not solve the transient routing problems
and may cause suboptimal routing.

While finalising our protocol, we learned about another so-
lution [10] that avoids transient micro loops after a link failure
by ordering the computation of the SPF on the routers. Our
solution has two advantages compared to the one described in
[10]. First, we do not need to compute any additional reverse
spanning tree. Second, [10] suggests that routers statically
compute a rank for the update of their routing tables. In fact,
the suggested order is the same as ours, but it has to assume
that all the routers concerned by the event can be rerouting
routers, and thus the time at which a FIB is updated in a router
is a fixed worst-case FIB update time multiplied by the rank
of the router. Roughly, the rank of a router R is the depth
of the tree under R in the rSPT centered on the failure, and
thus the children of R will have a lower rank and thus reroute
before it.

Our protocol can be considered as an optimization for this
proposal. Routers that do not have to spend the whole worst-
case FIB update time will send HELLO messages with the
FIB bit set before their static rank time has elapsed, and thus
unlock the FIB updates of their parents earlier, leading to a
reduced global convergence time.

There are discussions within the IETF about mechanisms
that avoid transient loops during convergence. Our solution
and [10] are appreciated for their full coverage. There also
discussions to shortcut the proposed order by combining it
with the discovery of loop free alternates that come from path
locking [28]. There are also discussions to perform synchro-
nized FIB updates in the routers, to minimize the duration of
the forwarding inconsistencies, rather than avoiding them.

VI. CONCLUSION

In this paper, we have first described the various types of
topology changes that can occur in large IP networks. Recent
measurements indicate that many of those changes are non-
urgent. Furthermore, the failure of all protected links can also
be considered as non urgent. When such a non-urgent change
occurs, the routing tables of all routers must be updated.
Unfortunately, those updates may cause transient routing loops
and each loop may cause packet losses or delays. Large ISPs
require solutions to avoid transient loops after those non-urgent
events.

The first important contribution of this paper is that we have
proved that it is possible to define an order on the updates
of the routing tables that prevents the network from transient
loops. We have proposed an order applicable for the failures
of protected links and the increase of a link metric and another
order for the establishment of a new link or the decrease of
a link metric. We also proposed orders that are applicable in
the case of a non-urgent router down or up event.

Furthermore, we have shown that it is possible to slightly
change the current link state intradomain routing protocols
to allow each router to determine when it can safely update
its routing table after each non-urgent change. The main
advantages of our protocol are that it does not force the
routers to perform complex computations and furthermore the
proposed changes can be easily added to existing link state
routing protocols. Thus, our proposal could be easily used in
large IP networks.

We are currently working on a protocol extension that
permits to handle the cases of SRLG failure. We are also
planning to investigate the problem of performing consistent
FIB udpates when OSPF or IS-IS areas are used.

ACKNOWLEDGMENTS

This work was supported by Cisco Systems within the ICI
project. Any opinions, findings, and conclusions or recomman-
dations expressed in this paper are those of the authors and
do not necessarily reflect the views of Cisco Systems.

We would like to thank Mike Shand, Clarence Filsfils and
Stefano Previdi for their suggestions and comments.

REFERENCES

[1] J. Moy, “OSPF version 2,” Internet Engineering Task Force,
Request for Comments 1247, July 1991. [Online]. Available:
ftp://ftp.isi.edu/in-notes/rfc1247.txt

[2] ISO/IEC, “Intermediate System to Intermediate System intra-domain
routeing information exchange protocol for use in conjunction with the
connectionless-mode network service (ISO 8473),” ISO/IEC, Tech. Rep.
10589:2002(E), April 2002.

[3] G. Iannaccone, C. Chuah, S. Bhattacharyya, and C. Diot, “Feasibility of
IP restoration in a tier-1 backbone,” IEEE Network Magazine, January-
February 2004.

[4] C. Filsfils, “Fast IGP convergence,” January 2004, presented at
RIPE47, http://www.ripe.net/ripe/meetings/ripe-47/presentations/ripe47-
routing-isis.pdf.

[5] C. Alaettinoglu, V. Jacobson, and H. Yu, “Towards millisecond IGP
congergence,” November 2000, internet draft, draft-alaettinoglu-ISIS-
convergence-00.ps, work in progress.

[6] P. Pan, G. Swallow, and A. Atlas, “Fast Reroute Extensions to RSVP-TE
for LSP Tunnels,” March 2004, internet draft, draft-ietf-mpls-rsvp-lsp-
fastreroute-05.txt, work in progress.

