
Reaping the Benefits of IPv6
Segment Routing

David Lebrun

Thesis submitted in partial fulfillment of the requirements for
the Degree of Doctor in Applied Sciences

September 2017

ICTEAM
Louvain School of Engineering

Université catholique de Louvain
Louvain-la-Neuve

Belgium

Thesis Committee:
Pr. Olivier Bonaventure (Advisor) UCLouvain, Belgium
Pr. Thomas Clausen École polytechnique, France
Pr. Charles Pecheur (Chair) UCLouvain, Belgium
Pr. Ramin Sadre UCLouvain, Belgium
Pr. Stefano Salsano Università degli Studi di Roma Tor Vergata, Italy

Reaping the Benefits of IPv6 Segment Routing
by David Lebrun

© David Lebrun 2017
ICTEAM
Université catholique de Louvain
Place Sainte-Barbe, 2
1348 Louvain-la-Neuve
Belgium

This work was partially supported by the ARC-SDN project funded by Commu-
nauté française de Belgique and by a grant from Cisco.

Meaning lies as much
in the mind of the reader

as in the Haiku.

— Douglas R. Hofstadter,
Gödel, Escher, Bach: An Eternal Golden Braid

Preamble

Since the early days of the Internet, the size of networks has grown by several
orders of magnitude. Today, large networks may span an entire continent, and the
largest of them operate on a planetary scale. Networks can be coarsely classified in
a handful of categories, such as datacenter, enterprise, service providers, content
delivery networks, etc. Each type of network yields different constraints, and each
network instance brings its own set of requirements.

A few core principles underlie this plurality of requirements. For example,
fault tolerance and scalability are essential properties of many networks. Efficient
traffic engineering capabilities are also a common requirement. To meet opera-
tional expectations and fulfill business contracts, network operators must be able
to control the traffic flows in a predictable and reliable manner.

Existing traffic engineering techniques address those problems in various
ways. MPLS-based solutions are deployed in many ISP networks, but bear the
consequences of design decisions made when networks were smaller. A major
issue of those solutions is poor scalability. OpenFlow-based solutions propose
paradigm shifting principles that leverage a logically centralized controller. While
providing improved network management features, those solutions prove difficult
to be deployed due to their fundamentally different nature.

The Segment Routing architecture emerged to address the operational issues
of MPLS-based traffic engineering solutions. By leveraging the source routing
paradigm, it provides fine-grained flow management capabilities without adding
state in the core network. It relies on existing routing protocols to distribute
reachability information. As such, it is more robust and easier to deploy than
OpenFlow-based solutions.

The purpose of this thesis is to explore and reap the benefits of the IPv6 flavor
of Segment Routing (SRv6). Its unique properties open the doors to a large, yet
mostly unexplored, research area that can extend network management and traffic
control up to the endhosts. The main contributions of this thesis are the following.

i

ii Preamble

• A reference open-source implementation of SRv6 in the mainline Linux
kernel.

An open-source implementation of software systems increases their visibil-
ity and enables other researchers to use and explore them. Furthermore, the
integration of a particular feature within the mainline Linux kernel ensures
that such a feature will enjoy widespread availability, as the various Linux
distributions integrate the recent kernel versions. In Chapter 3, we describe
our Linux kernel implementation of SRv6, available in the mainline ker-
nel since version 4.10. We detail our support for the SRv6 data plane and
control plane, as well as the implementation of the HMAC security mecha-
nism. We describe our custom-made testing environment that leverages the
network namespaces feature of the Linux kernel and discuss the limits of
such an environment. We evaluate the performance of our implementation
on real hardware and show that it yields little overhead with respect to reg-
ular IPv6 forwarding, and is able to scale with the available CPU resources.

• An exploration of SRv6 in its ability to solve various networking issues.

In Chapter 4, we explore the abilities of SRv6 in two aspects of networking.
The first aspect is the support of low-latency real-time services. We show
that by duplicating traffic across disjoint paths, SRv6 is able to significantly
absorb the adverse effects of unexpected packet loss or jitter. Simulations
in a virtualized network show that the Linux TCP stack is able to cope with
the duplicated traffic without hurting performances. The second explored
aspect is network monitoring. By leveraging the unique properties of Seg-
ment Routing, we propose and implement SCMon, a new network monitor-
ing technique. SCMon computes a set of cycles covering the network and
sends probes over these cycles. Our technique is able to deterministically
explore the Equal-Cost Multi-Path components of a network as well as in-
dividual links in a bundle, while operating from a single vantage point. We
implement a prototype of this solution and evaluate it in different emulated
networks. The results show that SCMon is able to quickly and efficiently
detect single-link failures.

• The design, implementation and validation of Software Resolved Networks,
a new architecture for IPv6 enterprise networks.

In the first part of Chapter 5, we propose Software Resolved Networks
(SRNs). Designed for IPv6 enterprise networks, an SRN provides traffic

Preamble iii

engineering capabilities through SRv6 and leverages a central controller. A
particular aspect of SRNs is that the controller can interact with the applica-
tions through the DNS protocol. Such interactions enable the applications
to participate in the management of their flows by providing hints about
the nature and needs of their communications. We present the properties of
enterprise networks and the building blocks necessary to run a Software Re-
solved Network. We describe how such an architecture can provide traffic
management capabilities and present algorithms to realize this. We detail
all the control plane components of an SRN and discuss its fault tolerance
properties as well as various security implications.

• An extensive implementation and evaluation of the control plane compo-
nents running in Software Resolved Networks.

In the second part of Chapter 5, we provide a full implementation of the con-
trol plane components needed to operate an SRN. We discuss the changes
needed to our SRv6 kernel implementation and thoroughly present the ar-
chitecture and implementation of the SRN controller. We evaluate the per-
formance of our implementation through benchmarks and simulations. We
show that our solution meets the performance expectations of large enter-
prise networks.

Finally, even if not a scientific contribution per se, we would like to stress the
fact that all the programs and tools that have been developed in the course of this
thesis are open-source and freely available. Furthermore, we also provide the raw
data that have been produced by the various experiments of this work, as well
as the scripts that were developed and used to generate the plots visible in this
document. 1

Bibliographic notes

Conference publications
1. Traffic duplication through segmentable disjoint paths

F. Aubry, D. Lebrun, Y. Deville and O. Bonaventure. IFIP Networking,
2015.

2. SCMon: Leveraging Segment Routing to Improve Network Monitoring
F. Aubry, D. Lebrun, S. Vissicchio, M. Khong, Y. Deville and O. Bonaven-
ture. IEEE INFOCOM, 2016.

1See https://github.com/target0/thesis-data

https://github.com/target0/thesis-data

iv Preamble

3. Implementing IPv6 Segment Routing in the Linux Kernel
D. Lebrun and O. Bonaventure. ACM/ISOC ANRW, 2017.

4. Software Resolved Networks: Rethinking Enterprise Networks with IPv6
Segment Routing
D. Lebrun, M. Jadin, F. Clad, C. Filsfils and O. Bonaventure. ACM
CoNEXT, 2017 (submitted).

Posters and demos
1. Leveraging IPv6 Segment Routing for Service Function Chaining

D. Lebrun. ACM CoNEXT student workshop, 2015.

2. A Linux Kernel Implementation of Segment Routing with IPv6
D. Lebrun. IEEE INFOCOM student workshop, 2016.

3. Demo: IPv6 Segment Routing to the End Host: A Linux Kernel Implemen-
tation
D. Lebrun. ACM SOSR, 2017.

IETF contributions
1. IPv6 Segment Routing Header (SRH)

S. Previdi, C. Filsfils et al.. IETF Internet-Draft draft-ietf-6man-segment-
routing-header-06, 2017.

2. Insertion of IPv6 Segment Routing Headers in a Controlled Domain
D. Voyer, S. Previdi et al. IETF Internet-Draft draft-voyer-6man-extension-
header-insertion-00, 2017.

3. SRv6 Network Programming
P. Camarillo, C. Filsfils et al.. IETF Internet-Draft draft-filsfils-spring-srv6-
network-programming-00, 2017.

Reading IETF draft names

All IETF draft names begin with draft-name-wg-. The wg part is the
name of the working group relevant for the draft. When name is the last name
of the draft’s main editor, it means that the draft is in an early stage and not yet
adopted by its working group. Instead, if name is equal to ietf, then the draft
is adopted by its working group and will likely be promoted to RFC status once it
reaches a sufficient level of maturity and stability.

Preamble v

Miscellaneous contributions
1. Segment Routing: IPv6, Implementation and a Practical Use Case

D. Lebrun. RIPE 70, Amsterdam, 2015.

2. Implementing IPv6 Segment Routing
D. Lebrun. Netdev 1.2, Tokyo, 2016.

3. Reaping the Benefits of IPv6 Segment Routing
D. Lebrun. IIJ Innovation Institute seminar, Tokyo, 2016.

4. IPv6 Segment Routing
D. Lebrun. LWN.net, 2017.

Acknowledgments

First and foremost, I would like to acknowledge my advisor, Olivier Bonaven-
ture. He introduced me to my broad thesis topic, Segment Routing, when it was
still in its infancy. He continuously presented me with challenging ideas, research
topics, and goals to achieve. My successful journey through these challenges is
greatly due to his advices, availability and support. The experience I built up dur-
ing my time as a PhD student has shaped and sharpened my mind in a way that, I
dare to hope, will positively and fundamentally influence my future career.

I would also like to thank my thesis jury, Thomas Clausen, Charles Pecheur,
Ramin Sadre, and Stefano Salsano, for their insightful comments and the very
interesting and in-depth discussions we had during my private defense.

For the work we jointly realised, I would like to thank my co-authors, François
Aubry, François Clad, Yves Deville, Clarence Filsfils, Mathieu Jadin, Stefano
Previdi, Stefano Vissicchio, and Eric Vyncke. I am also grateful to Daniel Bernier
and Daniel Voyer for their invitation and hospitality in Bell Canada, Montréal.
Special thanks go to Tazaki Hajime, who honoured and invited me as lecturer to
the IIJ Innovation Institute seminar in Tokyo. It is worth mentioning that my time
in IIJ-II during my master degree internship most certainly influenced my decision
of pursuing a PhD degree.

For all the fun times we shared together, I am grateful to my former INL col-
leagues I appreciated most, Quentin de Coninck, Fabien Duchêne, Benjamin Hes-
mans, Christoph Paasch, and Olivier Tilmans.

Last but not least, I express my deep gratitude to all my friends and family who
supported me during these past few years. A special mention goes to Charlotte,
who helped me keep focus and accompanied me throughout the good and bad
times.

vii

Contents

Preamble i

Acknowledgments vii

Table of Contents ix

1 Introduction 1
1.1 Networking principles and protocols 1
1.2 Source routing paradigm . 3
1.3 Decoupling the control plane . 5
1.4 Conclusion . 5

2 Segment Routing 7
2.1 IPv6 Segment Routing . 9

2.1.1 Operations . 11
2.1.2 HMAC validation . 14

2.2 Network programming . 14
2.3 Related work . 15
2.4 Conclusion . 16

3 Implementation of IPv6 Segment Routing in Linux 17
3.1 Networking in the Linux kernel . 17

3.1.1 Socket buffers . 17
3.1.2 Packet processing . 19
3.1.3 Network namespaces . 21

3.2 Data plane support . 21
3.3 Control plane support . 23
3.4 HMAC . 27
3.5 Testing . 33

3.5.1 Nanonet framework . 33
3.5.2 Limits of same-kernel testing 34

ix

x Contents

3.6 Performances . 37
3.6.1 Setup . 37
3.6.2 Measurements . 38

3.7 Network programming support . 45
3.8 Related and future work . 46
3.9 Conclusion . 47

4 Exploring IPv6 Segment Routing 49
4.1 Traffic duplication for latency-critical applications 49

4.1.1 Duplication over segmented disjoint paths 50
4.1.2 Implementation and evaluation 52
4.1.3 Related work . 58
4.1.4 Conclusion . 59

4.2 Fine-grained network monitoring with SCMon 59
4.2.1 Network coverage with segmented cycles 60
4.2.2 Implementation and evaluation 64
4.2.3 Related work . 67
4.2.4 Conclusion . 67

4.3 Conclusion . 68

5 Rethinking IPv6 Enterprise Networks 69
5.1 Software Resolved Networks . 70
5.2 SDN Resolver . 75

5.2.1 Enterprise network . 76
5.2.2 Traffic management principles 78
5.2.3 Path segmentation . 78
5.2.4 SRN Control plane . 80
5.2.5 Fault tolerance . 85
5.2.6 Security implications . 86
5.2.7 Comparison with OpenFlow 87

5.3 Implementation . 87
5.3.1 Kernel modifications . 88
5.3.2 Path ID propagation . 88
5.3.3 Segment Routing Database 89
5.3.4 Graph library . 93
5.3.5 Controller implementation 96
5.3.6 Application API . 102

5.4 Evaluation . 102
5.4.1 Microbenchmarks . 102
5.4.2 Emulated network . 107

5.5 Related and future work . 110

Contents xi

5.6 Conclusion . 111

6 Conclusion 113

Chapter 1

Introduction

Computer networks connect terminal nodes, or endhosts, and enable them to
communicate by exchanging data. In IP networks, network nodes are assigned a
unique, network-wide identifier. This identifier is called an IP address. The infor-
mation transiting on IP networks is chunked into packets. Each packet contains
several layers of information. The topmost layer, also known as the IP layer, pro-
vides basic information about the packet itself, such as the source and destination
IP addresses and the length of the packet. Such information tells intermediate
routers where the path of a given packet must eventually end, but not how to im-
plement this path. Indeed, it is likely that multiple paths exist between a given
source and a destination. Thus, intermediate routers need additional information
to properly forward packets.

In this introduction chapter, we briefly present the fundamental concepts of
packet forwarding deployed in current networks. Then, we describe the limits of
classical traffic engineering techniques. We introduce how the Segment Routing
architecture helps to overcome those limits and to provide better network manage-
ment by leveraging the source routing paradigm. We briefly present the current
trends of shifting network control towards a logically centralized controller. Fi-
nally, we introduce the IPv6 flavor of Segment Routing and how it open the doors
to novel network management principles and research opportunities.

1.1 Networking principles and protocols

Classical IP networks [1, 2] implement a hop-by-hop, shortest-path,
destination-based forwarding. Each network node contains a set of routes. Each
of them maps an IP prefix (i.e., a set of contiguous IP addresses) to a nexthop. A
nexthop is another network node, directly attached to the current one (either vir-
tually or physically). A route thus states which neighbor to use in order to reach

1

2 Chapter 1. Introduction

a given prefix. A metric is attached to each route. This metric represents a cost
of using this particular route. Usually, it is a function of the topological distance
from the current node to the node holding the destination prefix. In practice, route
metrics are used to implement shortest-path forwarding. When a router receives
a packet to be forwarded, it extracts the destination IP address of the packet and
performs a lookup in its routing table. This lookup attempts to find a route whose
destination prefix contains the destination IP address of the packet. If several
routes match the destination, then the most precise route is selected, i.e., the route
whose prefix is longer. This operation is called the longest prefix match. If several
routes with the same prefix length match the destination, then the route of least
cost is selected. The packet is then forwarded to the nexthop attached to the route.
If several routes with the same cost match the destination, then routers usually
implement Equal-Cost Multi-Path (ECMP) [3]. The idea of ECMP is to apply a
hashing function to some of the packet’s headers and to select a route according
to the result of this hashing function. The effect is that packets matching ECMP
routes will be load-balanced across the available nexthops.

To fulfill their packet forwarding duties, routers must learn the routes needed
to reach each other node in a given network. Such distribution of reachability
information can be achieved in several ways. In the early days of the Internet,
the number of nodes was so small that the routes could be configured statically.
Whenever a new node or a new prefix would appear, the operators needed to
manually reconfigure their routers to reflect the change. Obviously, such network
management principles cannot withstand the scale of current networks. Routing
protocols were developed to automatically distribute routing information between
the routers of a network. On the one hand, distance-vector routing protocols such
as RIP [4] propagate vectors of distances to other nodes in the network. Those
vectors contain information very similar to the elementary routing tables described
earlier. The difference is that vectors comprise only the routes of least cost. On
the other hand, link-state protocols such as OSPF [5, 6] and IS-IS [7] distribute
connectivity information among routers (i.e., the state of their links). Using that
information, each router constructs an internal graph of the network. Then, they
apply a shortest path computation algorithm on the graph, such as Dijkstra. The
resulting set of best (i.e., shortest) paths forms their routing table. Those protocols
(RIP, OSPF, IS-IS) are used to distribute reachability information within a single
autonomous system. Hence, they are referred to as Interior Gateway Protocols
(IGPs). The exchange of routing information between distinct autonomous sys-
tems is realized through the Border Gateway Protocol (BGP) [8]. BGP is consid-
ered as a path-vector routing protocol. It is conceptually close to distance-vector
protocols. However, additional parameters are used in the best route selection
process. For example, it is possible to define a local preference value that takes
precedence over the announced topological distance.

1.2. Source routing paradigm 3

Many networks need to implement traffic engineering to fulfill Service Level
Agreements (SLAs). For example, a service provider may provide a low-latency
path between two customer sites. Such a low-latency path is not necessarily the
shortest one. The operator may tweak the link metrics to steer the traffic through
the desired path. However, such tweaking will affect the entire network, while
the intention was to specifically target the low-latency traffic. The MultiProtocol
Label Switching protocol (MPLS) [9, 10] was designed to enable such per-flow
traffic engineering. To realize this, MPLS implements virtual circuits that are
reminiscent of ATM networks. The core idea of MPLS is to leverage a stack
of 20-bit labels pushed on top of the packets’ IP header. Each label represents
a particular virtual circuit, or label-switched path (LSP). When an MPLS router
receives a packet with an MPLS label stack, it examines the topmost label and
performs an operation based on the contents of the label. This operation can be
a swap (replace the topmost label by another label), push (add a new label on
top of the stack) or pop (remove the topmost label from the stack). The packet
is then forwarded to the appropriate neighbor. To distribute label reachability
information, MPLS routers typically establish full-mesh sessions using the La-
bel Distribution Protocol (LDP) [11]. LDP peers then build their label tables to
implement LSPs. The RSVP-TE [12, 13] protocol enables IP routers to request
the reservation of network resources. This reservation is carried by establishing
LSPs constrained by the bandwidth, latency, or other parameter requested in the
resource reservation. As a result, network operators are able to implement per-
flow traffic engineering without modifying the IGP topology. Another gain is
the ability to provide node and link protection by computing additional, backup
LSPs to protect existing circuits. Upon failure, the routers can quickly switch to
such a pre-computed backup path. This operation, faster than waiting for IGP
convergence, is called Fast Reroute (FRR) and is expected to complete within 50
milliseconds of a failure.

Despite providing added-value services, the traffic steering model of MPLS
exhibits several limitations [14, 15]. First, it has scalability issues. Indeed, each
resource reservation creates state on all the routers part of the virtual circuit. Sec-
ond, it fails to leverage ECMP routes available in a network. A workaround is
to replicate circuits, but this introduces even more state in the routers. Third, the
distributed nature of the routing protocols makes the flow management operations
prone to induce transient states and unexpected side effects.

1.2 Source routing paradigm
In traditional networks, packet forwarding is performed in a hop-by-hop ba-

sis, i.e., each intermediate router decides where to forward the packets. The source

4 Chapter 1. Introduction

routing paradigm proposes an alternative method, where the source of the packets
may specify either partially or entirely the path packets must follow to reach their
destination. The IPv4 protocol provides two header options specifying a loose
or strict path for the packets. However, these options are generally blocked on
the Internet due to security concerns. In practice, IPv4 source routing capabilities
are seldom used in any network. The original specifications of IPv6 [2] also de-
fine a source routing header, the Routing Header Type 0 (RH0). RH0 was later
deprecated [16] due to similar security concerns.

The Segment Routing (SR) architecture [17, 15, 18] was originally proposed
to improve the MPLS architecture by leveraging the source routing paradigm. In-
stead of using lookup tables to know which label must replace the current one,
SR proposes to fully specify the path of the packets in the label stack. This spec-
ification is performed by the tunnel ingress, i.e., the node that imposes an MPLS
header on IP packets. Each label then refers to a particular network node or link
that must be traversed by the packet. If two consecutive labels represent network
nodes that are not direct neighbors, then regular shortest-path routing is used to
transport packets from one label to the next. The packets are thus forwarded
through shortest-path segments.

Such an architecture yields multiple benefits and addresses the main concerns
of the MPLS traffic steering model. First, specifying the path of a packet in the
packet itself has the direct effect of reducing the state to maintain in a network.
Indeed, core routers processing only MPLS packets do not need to keep additional
state besides reachability information. All per-flow state is moved to the edge of
the network, i.e., in the ingress routers that impose the MPLS label stack onto
packets. Second, the SR architecture provisions anycast segments to leverage
built-in ECMP paths. Third, thanks to the source routing paradigm, a packet’s path
can be entirely specified at single point of entry, instead of being distributed across
multiple routers. These properties enable (i) a better scaling of the network, (ii)
a more efficient utilisation of the network resources, and (iii) improved network
management and troubleshooting operations. Furthermore, the Segment Routing
architecture is intended to operate within the boundaries of a single autonomous
system. As such, the security concerns that prevented the rise of other source
routing implementations do not apply to SR.

In parallel, the Segment Routing architecture was also developed for the IPv6
dataplane [19] (SRv6). The SRv6 architecture extends and defines a new type
of IPv6 Routing Header, namely the Segment Routing Header (SRH). One of the
main benefits of SRv6 is that, unlike MPLS, IPv6 can be easily deployed up to
the endhosts and supported by a wide range of applications. In SRv6, a segment
is represented by an IPv6 address. The SRH specifies the list of segments (IPv6
addresses) that implements a particular path. A segment can represent various
topological and service-based instructions. When entering an SRv6 path, instead

1.3. Decoupling the control plane 5

of receiving an MPLS label stack, the packets would simply receive a Segment
Routing Header, either through encapsulation within an outer IPv6 header, or with
the direct insertion of the SRH between the original IPv6 header and the rest of
the packet. As SRv6 is simply an extension of IPv6 and does not bring brand new
protocols, no additional signalling protocols are required in the network, besides
the existing IGP.

1.3 Decoupling the control plane
Recently, a new paradigm has gained considerable momentum in network-

ing vendors, operators and academia. Known as Software-Defined Networking
(SDN), this paradigm first appeared as OpenFlow [20, 21]. The core idea of SDN
is to decouple the control plane from the forwarding plane and to move network
control into a logically centralized controller. This architecture enables to pro-
gram the network through software and various implementations have been pro-
posed [22]. OpenFlow, the first SDN implementation, gets rid of all distributed
routing protocols and delegates forwarding decisions to a central controller. Open-
Flow works on a switch level rather than a router level. Each OpenFlow switch
maintains a flow table, as well as a control channel towards the controller. When
the switch receives a packet and cannot find a matching entry in its flow table, it
forwards the packet to the controller. Then, the controller makes a decision on
how to handle the packet, inserts the appropriate flow entry into the switch and, if
necessary, reinjects the packet into the switch forwarding path.

The SDN paradigm provides a large amount of flexibility through network
programmability and centralized control. However, its OpenFlow implementation
has drawbacks. For example, it creates per-flow state in all the switches partici-
pating in a flow’s path. Fault tolerance is also an issue as reactions to, e.g., link
failures, require a specific action from the controller. Shifting network control
away from distributed protocols towards a central controller improves flexibility
but also reduces tolerance to failures by creating a Single Point Of Failure (SPOF).

Nevertheless, Software-Defined Networking is now an unavoidable corner-
stone of modern network design.

1.4 Conclusion
Segment Routing is a powerful architecture enabling to steer packets through

an arbitrary set of topological or service-based policies. It realizes this by lever-
aging the pre-existing IGP infrastructure and without adding state in core routers.
In Chapter 2, we describe in details the Segment Routing architecture as well as

6 Chapter 1. Introduction

SRv6, its IPv6 flavor. In Chapter 3, we thoroughly explain our implementation
of SRv6 in the Linux kernel and evaluate its performance on real hardware. In
Chapter 4, we explore how SRv6 can help network operators to (i) provide reli-
able low-latency paths for real-time applications and to (ii) efficiently implement
full-coverage monitoring in large networks, from a single vantage point. In Chap-
ter 5, we design a novel architecture for IPv6 enterprise networks and present how
SRv6 can be integrated with the SDN model. We also implement and evaluate an
SDN-like controller for SRv6. Finally, we conclude in Chapter 6.