[7] N. Shen and P. Pan, “Nexthop Fast ReRoute for IP and MPLS,”
December 2003, internet draft, draft-shen-nhop-fastreroute-00.txt, work
in progress.

[8] M. Shand, “”ip fast reroute framework”,” June 2004, internet draft, draft-
ietf-rtgwg-ipfrr-framework-01.txt.

[9] A. Atlas, R. Torvi, G. Choudhury, C. Martin, B. Imhoff, and D. Fedyk,
“IP/LDP local protection,” February 2004, internet draft, draft-atlas-ip-
local-protect-00.txt, work in progress.

[10] S. Bryant, C. Filsfils, S. Previdi, and M. Shand, “IP Fast Reroute using
tunnels,” May 2004, internet draft, draft-bryant-ipfrr-tunnels-00.txt, work
in progress.

[11] U. Hengartner, S. Moon, R. Mortier, and C. Diot, “Detection and
analysis of routing loops in packet traces,” in Proceedings of the 2nd
ACM SIGCOMM Workshop on Internet measurment. ACM Press, 2002,
pp. 107–112.

[12] S. Spadaro, J. Sol-Pareta, D. Careglio, K. Wajda, and A. Szymanski, “Po-
sitioning of the RPR standard in contemporary operator environments,”
IEEE Network Magazine, vol. 18, March-April 2004.

[13] J. Vasseur and S. Previdi, “Definition of an IS-IS Link Attribute sub-
TLV ,” February 2004, internet draft, draft-vasseur-isis-link-attr-00.txt,
work in progress.

[14] N. Dubois, B. Fondeviole, and N. Michel, “Fast con-
vergence project,” January 2004, presented at RIPE47,
http://www.ripe.net/ripe/meetings/ripe-47/presentations/ripe47-routing-
fcp.pdf.

[15] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and
C. Diot, “Characterization of failures in an IP backbone,” in IEEE
Infocom2004, Hong Kong, March 2004.

[16] P. Pongpaibool, R. Doverspike, M. Roughan, and J. Gottlieb, “Handling
IP traffic surges via optical layer reconfiguration,” Optical Fiber Com-
munication, 2002.

[17] N. Shen and H. Smit, “Calculating IGP routes over Traffic Engineering
tunnels,” December 2003, internet draft, draft-hsmit-mpls-igp-spf-01.txt,
work in progress.

[18] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional
IP routing protocols,” IEEE Communications Magazine, October 2002.

[19] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford,
“Netscope: Traffic engineering for IP networks,” IEEE Network Maga-
zine, March 2000.

[20] A. Shaikh, R. Dube, and A. Varma, “Avoiding Instability during Graceful
Shutdown of OSPF,” in Proc. IEEE INFOCOM, June 2002.

[21] M. Shand and L. Ginsberg, “”restart signaling for IS-IS”,” January 2004,
internet draft, draft-ietf-isis-restart-05.txt, work in progress.

[22] J. Moy, P. Pillay-Esnault, and A. Lindem, “ Hitless OSPF Restart,”
October 2002, internet draft, draft-ietf-ospf-hitless-restart-03.txt, work
in progress.

[23] J. J. Garcia-Luna-Aceves, “A unified approach to loop-free routing using
distance vectors or link states,” SIGCOMM Comput. Commun. Rev.,
vol. 19, no. 4, pp. 212–223, 1989.

[24] Z. Ali, J. Vasseur, and A. Zamfir, “Graceful Shutdown in MPLS Traffic
Engineering Networks ,” June 2004, internet draft, draft-ali-ccamp-mpls-
graceful-shutdown-00.txt, work in progress.

[25] J. Parker, D. McPherson, and C. Alaettinoglu, “Short Adjacency Hold
Times in IS-IS,” July 2001, internet draft, draft-parker-short-isis-hold-
times-01.txt, work in progress.

[26] G. Schollmeier, J. Charzinski, A. Kirstdter, C. Reichert, K. Schrodi,
Y. Glickman, and C. Winkler, “Improving the resilience in IP networks,”
in High performance switching and routing (HPSR’03), Torino, June
2003.

[27] P. Narvez, K.-Y. Siu, and H.-Y. Tzeng, “Local restoration algorithms
for link-state routing protocols,” in Proceedings of the 1999 IEEE
International Conference on Computer Communications and Networks,
1999.

[28] A. Zinin, “Analysis and Minimization of Microloops in Link-state
Routing Protocols,” October 2004, internet draft, draft-zinin-microloop-
analysis-00.txt, work in progress.