Chapter 2

Segment Routing

Segment Routing (SR) is a source routing paradigm. It originated from the
Source Packet Routing in Networking (SPRING) IETF working group, created
in 2013 [23, 17, 15]. The core idea of SR is to enable packet flows to leverage
arbitrary paths in a network. These paths are defined by the source of the packets
and are not necessarily the shortest ones. The source can be either the node that
actually generated the packets, or any ingress node on the path of the packets. All
the information needed to transport the packet along its specified path is encoded
within the packet itself. This approach enables the intermediate nodes to be state-
less with respect to the path of flows, at the cost of a small per-packet overhead. In
this chapter, we explain the Segment Routing architecture in more details. First,
we provide an abstract model of SR and illustrate its topological properties. Then,
we present the IPv6 flavor of Segment Routing through its extension to the IPv6
protocol. We describe the basic operations of SRv6. Finally, we present the net-
work programming concept introduced by the recent specifications of SRv6.

The path-related information is encoded in the packet as a sequence of shortest
paths. Each element of the sequence (i.e., each shortest path) is represented by a
segment. These segments form an ordered list of segments. The terms segment and
segment identifier (SID) can be used interchangeably. We define two main types
of segments representing topological instructions. A node segment (or Node-SID)
steers the packet through a particular network node. An adjacency segment (or
Adj-SID) steers the packet through a particular link. In other words, an adjacency
segment implies sending on an outgoing link, while a node segment implies a node
traversal. Along with the list of segments is also encoded a pointer. This pointer
indexes the current active segment. The corresponding network node that receives
and processes SR-enabled packets is called a segment endpoint. The node that
imposes a list of segments into packets is called an SR ingress node. This node
can be a router as well as an endhost. Likewise, the node that removes the list
of segments from packets is called an SR egress node. Typically, this node is

7

8 Chapter 2. Segment Routing

also the last segment of the path. The set of nodes that actively participate in the
processing of SR-enabled packets is called an SR domain. This domain can be,
e.g., an entire Autonomous System or a subset of a larger network.

I A B C

D

E

F

(a) Segment Routing domain.
I A B C

D

E

F

(b) Forwarding path for segments node(D), adj(D, B, left), node(F),
node(E) imposed by SR ingress node I. Hollow nodes are segment endpoints.

Figure 2.1: Illustration of Segment Routing topological instructions.

Let us consider Figure 2.1a. It represents an SR domain composed of an SR
ingress node I, an SR egress node E, and several intermediate nodes. Packets
enter the network at I and the following list of segments is inserted: node(D),
adj(D, B, left), node(F), node(E). The active segment pointer is
initialized to the first segment of the list. Figure 2.1b shows the path followed
by the packets within the SR domain. The first segment is node(D). Thus, the
packets follow the shortest path from I to D. The segment pointer is updated to the
next segment, which is an adjacency segment. It instructs to follow a particular
link between node D and B (the left link on the figure). The packets are then
processed by B and forwarded over the shortest path to the next segment, which
is node F. The node processes the packets and forwards them to the last segment,
node E. This last node removes the list of segments from the packets and forwards
them to their original destination.

Segment Routing was originally designed for the MPLS dataplane [24]. By
using MPLS labels as segments, SR-MPLS does not require any dataplane mod-
ification. Several control plane protocols have been modified [25, 26] to support
the signalling of SR labels. Inherently, SR-MPLS is intended to be used mainly
in ISP networks. The IPv6 version of Segment Routing (SRv6) extends the use

2.1. IPv6 Segment Routing 9

of SR to environments where MPLS is not available. Furthermore, SRv6 enables
to directly interact with endhosts. In this thesis, we focus on the IPv6 version of
Segment Routing and explore its potential.

2.1 IPv6 Segment Routing
The IPv6 flavor of Segment Routing is implemented using an IPv6 extension

header, the Routing Header [2]. The Routing Header (RH) is defined in the IPv6
specifications as a 4-byte header template and contains a Routing Type field, en-
abling the instantiation of RH subtypes. The IPv6 specifications originally defined
RH type 0 (RH0) which provided rudimentary source routing capabilities [2].
RH0 was later deprecated [16] due to security concerns. The IPv6 Segment Rout-
ing Header (SRH) is defined as a new RH of type 4. It contains a list of seg-
ments encoded as IPv6 addresses. The SRH may also contain multiple optional
Type-Length Values (TLVs). One such TLV is the HMAC TLV, which provides
authenticity and integrity checks for the SRH. It addresses security concerns that
led to the deprecation of the RH0. In this section, we present the SRH as specified
by the version 5 of the IETF draft. At the time of writing, the version 6 has been
released. However, the differences between the two versions are mostly technical
precisions and synchronisation with other, more recent specifications of principles
associated with SRv6. Those principles are further discussed in Section 2.2.

Figure 2.2 shows the Segment Routing Header wire format. The first four
bytes are part of the generic Routing Header. The Next Header field encodes
the type of the header immediately following the SRH (e.g., another extension
header, a transport protocol such as TCP or UDP, etc.). The Hdr Ext Len field
encodes the length of the SRH as an 8-byte multiple. The Routing Type field
is set to 4 [19]. The Segments Left field indicates the number of remaining
segments. It is an index into the list of segments subsequently defined. The fol-
lowing four bytes are specific to the SRH. The First Segment field indexes
into the list of segments the first segment of the path. The Flags field defines
various flags. One such flag is the H-flag which is set to 1 when an HMAC TLV
is present. The remaining two bytes are reserved for a future use. Then, the list of
segments is encoded as 128-bit IPv6 addresses, in reverse order. The first segment
of the list (at index 0) is the last segment of the path. The last segment of the list
(indexed by the First Segment field) is the first segment of the path.

Multiple TLVs can be defined for an SRH. The HMAC TLV, as shown in Fig-
ure 2.3 has the role of ensuring the authenticity and integrity of the SRH. It con-
tains a 32-bit HMAC Key ID field and a 256-bit HMAC field. The HMAC Key
ID field is a non-zero, opaque, operator-defined value. It maps to at least a secret
and a hashing algorithm. The input text of the HMAC function is the concate-

10 Chapter 2. Segment Routing

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Next Header | Hdr Ext Len | Routing Type | Segments Left |
+-+
| First Segment | Flags | RESERVED |
+-+
| |
| Segment List[0] (128 bits IPv6 address) |
| |
| |
+-+
| |
| |

...
| |
| |
+-+
| |
| Segment List[n] (128 bits IPv6 address) |
| |
| |
+-+
// //
// Optional Type Length Value objects (variable) //
// //
+-+

Figure 2.2: IPv6 Segment Routing Header.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type | Length | RESERVED |
+-+
| HMAC Key ID (4 octets) |
+-+
| //
| HMAC (32 octets) //
| //
+-+

Figure 2.3: HMAC TLV.

2.1. IPv6 Segment Routing 11

nation of (i) the source IPv6 address, (ii) the First Segment field, (iii) the
Flags field, (iv) the HMAC Key ID field, and (v) the full list of segments. The
output of the HMAC function is stored in the HMAC field. If the output length of
the hashing algorithm is less than 256 bits, then it is padded with zeroes. Other-
wise, the output is trimmed to 256 bits.

2.1.1 Operations
The following basic operations are defined with respect to the Segment Rout-

ing Header: encapsulation, processing, and decapsulation.

Encapsulation

Encapsulation is used by an SR ingress node to impose an SRH onto pack-
ets. The original packet is encapsulated in an outer IPv6 header, which contains
the SRH. The first three headers in the chain are thus IPv6 → SRH → IPv6.
Figure 2.4 shows an illustration. In earlier versions of the SRv6 IETF draft, an-
other method of SRH insertion was described. The packet was not encapsulated.
Rather, the SRH was directly inserted between the IPv6 header and the payload.
The main issue with this technique is that it breaks ICMP messages triggered by
such packets. Indeed, an ICMP message related to a packet contains part of its
payload. When the ICMP reaches the source, it can recognize the original packet
thanks to the attached payload. By modifying the packet en route, any generated
ICMP message will no longer match the original packet. For this reason, direct
insertion was removed from the specifications. However, a recent IETF draft [27]
proposes to allow direct insertion at the condition that the original packet is not
modified. Such scenario happens when the ingress node of an SR domain en-
capsulates packets within an outer IPv6 header, but without adding an SRH. The
process of imposing an SRH is then realized by another node within the SR do-
main and thus decoupled from the IPv6 encapsulation itself. Encapsulation is
preferred for persistent operations (e.g., latency optimization, service chaining,
etc.) while insertion is better suited for short-term failure mitigations. In both
cases, any ICMP message generated for an encapsulated packet will reach the SR
ingress node and not the original source of the packet. The SR ingress node is
then able to react appropriately.

The SR ingress node should not blindly encapsulate packets. IPv6 headers
contain a flow label field [28]. This field is taken into account by Equal-Cost
Multi-Path (ECMP) hash functions, along with the source and destination address.
As multiple flows may receive the same encapsulation, it is important to correctly
set the flow label of the outer IPv6 header to ensure proper load balancing across
the network resources, in case of ECMP. One solution is to inspect the original

12 Chapter 2. Segment Routing

packet and extract a flow label from its inner headers (e.g., original source and
destination, TCP ports, etc.). Another solution is to assume that the flow label of
the inner packet is correctly defined and simply copy it into the outer IPv6 header.
Each solution has its strengths and weaknesses. The former ensures that the flow
label will actually depend on the inner packet’s content, but require its inspection.
Such an inspection may waste processing cycles. The latter can be achieved at
no additional cost, but does not guarantee that the inner flow label was set to a
meaningful value. At the time of writing and to the extent of our knowledge, there
is no specification on how to handle flow labels for SR encapsulated packets. As
such, it remains implementation-dependent.

Figure 2.4: SRH encapsulation by intermediate node.

The SRH may also be inserted by the source of the packet. In this case, the
packet is not encapsulated. The SRH is pushed on the packet right after the IPv6
header, like direct insertion mentioned above. Generated ICMP messages are not
an issue in this case, as the source itself is aware of the SRH. Figure 2.5 illustrate
this operation.

Figure 2.5: SRH insertion by source.

When an SRH has been inserted, the destination address of the packet is set to
the first segment of the path (i.e., the segment indexed by the First Segment
field in the SRH). The packet is thus forwarded to the first segment following
shortest path routing.

2.1. IPv6 Segment Routing 13

Algorithm 1 SRH processing.
1: if DA = myself (segment endpoint) then
2: if Segments Left > 0 then
3: Decrement Segments Left
4: Update DA with Segment List[Segments Left]
5: Forward the packet out
6: else
7: Continue regular IPv6 processing of the packet
8: e.g. decapsulate and forward
9: End of processing

10: end if
11: end if

Processing

When an SR-enabled packet reaches a segment endpoint, it must process the
packet to forward it to the next segment. The active segment is represented by
the current destination address of the packet. The SRH processing algorithm is
defined by Algorithm 1. The basic case is when the segment endpoint is not
the last segment of the path (i.e., Segments Left > 0). The processing node
decrements the Segments Left field and updates the destination address of the
packet to the next segment, referenced by the decremented field. Then, the packet
is forwarded to its new destination following shortest path routing. Figure 2.6
shows an illustration of this operation.

Between two segment endpoints, an SR-enabled packet may transit through
several intermediate routers. Note that these routers do not need to support SRv6.
Indeed, as the destination address of the packet is not local to those intermediate
routers, they simply apply the standard shortest-path IPv6 forwarding.

Figure 2.6: SRH processing.

14 Chapter 2. Segment Routing

Decapsulation

The last segment in the path of an encapsulated SR packet is the SR egress
node. When a packet reaches that node, its Segments Left field is equal to
zero. The node decapsulates the original packet by removing the outer IPv6 header
and the SRH. The original packet is then forwarded to its destination, following
the shortest path routing. Figure 2.7 shows an illustration of this operation.

Figure 2.7: SRH decapsulation.

When the SRH is inserted by the source of the packet, there is no encapsula-
tion. The last segment of the path is thus the final destination of the packet. In this
case, when the last node receives such a packet, it simply continues the processing
of the payload, ultimately delivering it to the related application.

2.1.2 HMAC validation

The SRv6 specifications [19] define how to generate and verify the HMAC
field, but the decision to actually verify and enforce the HMAC is left to the op-
erator. The HMAC TLV is meant to ensure the authenticity and integrity of the
SRH when it is transmitted from beyond the trusted SR domain. As the HMAC
computation induces a packet processing time overhead, HMAC validation should
only be performed once at the edge of the SR domain.

2.2 Network programming
In the previous sections, we presented the basic operations of SRv6. The

SRv6 Network Programming IETF draft [29] extends this definition and proposes
a more advanced model where each segment can be represented as an arbitrary
network function and conversely. In this section, we present the main ideas of this
draft.

Each SRv6 node keeps a My Local SID table. This table lists the segments that
are meaningful to the local node, which is referred to as the parent node of those
segments. Each segment is composed of two parts. The first part is an IPv6 prefix

2.3. Related work 15

that is announced by the IGP. The second part, i.e., the host part of the address,
encodes the function associated to the SRv6 segment.

If an SRv6 node receives an SR-enabled packet whose active segment (i.e., the
IPv6 destination address of the packet) has no corresponding entry in the local SID
table, then the packet should be dropped. Otherwise, the function associated with
the segment is executed. Note that while the segment’s IPv6 address is routed to
its parent node, the address is not necessarily attached to a local interface. Several
core functions are defined in [29]. The End function defines the basic segment
endpoint processing as in Algorithm 1. It is equivalent to a node segment. The
End.X function extends the endpoint behavior and specifies a given next hop to
which the packet must be forwarded. It is equivalent to an adjacency segment.
The End.B6 function defines a binding segment. Such a segment maps to an
SRv6 policy, i.e., a list of segments. The behavior of such a segment is to add a
new list of segments (i.e., a new SRH) on top of the current one, either through
direct insertion (End.B6) or encapsulation (End.B6.Encaps).

Other SRv6 functions exist, such as encapsulation of IPv4 packets or layer-2
frames, etc. In this thesis, we focus on node segments (End), adjacency segments
(End.X), and binding segments (End.B6*).

2.3 Related work

Multiple work on Segment Routing exist in the literature. In [15], Filsfils et
al. describe the SR architecture in general as well as the main use cases that
would benefit from SR. In the area of optimization of network utilization and
requirements, Bhatia et al. discuss online and offline algorithms that leverage SR
to optimize network utilization in [30]. In [31], Hartert et al. propose an SR-
based framework to express and implement network requirements in a flexible
and efficient manner. In [32], Hao et al. propose a linear programming model to
optimize the restoration of bandwidth upon failures in segment routed networks.
In the area related to properties of Segment Routing and its implementation in a
network, Davoli et al. describe in [33] how Segment Routing can enable SDN-
like per-flow control without adding state in core routers. In [34], Giorgetti et
al. propose algorithms to minimize the number of segments required to compute
segmented paths. Salsano et al. propose in [35] methods to leverage SR in a
network without requiring extensions to routing protocols.

16 Chapter 2. Segment Routing

2.4 Conclusion
In this chapter, we presented the core principles of Segment Routing. We

defined SRv6, the IPv6 flavor of Segment Routing, and enumerated its basic oper-
ations. We explained how SR enables to steer packets through arbitrary paths by
attaching segments to the packets, following the principles of the source routing
paradigm. Finally, we presented how SRv6 can provide flexible network pro-
grammability features by associating arbitrary functions to segments.

Chapter 3

Implementation of IPv6 Segment
Routing in Linux

A key element in exploring and researching IPv6 Segment Routing (SRv6)
is an open-source implementation. Our Linux kernel implementation has been
merged into the main Linux tree and is part of Linux 4.10 released in February
2017 [36, 37]. We support the version 5 of the SRH specifications [19]. In this
chapter, we first briefly explain the basic principles of the networking stack in
the Linux kernel. Then, we present our SRv6 implementation [38], as well as
supporting user space tools. Finally, we present our test framework and evaluate
the performance of our implementation.

3.1 Networking in the Linux kernel
The Linux networking subsystem is very complex. As of Linux 4.10, it com-

prises more than 700,000 lines of code, without counting the drivers. In our SRv6
implementation, we mainly interact with the IPv6 packet processing and the rout-
ing engine. In this section, we explain how packets are internally represented by
the kernel. Then, we briefly describe the path of a packet from the network inter-
face through several stages of the routing engine. Finally, we explain the concept
of network namespaces.

3.1.1 Socket buffers
Internally, packets are represented as socket buffers, or skb’s. An skb is

a kernel structure of type struct sk buff that represents a network packet,
with metadata and payload. The metadata includes the ingress interface, check-
sum, header offsets, and other layer-specific data. The actual packet data can be

17

18 Chapter 3. Implementation of IPv6 Segment Routing in Linux

stored in two locations. The first location is a contiguous memory area, called
the skb header. When all the packet data is contained in this area, the skb is
said to be linear. The header structure is handled by four variables in the skb:
head, data, tail and end. Figure 3.1 shows an illustration of the skb header
structure. The head pointer references the start of the header. The data pointer
references the start of the actual packet data. The tail pointer references the end
of the packet data. Finally, the end pointer references the end of the skb header.
The head room and tail room enable to prepend and append data to the packet. As
packets are constructed from bottom to top, data is often prepended. If there is not
enough head or tail room, the header is reallocated to a larger memory area. The
skb also contains several offsets to easily access different parts of the packet, such
as the network header, transport header, inner headers (in case of encapsulation),
etc.

Figure 3.1: skb header structure. Memory addresses grow from top to bot-
tom.

The second location for packet data storage is paged fragments. At the end
of the skb header, there is a struct skb shared info containing an array
of fragments. This structure contains the frags and nr frags fields, which
are resp. the array of fragments and its size.1 Each fragment is identified by
a (page, offset, length) tuple. When an skb contains fragments, the
packet data is composed of the concatenation of the skb header and each frag-
ment. In this case, it is no longer possible to append data in the tail room. Rather,

1The structure also contains a frag list field, which is a list of skb’s. This list is used
to store related skb’s such as IPv6 fragments. They are not related to the paged fragments we
describe.

3.1. Networking in the Linux kernel 19

new data must be appended as a new fragment. Such an skb is said to be nonlin-
ear. A nonlinear skb is mainly used for zero-copy packet transmission. Through
the sendmsg() system call, a user space application can specify a vector of non-
contiguous memory chunks to be transmitted. Instead of copying all the data into
the linear skb header, the kernel simply stores references to those chunks using
paged fragments. When the driver sends the packet to the NIC, it uses DMA to
directly transfer the page chunks from the main memory to the network device,
thus avoiding unnecessary copies. This technique is called scatter-gather. An-
other possible usage of nonlinear skb’s is when a network driver fetches Ethernet
frames longer than the standard length of 1,500 (jumbo frames). For example, the
e1000 driver splits jumbo frames into multiple paged fragments.

3.1.2 Packet processing
The networking subsystem of the Linux kernel is divided into multiple layers.

The lowest level is the network driver, which is closest to the hardware. When a
packet arrives at the network interface card (NIC), it is copied into main memory
and handed to the network driver. The driver transforms the raw packet data into a
socket buffer. Once the skb is built, it is handed over to the upper layer, e.g. IPv4
or IPv6. The driver may pass several skb’s at a time using Generic Receive Of-
floading (GRO) [39]. GRO is a software mechanism that enables network drivers
to group similar contiguous packets before handing them over to the upper layer,
reducing the number of calls. The idea is to group packets that belong to the same
flow. Each network protocol can define its gro receive function that decides
whether a given skb can be merged with previous ones. For example, the IPv6
GRO receive function verifies that all IPv6 header fields are the same except the
length and traffic class. If the fields differ, then the skb is left as a standalone
packet. If the fields match, then the decision to merge is delegated to the GRO re-
ceive function of the inner protocol. For example, if a TCP payload immediately
follows the IPv6 header, then the GRO receive function of TCP is called. In turns,
this function decides if the skb can be merged by checking the ports, sequence
numbers, etc. When it is no longer possible to merge, the aggregated GRO skb is
sent to the upper layer.

At the IP layer, the skb’s are processed by the routing engine. The kernel
decides whether the packet should be locally delivered, or forwarded to another
network node. Figure 3.2 shows an overview of the routing decision process.
Each packet goes through several processing stages. Let us consider an IPv6
packet that was just delivered by the network driver. It enters the ipv6 rcv()
function that corresponds to the PREROUTING stage. This function parses the
IPv6 header, then decides whether the packet is bound for the local host or must
be forwarded to the network. It does so by matching the destination of the packet

20 Chapter 3. Implementation of IPv6 Segment Routing in Linux

Figure 3.2: Linux routing decision process.

against the IPv6 routing table entries.2 If the packet is to be forwarded, it enters the
ip6 forward() function, corresponding to the FORWARD stage. This function
is in charge of selecting the next hop, decrementing the hop limit, etc. Then, it
enters the ip6 output() function, corresponding to the POSTROUTING stage.
In this stage, the packet is ready to be transmitted and is handed over to the lower
layers, ultimately being transmitted by the NIC. On the other hand, if the packet
is to be locally delivered (i.e., the destination address matches a local address),
it enters the ip6 input() function, corresponding to the INPUT stage. This
function iteratively processes each extension header in the IPv6 header chain until
it reaches a final payload (e.g., TCP, UDP), which is processed by its own input
function.

When an application sends packets to the network, the packets are built
from bottom to top. First, the transport header is pushed on top of the pay-
load. Then, optional IPv6 extension headers are pushed on top of the transport
header thanks to the ipv6 push nfrag opts() function. Finally, the IPv6
header is pushed on top and the skb enters the OUTPUT stage through, e.g., the
ip6 xmit() function for TCP or the ip6 local out() function for other
transport protocols. The routing decision is performed and the skb then enters
the POSTROUTING stage and is transmitted to the network.

2In practice, other parameters can be used in the routing decision process, such as the source
address. For the sake of simplicity, we only consider destination addresses.

3.2. Data plane support 21

3.1.3 Network namespaces

In Linux, namespaces [40] enable to isolate various parts of the system, as a
kind of virtualization. For example, the PID namespace isolates the process ID
number space and enables processes running in different PID namespaces to have
the same PID number. The network namespaces [41] isolate routing tables and
interfaces. When a new network namespace is created, it contains only a loop-
back interface. Virtual Ethernet (veth) interface pairs are used to interconnect
namespaces. A veth pair consists of two connected virtual interfaces (packets
transmitted on one interface will be received on the other and conversely). Each
interface of the pair is then assigned to (different) namespaces, effectively in-
terconnecting them. Other network parameters such as several sysctls are also
isolated per namespace. It is the programmer’s responsibility to ensure that a par-
ticular network feature is namespace-aware. Different types of namespaces are
often used in combination by virtualization techniques such as Docker to virtual-
ize PIDs, network, filesystems, etc., but can also be used independently to, e.g.,
specifically emulate network topologies [42].

3.2 Data plane support

The core of the SRv6 implementation is the Segment Routing Header pro-
cessing capability. It enables a Linux node to act as a segment endpoint and as an
SR egress node as described in Section 2.1. When a segment endpoint receives
an SR-enabled packet, the destination address of the packet is local to the seg-
ment endpoint. Thus, the packet enters the INPUT stage. We added a function
ipv6 srh rcv() called whenever the IPv6 input function encounters an SRH
in the header chain. Listing 3.1 shows the C structure holding an SRH.

Listing 3.1: SRH structure.
s t r u c t i p v 6 s r h d r {

u 8 n e x t h d r ;
u 8 h d r l e n ;
u 8 t y p e ;
u 8 s e g m e n t s l e f t ;
u 8 f i r s t s e g m e n t ;
u 8 f l a g s ;
u 1 6 r e s e r v e d ;

s t r u c t i n 6 a d d r segmen t s [0] ;
} ;

22 Chapter 3. Implementation of IPv6 Segment Routing in Linux

The function performs the following operations. First, it checks that the node
is allowed to act as a segment endpoint for SR-enabled packets coming from the
ingress interface (skb->dev). This policy is configured through a per-interface
sysctl boolean parameter seg6 enabled. If the boolean is set to false, then
the skb is dropped. Otherwise, the processing continues. The packet then goes
through an optional HMAC validation. This validation is controlled by a per-
interface sysctl seg6 hmac require. This parameter can take three different
values: (i) a value of −1 means that the node must accept all SR-enabled packets,
regardless of whether an HMAC TLV is absent, present, valid or invalid, (ii) a
value of 0 means that the node must accept SR-enabled packets that do not have
an HMAC TLV and must ensure the validity of the HMAC TLV when present,
and (iii) a value of 1 means that the node must enforce a valid HMAC for all
SR-enabled packets. Table 3.1 shows a summary of the possible combinations of
seg6 hmac require and the HMAC state.

Table 3.1: Possible scenarios for HMAC policies.

seg6 hmac require HMAC valid HMAC absent HMAC invalid
-1 Pass Pass Pass
0 Pass Pass Drop
1 Pass Drop Drop

Once those preliminary checks have been performed, the function handles two
main cases: Segments Left being non-zero, and Segments Left being
equal to zero. Let us first consider the latter case, where the node acts as an SR
egress node. As the node is the last segment of the path, it has no choice but to
inspect the inner header to decide the fate of the packet. If the next header is an-
other IPv6 extension header or a final protocol (e.g., TCP, UDP), then the header
chain processing continues as normal, and the skb is eventually delivered to the
corresponding local process. This would happen, for example, when the SRH was
directly set by the source of the packet. Conversely, if the original packet was en-
capsulated by an SR ingress node, then the next header would typically be an IPv6
header (i.e., IPv6-in-IPv6 encapsulation). However, nothing forbids, e.g., that an
IPv4 packet be encapsulated within the outer IPv6 header and the SRH. As such,
it would make sense to let the kernel continue the default processing of the next
header, as for the non-encapsulated case. However, the kernel handles IP head-
ers differently, depending on whether it is the outermost header (the first header
processed on the ingress interface, not counting the possible Ethernet header) or
an inner, encapsulated header. When the kernel encounters an encapsulated inner
header, it attempts to find an existing stateful tunnel interface, corresponding to
the source and destination of the outer header. As no such interface exists, the
skb is dropped. To avoid this issue, we bypass the default processing and rein-

3.3. Control plane support 23

ject the inner packet in the ingress interface. The side-effect is that the function
explicitly checks for an inner IP header. As of Linux 4.10, only IPv6-in-IPv6
encapsulation is supported.

When the Linux node is an intermediate segment endpoint (i.e., Segments
Left > 0), it must forward the packet to the next segment. To realize this, the
ipv6 srh rcv() function decrements the number of segments left and updates
the destination address of the packet to the next segment. Afterwards, a routing
decision is applied to the skb thanks to the ip6 route input() function. If
the next segment is local to the node, then the skb is looped back to the beginning
of the SRH receive function, after decrementing and checking the hop limit. This
is an implementation choice that enables to skip a redundant re-entry into the
ip6 input() function. In the future, this behavior might be controlled by a
user-defined parameter. This parameter would enable to choose between fast-path
loop-back and slow-path re-entry. The rationale is that the fast re-entry skips the
INPUT netfilter hook, which may be needed in some usecases. If the next segment
is non local, then the skb enters the FORWARD stage.

Figure 3.3 summarizes the flow of an SR-enabled packet through the network-
ing subsystem. The codepath of the skb to the SRH processing function is shown
with plain arrows. The dashed arrows show the codepath of the skb immedi-
ately after the SRH processing. Figure 3.3a shows the decapsulated skb being
reinjected at the interface level. Figure 3.3b shows the skb being forwarded to
the next segment. Figure 3.3c shows the skb being looped back within the SRH
processing function to handle a local next segment.

3.3 Control plane support
To enable a Linux node to act as an SR ingress node, we implemented support

for SRH insertion. This implementation evolved significantly before reaching the
latest version available in Linux 4.10. We distinguish three main versions of the
SRH insertion implementation. The first version, available in the very first out-of-
tree, proof-of-concept, public release of SRv63 was very intrusive to the kernel. It
had a hardcoded function call, at the end of ip6 forward(), to the SRH inser-
tion function. This function tried to match the destination address of the packet
against elements of an internal linked list. These elements were mapping an IPv6
prefix to an SRH. If the destination address matched the prefix, then the SRH was
directly inserted into the packet, right after the IPv6 header.4 The skb was then
re-injected in the ip6 forward() function and forwarded to the first segment.
This version had several problems. From a software engineering point of view,

3The kernel version was 3.14, released in April 2014.
4At that time, the IETF draft of SRv6 was not mentioning encapsulation, only direct insertion.

24 Chapter 3. Implementation of IPv6 Segment Routing in Linux

(a) SR egress node. (b) Remote next segment. (c) Local next segment.

Figure 3.3: Possible codepaths for SRH processing.

inserting such specific code in a highly generic function is a very bad idea. Addi-
tionally, performing SRH insertion only in the FORWARD stage prevented packets
generated by a local application to receive an SRH, as they do not pass through
this stage. The internal linked list was also a wrong choice of data structure, as it
is neither efficient nor adapted, due to its linear time complexity for the lookup op-
eration and due to the fact that it did not implement a longest prefix match (LPM)
algorithm, which is more suited for prefix matching. The linked list was later re-
placed by an actual, more adapted LPM tree. The first in-depth refactoring of the
SRv6 code took place at the same time as direct insertion was replaced by encap-
sulation in the IETF draft. To accommodate the new encapsulation mechanism,
we attempted to leverage the existing IPv6 encapsulation mechanisms available in
the Linux kernel. In particular, we modified the ip6tnl module. This module
provides IPv6-in-IPv6 encapsulation. We decided to use and extend this module
with the support of extension headers, and incidentally the SRH. However, two
issues quickly came to light. The first issue is related to scaling. Such a solution
would require one interface per SRH insertion rule, which could rapidly become
an issue due to kernel memory consumption. The second issue is related to the dif-
ferences between a plain IPv6-in-IPv6 tunnel ingress and an SRv6 ingress node.
With ip6tnl, an IPv6 tunnel is configured using a pair of addresses: the local
and the remote addresses. No other parameter is used to distinguish IPv6 tunnels.
As such, it is not possible to create more than one tunnel from the same source to

3.3. Control plane support 25

the same destination. This is a severe limitation, as it is probable, even likely, that
more than one SRH could have the same egress node.

The current, more elegant solution was brought thanks to a new technique,
the lightweight tunnels (LWTs), that was merged in Linux 4.3. LWTs are a tech-
nique to implement interfaceless tunnels, which is exactly what we were trying
to do. The idea of lightweight tunnels is the following. Each route in the ker-
nel routing table is associated with two function pointers, input and output.
Those pointers are initialized at the creation of the route. For an IPv6 route, the
output function pointer references the ip6 output() function, that trans-
mits the skb to the egress interface. The input function pointer depends on
whether the route is local (packets matching this route must be delivered to a lo-
cal process) or non-local (packets must be forwarded to a next hop). If the route
is local, the function pointer references the ip6 input() function. Otherwise,
it is ip6 forward() that is referenced. The idea of the lightweight tunnels
is to override those function pointers with custom functions. To implement a
lightweight tunnel, one needs to define their own input and/or output functions.
Then, each route created to specifically use this LWT will have its input and/or
output function pointers reference the custom functions. Per-tunnel stateful
data (tunnel state) is also stored in the route. This technique has the advan-
tage of using the existing routing table, thus avoiding the need to define a cus-
tom data structure for packet matching. It is also highly customizable, enabling
differentiated treatment for forwarded packets and for locally generated packets.
Lightweight tunnels are configured from user space through the rtnetlink pro-
tocol, which is commonly used by the iproute2 tool to configure the routing
tables.

Consequently, we implemented SRH insertion using the lightweight tunnels.
When such a route is created, the full SRH is built in user space and transmit-
ted to the kernel through rtnetlink. After checking the consistency of the
SRH, it is stored as the tunnel state of the route. Along the SRH is stored an
optional parameter stating whether the SRH should be directly inserted or encap-
sulated. Finally, a dst cache entry stores the routing entry associated with
the first segment of the SRH, enabling the route lookup for the first segment
to be performed only once. The dst cache kernel mechanism ensures that if
the stored routing entry is deleted or obsolete, it reverts to a full route lookup.
Both the input and output function pointers of the route ultimately call the
seg6 do srh() function. This function effectively inserts the SRH on the
skb. The direct insertion function (seg6 do srh inline()) simply inserts
the SRH between the IPv6 header and the rest of the packet. The encapsulation
function (seg6 do srh encap()) needs to provision a new IPv6 header. The
traffic class and the flow label are copied from the inner IPv6 header. In the future,
this behavior should be made configurable, e.g., by letting the kernel compute the

26 Chapter 3. Implementation of IPv6 Segment Routing in Linux

outer flow label based on the inner packet’s 5-tuple. Such a behavior would en-
sure proper ECMP behavior when the inner flow label is null or unrelated to the
packet’s flow. The hop limit is also copied from the inner IPv6 header. The des-
tination address is obviously set to the address of the first segment. The source
address selection is less straightforward. It must reference the SR ingress node,
but such a node may have multiple IPv6 addresses. At first, we decided to select
the first address of the egress interface. However, during early benchmarking, we
noted that the address selection function was time expensive. To avoid this, we
created a per-namespace configurable parameter, holding the source address to
use for SR encapsulations. In the future, this parameter could be directly attached
to the routes for a more fine-grained configuration. Once an skb is augmented
with an SRH, it is forwarded to the first segment according to the normal kernel
routing mechanisms.

Listing 3.2: iproute2 command to insert an SRv6 encapsulation route.
i p −6 r o u t e add fc42 : : / 6 4 encap seg6 mode encap

s e g s f c00 : : 1 , 2 0 0 1 : db8 : : 1 , f c10 : : 7 dev e t h 0

To enable user space control over SRv6, we extended the iproute2 user
space tool to insert, modify and read routes that use the SRH lightweight tunnels
extension. Listing 3.2 shows an example of a route insertion command. This route
matches packets whose destination belongs to the prefix fc42::/64 and inserts
an SRH on these packets (encap seg6). The original packet is encapsulated in
an outer IPv6 header (mode encap). To directly insert the SRH in the original
packet, one can use mode inline. The list of segments is given as a comma-
separated list of IPv6 addresses. Finally, a non-loopback device must be specified.
The choice of this device has no actual effect on the route, provided that it is not
the loopback interface. Indeed, an IPv6 route attached to the loopback interface
means that at least one address of the corresponding prefix is local to the host and
not attached to a given physical interface. Such routes are marked as unreachable,
to prevent the host from forwarding packets whose destination address is part of
a local prefix, but not explicitly attached to the host. Furthermore, it is mandatory
to specify a device for a route, either directly with the dev keyword, or indirectly
by specifying the next hop with the via keyword. Thus, we need to specify a
non-loopback interface, which has no effect on the route but enables the kernel to
properly accept it.

Such routes are namespace-wide. To support a more fine-grained con-
trol over SRH insertion, we implemented a per-socket interface through the
setsockopt() system call. Such an interface enables applications to spec-
ify the SRH to be inserted on a socket level. When building a packet generated by

3.4. HMAC 27

Listing 3.3: Sample code to define a per-socket SRH.
s t r u c t i p v 6 s r h d r * s r h ;
i n t fd , s r h l e n ;

s r h l e n = b u i l d s r h (& s r h) ;
fd = s o c k e t (AF INET6 , SOCK STREAM, IPPROTO TCP) ;
s e t s o c k o p t (fd , IPPROTO IPV6 , IPV6 RTHDR , s rh , s r h l e n) ;

a local application, the kernel calls ipv6 push nfrag opts() before push-
ing the top IPv6 header. If an SRH is attached to the socket, the function will
call ipv6 push rthdr4() that effectively pushes the SRH on the packet. The
last segment of the SRH is set to the original destination. The first segment is
returned, to be set as the actual destination of the packet. Listing 3.3 shows how a
C application can define an SRH for a TCP socket.

3.4 HMAC

In the early implementations of SRv6, the HMAC library was rudimentary.
It supported only the SHA-1 hashing algorithm, through kernel library helpers,
without dynamic memory allocation. The evolution from a proof-of-concept to
a fully fledged implementation required a stronger hashing algorithm, and with
reason [43]. We chose to support SHA-256. This upgrade introduced unexpected
side effects. Indeed, the kernel implementation of SHA-256 was no longer avail-
able through library helpers, and required the use of the crypto API. The crypto
API is a kernel subsystem that provides a generic interface to cryptographic fea-
tures such as hashing and cipher algorithms, including HMAC algorithms with
various hashing functions. However, the crypto API requires the allocation of
per-algorithm descriptors, through the crypto alloc shash() function for
symmetric hashing algorithms. This led to two main issues. The first issue is
related to the internals of the function. When a required crypto algorithm is not
readily available, the function will try to find and load the corresponding kernel
module using request module(). This function is not atomic, i.e., it may
sleep while waiting for the module to be loaded, causing another task to be sched-
uled. This cannot happen within an interrupt context, i.e., during the execution of
a function that was called due to a software or hardware interrupt, such as ingress
packet handlers. Thus, the allocator function cannot be called in the SRH process-
ing function, ipv6 srh rcv(). The second issue is that, even if the allocator
can be made atomic, doing per-packet allocations would be a waste of resources,
as those allocations would be the same and could be reused from one packet to the

28 Chapter 3. Implementation of IPv6 Segment Routing in Linux

next.
The current implementation of HMAC for SRv6 leverages per-CPU alloca-

tions. The idea is to pre-allocate algorithm descriptors and to reuse them in
the packet processing function, effectively improving from one allocation per
packet to a single allocation at the initialization of SRv6. In SMP systems (multi-
processor or multi-core), multiple threads can run the SRH receiving function
simultaneously, thus potentially computing HMACs concurrently. Using a sin-
gle descriptor would require locking, and thus might create lock contention. To
prevent this, we allocate one descriptor per HMAC algorithm per CPU. Such a
technique enables each thread to work on its local copy of the HMAC descriptor,
without competing for a shared resource. In addition to per-CPU HMAC descrip-
tors, we also allocate per-CPU ring buffers. Those buffers store the HMAC input
(or text) that is derived from each packet’s IPv6 header and SRH. Each supported
HMAC algorithm is described by a struct seg6 hmac algo structure, as
shown in Listing 3.4. This structure contains a statically defined algorithm ID,
a name describing the algorithm in the syntax of the crypto API. For example,
HMAC with SHA-256 is written hmac(sha256). Finally, the structure stores
per-CPU pointers to instances of the algorithm (tfms field) and per-CPU pointers
to auxiliary working buffers for the hashing algorithm (shashs field), that will
be used during the hash computations. The ring buffers are statically defined in
the code, as they are of small and fixed size.5 For each supported HMAC algo-
rithm, a seg6 hmac algo structure is statically defined. The allocation of their
per-CPU pointers is performed once at boot time. As defined in Section 2.1, an
HMAC TLV contains a key ID, which is an opaque, operator-defined value that
maps to at least a secret and a hashing algorithm. We implement this mapping with
the struct seg6 hmac info structure, as shown in Listing 3.5. This struc-
ture contains the key ID itself, the secret and its length, and the hashing algorithm
identifier. Additionally, the structure is part of a hashtable through its struct
rhash head element, enabling fast lookups. The struct rcu head element
enables the structure to be asynchronously freed upon deletion, in the case where
it is still in use when the mapping is removed.6

Figure 3.4 illustrates the memory layout of the HMAC structures. On top is
shown the static seg6 hmac algo structures containing per-CPU pointers to
algorithm instances (tfms) and auxiliary working buffers (shashs). Below is
shown each CPU, holding a local hmac ring static buffer that contains HMAC
texts. The local instances of tfm and shash are stored on the heap. Only the
SHA-256 variant is represented. In practice, each CPU will hold an algorithm

5static DEFINE PER CPU(char [SEG6 HMAC RING SIZE], hmac ring);
6The Read-copy update (RCU) mechanism implemented in the Linux kernel is a complicated

synchronisation mechanism whose details are out of the scope of this thesis. For further informa-
tion about RCU, the reader is invited to consult [44, 45, 46]

3.4. HMAC 29

Listing 3.4: SR HMAC algorithm description.
s t r u c t s e g 6 h m a c a l g o {

u8 a l g i d ;
char name [6 4] ;
s t r u c t c r y p t o s h a s h * p e r c p u * t fms ;
s t r u c t s h a s h d e s c * p e r c p u * s h a s h s ;

} ;

Listing 3.5: SR HMAC mapping between key ID and secret, hashing algo-
rithm.
s t r u c t s e g 6 h m a c i n f o {

s t r u c t r h a s h h e a d node ;
s t r u c t r c u h e a d r c u ;

u32 hmackeyid ;
char s e c r e t [SEG6 HMAC SECRET LEN] ;
u8 s l e n ;
u8 a l g i d ;

} ;

Figure 3.4: Memory layout of HMAC structures.

30 Chapter 3. Implementation of IPv6 Segment Routing in Linux

instance and an auxiliary working buffer for each hash variant.
The main function responsible for HMAC computation is

seg6 hmac compute(). It takes as input an HMAC descriptor struct
seg6 hmac info, an SRH, an IPv6 source address and a pointer to store the
output of the HMAC algorithm. First, the function computes the length of the
input text, which depends mainly on the number of segments present in the SRH.
In Linux 4.10, the ring buffer is sized at 256 bytes, which allows for up to 14
segments in the SRH. Then, the function needs to ensure that no concurrent
access will happen on its ring buffer. As the ring buffer is local to the CPU, there
is no need to protect against parallel accesses even in SMP systems (as one CPU
cannot simultaneously execute more than one task). However, in preemptible
kernels7, a kernel task may be preempted at almost any point in time. This means
that the current task can be rescheduled to another CPU (thus changing of ring
buffer in the middle of the computation), or it can be interleaved on the same
CPU with another task running the same code (thus corrupting the ring buffer).
To prevent this, we need to disable preemption through preempt disable().
That would be sufficient if the HMAC computation function were called only
from a process context, which is the case, e.g., when processing packets generated
by a local user application. However, when packets are available at a network
interface, the NIC generates a hardware interrupt request (IRQ). The associated
IRQ handler defined in the network driver fetches the packets, performs a quick
preprocessing, enqueues the packets in a per-CPU backlog buffer and raises
a software interrupt NET RX SOFTIRQ. As opposed to hardware interrupts,
softirqs run with interrupts enabled and handle the most time-consuming part
of the interrupt handlers. This prevents spending too much time with interrupts
disabled. In the kernel, softirqs are also known as bottom halves. The raised
softirq is handled by the net rx action() function which may ultimately
call the HMAC computation function. If the IRQ was triggered in the middle
of such a computation, then the ring buffer would get corrupted. We thus need
to disable softirqs by calling local bh disable(). Note that this function
also disable preemption, so that a call to preempt disable() is redundant.
This also protects the per-CPU algorithm descriptors and working buffers. Once
the softirqs are disabled, the function computes the HMAC text and calls the
crypto API functions that will effectively compute the HMAC. Immediately after
the HMAC computation is done, the softirqs are re-enabled. Then, the result is
copied into the output given as argument and the function returns.

Disabling preemption and softirqs has some consequences, mainly on real-
time systems. The kernel will not be able to schedule another task on the CPU

7By default, only user space code is preemptible. Using CONFIG PREEMPT=y enables kernel
space code to also be preempted.

3.4. HMAC 31

running the HMAC computation until it completes. As an HMAC is computed
on the microsecond level, the overall impact is therefore limited, especially on
multi-core systems where other CPUs are likely to be available.

Listings 3.6 and 3.7 illustrate the possible contexts for HMAC computation.
They are call stacks generated by the GDB backtrace command. After set-
ting a breakpoint on seg6 push hmac(), an ICMP echo-request was gener-
ated through the ping6 command between two network namespaces on the same
host. The destination matched an SR encapsulation route with HMAC. The first
listing shows the process context, when computing the HMAC for the generated
ICMP packet. From bottom to top, we can see the entry into the sendto()
system call (frames 15-17), the construction of the packet (frames 8-14), and its
path through our hooked output route pointer (frames 0-4). The second listing
shows the call stack in interrupt context, when the packet has been received on an
ingress network interface. The NET RX softirq is invoked from a hard IRQ return
path8 (frames 16-21). The packet passes through the PREROUTING stage (frames
8-10), then the INPUT stage (frames 4-7). It enters the ipv6 srh rcv() func-
tion, finally calling the HMAC computation function.

Listing 3.6: Call stack for seg6 hmac compute in process context.
#0 seg6 hmac compute () a t n e t / i pv6 / seg6 hmac . c :167
#1 0 x f f f f f f f f 8 1 9 1 5 0 c c i n seg6 push hmac () a t n e t / i pv6 / seg6 hmac . c :348
#2 0 x f f f f f f f f 8 1 9 1 3 d c 6 i n s e g 6 d o s r h e n c a p () a t n e t / i pv6 / s e g 6 i p t u n n e l . c : 138
#3 s e g 6 d o s r h () a t n e t / i pv6 / s e g 6 i p t u n n e l . c : 223
#4 0 x f f f f f f f f 8 1 9 1 4 0 9 9 i n s e g 6 o u t p u t () a t n e t / i pv6 / s e g 6 i p t u n n e l . c : 261
#5 0 x f f f f f f f f 8 1 7 e 9 2 f f i n l w t u n n e l o u t p u t () a t n e t / c o r e / l w t u n n e l . c :310
#6 0 x f f f f f f f f 8 1 9 1 7 b 1 8 i n d s t o u t p u t () a t . / i n c l u d e / n e t / d s t . h :501
#7 i p 6 l o c a l o u t () a t n e t / i pv6 / o u t p u t c o r e . c :172
#8 0 x f f f f f f f f 8 1 8 d 4 4 4 a i n i p 6 s e n d s k b () a t n e t / i pv6 / i p 6 o u t p u t . c :1727
#9 0 x f f f f f f f f 8 1 8 d 4 5 1 8 i n i p 6 p u s h p e n d i n g f r a m e s () a t n e t / i pv6 / i p 6 o u t p u t . c

:1747
#10 0 x f f f f f f f f 8 1 8 f 6 1 9 d i n r a w v 6 p u s h p e n d i n g f r a m e s () a t n e t / i pv6 / raw . c :613
#11 rawv6 sendmsg () a t n e t / i pv6 / raw . c :927
#12 0 x f f f f f f f f 8 1 8 8 2 c b 5 i n i n e t s e n d m s g () a t n e t / i pv4 / a f i n e t . c : 744
#13 0 x f f f f f f f f 8 1 7 9 d 1 a 3 i n s o c k s e n d m s g n o s e c () a t n e t / s o c k e t . c :635
#14 sock sendmsg () a t n e t / s o c k e t . c :645
#15 0 x f f f f f f f f 8 1 7 9 d 9 a f i n SYSC sendto () a t n e t / s o c k e t . c :1687
#16 0 x f f f f f f f f 8 1 7 9 e 9 d 9 i n S y S s e n d t o () a t n e t / s o c k e t . c :1655
#17 0 x f f f f f f f f 8 1 9 7 e 9 4 1 i n e n t ry SYSC ALL 64 fa s tpa th () a t a r c h / x86 / e n t r y / e n t r y 6 4

. S :204
#18 0 x00005604a7944e21 i n ?? ()

As explained above, the HMAC computation function has multiple call sites.
One of them is in the ipv6 srh rcv() function, to verify the validity of an SR-
enabled packet with an HMAC TLV. Another one is through the seg6 do srh()

8The acute reader will notice that the hard IRQ in question is the timer interrupt. This is due to
the fact that the ingress interface is virtual and has no corresponding hardware interrupt.

32 Chapter 3. Implementation of IPv6 Segment Routing in Linux

Listing 3.7: Call stack for seg6 hmac compute in interrupt context.
#0 seg6 hmac compute () a t n e t / i pv6 / seg6 hmac . c :167
#1 0 x f f f f f f f f 8 1 9 1 4 a 0 6 i n s e g 6 h m a c v a l i d a t e s k b () a t n e t / i pv6 / seg6 hmac . c :274
#2 0 x f f f f f f f f 8 1 9 0 6 8 f c i n i p v 6 s r h r c v () a t n e t / i pv6 / e x t h d r s . c :346
#3 i p v 6 r t h d r r c v () a t n e t / i pv6 / e x t h d r s . c :487
#4 0 x f f f f f f f f 8 1 8 d 4 9 d 1 i n i p 6 i n p u t f i n i s h () a t n e t / i pv6 / i p 6 i n p u t . c : 279
#5 0 x f f f f f f f f 8 1 8 d 5 1 6 6 i n NF HOOK () a t . / i n c l u d e / l i n u x / n e t f i l t e r . h :257
#6 i p 6 i n p u t () a t n e t / i pv6 / i p 6 i n p u t . c : 322
#7 0 x f f f f f f f f 8 1 8 d 4 7 3 2 i n d s t i n p u t () a t . / i n c l u d e / n e t / d s t . h :507
#8 i p 6 r c v f i n i s h () a t n e t / i pv6 / i p 6 i n p u t . c : 6 9
#9 0 x f f f f f f f f 8 1 8 d 5 7 d f i n NF HOOK () a t . / i n c l u d e / l i n u x / n e t f i l t e r . h :257
#10 i p v 6 r c v () a t n e t / i pv6 / i p 6 i n p u t . c : 203
#11 0 x f f f f f f f f 8 1 7 b d d 9 4 i n n e t i f r e c e i v e s k b c o r e () a t n e t / c o r e / dev . c :4190
#12 0 x f f f f f f f f 8 1 7 b e 8 a 8 i n n e t i f r e c e i v e s k b () a t n e t / c o r e / dev . c :4228
#13 0 x f f f f f f f f 8 1 7 b f f 8 d i n p r o c e s s b a c k l o g () a t n e t / c o r e / dev . c :4839
#14 0 x f f f f f f f f 8 1 7 b f 1 6 5 i n n a p i p o l l () a t n e t / c o r e / dev . c :5202
#15 n e t r x a c t i o n () a t n e t / c o r e / dev . c :5267
#16 0 x f f f f f f f f 8 1 0 7 4 d c 1 i n d o s o f t i r q () a t k e r n e l / s o f t i r q . c :284
#17 0 x f f f f f f f f 8 1 0 7 5 2 5 d i n i n v o k e s o f t i r q () a t k e r n e l / s o f t i r q . c :364
#18 i r q e x i t () a t k e r n e l / s o f t i r q . c : 405
#19 0 x f f f f f f f f 8 1 0 4 0 3 8 8 i n e x i t i n g i r q () a t . / a r c h / x86 / i n c l u d e / asm / a p i c . h :658
#20 s m p a p i c t i m e r i n t e r r u p t () a t a r c h / x86 / k e r n e l / a p i c / a p i c . c : 961
#21 0 x f f f f f f f f 8 1 9 7 f 5 e 3 i n a p i c t i m e r i n t e r r u p t () a t a r c h / x86 / e n t r y / e n t r y 6 4 . S

:707
#22 0 x f f f f c 9 0 0 0 0 3 8 7 d f 8 i n ?? ()
#23 0 x0000000000000000 i n ?? ()

function, to augment packets with an SRH containing an HMAC TLV. Finally, an
HMAC may also be computed for a packet generated through a particular local
socket that has received an SRH through the setsocktopt() system call. To
define an SRv6 encapsulation route with an HMAC, iproute2 provides the
hmac parameter that takes a key ID in argument. The SRH sent to the kernel
contains a template HMAC TLV with the key ID set and the HMAC value zeroed.
The same construction applies for a per-socket SRH. The configuration of key IDs
is performed through the genetlink protocol. We modified the iproute2
tool to support HMAC key ID configuration. Listing 3.8 shows an example of
a key ID configuration. The sr hmac set command takes a key ID and a
hashing algorithm name in parameter.

Listing 3.8: HMAC key ID configuration example.
i p s r hmac s e t 42 sha256

3.5. Testing 33

3.5 Testing

3.5.1 Nanonet framework

To evaluate the correct behavior of our implementation, we performed tests in
virtualized environments. At first, we used the Mininet [42] framework. However,
we required several features that Mininet was missing. For example, we wanted
to use named namespaces instead of anonymous namespaces, the latter requiring
a control process to run. With named namespaces, it is easier to move between the
virtual nodes of the emulated network using regular shell commands. To automate
the configuration of the network, we also wanted to automatically assign an IPv6
prefix to each node and link. Finally, we wanted to be able to instantiate very
large networks (e.g., Tier-1 networks with hundreds of nodes and thousands of
links). The main issue with such networks is the generation and propagation of
routes. Spawning a routing daemon such as Quagga for each virtual node would
consume a lot of resources and will rapidly become difficult to maintain. As
a result, we decided that the most resource-efficient solution would be to pre-
compute reachability information and install it as static routes in each virtual node.
Helpers would be provided to emulate topology changes and IGP propagation.

Hence, we created our own framework that we (creatively) called Nanonet. We
used the same underlying technology as Mininet (i.e., network namespaces and
virtual Ethernet pairs) but we took a very different approach to the instantiation
and management of virtual network topologies. The source code of Nanonet is
available on http://www.segment-routing.org.

The input of Nanonet is a text file describing a network topology. Each line
describes a link between two named nodes and specifies the weight, bandwidth
and latency of the link. The output is a bash file containing all the commands
necessary to spawn the namespaces (one per node), create and assign the vir-
tual Ethernet pairs (one per link), configure the link parameters and populate the
routing table of each namespace. The virtual topology is thus instantiated by exe-
cuting the bash file. Afterwards, it is possible to enter and execute commands in
an arbitrary namespace by executing the command ip netns exec nsname
bash.

The topology generation process is composed of the following steps: (i) pre-
fixes assignation, (ii) routes computation and (iii) commands generation. The
first step consists in assigning a prefix for each node and for each link. Each of
them is a /64 taken from larger /32 prefixes. By default, the node prefixes are
taken from fc00:2::/32 and the link prefixes from fc00:42::/32. Then,
in the second step, Nanonet computes the shortest path DAG for each node, with
the Dijkstra algorithm. From these DAGs are extracted, for each node, the routes
needed to reach each node prefix. No route is computed for the link prefixes.

http://www.segment-routing.org

34 Chapter 3. Implementation of IPv6 Segment Routing in Linux

Finally, the third step consists in generating all the commands necessary to instan-
tiate the virtual topology. First, each namespace is spawned and its node prefix
is assigned to the loopback interface. Forwarding and SR processing are enabled.
Then, for each link, the corresponding virtual Ethernet pair is spawned and as-
signed to their respective namespaces. Each interface receives its link prefix and
is configured with the bandwidth and delay parameters through the tc command.
The bandwidth setting is implemented using a Hierarchy Token Bucket (HTB)
queueing discipline. The delay is implemented through the netem module. Fi-
nally, each route is created using the iproute2 command. If a node has multiple
paths of equal cost to reach another node, then all the routes corresponding to the
available paths are created. This enables the node to be reachable through Equal-
Cost Multi-Path (ECMP). The list of commands is then written in the output file.

3.5.2 Limits of same-kernel testing
The ability to create a virtual network on a single Linux kernel is extremely

helpful to quickly deploy virtual topologies, test network features, etc. However,
a virtual network cannot, by definition, exactly reproduce a real network. Two
aspects in particular can be challenging to reproduce, due to how the Linux net-
working stack works. These aspects are (i) ordering of operations and (ii) jitter.
To understand why those cannot be faithfully reproduced, we need to analyse the
management of queuing disciplines, explore a part of the scheduling subsystem,
and dig into the interrupt handling behavior.

On Linux, each network interface is associated with a queuing discipline
(or qdisc). A qdisc provides packet scheduling and queue management algo-
rithms. Each packet transmitted to such an interface is sent through its qdisc,
which may then choose to drop, delay, or immediately send the packet. The
default qdisc has been pfifo fast for a long time. It is a simple FIFO
queue that provides basic prioritization capabilities. It is now being replaced by
fq codel [47, 48, 49], which attempts to reduce bufferbloat by leveraging the
packets queuing delays. When a user application attempts to send data to the
network through a given syscall (e.g., send()), the kernel handler will eventu-
ally call dev queue xmit(). It is the generic function to send a packet to an
interface queue, which subsequently calls the qdisc-specific enqueue() func-
tion. If the packet must be dropped, then the skb is freed. If the packet must be
sent immediately, then the function sch direct xmit() is called, which will
subsequently call the NIC driver’s ndo start xmit() to effectively send the
packet on the wire. If the packet is delayed, then it is put in the qdisc buffer. A
timer may be activated to ensure that the packet will be transmitted at the right
time. This queueing process is a first source of unexpected jitter. Indeed, right
after the call to enqueue(), the qdisc run() function is executed. This

3.5. Testing 35

function will attempt to dequeue and transmit packets as much as it can, bounded
by either a configurable quota of packets (64 by default), the unavailability of sub-
sequent dequeueable packets, or a scheduling preemption event. However, a given
qdisc may contain packets from various user applications. As such, each user call
to, e.g., send() may potentially induce latency by spending time in the kernel,
transmitting packets that belong to other processes. Note that this jitter happens
for any kind of interface, real and virtual.

On the other side, when a NIC receives a packet from the network, an skb is
built from the raw data. Then, the driver enqueues the packet in a per-CPU backlog
queue.9 To minimize the time spent with interrupts disabled, the driver raises the
NET RX softirq and returns. This is realized by the netif rx internal()
function. This softirq will then be processed on the IRQ return path, with in-
terrupts enabled. The net rx action() function is then executed and the
skb is processed as explained in Section 3.1.1. However, with virtual Ether-
net pairs, there is no hardware IRQ as the packet is generated from within the
kernel. The packet transmission function that the veth driver registers as its
ndo start xmit() function simply calls the dev forward skb() func-
tion. The purpose of the latter is to transfer an skb between two local interfaces.
In practice, it calls the netif rx internal() function and returns. As men-
tioned earlier, this function enqueues the skb into a per-CPU backlog queue and
raises the NET RX softirq. This softirq is then processed by do softirq()
either when (i) returning from IRQ, (ii) re-enabling software interrupts if they
were disabled, or (iii) returning to user space. The first option will not happen
directly as we are not in an IRQ handler, but in a process context. However, the
packet enqueueing function is always called with software interrupts disabled. As
such, the pending softirq will be processed as soon as software interrupts are re-
enabled, which is at the end of the POSTROUTING stage. If the corresponding
skb is again transmitted through a veth interface, then another softirq will be
raised. As we are now in software interrupt context, they will not be recursively
processed again after the packet transmission. However, the do softirq()
function will continue to process softirqs as they are raised. The loop will stop
when either (i) more than two milliseconds elapsed, (ii) more than 10 iterations
occurred, or (iii) a scheduling preemption event happened. This is another source
of jitter, as the user application that initially generated the packet to be sent is not
executed while softirqs are processed in chain.

Perhaps more importantly, such chain processing of softirqs can change the
expected order of events. Consider the virtual network shown in Figure 3.5. A
user space application running in namespace A sends two consecutive packets to
D. The first packet is routed through B and the second one through C. The expected

9The recipient CPU is selected using, e.g., Receive Side Scaling or Receive Flow Steering [50].

36 Chapter 3. Implementation of IPv6 Segment Routing in Linux

A

B

C

D

Figure 3.5: Virtual network composed of network namespaces and virtual
Ethernet pairs.

order of events is the following, considering that the link delay and bandwidth are
constant and identical for all the links in the network.

1. A sends packet P1.

2. A sends packet P2.

3. B forwards packet P1.

4. C forwards packet P2.

5. D receives packet P1.

6. D receives packet P2.

However, with chain processing of softirqs, the actual order of events is the
following.

1. A sends packet P1.

2. B forwards packet P1.

3. D receives packet P1.

4. A sends packet P2.

5. C forwards packet P2.

6. D receives packet P2.

Currently, the only way to prevent the chain processing of softirqs is to en-
force, on each link, a minimal queueing delay large enough so that the packets
will not be transmitted on the first call of qdisc run().10 To address the

10Using, e.g., the netem qdisc

3.6. Performances 37

jitter induced by softirqs processing, the Linux kernel includes a mitigation mech-
anism that is deployed when the condition to break from softirq processing hap-
pens (timeout, too much iterations, or preemption). This mechanism is a kernel
thread called ksoftirqd. Its sole purpose is to process software interrupts. It
is scheduled when the kernel estimates that too many softirqs are processed in a
row. There is one ksoftirqd thread running for each CPU. While this mech-
anism enables to avoid spending the execution time of a user application in the
processing of softirqs, the ksoftirqd thread will still be scheduled on the same
CPU as the user application that initially triggered the softirq, eventually inter-
rupting its execution and leading to unavoidable jitter. In the current state of the
Linux kernel, there is no way around this issue. One solution is to use dedicated
CPUs to handle the networking stack, thus avoiding interference with user appli-
cations scheduled on other CPUs. At the time of writing, this solution is currently
being investigated as part of a larger effort to reduce latencies in the networking
stack [51].

3.6 Performances
While virtualized environments can be used to assert the correct implementa-

tion of network features, they are less suited to performance measurements. For
our SRv6 implementation to be deployed in production, we need to ensure that it
yields good performances on real hardware.

3.6.1 Setup

Our setup consists of three identical machines, running Intel Xeon X3440 pro-
cessors with 4 cores and 8 threads at 2.53 GHz. Each machine is equipped with
16 GB of RAM and two Intel 82599 10 Gbps network interface cards. The three
machines are connected linearly. The first one is the packet generator (source).
It is connected to another machine acting as an SR node, that will perform SR
operations on packets. Itself is connected to the third one, the packet sink. Fig-
ure 3.6 shows an illustration of our setup, with interface names and link prefixes.
The source has a route to fc01::/64 via fc00::5 and the sink has a route to
fc00::/64 via fc01::5.

Figure 3.6: Network setup for performance measurements.

38 Chapter 3. Implementation of IPv6 Segment Routing in Linux

Each machine is running Linux 4.11-rc3.11 All SR-related kernel options are
enabled. The preemption model is voluntary and the clock ticks are set to 100 Hz
periodic. All active measurement interfaces have GRO and GSO disabled, as well
as all hardware transmit and receive offloading features. By default, each interface
has one queue per CPU (i.e., 8 queues in our setup). Each queue’s IRQ is handled
by the corresponding CPU. We change this setting to force all the queues of a
network interface to be handled by a single CPU. The other interfaces parameters
are left to their default setting.

Our source use the pktgen [52] packet generator. It has the particularity of
being directly included in the kernel. As such, packets are directly handed over
to the network driver, without further preprocessing. Consequently, pktgen is
much faster than user space counterparts such as iperf3. A drawback is that
pktgen is not able to handle streamed protocols such as TCP. It only sends UDP
packets as fast as possible, with a configurable payload length. However, this is a
suitable behavior for our tests. As our implementation adds per-packet processing
overheads, we need to measure throughput in terms of packets per second rather
than bytes per second.

As pktgen is able to generate packets an order of magnitude faster than
what the kernel is able to process through its normal forwarding codepath, the
SR node is always overloaded on its ingress interface. The actual throughput and
performance of the SR node is measured on its egress interface.12

3.6.2 Measurements
We define the following types of measurements.

• Plain: regular IPv6 forwarding, without SRv6 interactions.

• Encap: SRH encapsulation (1 segment) with an outer IPv6 header

• Inline: direct SRH insertion (1 segment) in the original packet.

• HMAC: SRH encapsulation with an HMAC field (SHA-256).

The results shown further are represented as boxplots. Their format is defined
as follows. At the core of each boxplot is a rectangle whose lower and upper
bounds represent resp. the first and third quartiles (i.e., the 25th and 75th per-
centiles). Within the rectangle is a horizontal line that marks the median value.
Whiskers extend below and above the first and third quartiles. They are dashed
vertical lines reaching down to the 5th and up to the 95th percentiles. The limits

11At commit add641e7dee31b36aee83412c29e39dd1f5e0c9c.
12By sampling /sys/class/net/<iface>/statistics/tx packets

3.6. Performances 39

of the whiskers are marked by a horizontal line which is narrower than the me-
dian line. Outliers are marked by very short horizontal lines below and above the
whiskers.

Single-CPU forwarding

Unless stated otherwise, for each measurement we run 100 batches of five
millions IPv6 packets with a length of 64 bytes, which is the minimum length
supported by pktgen. Each packet includes an IPv6 header (40 bytes), a UDP
header (8 bytes) with source and destination port 9 (discard service) and a UDP
payload of 16 bytes. The source IPv6 address is set to fc00::44 (the source)
and the destination address is set to fc01::66 (the sink). The source MAC
address is set to the enp1s0f1 interface MAC on the source and the destination
MAC address is set to the enp1s0f1 interface MAC on the SR node. When the
SR node inserts an SRH with one segment, the segment is defined to fc01::6.

In the first set of measurements, we compare the encapsulation and direct in-
sertion cost with respect to the plain IPv6 forwarding performances. Figure 3.7
shows the result of those measurements. The baseline for plain IPv6 averages at
1,165 Kpps, while direct insertion and encapsulation average at resp. 776 and 784
Kpps. The standard deviation is about 7 Kpps for the three measurements. While
those results are not catastrophic, they still could be improved by a factor of about
1.5 to reach the plain IPv6 forwarding performances.

Plain Inline Encap
200

400

600

800

1000

1200

Th
ro

ug
hp

ut
(K

pp
s)

Performances comparison (unpatched)

Figure 3.7: Initial performances for encapsulation and insertion.

40 Chapter 3. Implementation of IPv6 Segment Routing in Linux

To determine where the SRH insertion took time, we ran the perf tool on
the SR node while transmitting packets and generated a differential analysis be-
tween plain IPv6 forwarding and SRH insertion. This analysis pinpointed two
kernel functions, fib6 lookup() and slab free(). The former is the
IPv6 route lookup function. We realized that it was called once too often per SR-
processed packet. The reason was that we used the dst cache mechanism for
locally generated packets (in seg6 output()) but not for forwarded packets (in
seg6 input()). We thus fixed the issue by leveraging the caching mechanism
for both functions. The root cause of the slab free() increased usage was
a little more difficult to determine. This function is called by kfree() (freeing
kernel memory) when the data to free was not allocated by the same CPU as the
one attempting to free the memory. In this case, a slowpath is taken which calls the
slab free() function, itself taking a spinlock. This was likely due to some

allocation we were performing in the SRH insertion codepath. Indeed, we were
calling pskb expand head() for each packet. We used this function to in-
crease the size of the skb headroom by the length of the IPv6 header and the SRH
we were pushing onto the packet. However, the skb was originally allocated by
the CPU that handled the hardware interrupt generated by the network card when
receiving the packet. The CPU handling the NET RX softirq and thus calling IPv6
and SR processing functions is not necessarily the same. As such, when the ini-
tial CPU attempted to free the skb, part of its data were reallocated by another
CPU, and the freeing process took the slowpath through slab free(). To fix
this issue, we took advantage of the already existing headroom in skb’s. We re-
placed pskb expand head() calls by skb cow head(), which reallocates
the skb header only if the headroom is not large enough. After applying the two
patches, we performed a second set of measurements, as shown in Figure 3.8. The
performance gain is clearly noticeable, with direct insertion and encapsulation av-
eraging resp. 1,019 Kpps and 1,001 Kpps (standard deviation resp. 11.1 Kpps and
7.8 Kpps).

In a third set of measurements, we analysed the effect of the packet size on
SRH insertion performance. Instead of 64-byte packets, we generated 1000-byte
packets. Figure 3.9 shows the results for plain, inline and encap measurements,
with both packet sizes. As a general tendency, we can see that the performances
for 1000-byte packets are slightly better, especially for peak throughput. The
average is almost the same for 1000-byte and 64-byte packets, but the standard
deviation is three times higher for large packets. In any case, we can say that the
packet size does not significantly impact the SRH insertion performances.

A potentially harmful feature of SRv6, with respect to performances, is
HMAC computation. In a fourth set of measurements, we analysed the impact
of SRH encapsulation with an HMAC. The hashing algorithm is SHA-256. In our
kernel version, there are three available implementations of SHA-256. A generic

3.6. Performances 41

Plain Inline Encap
200

400

600

800

1000

1200

Th
ro

ug
hp

ut
(K

pp
s)

Performances comparison (patched)

Figure 3.8: Performances for encapsulation and insertion after optimiza-
tions.

Plain (1000) Plain (64) Inline (1000) Inline (64) Encap (1000) Encap (64)
200

400

600

800

1000

1200

Th
ro

ug
hp

ut
(K

pp
s)

Performances comparison (1000B packets)

Figure 3.9: Performances for encapsulation and insertion using small and
large packets.

42 Chapter 3. Implementation of IPv6 Segment Routing in Linux

one, a partially hardware-offloaded one and a experimental multi-buffer imple-
mentation. We could leverage the ssse3 instruction set for the partial hardware-
offloading implementation. We could not use the multi-buffer SHA-256 as the
processor of our test machines was lacking the proper instruction set (avx2). The
results are shown in Figure 3.10. The performance drop for HMAC is huge. Us-
ing the generic implementation of SHA-256, we average 240 Kpps. The ssse3-
augmented version reaches 290 Kpps in average, which is a long way from the
1,001 Kpps baseline for encapsulation without HMAC. The standard deviation
is below 1 for both SHA-256 implementations. This can be explained by the
fact that the long computation time shadows the small random fluctuations in the
packet processing time.

Encap HMAC (generic) HMAC (ssse3)
200

400

600

800

1000

1200

Th
ro

ug
hp

ut
(K

pp
s)

Performances comparison (HMAC)

Figure 3.10: Performances for encapsulation with and without HMAC.

Figure 3.11 shows a summary of the performance measurements for SRH in-
sertion with a single CPU. Table 3.2 describes the detailed statistic data for each
performed measurement.

Forwarding at scale

To assess how our implementation performs when concurrently executed on
multiple CPUs, we leveraged the Receive Side Scaling (RSS) feature of the Linux
kernel. This feature enables the NIC to uniformly distribute incoming packets
over its multiple receive queues, on a coarse per-flow basis (i.e., at least the same

3.6. Performances 43

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

Plain IPv6 Inline Encap HMAC

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

K
pp

s)
SRH insertion performances for 64-byte packets

Single-flow, single CPU

Figure 3.11: Performances summary for SRH encapsulation with a single
CPU.

Table 3.2: Detailed statistics in thousands of packets per second (Kpps) for
single-CPU measurements.

Measurement Min Max Mean Median Stddev
plain-64 1135.547 1164.134 1156.462 1156.390 6.465

plain-1000 1147.429 1219.501 1169.196 1162.986 15.989
inline-64 984.974 1025.584 1019.391 1024.792 11.093

inline-1000 984.315 1161.050 1031.402 1025.601 33.422
encap-64 978.020 1006.785 1001.442 1005.676 7.807

encap-1000 973.969 1138.490 1017.841 1006.100 38.092
hmac-generic-64 239.557 241.657 240.497 240.474 0.512
hmac-ssse3-64 288.864 291.543 290.286 290.527 0.917

44 Chapter 3. Implementation of IPv6 Segment Routing in Linux

source and destination address). Each receive queue is associated with a dedi-
cated IRQ. By assigning a different CPU for each IRQ of the queues, the packets
can be processed in parallel. To realize this, each packet generated by pktgen
was assigned a random destination address within the fc01::/64 prefix, using
a uniform distribution. With this modified setup, we replayed all four types of
measurements. The results are shown in Figure 3.12. We can see that the per-
formance scales sub-linearly with respect to the number of CPUs, even for plain
IPv6 forwarding. This can be explained by the fact that the test machines have
4 physical cores, yielding 8 virtual CPUs with HyperThreading enabled. How-
ever, one core cannot execute more than one thread at the same time. Thus, the
performance can improve at most by a factor equal to the number of cores. The
performance gain is the same for each type of measurement, with inline and en-
cap measurements reaching 4.2 Mpps. Table 3.3 shows the detailed statistics for
the multi-CPUs measurements. Each figure has an improvement factor of about
4.2 with respect to the single-CPU measurements, which corresponds to the addi-
tional CPU cores. We conclude that the performance of our implementation scales
linearly with respect to the available CPU power.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

Plain IPv6 Inline Encap HMAC

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

K
pp

s)

SRH insertion performances for 64-byte packets

Multi-flows, 8 CPUs
Single-flow, single CPU

Figure 3.12: Performance summary of SRH encapsulation using one and
multiple CPUs.

3.7. Network programming support 45

Table 3.3: Detailed statistics in Kpps for multiple CPUs measurements.

Measurement Min Max Mean Median Stddev
mflows-plain-64 4883.166 4971.043 4917.450 4915.135 15.297
mflows-inline-64 4028.267 4320.840 4300.920 4305.048 28.667
mflows-encap-64 3731.864 4329.391 4289.581 4295.670 56.639

mflows-hmac-ssse3-64 1207.135 1215.387 1211.438 1211.453 1.816

3.7 Network programming support
After the writing of this manuscript, we implemented the latest SRv6 speci-

fications as described in 2.2, which was subsequently merged into the mainline
Linux tree.13 In this section, we describe our implementation of SRv6 network
programming in Linux. This is thus an update to the original manuscript.

The core idea of the SRv6 network programming specifications is that each
SR node contains a My Local SID table. Each entry of this table is a segment
mapped to a processing function. When a packet enters the SR node with an
active segment matching an entry of the table, the associated function is applied
to the packet. The specifications define a list of functions that each SR node must
support.

Two key differences with the original implementation is that, in the network
programming principles, (i) a packet may contain a valid active segment which
is not attached to any interface of the corresponding SR node, and (ii) in some
encapsulation cases, a packet may contain a valid active segment without an SRH.
The consequence of those differences is that we must be able to match ingress
packets based on their destination address (which contains the active segment),
instead of catching them later in the INPUT stage. Such a requirement very much
resembles a routing table. Furthermore, there already exists a kernel mechanism to
associate custom functions to routing entries, the lightweight tunnels. We already
use LWTs to support SRH insertion and encapsulation. To support SRv6 network
programming, we define a new type of LWT, namely seg6local.

Each instance of a seg6local LWT is defined by an action parameter,
defining the SR function to apply, and a set of arguments for the function. The
type of arguments currently supported are routing table identifier, IPv6 next-hop,
IPv4 next-hop, Segment Routing Header, ingress interface and egress interface.
The meaning of those arguments depend on the SR function. We implemented the
following functions, as described in [29].

• End. Regular processing of an SR-enabled packet as an intermediate seg-
ment endpoint..

13Those new features will be available for Linux 4.14, which will be released around November
2017.

46 Chapter 3. Implementation of IPv6 Segment Routing in Linux

• End.X. Apply the End function, but forward the processed packet to a
specified IPv6 next-hop.

• End.T. Apply the End function, but lookup the IPv6 next-hop into the
specified routing table.

• End.B6. Insert the specified SRH immediately after the IPv6 header of the
packet. The destination address is set to the first segment of the list, and the
original SRH is left unmodified.

• End.B6.Encaps. Apply the End function. Then, encapsulate the pro-
cessed packet within an outer IPv6 header that contains the specified SRH.

• End.DX2. Remove the outer IPv6 header. The inner payload must be an
Ethernet frame, which is forwarded on the specified egress interface.

• End.DX6. Remove the outer IPv6 header. The inner payload must be an
IPv6 packet, which is forwarded to the specified IPv6 next-hop.

• End.DX4. Remove the outer IPv6 header. The inner payload must be an
IPv4 packet, which is forwarded to the specified IPv4 next-hop.

• End.DT6. Remove the outer IPv6 header. The inner payload must be an
IPv6 packet. The next-hop is selected by looking into the specified routing
table.

Note that End.D* functions accept only packets that either contain an SRH
whose Segments Left value is zero, or that do not contain an SRH. The rest of
the functions accept only packets that contain an SRH whose Segments Left
value is non-zero.

3.8 Related and future work
To the extent of our knowledge, this is the only open-source implemen-

tation of Segment Routing that supports both endhosts and router functionali-
ties. The fd.io project has recently announced another implementation that
focuses on router functionalities [53]. In the mainline Linux kernel, two other
subsystems leverage the lightweight tunnels infrastructure. Those subsystems
are the MPLS [54] and the Identifier Locator Addressing [55, 56] implementa-
tions. With respect to work related to Nanonet, multiple open-source network
emulators have been developed. Prominently, Mininet [42] also leverages net-
work namespaces and virtual Ethernet pairs to emulate network topologies. They

3.9. Conclusion 47

also leverage the OpenVSwitch implementation to emulate OpenFlow networks.
Mininet-WiFi [57] is an extension to Mininet that enables to emulate wireless
stations and access points. Other emulators that leverage the Linux networking
stack also provides configuration helpers such as a graphical interface or Python
bindings [58, 59]. Netkit [60] leverages User-Mode Linux [61] to emulate net-
work nodes as instances of the Linux kernel running in user space. The well-
known GNS3 [62] emulator focuses on emulating Cisco IOS images using Dy-
namips [63]. Regarding the limits of same-kernel testing, the idea of having CPUs
dedicated to the network stack is perhaps similar to what is presented in [64].
Hruby et al. propose an architecture for MINIX where the network stack is inde-
pendently and concurrently executed by multiple threads.

For future work, multiple aspects of the SRv6 implementation can be ex-
tended. For example, some of the network programming functions are, at the
time of writing, not yet implemented. Those functions include, e.g., MPLS en-
capsulation, forwarding to SR-unaware and SR-aware virtual functions, etc. The
encapsulation process can be optimized by enabling a single copy of an SRH to
be mapped to multiple routes. That would require to maintain an additional table
containing the pre-defined SRHs, each associated to an index. This index could
then be referenced in the iproute2 command. The HMAC subsystem can ben-
efit from the addition of new hashing algorithms. It was implemented specifically
for SRv6. However, other network protocols may benefit from such an HMAC
mechanism, such as Generic UDP Encapsulation [65]. To realize this, the current
HMAC implementation must be generalized to support any type of network pro-
tocol. From an endhost point of view, new features such as the ability to extract
the SRH attached to TCP or UDP packets could enable applications to better take
advantage of per-flow SRHs.

Finally, the overall modularity and flexibility of our implementation can be
improved by providing eBPF hooks at various places in the code. Such hooks
would enable fine-grained configuration and alteration of the SR processing func-
tions while requiring no changes in the kernel code.

3.9 Conclusion
In this chapter, we presented our implementation of IPv6 Segment Routing in

the Linux kernel. We explained how the SRH processing, insertion, and HMAC
computation were implemented, as well as the user space control mechanisms. We
discussed some of the difficulties we encountered during the implementation. We
presented Nanonet, our testing framework, and presented the limits of network
testing on the same Linux kernel. Then, we measured the performances of our
implementation through several sets of measurements. After a few optimizations,

48 Chapter 3. Implementation of IPv6 Segment Routing in Linux

we showed that SRH insertion reaches almost 90% of the baseline plain IPv6 for-
warding performances. We also showed that HMAC computation was extremely
costly, reaching only 25% of the baseline. A possible optimization would be to
implement an HMAC cache to prevent recomputing the HMAC for each packet.
Finally, we gave some guidelines to further extend our SRv6 implementation.

Chapter 4

Exploring IPv6 Segment Routing

Due to its ability to easily specify arbitrary paths for packets, the Segment
Routing architecture can yield benefits in various aspects of networking. In this
chapter, we explore two of those aspects. First, we explore how real-time applica-
tions can benefit from traffic duplication over disjoint paths to achieve low-latency
communications in a reliable and robust manner [66]. Through simulations, we
analyze how the Linux TCP stack reacts to duplicated traffic and how traffic du-
plication can absorb link delays and packet losses. Second, we leverage Segment
Routing to improve network monitoring [67]. Using segments, we propose SC-
Mon, a technique to send monitoring probes over cycles in the network, from a
single vantage point. The monitoring cycles are computed by algorithms opti-
mising the network coverage with trade-offs between the length of cycles and the
number of segments. This technique enables to deterministically explore ECMP
components and to pinpoint failures on individual links within a bundle. We im-
plement SCMon and evaluate its performance on emulated topologies. In ex-
ploring those aspects, we also leverage our SRv6 implementation presented in
Chapter 3.

The work presented in this chapter was realized jointly with the Belgian Con-
straints Group in our department. They focused on the algorithmic parts while we
focused on the networking parts. As such, we only briefly present the optimization
algorithms used in this chapter. The full details are available in the corresponding
papers.

4.1 Traffic duplication for latency-critical applica-
tions

While low latency requirements are common for applications such as voice
over IP, live streaming, online gaming, etc., ultra-low latency is a different world.

49

50 Chapter 4. Exploring IPv6 Segment Routing

Safety-critical applications such as remote surgery cannot tolerate network events
such as packet loss and high jitter, and commands must be delivered as soon as
possible. In another area, high-frequency trading is also a heavy user of ultra-low
latency [68]. Financial companies have a desperate need to exchange information
and trading orders as fast as possible. Indeed, a 1-millisecond advantage for a
major brokerage firm can yield a loss or a profit of $100 million a year [69].
Those applications require not only ultra-low latency communication channels but
also transmissions that are reliable and robust to corruptions. Besides telesurgery
and trading, multiple other applications also require low latencies and reliable
deliveries [70, 71].

Some optical networks support two kinds of path protection schemes: 1 ∶ 1 and
1+1 [72, 73]. Both schemes leverages disjoint paths. With 1 ∶ 1 protection, data is
sent over a primary link, while a backup link stands ready to take over should the
primary link fails. With 1 + 1 protection, data is sent over both paths and the des-
tination can immediately switch to another path in case of link failure. However,
TCP/IP stacks do not natively support such path protection mechanisms. In this
section, we present a solution that achieves 1 + 1 protection by duplicating TCP
traffic over multiple disjoint paths. First, we discuss how the multiple paths should
be computed. Then, we describe our extension of the SRv6 Linux implementation
to support traffic duplication. We evaluate the impact of traffic duplication on the
Linux TCP stack. Finally, we briefly discuss existing related work.

4.1.1 Duplication over segmented disjoint paths

Host1
A

B C

D E

F
Host2

(a) Network topology connecting two hosts with ultra-low latency requirements.

Host1
A

B C

D E

F
Host2

(b) Two link disjoint paths exist, connecting the gateways of both hosts.

Figure 4.1: Illustration of disjoint paths.

4.1. Traffic duplication for latency-critical applications 51

An obvious requirement to achieve 1 + 1 path protection is path disjointness.
Otherwise, there would be a Single Point Of Failure (SPOF) on the path. Also,
the same data would be transmitted multiple times on the non-disjoint part of the
paths, which would be a waste of resources. Figure 4.1 shows an illustration of
two hosts connected with two disjoint paths. In this topology, the traffic would be
duplicated along the north (A-B-C-F) and south (A-D-E-F) paths. The duplica-
tion can be performed either by the host or by its gateway. The duplicated traffic
then converges at the remote gateway and is forwarded to the peer host. The
networking stack of the host receiving duplicated traffic then needs to properly
handle the duplicates. Such a setup would ensure that the fastest path is always
used and provide robustness against adverse events such as packet loss, jitter, etc.
on a single link.

A set of algorithms to compute disjoint paths and to realize them by using
segments are presented in [66]. We provide a brief summary of those algorithms.

Their goal is to compute an arbitrary number of link disjoint paths between
a given pair of nodes in a graph. Those paths must be expressed by a list of
segments. The following parameters must be minimized. The latency of each
path, the number of segments used to express them, and the difference of laten-
cies between each computed disjoint path. For the path segmentation, only node
segments are considered. As such, not all paths are segmentable. In this context, a
path is segmentable if and only if all its edges belong to at least one shortest path
Directed Acyclic Graph (SP-DAG) rooted at a node of the graph. For example,
paths that contain a backup link which is not part of any SP-DAG are said to be
unsegmentable. Traversing such links would require an adjacency segment. A
path expressible with a list of k segments is said to be k-segmentable.

The first step of computing k-segmentable link disjoint paths is handled by
the Build-Graph algorithm. This algorithm takes as input the graph G = (V,E)
of the network, the maximum number of segments K, a link latency function
l ∶ E → R+, and the SP-DAGs Dv for all v ∈ V . The output is a graph G where
each node is a tuple (v,Dr, k), with v, r ∈ V and k ∈ {1, . . . ,K}. Two nodes
(v1,Dr1 , k1) and (v2,Dr2 , k2) in G are connected by an edge of cost l(v1, v2) if
either, (v1, v2) ∈ Dr1 and r2 = r1 and k2 = k1, or (v1, v2) ∈ Dv1 and r2 = v1 and
k2 = k1 + 1 ≤ K. As shown in [66], it is possible to find a shortest-latency path
on G that requires at most K segments by computing a shortest path in G. This
second step is realized by the SPS algorithm. It takes as input the graph G, two
nodes s, t ∈ V (G), and the maximum number of segments K. Its output is the
shortest-latency K-segmentable s − t path.

The third step consists in iteratively applying the SPS algorithm. Each time
a path is found, its edges are removed from the graph. The iterations stop when
no more path can be found. To evaluate how these algorithms would perform on
real topologies, we ran simulations on four Rocketfuel topologies [74] described

52 Chapter 4. Exploring IPv6 Segment Routing

Table 4.1: Topologies used to evaluate link disjoint path computation.

Topology Nodes Links
RF AS1239 153 1010
RF AS1755 67 248
RF AS3257 103 484
RF AS3967 57 208

in Table 4.1. For each topology and for each possible pair of nodes, we generated
an increasing number of link disjoint paths between the two nodes of the pair. The
maximum number of segments was limited to K = 3. The results are shown in
Figure 4.2. It was possible to find a single path between each pair of nodes for
all topologies (i.e., all nodes are part of a shortest path). Then, as the number
of requested link disjoint paths increases, the number of pair of nodes satisfying
the constraint decreases. The smaller is the network, the larger is the decrease.
Indeed, it is more likely to find a higher number of link disjoint paths between
two pair of nodes if the network has a large number of nodes and edges.

4.1.2 Implementation and evaluation
Implementation

To support traffic duplication, we modified the SRv6 lightweight tunnel state
to support multiple SRHs instead of a single one. The SRHs are built by the
userspace and transferred as a contiguous stack. The lightweight tunnel creation
function parses this stack and saves the offsets of each SRH. In addition to the
SRHs, the tunnel state also stores one dst cache entry per SRH. Finally, we
modified the seg6 input function to support duplication for forwarded pack-
ets. If more than one SRH is present in the SRH stack contained in the tunnel
state, then we iterate over them, starting from the first one, and we apply the SRH
processing function to a copy of the original skb, using the current SRH.

Evaluation

To evaluate the impact of traffic duplication on TCP, we designed a setup based
on the network shown in Figure 4.1b. Nodes Host1 and Host2 exchange trans-
actions over TCP. Host1 acts as a client and sends 100-byte requests to Host2.
Once Host2 receives a request, it transmits a 100KB response. The content of
each request and response is randomized. Both the client and server use the CU-
BIC congestion control algorithm with default parameters. The Nagle algorithm
is disabled on both sides. The completion time of each transaction is measured
on the client (Host1) side, starting from the emission of the request and until

4.1. Traffic duplication for latency-critical applications 53

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6

P
ai

rs
 o

f n
od

es

Number of link disjoint paths

Possible disjoint paths in real network topologies

RF1239
RF1755
RF3257
RF3967

Figure 4.2: Number of link disjoint paths between each pair of nodes in sev-
eral RocketFuel topologies, for K = 3.

the reception of the full response. As such, three-way handshakes and connection
terminations are not included in the measurements. When duplication is enabled,
nodes A and F act as traffic duplicators. Node A duplicates all packets sent to
Host2 over the A - B and A - D links. Conversely, node F duplicates all
packets sent to Host1 over the C - F and E - F links.

Due to hardware constraints, we deployed this network setup in a virtualized
environment. However, we must be careful in the setup of such an environment.
Due to the ordering issues with same-kernel testing explained in Section 3.5.2,
we choose not to use Nanonet or other namespace-based environment to evaluate
the impact of traffic duplication. Indeed, we assume that our duplicated packets
will be transmitted and handled in a parallel, or at least interleaved, fashion. A
straightforward way to realize this is to dedicate one CPU per networking stack
(i.e., virtual node). However, this cannot be achieved with same-kernel testing.
Thus, we deployed a qemu-kvm based testbed [75, 76]. Each node in the network
is a kvm virtual machine. The nodes are connected through emulated e1000
network interface cards, bridged by the host, using one bridge for each virtual
link. To maximize parallelism and minimize interference, each virtual machine

54 Chapter 4. Exploring IPv6 Segment Routing

is pinned to a single CPU.1 While this setup can still suffer from jitter generated
on the host, it is more realistic than a namespace-based setup. To reduce the
impact of jitter, links Host1 -> A and Host2 -> F are configured with a
unidirectional delay of 5 ms, using the netem module. Thus, the round-trip time
between Host1 and Host2 is 10 ms.

We performed multiple batches of measurements. Each batch is realized over
10,000 transactions with a particular network setup. The distribution of losses
over lossy links is random and uncorrelated. We used five different setups.

1. nodup-rtt10: Regular transactions over one path with 10 ms RTT.

2. dup-rtt10: Duplicated transactions over two paths with 10 ms RTT each.

3. nodup-rtt20: Regular transactions over one path with 20 ms RTT.

4. nodup-loss10: Regular transactions over one path with 10 ms RTT and 10%
losses.

5. dup-loss10-rtt20: Duplicated transactions over the two previous paths, i.e.,
one with 20 ms RTT and without losses, and another one with 10 ms RTT
and 10% losses.

The first two batches compare the impact of duplication over two homoge-
neous paths with respect to the non-duplicated transactions. The set of non-
duplicated transactions over a path with 10 ms RTT yielded a median comple-
tion time of 56.009 ms, with a standard deviation of 3.414. The set of duplicated
transactions over two homogeneous paths with 10 ms RTT each yielded a median
completion time of 56.867 ms, with a standard deviation of 3.24. The results are
shown in Figure 4.3. For most of the transactions, the completion time is about 0.8
milliseconds higher for duplicated transactions than non-duplicated transactions.

Then, we analyze whether traffic duplication over two faulty paths can yield
better performances than the non-duplicated versions over each individual path.
To realize this, we measure a first set of non-duplicated transactions over a path
with 20 ms RTT, and a second set of non-duplicated transactions over another
path with 10 ms RTT and 10% packet loss. In other words, the second path is
twice as fast as the first one but suffers from high packet loss, while the first
path is lossless but slower. In the final batch of measurements, we run duplicated
transactions over both paths. The network setup for these three batches is shown
in Figure 4.4. The results of those measurements are shown in Figure 4.5. We
can see that while the lossless path yields stable transaction times, the lossy path
is much more volatile. About 40% of the transactions performed over the lossy

1The CPU affinity of a process can be defined using the taskset command.

4.1. Traffic duplication for latency-critical applications 55

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 60 70 80 90 100 110 120

R
eq

ue
st

s

Time (milliseconds)

Transaction time over homogeneous lossless paths

No duplication
Duplication

Figure 4.3: Measurements of non-duplicated and duplicated transactions
over homogeneous lossless paths.

Host1
A

B C

D E

F
Host2

RTT = 10 ms, loss = 10%

RTT = 20 ms, loss = 0%

Figure 4.4: Network setup for transactions over heterogeneous paths.

56 Chapter 4. Exploring IPv6 Segment Routing

path have faster completion time than the average transaction over the lossless (but
slower) path. However, it escalates quickly, with 20% of the transactions taking
more than one second to complete. In contrast, the duplication of the transactions
over both paths yields completion times that are consistently better than when
performed individually over each path. Table 4.2 shows the detailed statistic data
for each measurement batch. The high maximum values shown for transactions
over lossless paths are due to the unpredictable jitter generated on the host of the
virtual machines.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000 1x106

R
eq

ue
st

s

Time (milliseconds)

Transaction time over heterogeneous paths

RTT=20ms, Loss=0%
RTT=10ms, Loss=10%

Duplication

Figure 4.5: Measurements of non-duplicated and duplicated transactions
over heterogeneous paths.

Table 4.2: Detailed measurement statistics in milliseconds (transaction time).

Batch Min Max Mean Median Stddev
nodup-rtt10 54.998 119.327 57.103 56.009 3.414

dup-rtt10 55.638 87.023 58.239 56.867 3.240
nodup-rtt20 147.522 180.340 149.900 148.787 2.628

nodup-loss10 77.004 100344.465 665.269 207.210 2284.182
dup-loss10-rtt20 55.531 133.357 77.449 77.651 11.458

4.1. Traffic duplication for latency-critical applications 57

1 2 3 4 5 10
Loss percentage

0

200

400

600

800

1000

1200

1400

1600

Tr
an

sa
ct

io
n

tim
e

(m
illi

se
co

nd
s)

RTT1=10ms, RTT2=10ms

(a) Paths RTT = 5ms, 5ms.

1 2 3 4 5 10
Loss percentage

0

200

400

600

800

1000

1200

1400

1600

Tr
an

sa
ct

io
n

tim
e

(m
illi

se
co

nd
s)

RTT1=10ms, RTT2=20ms

(b) Paths RTT = 10ms, 20ms.

1 2 3 4 5 10
Loss percentage

0

200

400

600

800

1000

1200

1400

1600

Tr
an

sa
ct

io
n

tim
e

(m
illi

se
co

nd
s)

RTT1=10ms, RTT2=50ms

(c) Paths RTT = 10ms, 50ms.

1 2 3 4 5 10
Loss percentage

0

200

400

600

800

1000

1200

1400

1600

Tr
an

sa
ct

io
n

tim
e

(m
illi

se
co

nd
s)

RTT1=10ms, RTT2=100ms

(d) Paths RTT = 10ms, 100ms.

Figure 4.6: Distribution of the completion time for requests duplicated over
two lossy links, for several loss percentages. Each subfigure has different
delay parameters for the two paths.

58 Chapter 4. Exploring IPv6 Segment Routing

In a second set of experiments, we analyzed how losses on both links, and
delay differences, would impact traffic duplication. We use the network setup
as shown in Figure 4.4 and we modify the loss and delay parameters of the two
disjoint paths between A and F. We denote by RTT1 the round-trip time of the
northern path (A − B − C − F) and by RTT2 the round-trip time of the southern path
(A − D − E − F). We used the following four delay configurations.

1. RTT1 = 10 ms, RTT2 = 10 ms (∆RTT = 0 ms)

2. RTT1 = 10 ms, RTT2 = 20 ms (∆RTT = 10 ms)

3. RTT1 = 10 ms, RTT2 = 50 ms (∆RTT = 40 ms)

4. RTT1 = 10 ms, RTT2 = 100 ms (∆RTT = 90 ms)

Then, for each delay configuration, we run 10,000 transactions in six packet
losses setups. For each packet loss setup, the loss rate is set to the same value on
both paths, and the losses are random and uncorrelated. We used the following
loss rate values: 1,2,3,4,5,10. The results are shown in Figure 4.6. The seman-
tics of the boxplots are the same as in Section 3.6.2. When the RTT is the same
on both paths (top left figure), small loss rates have little impact on the transac-
tion time. Up to 5% of losses, the 95th percentile of the transaction time is below
100 milliseconds. At 10% losses, the increase in the transaction time is more
noticeable, with the 95th percentile at 300 milliseconds. As the delay difference
increases (top right and bottom left figures), the dispersion of the transaction times
increases and the effect of packet losses is more visible. When the ∆RTT reaches
90 milliseconds, even small loss rates have a significant impact on the transaction
time. At 10% losses, the 95th percentile extends up to 600 milliseconds.

4.1.3 Related work
The Low latency via Replication proposal [70] is close to our work. Vulimiri

et al. propose to replicate packets over diverse resources and evaluate how replica-
tion affects response under load. However, their approach differs in the sense that
they use replication to query different systems such as DNS, while our solution
uses multiple disjoint paths.

Another type of approach is to rely on Forward Error Correction to protect
reliable services from the impact of losses. Such techniques have been used in a
variety of networks including ATM [77], wireless [78], multicast [79] and inter-
datacenter networks [80]. The closest to our work is Balakrishnan et al. who
propose in [80] a Forward Error Correction (FEC) mechanism to recover from
bursty losses. They propose to install this FEC mechanism on wide-area links

4.2. Fine-grained network monitoring with SCMon 59

that interconnect datacenters. Compared to replication, a FEC approach has the
benefit of a lower bandwidth consumption at the expense of a higher CPU load
and possibly a higher latency.

4.1.4 Conclusion
In this section, we exposed a traffic duplication principle to ensure the fastest

delivery of data to latency-critical applications. This duplication is performed over
precomputed disjoint paths, enforced using the IPv6 Segment Routing data plane.
We described our extension to the SRv6 implementation in the Linux kernel, en-
abling the support of traffic duplication. Then, we analyzed the impact of such a
duplication on the Linux TCP stack for relatively small transactions. This analy-
sis involved duplicating traffic over two heterogeneous paths with different delays
and packet loss rates, in a virtualized environment. Our measurements showed
that while duplication over homogeneous, lossless paths yields a small overhead
over non-duplicated traffic, duplication over heterogeneous paths is highly bene-
ficial, especially in the presence of packet loss on a single path. When both paths
are lossy, duplicating the traffic enables to absorb the losses and yields transaction
times that are close to what would yield a lossless path. As the difference of delays
between the disjoint paths increases, the impact of losses is more significant.

4.2 Fine-grained network monitoring with SCMon
Monitoring is a crucial task for network operations. It is needed to ensure that

all network elements operate correctly and behave according to the operator’s in-
tended configuration. Effective monitoring is also a valuable tool for maintenance
and troubleshooting. Unfortunately, even basic monitoring tasks, like checking
for hardware malfunctions, are practically hard, due to the complexity of current
networks. In current networks, multi-path routing is widely used, both to spread
the load on multiple paths and aggregate parallel links in bundles. While enabling
better performance and robustness, multi-path routing also poses significant ob-
stacles to monitoring [81]. For instance, assessing the exact path and performance
of each packet becomes complex [82, 83] since such a path depends on (vendor-
specific) hash functions used by routers for load-balancing. As a consequence, not
only naive approaches (e.g., based on ping or traceroute) are not sufficient,
but also state-of-the-art monitoring techniques tend to be ineffective.

On the one hand, protocol-based approaches use control-plane messages to
infer possible failures. For example, link-state routing protocols (like OSPF or
IS-IS) or specialized ones (BFD [84]) rely on heartbeat-like mechanisms to check
bi-directional connectivity among pairs of adjacent nodes. This approach only en-

60 Chapter 4. Exploring IPv6 Segment Routing

sures detection of failures that affect control-plane messages. However, it cannot
be used to detect failures that only affect data-plane traffic like: (i) corruption of
an optical link that leads to framing errors and packet losses, (ii) dysfunction of a
router interface that considers the link still up but discards all the received packets,
and (iii) failure of only one link among a bundle between two routers.

On the other hand, probe-based techniques rely on sending data-plane moni-
toring packets, i.e., probes, between fixed vantage points in the network. Vantage
points typically run standard protocols (e.g., IPSLA [85]) to send probes and ex-
tract measurements from them. Unfortunately, if the probes are sent over paths
used to forward regular traffic, many vantage points may be needed to obtain
high coverage, and links not used by current paths (e.g., backup links) cannot be
checked at all. Otherwise, probes can be sent over tunnels (e.g., RSVP-TE [13]
ones) to enforce specific paths, but this is not scalable. Indeed, even for detecting
single-link failures and pinpointing their position, the number of needed tunnels
tends to explode, and so does the control-plane overhead (to signal tunnels) [86].

In this section we present SCMon, a monitoring technique that ensures the full
coverage of all network resources, from a single vantage point. This coverage is
realized with data plane probes sent over precomputed cycles, which are enforced
thanks to the Segment Routing data plane. Using cycles enables a single box to
send and receive monitoring probes, removing the need to synchronize multiple
vantage points. First, we explain how the cycles must be computed to yield an
efficient coverage of the network. We will briefly describe some algorithms in-
volved in the cycles computation. The details of those algorithm are described
in [67]. Then, we present the design and implementation of a monitoring tool that
leverages the SCMon principles. Finally, we evaluate the effectiveness of this tool
by monitoring real topologies in a virtualized environment.

4.2.1 Network coverage with segmented cycles
Using cycles for probe-based monitoring has the main advantage of requiring

a single vantage point. Consider the Abilene network shown in Figure 4.7. Using
KSCY as the vantage point, we can use four partially overlapping cycles to cover
all the edges and nodes in the network. Figure 4.8 illustrates this coverage. A
fundamental trade-off in cycle coverage exists between the number of cycles and
their average length. Fewer cycles implies longer cycles and conversely. The
Segment Routing dataplane imposes an inherent limit to the length of each cycle.
Indeed, each cycle will be represented by a list of segments. In most cases, the
number of segments used to express a cycle will be proportional to its length. As
each segment adds 16 bytes in the packet header, we impose an upper bound to
the number of segments that can be used for each cycle. We call this upper bound
the segment budget.

4.2. Fine-grained network monitoring with SCMon 61

STTL

SNVA

LOSA

DENV KSCY

HSTN

CHIN

IPLS

ATLA

NYCM

WASH

Figure 4.7: Abilene network.

KSCY

(a) Cycle 1.

KSCY

(b) Cycle 2.

KSCY

(c) Cycle 3.

KSCY

(d) Cycle 4.

Figure 4.8: Cycle coverage for the Abilene network.

62 Chapter 4. Exploring IPv6 Segment Routing

With SR, a given path can be expressed with different equivalent segmenta-
tions. Let us consider the Abilene network in Figure 4.7, with unit weights. The
path p = (LOSA,HSTN,ATLA) can be expressed with either ⟨HSTN,ATLA⟩ or ⟨ATLA⟩,
assuming LOSA as the starting node. Both segmentations express the same path.
The 2-segment expression contains redundant information that is already present
in the shortest-path DAG. As each segment costs header space, we would like to
use them only if necessary. As such, we require the segmentation of our cycles to
be minimal.

STTL

SNVA DENV

50 1

1

Figure 4.9: Backup link.

Some links may not be reachable from any shortest-path DAG. In Figure 4.9,
consider the link between nodes SNVA and STTL. It is not part of any shortest
path, as its cost (50) is larger than the cost of a detour through DENV (2). In this
case, an adjacency segment must be used to force the traversal of the backup link.
For example, to cover this network with a cycle starting at DENV, we would first
need a node segment to SNVA, then an adjacency segment to force the traversal
of the link to STTL, and finally a node segment to return to DENV. Formally,
this would translate as ⟨SNVA, (SNV# »

A,STTL),DENV⟩. Using an adjacency segment
is costly, as two segments are actually needed. First, a node segment to reach
the node connected to the link to traverse, then the actual adjacency segment to
traverse the link. As such, we require the segmentation of our cycles to be simple,
i.e., using only node segments, whenever possible.

Although equal-cost multi-path is widespread in current networks [82], mon-
itoring cycles should avoid taking such paths in the same way as regular packets
do, i.e., by being load balanced by the routers. Indeed, if a failure occurs in an
equal-cost section of the cycle, the failure will not be detected until a probe is sent
over the failing path, as illustrated in Figure 4.10. Such a steering depends on the
hashing function implemented on the routers. To ensure a full network coverage
at all times, we want to avoid ECMP. One way to realize this is to use additional
segments to break ECMP. However, such a solution can quickly consume a large
amount of header space in topologies with a lot of ECMP, such as grid-like topolo-
gies. To ensure a minimal amount of ECMP, we propose to create a monitoring
topology in addition to the one used for user traffic. Existing routers have already

4.2. Fine-grained network monitoring with SCMon 63

KSCY

HSTN

IPLS

ATLA

Probe

Probe

Figure 4.10: Link failure part of an equal-cost multi-path.

been shown to correctly support multiple topologies [87]. The algorithm to gen-
erate the monitoring topology assigns link weights by leveraging the properties of
prime numbers and logarithms to ensure that the resulting topology has a mini-
mum amount of ECMP. The full details of the algorithm are available in [67]. If
ECMP is still present in the monitoring topology, then additional segments will
be used to break it.

SNVA DENV

Probe

Figure 4.11: Link failure within a bundle.

A last network component that leverages parallel links and that cannot be dis-
sociated by creating a monitoring topology is link bundles. Those are parallel
physical links connecting two nodes, aggregated in a single logical link. By de-
fault, there is no guarantee that a probe will detect a link failure in such a bundle,
as shown in Figure 4.11. To force the traversal of a particular link within a bundle,
we have no choice but to use an appropriate adjacency segment. We assume that
each link has a layer-3 identifier that can be used as a segment, such as an address
in the fe80::/64 space. If no such identifier is available, some local segments
can be configured to steer traffic through given bundle links. This enables the
monitoring of purely layer-2 links.

As a summary, we require the cycles to have the following properties.

• Minimal: the cycles should be constructed with the minimum number of
segments, to save header space.

• Simple: the cycles segmentation should use only node segments whenever
possible, as adjacency segments are costly.

64 Chapter 4. Exploring IPv6 Segment Routing

• ECMP-free: to ensure a 1-to-1 mapping between a cycle and a network
path, no cycle should use an ECMP path.

The necessary steps to construct the cycles are the following. First, a monitor-
ing topology is created, with the goal of minimizing ECMP. Then, the cycles are
created using the FindCycle algorithm, summarized as follows. Given a network
topology, a source node and a segment budget (i.e., the maximum number of seg-
ments allowed per cycle), this algorithm computes longest paths by iterating over
successive DAGs while keeping track of already traversed edges and maintaining
the segment budget. The longest paths are computed using the DAGLongestPath
algorithm, that leverages a standard dynamic programming algorithm for longest
paths computation [88], extended to also compute the number of segments re-
quired in a given path. Once all the cycles are computed, they are segmented,
i.e., transformed into a list of segments. This segmentation is performed using the
MinSegECMP algorithm. This algorithm computes an ECMP-free segmentation
of a path such that it is (i)minimal and (ii) simple whenever possible, i.e., it uses
an adjacency segment if and only if all possible segmentations of the path require
an adjacency segment. The details of all these algorithms are available in [67].

4.2.2 Implementation and evaluation
Implementation

We developed an SCMon prototype in python [67] (henceforth referred to
as simply SCMon). Our implementation takes as input the list of cycles com-
puted by FindCycle and periodically sends UDP probes over each cycle. Each
probe contains (i) a unique per-cycle token, (ii) the current transmission time
in milliseconds and (iii) a monotonically increasing 16-bit probe identifier. A
Transmitter thread sends those probes along each cycle. The destination ad-
dress of the UDP probes is set to SCMon itself. A Receiver thread gathers
the probes and updates the timers accordingly. A coordinating Monitor thread
reacts on events and timeouts, and updates the cycles state when necessary. The
state of each cycle is described by the Finite State Machine shown in Figure 4.12.

Each cycle receives a parameter T1 that defines the delay between successive
probes for this cycle. This parameter is user-defined and bounded by the maxi-
mum rate at which SCMon is able to send probes. When SCMon starts, it enters
an initial state (INIT) which calibrates the RTT of each cycle. SCMon sends and
receives probes over each cycle at the rate defined by T1 and does not consider
any late arrival as a cycle timeout (the state flips between RTT and SEND2). The
number of calibrating probes is defined by a configuration variable Pk. We exper-
imentally set Pk = 10 since it proved large enough to account for unexpected jitter
in our experiments. Once SCMon has received Pk successive probes, it considers

4.2. Fine-grained network monitoring with SCMon 65

Figure 4.12: Per-cycle Finite State Machine.

that the cycle is up, set the cycle RTT as the average of the Pk measurements,
and enters the actual monitoring state (MON). For a given cycle, if a probe is not
received within 2 × T1 milliseconds, then the cycle is considered as timed out
and SCMon enters a debugging state for this cycle (DEBUG). In this state, SCMon
sends one probe for each segment composing the cycle to determine the faulty one
(for our prototype, we make the assumption of a single failure). If SCMon does
not receive all the debugging probes within 2×RTTcycle milliseconds, it outputs the
first segment that has timed out and starts the debugging state over again. If all the
debugging probes are received within 2 × RTTcycle milliseconds, the cycle is con-
sidered back up and SCMon re-enters the initial state for this cycle. Re-entering
the initial state, and thus temporarily not reacting to timeout events allows the cy-
cle RTT to get smoother if the detected fault was caused by a temporary jitter in
the cycle RTT.

Evaluation

Our experiments consist in evaluating the effectiveness of SCMon to detect
and correctly locate simulated link failures. We focus on single failures. Using
Nanonet as presented in Section 3.5, we emulated the topologies of a large hosting
provider and four RocketFuel topologies [89, 74]. The properties of each topol-
ogy are described in Table 4.3. The OVH topology has a very high number of
ECMP paths and thus is a good candidate to evaluate SCMon. As no link latency
data was available for this topology, we arbitrarily set the delay of each link to

66 Chapter 4. Exploring IPv6 Segment Routing

Table 4.3: Topologies used for SCMon evaluation.

Topology Nodes Links Cycles Avg RTT Max RTT
OVH Europe 57 216 87 18 ms 28 ms
RF AS1239 153 1010 195 83 ms 360 ms
RF AS1755 67 248 34 49 ms 130 ms
RF AS3257 103 484 76 48 ms 127 ms
RF AS3967 57 208 24 109 ms 206 ms

one millisecond. Setting a minimal queueing delay for each link circumvents the
events ordering issue as explained in Section 3.5.2. For each topology, the cycles
were computed with a segment budget k = 5, except for the OVH topology where
the budget was k = 8. This higher budget is due to the high amount of ECMP
in this network. The cycle computation algorithm could not be completed with a
smaller segment budget. Figure 4.13 shows the time needed to detect a link failure
(simulated as a blackhole) for each test topology. We can see that the detection
time mainly depends on (i) the number of cycles and (ii) the average cycle RTT.
For the largest topology (RF1239), about 90% of link failures were detected in
less than 100 milliseconds.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180

Li
nk

s

Time (milliseconds)

Time to detect blackhole

RF1239
RF1755
RF3257
RF3967

OVH-EUR

Figure 4.13: Link failure detection time for each topology.

4.2. Fine-grained network monitoring with SCMon 67

4.2.3 Related work

There is a huge literature about monitoring and fault detection, including pi-
oneering work published almost three decades ago [90]. Previous work typically
start from the consideration that queries to devices (e.g., through SNMP) can-
not always be trusted [86], and analyses of control-plane messages (e.g., OSPF
or IS-IS hello packets) do not provide enough information on data-plane perfor-
mance. These limitations are also faced by most commercial products (e.g., Tivoli
NetView) that aggregate basic tools, from IP SLA to SNMP traps and Syslog col-
lection into a common framework.

Many prior work (see, e.g., [91]) focus on data correlation and statistical tech-
niques for detecting faults and service disruptions. For example, [92] studied
how to detect silent (hardware) failures with active measurements and their post-
elaboration using a greedy heuristic. Similarly, many contributions have been
made in the area of network tomography where topology and link performance
are inferred from end-to-end measurements (e.g., [93]). However, all prior work
overlooked the impact of multi-path routing, that can make failures much harder
to detect and troubleshoot. SCMon tackles those scenarios using an additional
topology and Segment Routing to avoid multi-path routing for monitoring probes.

In addition, previous contributions typically assumed multiple vantage points,
and tried to optimize their position in order to minimize their number while guar-
anteeing high network coverage (e.g., [94]). The presence of multiple vantage
points is costly and requires coordination (time synchronisation, probe identifica-
tion and so on). An exception is represented by [95], which is based on a single
monitoring point. However, that methodology needs unreliable tools like SNMP
or Netflow to collect information on the traversed routers. SCMon effectively
used a single monitoring box both to send probes (over cycles) and extract mea-
surements from them.

The approach closest in spirit to SCMon is [86], where monitoring paths are
source-routed thanks to either explicit tunnels (i.e., RSVP-TE) or static routes.
However, [86] can explore only layer-3 paths (hence, failures on aggregated link
bundles are impossible to detect) and tends to create a lot of state (especially if
RSVP-TE is used). SCMon avoids those limitations: It relies on Segment Routing
that requires no state on the routers and can pinpoint a layer-2 failure. In addition,
SCMon improves debugging time from order of minutes (as taken by [86]) to
milliseconds.

4.2.4 Conclusion

In this section, we presented SCMon, a new monitoring technique that relies
on Segment Routing to send probes over cycles. SCMon allows any single box

68 Chapter 4. Exploring IPv6 Segment Routing

to effectively monitor all the network resources, including single links in bundles.
We described algorithms to compute probe-traversed cycles inducing a limited
overhead and the corresponding SR configurations for the probes. Further, we
implemented an SCMon prototype and evaluated its performance on publicly-
available topologies and emulated networks. Our experiments show that SCMon
works well in practice. By using a limited number of cycles, it takes millisec-
onds to pinpoint the location of failures, like packets silently discarded by router
hardware, that cannot be detected by existing techniques.

4.3 Conclusion
In this chapter, we explored how Segment Routing can (i) improve real-time

applications running in low-latency environments and (ii) provide efficient and
scalable network monitoring.

In Section 4.1, we analyzed how traffic duplication over disjoint paths can
be beneficial to low-latency, real-time applications. We described algorithms to
compute disjoint paths using segments and we presented an extension to our SRv6
Linux implementation that provides packet duplication capabilities. Then, we per-
formed simulations to analyze the impact of duplication on the Linux TCP stack.
By duplicating traffic over homogeneous links of identical delays and without
packet losses, we measured that traffic duplication incurs a small overhead over
non-duplicated traffic. Afterwards, we showed that traffic duplication over het-
erogeneous paths is highly beneficial, especially in the presence of packet losses.
Furthermore, we analyzed how the delay difference between the disjoint paths
and the rate of packet loss can impact the benefits of duplication. We showed
that the adverse impact of packet losses increases as the difference of path delays
increases.

In Section 4.2, we presented SCMon, a network monitoring technique that
leverages the Segment Routing architecture to send probes over cycles. Those cy-
cles provide a full network coverage and enable to deterministically explore all the
components of ECMP paths and link bundles. We implemented SCMon and eval-
uated its performance on emulated real topologies. The results show that SCMon
is able to detect and pinpoint single-link failures in less than 100 milliseconds for
large topologies.

Chapter 5

Rethinking IPv6 Enterprise
Networks

For the last few years, IPv6 adoption has grown in a spectacular fashion.
Pushed by the increasing pressure of the IPv4 addressing space exhaustion, Con-
tent Delivery Networks (CDN) and Internet Service Providers (ISP) have de-
ployed IPv6 at a large scale [96]. Today, a growing fraction of mobile and home
users rely on IPv6 to access web-based services [97, 98, 99] and some mobile
providers have deployed IPv6-only networks.

However, this IPv6 wave has not yet reached the majority of enterprise net-
works. While very large enterprises have already pledged to move to an IPv6-only
architecture [100, 101, 102, 103], the vast majority of them still rely exclusively
on IPv4. With significantly fewer users than large providers, small and middle-
sized enterprises do not feel the same pressure to move to IPv6 as ISPs. Many
consider IPv6 as simply a variant of IPv4 with more addresses and have difficul-
ties in justifying the cost of an IPv6 deployment. This incorrect assumption plays
a key role in the current status quo of IPv6 deployment in enterprise networks.

In parallel, many entreprises are seduced by Software Defined Networks
(SDN) [21, 20, 22] that promise to simplify the management of their networks.
These are often more complex than ISP networks, given the need to support a va-
riety of business policies [104, 105]. A symptom of this complexity is the large
number of middleboxes that are deployed in many enterprise networks [106]. Sev-
eral types of SDN networks have been proposed (see [22] for a detailed survey).
They typically rely on a logically centralized controller that interacts with the
network devices (routers, switches and sometimes middleboxes) to support the
network policies defined by the operator. OpenFlow is a popular protocol that
enables SDN controllers to interact with network devices [21].

In this chapter, we propose a variant of the SDN architecture that we call
Software Resolved Networks (SRN). An SRN is a network that is managed by

69

70 Chapter 5. Rethinking IPv6 Enterprise Networks

a centralized controller like an SDN. There are two major differences between
OpenFlow-based SDN networks and SRNs. First, as already proposed in [107],
applications can interact directly with the controller. This interaction is performed
by extending the DNS protocol that applications already use and by enabling the
controller to act as a DNS resolver. For this reason, we call the controller an SDN
Resolver. We argue that, as the ultimate traffic sources and sinks, the applications
are in the best position to provide hints about the nature and needs of their com-
munications. This is especially true in enterprise networks, which are controlled
environments. The enterprise chooses and maintains the applications that use its
network. Second, we leverage SRv6 to enable the controller to enforce network
paths without having to create state on all intermediate routers. Using SR, the
hints transmitted by the applications about their traffic (i.e., policies) are trans-
lated into a suitable network path. A unique identifier is associated to this path
(Path ID) and handed to the given application. The application can use this identi-
fier to ensure that its traffic will be forwarded along the corresponding path. This
path is enforced using the SR data plane. SDN Resolver catches any event that
would cause the computed path to no longer match the policies (e.g., traffic con-
gestion) or to become unavailable (e.g., link failure). A new path is automatically
computed and mapped to the corresponding Path ID. The Path ID remains un-
changed. This abstraction enables such internal reconfiguration to be transparent
for the applications.

This chapter is organized as follows. First, we describe an architecture imple-
menting an application-centric SDN paradigm suitable for enterprise networks.
This architecture supports conversations between applications, regulated by their
interactions with the controller through the DNS protocol. Then, we present an
implementation of this architecture through the SDN Resolver controller. This
implementation leverages DNS extensions enabling (i) the applications to embed
traffic or path requirements in their DNS requests and (ii) the controller to return
the appropriate Path IDs to the applications. Afterwards, we demonstrate the fea-
sibility of our approach through a prototype implementation running on Linux.
This prototype includes a complete implementation of a modular controller, and
extensions to the SRv6 implementation and to DNS libraries. Finally, we assess
the flexibility of our prototype and demonstrate its performance through various
microbenchmarks and experiments in an emulated network.

5.1 Software Resolved Networks
In this section, we present the general principles of Software Resolved Net-

works (SRN). SRNs are designed to support applications and thus interact with
them. We focus on unicast flows and leave multicast support for future work.

5.1. Software Resolved Networks 71

When an application running on a client host communicates with a server, the
packets carried from one endpoint to the other is usually called a unidirectional
flow. In this chapter, we always associate this flow with a return flow. In other
terms, we consider that two applications always communicate in a bi-directional
fashion. We call this pair of flows a conversation. We distinguish the two end-
points of a conversation. The application that initiates a conversation is called a
client application. The process of initiating a conversation is referred to as es-
tablishing a conversation. Conversely, an application accepting conversations is
called a server application. We also distinguish applications with respect to their
location. An application located inside the enterprise network is called an inter-
nal application. Likewise, an application located outside the enterprise network
is called an external application.

We make two reasonable assumptions about the enterprise network: (i) all
endpoints are reachable over IPv6 and (ii) all endpoints are identified by DNS
names. Each device in the network is properly named according to a given DNS
naming plan. Furthermore, we leverage the large number of IPv6 addresses [108].
For example, each server application may receive several IPv6 addresses, and each
address is only used by a particular application. Furthermore, we assume that
server applications are never referred to by their IPv6 address at the application
layer, but rather by their DNS name.1 The applications use DNS to interact with
the controller. To facilitate this interaction, the default resolver configured for
these applications is the controller itself (the SDN Resolver), acting transparently
as a regular DNS resolver.

When a client application initiates a connection to a server application in a
Software Resolved Network, it performs the following operations. First, it issues
a DNS request to resolve the name of the server application into an IPv6 address.
Then, it sends data to the resolved address. As the DNS resolver is actually the
controller, it may automatically perform appropriate actions, such as allocating a
network path. Furthermore, the client can embed in the DNS request requirements
about the conversation, using existing DNS extensions [109]. For example, those
requirements can list the expected bandwidth and latency. We name such a DNS
request a conversation request. Along with the resolved IPv6 address, the con-
troller returns a Path ID in the DNS reply. This Path ID is an opaque string that
maps to the allocated network path and is the key to enabling the application to
use this selected path. It is important to note that a Path ID uniquely identifies one
half of a conversation, i.e., the packet flow starting from the client application that
issued the conversation request and going to the other endpoint. An application

1The only exception is the DNS resolver whose IP address is distributed by DHCPv6 or
Router Advertisements. We also assume that enterprise applications will be written in a high-level
programming language that provides a connect-by name API instead of the connect-by
address of the C socket API.

72 Chapter 5. Rethinking IPv6 Enterprise Networks

may re-issue a conversation request at any time during the lifetime of a conversa-
tion. This enables the application to request a new network path corresponding to
updated requirements.

In legacy IPv4 networks, server applications are usually associated to a static
IPv4 address. However, IPv6 addresses are much more volatile than their IPv4
counterparts [110]. Additionally, with the current trends in virtualization, appli-
cations may migrate from one VM to another. For redundancy or load balancing
purposes, multiple instances of an application may also exist, each having its own
address.

As such, the SDN Resolver provides a mechanism for the dynamic registration
of server applications, namely server registration. A server registration is very
similar to a conversation request. Instead of resolving the name of an application,
the server attempts to resolve a name that is pre-configured by the operator. This
name is not attached to any particular application. Rather, its resolution signals a
registration request to the controller. If the server has the credentials to register
this name, the request is translated into a DNS update message [111, 112] that
will update the DNS entry corresponding to this name.

When the server receives a connection from a client (e.g., a TCP SYN packet),
half of the conversation is established. To establish the other half, the server is-
sues a conversation request to the controller in order to fetch a Path ID. This is
realized upon reception of the first packet, and before returning any packet to the
client. The server must have some way to identify the other end of the conversa-
tion. Using the classical IP 5-tuple is not sufficient as the controller does not have
protocol-level information such as source and destination ports. The only simple,
unique identifier of that particular conversation is the Path ID used by the client.
To enable the server to use it as reference, the client’s Path ID is embedded in the
connection request, independently of the transport protocol. This is realized by
using a Segment Routing Header and encoding the Path ID as a segment. Instead
of resolving an application name, the server issues a conversation request for the
Path ID, which is an opaque string. This request may also include traffic require-
ments. The controller recognizes the Path ID and allocates a network path for the
other direction of the conversation. A new Path ID is mapped to this network path
and returned to the server.

Figure 5.1 shows an illustration of the conversation request and server registra-
tion workflows. In exchange (A), the server issues a server registration request to
the controller. In exchange (B), the client issues a conversation request towards
that same server, with a requested bandwidth of 2 Mbps. The controller replies
with the IPv6 address of the server, and with a Path ID. In exchange (C), the
server has received a connection request from the client. The client’s Path ID is
embedded in the connection request. The server then issues a conversation request
to the controller, stating the original Path ID and requesting the corresponding re-

5.1. Software Resolved Networks 73

verse Path ID, with a bandwidth requirement of 6 Mbps. The controller replies
with the relevant Path ID and the exchange of packets continues.

Figure 5.1: Workflow for server registration and connection establishment.

The enterprise network can be connected to one or more upstream providers.
As such, client applications may initiate connections towards external servers.
Conversely, external applications may initiate connections towards internal
servers. We consider three types of conversations with respect to the application
locations.

Internal client communicating with internal server. This is the main kind of
conversation we focus on. When a client initiates the connection, it sends a
conversation request to the controller. The request states the server applica-
tion and optional traffic requirements. The controller allocates a path in the
network for the client-server direction of the conversation and returns a cor-
responding Path ID P1 to the client. This Path ID is embedded in the sub-
sequent connection request packet sent to the server using an SRH, which
is independent of the transport protocol. Upon reception of the connection
request packet, the server issues a conversation request. This request in-
cludes the received Path ID P1 and asks for the reverse one. The controller
replies with a Path ID P2, corresponding to the server-client direction of

74 Chapter 5. Rethinking IPv6 Enterprise Networks

1: allow from LAN1 to LAN2 via FIREWALL maxidle 60s

2: allow from LAN1 to STREAMSERVER1 bw 5Mbps delay 10ms

3: allow from SERVER1 to EXTERNAL_BACKUP bw 100Mbps

Figure 5.2: Examples of controller rules.

the conversation. Packets can now be exchanged and each application can
re-issue a conversation request at any time to update the requirements of
their direction of the conversation.

Internal client communicating with external server. The particularity of this
type of conversation is that the server resides outside the enterprise net-
work. The controller can only control one direction of the conversation.
The connection establishment procedure does not change. However, the
other direction of the conversation, i.e., the return traffic, will have to fol-
low some default policies set up at the edge of the network. Such policies
might include a detour via a firewall to ensure the traffic is legit. The op-
erator defines those default policies in the controller, which configures the
border routers to implement them.

External client communicating with internal server. In this case, the connec-
tion establishment originates from outside the enterprise network. As the
external client uses its own DNS resolver rather than the enterprise resolver,
the controller cannot handle this part of the conversation. The ingress traf-
fic follows default network policies configured at the border routers (e.g.,
firewall traversal). The server has the opportunity to issue a conversation
request, retrieving a Path ID for the server-client direction of the conversa-
tion.

Many SDN solutions allow the network operators to configure or program the
controller with rules or specific languages [113, 114]. SRNs also support such
operator-defined policies. We define those policies in a per-rule fashion. Each
rule matches a set of conversation requests and defines the actions to apply and
the properties to implement. Figure 5.2 illustrate these rules. Table 5.1 details the
main keywords supported by our current rules syntax. The rules match conversa-
tion requests based on the source and destination application. When the controller
receives a conversation request with a Path ID as name (i.e., to request a Path ID
for the opposite direction of a conversation), it simply performs a rule lookup by
inverting the source and destination applications of the initial half-conversation.

5.2. SDN Resolver 75

Table 5.1: List of available keywords in rules syntax.

Keyword Argument Type Role
allow ∅ Action Accept the conv. req.
deny ∅ Action Reject the conv. req.
from name Matching Specify source app.

to name Matching Specify destination app.
via list of nodes Property Set loose path
last node Property Set last node of path
bw integer Property Bandwidth to reserve

delay integer Property Maximum one-way delay
lifetime integer Property Max conv. life time
maxidle integer Property Max conv. idle time

Each rule can specify three classes of parameters for the matching conversa-
tions. The first one is topological with the via and last keywords. The former
enables to specify a loose path (i.e., a list of intermediate nodes which are not nec-
essarily contiguous) for the conversations. The latter specifies a mandatory penul-
timate hop that must be traversed. This class of parameters enables to specify,
e.g., middleboxes to traverse or an egress router for outgoing external traffic. The
second class of parameters relates to the characteristics of the network path with
the bw and delay keywords. Those keywords specify resp. the minimum band-
width and the maximum delay of the conversation path. Finally, the third class of
parameters enables the operator to put time constraints on the conversations. The
lifetime keyword forces a hard timeout for the matching conversation. It is
automatically destroyed when the specified amount of time has passed since its
creation. The maxidle keyword specifies a soft timeout. The conversation is
destroyed when it has not exchanged packets for the given amount of time. This
timer ensures that the conversations will not live forever in the network.

5.2 SDN Resolver
The SDN Resolver is the logical controller that manages an SRNs. It must

accept, process and maintain conversation requests issued by applications. To
realize this, it exposes the network state and the conversation requests to exter-
nally pluggable path selection algorithms. Those algorithms then select a path
that matches the requested conversation properties. This path is transformed into
segments by the SDN Resolver and enforced into the network.

In this section, we describe in details the components, protocols and processes
composing SDN Resolver. We start by listing basic assumptions about the under-
lying network. Then, we explain how we leverage the SR architecture and show
how we use it as our data plane layer. Finally, we describe the inner workings of

76 Chapter 5. Rethinking IPv6 Enterprise Networks

the control plane components.

5.2.1 Enterprise network

Enterprise networks are composed of three main types of network devices:
layer-2 switches, layer-3 routers and middleboxes [106]. We assume that the
layer-2 switches support standard access control mechanisms such as IEEE 802.1x
[115]. This access control either grants or blocks access to the layer-2 network. It
does not provide fine-grained access control on a per destination basis as required
in many enterprise networks [20].

We distinguish three types of layer-3 routers. At the edge are access and bor-
der routers. Hosts are connected to access routers. Border routers are connected to
upstream providers. Core routers are only connected to other enterprise’s routers.

We use Router Advertisements [116] (RAs) and StateLess Address AutoCon-
figuration (SLAAC) to assign one or more IPv6 addresses to the hosts. The DNS
configuration of the hosts is achieved with the RDNSS extension to RAs [117].
For platforms that do not support RDNSS, stateless DHCPv6 can be deployed to
push DNS configuration on the hosts. This is in line with [108].

Routers exchange routing information by using a link state routing protocol
such as OSPFv3 [6]. Each router advertises a loopback address and possibly
per-link addresses. We assume for simplicity that middleboxes also implement
OSPFv3 and advertise one IPv6 prefix.2 In particular, we assume that the link
state protocol used in the enterprise supports traffic engineering extensions that
distribute unidirectional link metrics such as bandwidth utilization and link de-
lay [118].

Network paths are enforced using Segment Routing. In particular, we use the
binding segments as described in Section 2.2. Binding segments map to an SRv6
policy (i.e., a list of segments) and instruct the segment endpoint to augment the
processed packet with a new SRH, either through encapsulation or direct inser-
tion. We leverage binding segments to implement the Path IDs as described in
Section 5.1. Indeed, a binding segment is the unique identifier of an SR policy,
which encodes a path in the network. Each host is configured to send its traffic
with an SRH containing two segments: the first one is a binding segment (i.e., its
Path ID) mapped to an SR policy on the access router and the second one is the
final destination of the packet (e.g., a server or client application). The packets
sent by the host thus follow the shortest path up to the access router, using regular
IPv6 forwarding. Then, they are encapsulated within an outer IPv6 header and

2In practice, some operators prefer to avoid running routing protocols on non-router devices.
In this case, the router attached to the middlebox can be configured to advertise the IPv6 prefix of
the middlebox on its behalf and use a BGP session to verify that the middlebox remains up.

5.2. SDN Resolver 77

A

1

2 3 4

5

B

Router

Application

Orig. pkt path

Encap. pkt path

Shortest IGP path

Figure 5.3: Illustration of Segment Routing operations.

the SRH computed by the controller. Hence, the conversation state, implemented
with SR policies, is only maintained by edge routers. The core routers only need
to be configured with stateless segments that can then be used by the controller to
enforce specific paths in the network. These segments can be shared by any num-
ber of SR policies. Such a stateless core has the advantage of reducing memory
requirements and avoiding conversation state synchronization between routers.

A short illustration of these operations is shown in Figure 5.3. On node 3,
the segment 3:: is associated with the default endpoint function. This function
only updates the IPv6 and SR headers to make the next segment active. On node
5, the segment 5::D triggers a decapsulation function that removes the outer
IPv6 and SR headers, then forwards the inner packet. On node 1, the SR policy
⟨3::,5::D⟩ is configured and bound to the segment 1::B1. The IPv6 prefixes
corresponding to these three segments are advertised in the IGP by their respective
parent nodes. The client A is configured to send its traffic towards B with the
segments list ⟨1::B1,B::⟩, where B:: is a regular IP address configured on
an interface of node B. When the packet reaches 1, (i) the IPv6 destination
address is updated with the next segment of the list (B::), (ii) the packet is
encapsulated within an outer IPv6 and SR header, and (iii) it is forwarded along
the shortest path to the first segment of the new SRH (3::). At node 3, the
default endpoint function replaces the outer IP destination address with the next
segment (5::D). The packet is then forwarded again on the shortest path to 5,
where the decapsulation function associated to the segment 5::D removes the
outer IPv6 and SR header. The inner, original packet is then forwarded towards
its final destination B. The SR behaviors presented in this illustration are detailed
in [29]. Note that no particular SR configuration is required on nodes 2 and 4, as
they realize only plain IPv6 forwarding.

78 Chapter 5. Rethinking IPv6 Enterprise Networks

5.2.2 Traffic management principles

The ability to efficiently perform fine-grained traffic management is one of the
founding principles of Segment Routing. In this subsection, we briefly discuss
how SR can provide Quality of Service and how it stands among the existing
traffic management principles.

Two Quality of Service (QoS) models are usually recognized: DiffServ [119,
120] and IntServ [121]. On the one hand, the DiffServ architecture aims to pro-
vide coarse-grained traffic management. It classifies packets into pre-configured
traffic classes, each providing different levels of guarantees. Such classes may
include best-effort forwarding, expedited forwarding (low latency) [122], as-
sured forwarding (low drop probability) [123], etc. Packets are classified at the
edge of the network and are marked with a Differentiated Service Code Point
(DSCP) [124, 125] in the IP header. Core routers then recognize the DSCP and
process packets according to the traffic class referenced by the DSCP.

On the other hand, the IntServ architecture proposes fine-grained traffic man-
agement capabilities, in a per-flow fashion. Instead of receiving a static, pre-
configured classification as in DiffServ, packets are dynamically classified using
a reservation system [121]. Using RSVP [126], network nodes that require traffic
guarantees (e.g., hosts) exchange PATH and RESV messages with routers. If the
path reservation is successful, then all routers participating in the path maintain
per-flow state. Subsequent traffic is then guaranteed to meet the requirements as
long as it stays within the specifications.

Both architectures have their benefits and drawbacks. DiffServ offers few con-
trol over traffic but is highly scalable, as only the edge routers maintain classifica-
tion rules. IntServ provides fine-grained per-flow traffic control but is not scalable
as per-flow state must be kept on all routers along each path, although efforts have
been made to aggregate path reservations [127]. In Software Resolved Networks,
we extend the scalable, coarse-grained DiffServ architecture with the dynamic,
per-flow reservation system of IntServ without adding state in the core. DiffServ-
like functionality is implemented by the SR routes at the edge of the network.
IntServ-like functionality is implemented by the conversation requests (akin to
path reservations) and the controller’s global view of the network. In contrary to
IntServ, the intelligence is not present in the network but in the controller. Ta-
ble 5.2 shows a comparison of the different QoS models.

5.2.3 Path segmentation

Network paths implementing application policies are enforced using Segment
Routing. Using a loose path description and constraints about link properties,
the controller must produce a list of segments that can be used as an SRH. To

5.2. SDN Resolver 79

Table 5.2: Comparison of QoS models characteristics.

DiffServ IntServ SRN
Classification Static Dynamic Dynamic
Granularity Per-class Per-flow Per-flow
Flow state Edge Edge + core Edge
Protocol DSCP matching RSVP DNS
Decision Local Distributed Centralized

realize this, we leverage the SR formalization described in [67] and summarized
as follows.

The network is modeled as a weighted directed graph G = (V,E,w) where
w ∶ E → Z+ is a function corresponding to IGP costs. A path is defined as a
sequence of nodes p = (x1, x2, . . . , xn) where xi ∈ V and (xi, xi+1) ∈ E. Given
p1 = (x1, . . . , xn) and p2 = (xn, . . . , xn+m), the concatenation of p1 and p2 is
defined as p1 ⊕ p2 = (x1, . . . , xn, xn+1, . . . , xn+m). Given a path p = (x1, . . . , xn),
the first and last nodes of the path are defined as resp. first(p) = x1 and last(p) =
xn. Given G, Dx is the shortest-path Directed Acyclic Graph (SP-DAG) rooted
at node x ∈ V , with respect to the weights given by w. Thus, Dx is the sub-
graph of G containing all the edges that belong to a shortest path starting at x.
The set of all shortest paths in G is defined as Sp(G) and the set of all adjacency
segments as Adj(G) = {(# »x, y) ∣ (x, y) ∈ E(G)}. The set S(G) = Sp(G) ∪ Adj(G)
represents the set of all possible segments. In [67], the segmentation of a path
p = (x1, . . . , xn) in G is defined as a list s1, . . . , sk ∈ S(G) such that p = s1 ⊕ s2 ⊕
. . .⊕ sk. To transform a path segmentation into a list of segments, we use

seg(si) =
⎧⎪⎪⎨⎪⎪⎩

last(si) if si ∈ Sp(G)
si if si ∈ Adj(G)

The list of segments that corresponds to s1 ⊕ s2 ⊕ . . . ⊕ sk is thus defined as
⟨seg(s1), seg(s2), . . . , seg(sk)⟩.

Figure 5.4 shows examples of possible types of constraints. The same graph
G = (V,E,w) is represented in the two subfigures. In Figure 5.4a, we search
for a path p such that first(p) = a, last(p) = f and c ∈ p. Such a path can be
p = (a, b, c, f) with a corresponding list of segments ⟨c, f⟩. Another valid list
of segments is ⟨b, c, f⟩. The only difference is that the former is minimal. In
Figure 5.4b, we search for a path p such that first(p) = a, last(p) = f , (a, d) ∉ p
and (b, c) ∉ p. Such a path is p = (a, b, e, f) with a corresponding list of segments
⟨b, e, f⟩. Note that segment b is necessary to prevent from using the forbidden link
(a, d).

Using this formalization, we define the buildSegpath function as described
in Algorithm 2. From a graph G, a source node s, a destination node t, a list

80 Chapter 5. Rethinking IPv6 Enterprise Networks

a b c

d e f

(a) Node traversal constraint through c: first(p) = a, last(p) = f and c ∈ p

a b c

d e f

(b) Link avoidance constraint: first(p) = a, last(p) = f , (a, d) ∉ p and (b, c) ∉ p

Figure 5.4: Example of possible path constraints from a to f.

of nodes to traverse L, a set of forbidden edges F and a set of path policies P ,
this algorithm computes the minimal list of segments to implement the path while
satisfying the policies. First, we create a temporary graph where the forbidden
edges are removed. Then, we set the source node as the current node and we
iterate over each node in L. At each iteration, we select a shortest path going from
the current node to the next node within the temporary graph. The selectPath
function is generic and must be extended by an external algorithm to compute a
path that matches the policies. Then, we leverage the MinSegECMP algorithm
defined in [67]. This algorithm computes the minimal ECMP-free segmentation
of a path. We append to S the list of segmentations produced by MinSegECMP,
for the selected path and within the original graph. Note that it is necessary to
use the original graph for the minimal segmentation. Let us consider Figure 5.4b
and the graph G′ where the edges (a, d) and (b, c) are removed. The minimal
segmentation of the path (a, b, e, f) in G′ is ⟨f⟩ because it is the unique shortest
path from a to f in G′. However, in the actual graph G, multiple shortest paths are
available, and several of them traverse forbidden edges. Using MinSegECMP in
the original graph ensures that those paths are not inadvertently considered.

5.2.4 SRN Control plane
The control plane of an SRN consists of several components. At the core is

the logically centralized controller (the SDN Resolver). It does not communicate
directly with applications. Instead, the exchanges between the applications and
the controller are mediated by DNS forwarders and a DNS proxy. A DNS for-
warder is installed on each access router. Each forwarder receives DNS requests
from applications and forwards them to the DNS proxy. The latter performs the

5.2. SDN Resolver 81

Algorithm 2 Segmented path construction

1: function BUILDSEGPATH(G(V,E,w), s, t,L,F,P)
2: G′(V ′,E′,w′) ← G(V,E,w)
3: S ← ⟨⟩
4: for all (x, y) ∈ F do
5: E′ ← E′ ∖ {(x, y)}
6: end for
7: L← L + t
8: cur ← s
9: for all v ∈ L do

10: Dcur ←Dijkstra(G′, cur)
11: p← selectPath(Dcur, v,P)
12: S ← S +MinSegECMP (p,G)
13: cur ← v
14: end for
15: return S
16: end function

actual DNS resolution, using the enterprise’s resolver, and forwards the conversa-
tion requests to the controller. The controller processes the conversation request,
then instructs the router’s routing daemon to insert the resulting SR policy into
its Forwarding Information Base (FIB). Simultaneously, the controller returns the
generated binding segment (i.e., Path ID) to the DNS proxy. The proxy then crafts
the corresponding DNS reply, using the resolved address and the binding segment.
This reply is transferred to the DNS forwarder. Finally, the forwarder monitors the
router’s FIB and explicitly waits for the SR policy to be inserted. This synchro-
nization is necessary to ensure that the router does not receive legitimate packets
with a binding segment that is not yet recognized in the FIB. Ultimately, the for-
warder passes on the DNS reply to the application. Using forwarder-proxy pairs
enables to move the actual DNS resolution process closer to the controller. As-
suming that the controller, proxy, and resolver are in the same network vicinity,
this setup allows to group most of the transactions within a low-delay network ra-
dius. If the DNS forwarder were to perform the DNS resolution and interact with
the controller, then at least two RTTs would be wasted in transactions (one for the
DNS resolution and one for the controller transactions). Delegating this task to
the DNS proxy enables to perform the full conversation request within approxi-
mately one RTT between the application and the controller (modulo computations
and transactions overhead).

The last component of an SRN is the Network State Daemon (NSD) which
gathers the network state as exposed by OSPF-TE and forwards it to the controller.

82 Chapter 5. Rethinking IPv6 Enterprise Networks

The rate of network state updates depends on the OSPF refresh timer defined by
the operator. The value should be a trade-off between control traffic overhead and
up-to-date metrics. A high-level illustration of an SRN architecture is shown in
Figure 5.5.

Figure 5.5: Illustration of the components of an SRN. The figure shows the
exchanges involved in a conversation request.

Interfaces

The controller’s northbound interface (i.e., facing the applications) leverages
the DNS protocol. We extend DNS with a new type of Resource Record called
BSID. This record carries a binding segment implementing a Path ID encoded as
an IPv6 address. We also use EDNS0 [109] to carry metadata in DNS messages.
We define three new option codes to carry the requested bandwidth, requested la-
tency and application identifier. The flexibility of EDNS0 enables to easily define
new options in the future.

In our prototype, the communications between the controller and its compo-
nents (i.e., southbound interface) are realized through the OVSDB protocol [128].
Originally designed for the Open vSwitch suite, OVSDB is a generic, JSON-RPC

5.2. SDN Resolver 83

based protocol, supporting transactional queries on NoSQL-like databases. In
OpenFlow networks, OVSDB is used to configure the switches and to dump the
flow tables. The actual per-flow configuration is performed through the Open-
Flow protocol. However, OVSDB can be used as the per-flow configuration pro-
tocol for non-OpenFlow networks such as proposed in [129]. Although a database
approach for state synchronization between network components is uncommon,
OVSDB has the advantage of being generic and simple, as opposed to traditional
network protocols such as BGP.

We define six OVSDB tables for SDN Resolver. We call this set of tables the
Segment Routing Database (SRDB). ConvReq stores the conversation requests
generated by the applications and translated by the DNS proxy. It contains the
source and destination of the request, the resolved destination address, traffic re-
quirements, the identifier of the corresponding access router, and a status. The
status is set to REQ STATUS PENDING when the entry is inserted by the DNS
proxy. If the request is accepted by the controller and the conversation is created,
the controller changes the status to REQ STATUS ALLOWED. Otherwise, the sta-
tus is set to a value that reflects the reason why the conversation is not created (e.g.,
administrative deny, impossible to satisfy the traffic requirements, etc.). This table
is written and read by both the DNS proxy and the controller. ConvState stores
the state for half-conversations. Each entry contains the source and destination ap-
plication, traffic requirements, Path ID and mapped segments, expiration timers,
etc. It is written by the controller and read and written by the routing daemon.
The write access of the routing daemon is required to enable the removal of ex-
pired conversations. Although the controller could garbage collect conversations
that hit the lifetime timer, it does not have sufficient information to remove
conversations that reached the maxidle timer. The details of those timers are
explained in Section 5.1. ServReg stores the server registration requests. It con-
tains the name and address of the requesting servers, and a status field that has
the same semantics as for the ConvReq table. It is written and read by both the
DNS proxy and the controller. LinkState and NodeState store topology
data gathered through OSPF-TE, such as announced prefixes, link utilization, etc.
They are written by the NSD and read by the controller. Finally, RouterConfig
stores various configuration parameters for SR-aware routers. It is written by the
controller (or by an operator-specific management tool) and read by the routers.
A summary is shown in Table 5.3.

Operations

To ensure the correct operation of the network according to the principles de-
scribed in Section 5.1, our controller includes at least two processes: conversation
requests and server registrations (see Figure 5.1). We also support a third opera-

84 Chapter 5. Rethinking IPv6 Enterprise Networks

Table 5.3: Summary of OVSDB tables and read/write access per component.

Table Controller NSD DNS Proxy DNS Forwarder Routing daemon
ConvReq R/W - R/W - -

ConvState W - - - R/W
ServReg R/W - R/W - -

NodeState R W - - -
LinkState R W - - -

RouterConfig W - - R R

tion: reactions to network events. Those processes are handled as follows.

Conversation request. The controller matches each conversation request against
the rules defined by the operator. The last matching rule wins. When a rule
matches, the controller applies the rule’s main decision: accept or deny.
In the latter case, an error is returned to the application and the process
stops. In the former case, the controller combines the policies defined in
the rule and the QoS constraints provided by the conversation request into a
final set of policies. Once the final set of policies is defined, it is translated
into a list of segments. This transformation is described in Algorithm 2
(buildSegpath). Then, the controller generates a binding segment and cre-
ate a route that implements the SR policy. This route matches packets
for that particular binding segment and encapsulates them with the previ-
ously computed list of segments. This route is immediately inserted using
OVSDB into the access router of the initial requesting application. Note
that if the application is susceptible to use more than one access router (e.g.,
with VRRP [130]), then the route would be inserted in all concerned routers.
Finally, the binding segment is returned to the application. The controller
keeps the resulting state in memory as long as needed (usually, until expira-
tion). For resiliency purposes, the controller may run multiple iterations of
buildSegpath by successively removing the edges of the previously com-
puted paths. Each iteration would then produce a valid path (i.e., matching
the constraints) that is link-disjoint from paths computed at previous itera-
tions. Alternatively, the controller may leverage a dedicated algorithm for
backup path computation. Those backup paths should be configured as such
in the access router and associated to the same binding segment.

Server registration. When the controller receives a server registration request,
it uses the DNS update mechanism [111, 112]. If there is no pre-existing
DNS record for the server name, then a new record is created with a given
TTL. If the server is already part of an existing record, then its TTL is
refreshed. Otherwise, the server is added to the list of entries associated

5.2. SDN Resolver 85

with this name.3 The server receives a DNS reply with an associated TTL.
The server must refresh its registration before the expiration of the TTL.

Network event. We consider as a network event any link or node failure that af-
fects active conversations. We also consider sudden increases in link utiliza-
tion or delay that would break conversation requirements. The controller
does not have the same reaction time for these events. A link failure is
quickly propagated by OSPF [131]. A node failure is detected when all
its neighbors have reported the loss of the adjacency, which can take some
time. The link bandwidth utilization and delays are updated by using adap-
tive timers and thresholds by OSPF-TE implementations [132]. When the
controller detects a network event, it scans its conversation state database
and builds a list of adversely affected conversations. In case of link or
node failure, all conversations that traverse the failed link or node are af-
fected. In case of congestion or delay increase, the affected conversations
are those whose path no longer matches the traffic requirements. For each
affected conversation, the controller looks for pre-computed backup paths.
If such path exists and is not adversely affected by the network event, it is
selected as replacement. Otherwise, the controller recomputes a new path
that suits the conversation policies using the buildSegpath function. The
controller updates the corresponding entries in the OVSDB ConvState
table. The affected routers receive the OVSDB update notifications and
carry the changes to their FIB. Note that the controller can change a path
without interacting with the application, as Path IDs provide a level of in-
direction to the actual segmented path implemented on the access router.
We described a very basic algorithm for online path recomputation. More
advanced approaches (e.g., recompute non affected paths to reach a more
optimal state) discussed in the literature [133, 134] could also be included
in the controller.

5.2.5 Fault tolerance

Let us consider the resilience of SDN Resolver. If the controller fails, then ob-
viously, many features become unavailable. Applications cannot issue new con-
versation requests, servers cannot register or refresh their registration and if an
adverse network event happens, the affected paths are not updated. Active con-
versations are not affected (a controller failure does not affect the routers’ FIBs)
and server registrations do not immediately expire. However, new conversations
can appear at any time but will not be able to complete without the controller. We

3Multiple entries for a single DNS record implement a DNS round-robin.

86 Chapter 5. Rethinking IPv6 Enterprise Networks

consider that the network should be able to operate in degraded mode without the
controller. To realize this, the DNS proxies can be configured to return a default
binding segment if the controller is unavailable. The behavior of this default SR
policy is operator-defined. For example, it may simply forward the packets to their
destination, following the IGP shortest path. Packets may also be forced to pass
through a middlebox such as a firewall. Such a mechanism enables the network
to function in a temporary degraded mode in case of controller failure.

Operating in degraded mode is never desirable, even if better than a complete
network outage. To prevent from switching too rapidly to this mode, more con-
trollers may be added to the network. For example, two or more controllers can act
in a master-slave fashion. Furthermore, large or multi-site networks can be par-
titioned, each partition being assigned its own controller [135, 136]. In the latter
case, a controller failure will affect only its designated network partition, avoid-
ing network-wide degraded mode. Partitioning the network can have additional
benefits, such as reducing the controller’s load. For example, if several groups of
access routers are known for receiving conversation requests at a very high fre-
quency, then they may be assigned their own controller. In multi-site networks,
assigning a controller to each site prevents the requests to traverse an inter-site
WAN link, which could add a significant latency. State synchronization between
controllers of different partitions is minimal, as long as each access router is oper-
ated by at most one controller to prevent possible write conflicts. The controllers
still need to access each other’s conversation state (read-only) to answer reverse
Path ID requests, if the two access routers of a conversation are handled by differ-
ent controllers.

5.2.6 Security implications
From a security viewpoint, an SDN Resolver is exposed to the same security

risks as the enterprise’s internal DNS resolver. As such, external traffic should not
be able to reach the controller, as it is already protected by the enterprise firewall.

The introduction of SRv6 in the enterprise network implies the support of the
IPv6 Segment Routing header extension. As such, it is crucial that SR-enabled
IPv6 packets originating from outside the enterprise network are not allowed to
cross the border routers. Otherwise, it would enable an external attacker to gain
unauthorized access to the enterprise network resources. Such access enables
attacks such as amplification, reflection, and bypass [19]. The mitigation for this
threat is simply to configure the border routers to drop all SR-enabled packets
originating from an external interface [29].

Internal threats coming from, e.g., malicious employees, are more difficult
to address. However, it is possible to mitigate some of them. The controller
and DNS proxy are not directly exposed to user traffic, as all their interactions

5.3. Implementation 87

with users happen through DNS forwarders. Furthermore, network devices cannot
interact with other DNS forwarders than the one located on their access router.
This enables to contain any damage done on a DNS forwarder to its service area.
To prevent misuses of network resources, only authorized equipment should be
allowed to emit arbitrary SRHs on the network. The SR-enabled packets generated
by applications should be subject to access control when reaching an access router,
to prevent unauthorized usage of segments. Additionally, DNSSEC [112, 137,
138] can be leveraged to prevent an attacker from tampering with DNS responses
or generating fake server registrations.

5.2.7 Comparison with OpenFlow
There exist several key differences between SRN and OpenFlow, which is the

foremost SDN implementation. An OpenFlow controller works directly on top of
switches and fills their flow table. If a flow table is empty, then the corresponding
switch is unable to forward packets. If a switch reboots while the OpenFlow
controller is down, it is unable to recover its flow table. On the other hand, an SDN
Resolver is running on top of a network of IPv6 routers. Those routers already
have IPv6 reachability information distributed through an IGP. As a result, an
SRN is still able to forward traffic and recover from failures even in the situation
where the controller is down. Indeed, the IGP will converge and new routes will
be automatically defined.

To install a path in an OpenFlow network, the controller needs to configure
every switch that is part of that path. Consequently, the state in core switches
grows linearly with the number of active flows in the network. This can lead to
resources exhaustion as memory is often limited in this type of devices. In an
SRN, only the edge routers need to maintain per-flow state. The core routers are
stateless in this respect. They do not need to maintain more state than classical
reachability information.

Finally, as SRv6 is an overlay over IPv6 routing, it is straightforward to re-
alize incremental deployment. Indeed, only the routers acting as segment end-
points must support SRv6. The rest of the routers only need to perform regular
IPv6 forwarding. While incremental deployments are possible in OpenFlow net-
works [148], it is more tedious than in SRNs, as all switches in a flow’s path are
expected to be OpenFlow switches.

5.3 Implementation
To assess the performance of our proposed architecture, we developed a fully

functional prototype implementation. It runs on Linux clients, routers, servers and

88 Chapter 5. Rethinking IPv6 Enterprise Networks

controllers. Overall, our prototype comprises about 10,000 lines of C code. We
describe the main components of this prototype in this section.

5.3.1 Kernel modifications

The Linux kernel, since version 4.10, already includes basic support for SRv6
[38]. However, this release does not explicitly support binding segments, which
are required for the Path IDs that are used in our architecture. To use Path IDs,
routers must be able to encapsulate a packet when its active segment matches a
given address. The active segment is defined as the destination address of the
packet. We implement the binding segments by extending the in-kernel SRv6
processing mechanism. For this, we use a hashtable that maps a binding segment
to a routing entry. This entry points to the SRv6 encapsulation function with the
corresponding list of segments as parameters. We also add code in the SRH pro-
cessing function ipv6 srh rcv() to verify if the active segment of the current
packet matches an entry in the hashtable. In this case, the packet is re-routed us-
ing the associated routing entry and automatically encapsulated with the proper
SRH. This two-steps mapping has the advantage of (i) reusing the SRv6 encapsu-
lation functions and (ii) avoiding the proliferation of routing entries when several
binding segments are mapped to the same list of segments.

We also associate two timers to each mapping. The first one is set at the
creation of the mapping to the value of the lifetime rule keyword defined in Sec-
tion 5.1. The second one is reset to the value of the maxidle rule keyword when-
ever a packet matches the mapping. The route implementing the SR policy is
removed when either timer expires. SR policies are configured using the standard
NETLINK interface. We also modified the iproute2 userspace tool to support
our kernel modifications. Our kernel modifications are grouped in two patches
with a total of 760 lines of code. The iproute2 changes consist of about 200
lines of code.

5.3.2 Path ID propagation

In Figure 5.1, after the client has established the connection, the server re-
quests a binding segment for the server-client of the conversation. If the controller
is able to infer the full requirements of the conversation from the client request,
then the server-side request is superfluous. This can speed up the connection es-
tablishment process.

Additionally, technical limitations of the Linux kernel prevent the server from
dynamically setting an SRH for SYN/ACK packets sent in response to TCP SYN
requests. Indeed, when a Linux host receives a SYN packet corresponding to a

5.3. Implementation 89

listening application, it immediately responds with a SYN/ACK, without notify-
ing the application. A call to accept() to fetch the file descriptor of a new
connection will succeed and return only when the three-way handshake is fully
completed. At this point, the server application has the opportunity to define an
SRH for the newly established connection. However, for some use cases, it is
important that all packets follow the same SRv6 policy (i.e., have the same SRH),
including the SYN/ACK packet.

We propose a technique that enables the server application to immediately
attach a suitable SRH to all packets following the SYN request, thus allowing (i)
faster connection establishment and (ii) enforcement of the SRv6 policy for all
packets. This technique is described as follows.

When the client issues its conversation request, the controller immediately
computes a network path for both directions of the conversation and maps them to
two Path IDs (resp. Pc−s and Ps−c for the client and the server). The controller then
inserts a particular SR policy into the client’s access router. This SR policy maps
Pc−s to the corresponding encapsulation, but also instructs the router to overwrite
Pc−s with Ps−c in the SRH before the encapsulation. The server then receives a
packet with its own Path ID present in the SRH, instead of the client’s Path ID.
Then, it simply needs to echo the binding segment. Once the conversation is
fully established, the server is free to request an update of the conversation with
its Path ID, e.g., to reflect changes in traffic requirements. This technique has
obvious security implications. Blindly echoing a binding segment is a process
that must be strictly controlled. Allowing only authorized network equipment to
emit arbitrary SRHs as explained in Section 5.2.6 should prevent misuses of the
feature. Additionally, the HMAC feature of SRv6 can be leveraged to ensure the
authenticity and integrity of the SRH.

5.3.3 Segment Routing Database
The Segment Routing Database (SRDB) is the set of OVSDB tables used by

SDN Resolver to maintain state in an SRN. To support SRDB, we implemented
an abstraction layer over OVSDB primitives. An OVSDB table is referenced by
a name, and contains multiple fields (or columns), also referenced by name. Two
built-in fields are always present in each entry (or row) of the tables. Namely,
those fields are row and version. They both contain a UUID. The former un-
ambiguously references the row within the OVSDB database and never changes,
unless the row is deleted. The latter references the current version of the row and is
updated for each write operation performed on the row. Operations on an OVSDB
table are realized using JSON transactions. Clients connect to the OVSDB server
and can choose to either perform a transaction on the database (row insertion,
update, or deletion) or request to monitor a given table. After each write oper-

90 Chapter 5. Rethinking IPv6 Enterprise Networks

Listing 5.1: Storage for an entry of the ConvReq table.
s t r u c t s r d b f l o w r e q e n t r y {

s t r u c t s r d b e n t r y e n t r y ;

char r e q u e s t i d [SLEN + 1] ;
char d e s t i n a t i o n [SLEN + 1] ;
char d s t a d d r [SLEN + 1] ;
char s o u r c e [SLEN + 1] ;
i n t bandwid th ;
i n t d e l a y ;
char r o u t e r [SLEN + 1] ;
char proxy [SLEN + 1] ;
i n t s t a t u s ;

} ;

ation, the OVSDB server propagates the changes to all monitoring clients. The
modified rows are encoded in a JSON format. A virtual field action is added to
each row, describing the operation that triggered update (e.g., insert). On top of
these OVSDB primitives, we implement an SRDB library enabling the SDN Re-
solver components to easily interact with the database, in a flexible and extensible
manner.

Structures

We define a basic struct srdb entry to represent a generic OVSDB row.
This structure contains only the built-in fields. Each SRDB table entry is repre-
sented by an extension of this structure. For example, an entry of the ConvReq
table is represented by a struct srdb flowreq entry, as shown in List-
ing 5.1.

To each field (or column) of an SRDB table is associated a template struct
srdb descriptor. This descriptor contains the name, type, and length of the
field, as well as its offset within the corresponding SRDB entry structure. Given
an actual row data, this mechanism enables to automatically fill the correspond-
ing entry structure, when provided with a descriptor for each field. The SRDB
descriptor is shown in Listing 5.2.

Each SRDB table is represented by a struct srdb table. This structure
contains various fields including the name of the table, a callback function for
OVSDB events (row insertion, update, deletion), and an array of descriptors for
each of the corresponding entry structure. A description of an SRDB table is
shown in Listing 5.3.

5.3. Implementation 91

Listing 5.2: SRDB field descriptor.
s t r u c t s r d b d e s c r i p t o r {

c o n s t char *name ;
enum s r d b t y p e t y p e ;
i n t i n d e x ;
s i z e t maxlen ;
boo l b u i l t i n ;
o f f t o f f s e t ;

} ;

Listing 5.3: SRDB table.
s t r u c t s r d b t a b l e {

c o n s t char *name ;
c o n s t s t r u c t s r d b d e s c r i p t o r * d e s c t m p l ;
s t r u c t s r d b d e s c r i p t o r * desc ;
s i z e t d e s c s i z e ;
s i z e t e n t r y s i z e ;
t a b l e i n s e r t c b t c b i n s e r t ;
t a b l e u p d a t e c b t c b u p d a t e ;
t a b l e d e l e t e c b t c b d e l e t e ;
s em t i n i t i a l r e a d ;
boo l d e l a y e d f r e e ;

} ;

Architecture

Our SRDB library has been designed to be integrated within a multi-threaded
environment. As such, the monitoring and transaction operations can operate as
stand-alone threads. We leverage callback functions and thread-safe queues to
exchange data with the SDN Resolver components that interact with the SRDB.
Figure 5.6 shows the overall SRDB library architecture. A Monitor thread must
be spawned for each table to be monitored. This type of thread receives a call-
back function pointer in argument and establishes a permanent TCP connection
with the OVSDB server. Whenever data is available on the socket, the callback
function is called, with the data as argument. In our case, this callback function is
srdb read(). Using the raw data and the table descriptors, the function calls
fill srdb entry() to transform the raw data into the corresponding entry
structure. Then, another callback function is called, according to the type of oper-
ation (insertion, update, deletion).

To issue transactions, the SDN Resolver components push a two-element
structure into a thread-safe queue. This structure contains the SRDB entry to be

92 Chapter 5. Rethinking IPv6 Enterprise Networks

Figure 5.6: Architecture of the SRDB library.

5.3. Implementation 93

transmitted to the OVSDB server, and a one-element thread-safe buffer, that will
be used to store the transaction result. A pool of Transact threads fetch elements
from the queue, transform the SRDB entry into a JSON transaction and transmit
it to the server. The per-thread TCP connection to the server is established at
the creation of the thread and is kept open during all the thread’s runtime. This
enables to skip the three-way handshake for each transaction. Finally, the trans-
action result is stored in the result buffer. Note that the OVSDB server issues
keepalives over the transaction sockets. To be able to respond to them, the trans-
act threads must continuously poll their socket to check if a keepalive has arrived.
As such, they cannot use blocking calls to fetch elements from the thread-safe
queue. Rather, we use the non-blocking variants of synchronization mechanisms,
such as sem trywait().

Listing 5.4: SRDB instance.
s t r u c t s r d b {

s t r u c t o v s d b c o n f i g * con f ;
s t r u c t s r d b t a b l e * t a b l e s ;
s t r u c t s b u f * t r a n s a c t i o n s ;
p t h r e a d t * t r w o r k e r s ;
s t r u c t l l i s t n o d e * m o n i t o r s ;

} ;

The description of a full SRDB instance is described in Listing 5.4. The struc-
ture contains various OVSDB configuration parameters (such as the server address
and port), the list of tables, the shared thread-safe buffer used to store transactions,
the pool of transaction threads, and the list of monitoring threads.

5.3.4 Graph library
To support the computation of constrained, segmented paths, we implement

a lightweight, SR-aware graph library. This library supports a generic represen-
tation of nodes, edges, and segments. Using this, we implement the operations
and algorithms required to compute and segment paths, such as the buildSeg-
path and MinSegECMP algorithms. We also ensure that the graph structures
can be leveraged in multi-threaded environments by providing synchronization
primitives such as read-write locks and reference counters.

Structures

Each node is represented by a numerical identifier and a generic pointer for
user storage. Each edge represents a unidirectional link and contains a numerical

94 Chapter 5. Rethinking IPv6 Enterprise Networks

identifier, the two connected nodes, the link weight (or metric) and generic user
storage. A segment is represented by either a node (for node segments) or an edge
(for adjacency segments). Figure 5.7 shows the definition of those three basic
structures.

Listing (5.5) Node.
s t r u c t node {

unsigned i n t i d ;
void * d a t a ;
void (* d e s t r o y) (s t r u c t node * node) ;
boo l o rphan ;
a t o m i c t r e f c o u n t r e f c o u n t a l i g n e d ;

} ;

Listing (5.6) Edge.
s t r u c t edge {

s t r u c t node * l o c a l ;
s t r u c t node * remote ;
unsigned i n t i d ;
u i n t 3 2 t m e t r i c ;
void * d a t a ;
void (* d e s t r o y) (s t r u c t edge * edge) ;
boo l o rphan ;
a t o m i c t r e f c o u n t r e f c o u n t a l i g n e d ;

} ;

Listing (5.7) Segment.
s t r u c t segment {

union {
s t r u c t node * node ;
s t r u c t edge * edge ;

} ;
boo l a d j a c e n c y ;

} ;

Figure 5.7: Basic structures of the graph library.

A graph is represented by the struct graph structure. It contains the set
of nodes and edges, stored in arraylists. Three helper hashtables enable fast ac-
cess to certain types of data to speed up path computations. The first hashtable,
min edges, maps each connected pair of nodes to the edge(s) of minimal weight
that connects them. This is useful for shortest path computation when two
nodes are connected by multiple edges of possibly different weights. The second

5.3. Implementation 95

hashtable, neighs, maps each node to a list of its neighbors. Again, such data is
needed at each iteration of the shortest path algorithm and this hashtable enables
to considerably accelerate the computation time. The third hashtable, dcache,
maps each node to its precomputed shortest-path Directed Acyclic Graph (SP-
DAG). The first two hashtables speed up the Dijkstra algorithm. The third one
speeds up the MinSegECMP algorithm, which requires switching between mul-
tiple SP-DAGs. A per-graph dirty boolean flag is used as a signal when a node
or edge is added or removed from the graph, but the three helper hashtables have
not yet been recomputed.

A read-write lock prevents bogus path computations to happen while the graph
is being updated. As multiple computations can be realized simultaneously, such
a lock is more suitable than a mutex that would implement mutual exclusion to the
graph. Furthermore, each node and edge structure contains a reference counter.
This enables to hold references to them outside of critical sections (i.e., when the
per-graph lock is not taken). When a node or edge are removed from their parent
graph but are still referenced, their orphan boolean parameter is set to indicate
that they are no longer part of a graph. When the reference count of a node or
edge reaches zero, then its destroy function pointer is called and the structure
itself is freed. Besides the destroy operation, each graph is specified with a set
of user-definable operations, implemented as function pointers. Those operations
(graph operations or graph-ops) are related to the node and edge data pointer
for generic user storage. They enable to customize node and edge comparison,
copy, and destruction.

Operations

The fundamental algorithm to be applied to the graph is the shortest path
computation algorithm. We thus implement the Dijkstra algorithm through the
graph dijkstra() function. It takes as parameter a graph structure, a source
node, a result buffer, a set of user-definable operations and a generic data pointer.
The set of operations (called shortest path operations or sp-ops) enables to arbi-
trarily interfere with and alter the shortest path computations. Four operations
are defined, as function pointers: init, destroy, cost and update. The
first operation is called at the very beginning of graph dijkstra(), using the
same arguments. It gives an opportunity to allocate a temporary state-holding
buffer. Conversely, the second operation is called at the very end of the short-
est path function to free this buffer. The cost function is called to compute the
cost of an edge. Using a custom algorithm to determine the cost of edges enables
to perform shortest path computation using other metrics than the default built-in
edge weight (e.g., link delay). The update function is called when Dijkstra finds
a better path to a given node.

96 Chapter 5. Rethinking IPv6 Enterprise Networks

A key Segment Routing algorithm required for the implementation of build-
Segpath as defined in Section 5.2.3 is the MinSegECMP algorithm [67]. Using
a graph and a path defined within this graph, MinSegECMP computes the mini-
mal list of segments needed to express this path. We implement this algorithm as
the graph minseg() function.

Listing 5.8: Path specification for buildSegpath
s t r u c t p a t h s p e c {

s t r u c t node * s r c ;
s t r u c t node * d s t ;
s t r u c t a r r a y l i s t * v i a ;
void (* p rune) (s t r u c t graph *g , s t r u c t p a t h s p e c * pspec) ;
s t r u c t s p o p s * s p o p s ;
void * d a t a ;

} ;

On top of graph dijkstra() and graph minseg(), we implement the
buildSegpath algorithm through the build segpath() function. This func-
tion performs the actual constrained path computation. It takes as arguments a
graph and a struct pathspec structure, which parametrizes the path to com-
pute. This structure is illustrated in Listing 5.8. The path is described by the
source and destination node, and a list of intermediate waypoints. The prune
function enables to selectively remove edges from the original graph before per-
forming the path computation. The sp ops structure and the data pointer are
passed on to the graph dijkstra function. The former is the shortest path
operations as previously explained, and the latter is a generic pointer given as ar-
gument to the sp-ops functions. Using this input, build segpath() performs
the following operations. First, the graph is cloned into a local writable copy, to
which the prune function is applied. Then, Algorithm 2 is applied. The result is
the minimal list of segments implementing the constrained path, or a null value if
the path could not be computed.

5.3.5 Controller implementation
Using the graph and SRDB subsystems, the core of the controller implements

the necessary features to run a Software Resolved Network. It maintains a global
state that consists of three sets of data: (i) the operator-defined policies, (ii) the
current network state, and (iii) the active conversations. The network state con-
sists of two graphs. A production graph is used to perform the path computations,
and a staging graph is used as a buffer to store the link-state changes. This global
state is processed and updated by three major components. The first component

5.3. Implementation 97

is the set of monitoring threads, each of them watching a given OVSDB table
and calling an associated callback function when necessary. The callbacks for
the NodeState and LinkState tables update the staging graph accordingly.
The callback for the ConvReq table extracts the conversation request and stores
it in a shared thread-safe buffer. This buffer is consumed by the second compo-
nent, which is a pool of worker threads. The worker threads handle most of the
controller’s workload. Concurrently, they match the requests against the operator
policies, compute a path between the source and destination, generate an associ-
ated binding segment, create an internal conversation state and commit the newly
created conversation to the ConvState table. The third component is the net-
work monitoring thread. At configurable intervals, it sets the staging graph as the
production graph if the network state changed, it recomputes potentially affected
conversations, and garbage collects expired conversations. An overview of the
controller architecture is shown in Figure 5.8.

Structures

Two structures are defined to represent routers and links in an SRN, resp.
struct router and struct link. Those structures are incorporated in the
network graphs and referenced by the generic data pointer of nodes and edges.
Figure 5.9 describes those structures.

Each router is defined by its name, a loopback address, an IPv6 prefix from
which binding segments are generated, a list of prefixes announced by the router
(through the IGP), the identifier of the corresponding node in the production
graph, and a reference counter. Using the node identifier instead of a direct pointer
enables more flexibility to, e.g., regenerate (reallocate) the graph node using the
same identifier, without having to update all existing pointers to the node.

Each link contains the loopback address of the two routers it connects, the
bandwidth capacity of the link, the bandwidth currently available, the delay of the
link, and a reference counter.

A third important structure used by the core controller is struct flow, rep-
resenting a conversation state. It contains the named source and destination, the
IPv6 address of the destination as resolved by the DNS proxy, references to the
access routers of the source and the destination, path constraints such as band-
width, latency, etc., and other parameters such as the creation timestamp and the
conversation status.

The network state is maintained in a struct netstate as described in
Listing 5.11. It contains the production and staging graphs, two timestamps used
to keep track of when the production graph should be synchronized with the stag-
ing graph, the set of routers present in the network, and all the prefixes announced
by the IGP. The prefixes are stored in a compressed prefix tree, to leverage the

98 Chapter 5. Rethinking IPv6 Enterprise Networks

Figure 5.8: Controller architecture.

5.3. Implementation 99

Listing (5.9) Router.
s t r u c t r o u t e r {

char name [SLEN + 1] ;
s t r u c t i n 6 a d d r add r ;
s t r u c t p r e f i x p b s i d ;
s t r u c t l l i s t n o d e * p r e f i x e s ;
unsigned i n t n o d e i d ;
a t o m i c t r e f c o u n t r e f c o u n t a l i g n e d ;

} ;

Listing (5.10) Link.
s t r u c t l i n k {

s t r u c t i n 6 a d d r l o c a l ;
s t r u c t i n 6 a d d r remote ;
u i n t 3 2 t bw ;
u i n t 3 2 t ava bw ;
u i n t 3 2 t d e l a y ;
a t o m i c t r e f c o u n t r e f c o u n t a l i g n e d ;

} ;

Figure 5.9: SDN Resolver extension of nodes and edges in an SRN.

Listing 5.11: Network state as maintained by SDN Resolver.
s t r u c t n e t s t a t e {

s t r u c t graph * graph ;
s t r u c t graph * g r a p h s t a g i n g ;
s t r u c t t i m e v a l gs mod ;
s t r u c t t i m e v a l g s d i r t y ;
s t r u c t hashmap * r o u t e r s ;
s t r u c t l p m t r e e * p r e f i x e s ;
p t h r e a d r w l o c k t l o c k ;

} ;

100 Chapter 5. Rethinking IPv6 Enterprise Networks

longest-prefix match algorithm. Additionally, a read-write lock protects all the
structures in the network state, except for the staging graph that is handled sepa-
rately.

Listing 5.12: SDN Resolver global state.
s t r u c t c o n f i g {

/ * s k i p p e d v a r i o u s c o n f i g p a r a m e t e r s * /

s t r u c t s r d b * s r d b ;
s t r u c t l l i s t n o d e * r u l e s ;
s t r u c t r u l e * d e f r u l e ;
s t r u c t s b u f * r e q b u f f e r ;
s t r u c t n e t s t a t e ns ;
s t r u c t hashmap * f l o w s ;

} ;

Finally, the global state is maintained in a controller-wide configuration struc-
ture as shown in Listing 5.12. This structure holds a reference to the SRDB sub-
system, the set of operator-defined policies, the shared thread-safe buffer used to
store conversation requests, the network state, and the set of active conversations
in the network. Note that our implementation of hashtables (struct hashmap)
has a built-in read-write lock. As such, it is possible to specifically lock the set of
active conversations.

Request processing

The core function of the controller is the process request() function,
called by each worker thread when a conversation request is available in the shared
buffer. The first step consists in matching the conversation request against the
operator-defined policies. This matching is performed using the source applica-
tion identifier and the named destination. If the policy lookup results in the denial
of the request, then the controller updates the conversation request status to reflect
this result and returns. Otherwise, the request processing continues. The con-
troller allocates a new conversation state and fills some of its fields. The next step
is to fetch the two graph nodes that correspond to (i) the source access router,
from which the conversation request emanates, and (ii) the destination access
router, attached to the targeted application. Then, the controller fills a pathspec
structure according to the conversation requirements (e.g., bandwidth, latency,
etc.) and calls the build segpath() function to compute the segmented path.
If a valid path is found, the conversation state is set as active and inserted into
the corresponding internal list. Finally, the conversation state is committed to the

5.3. Implementation 101

ConvState table and the status of the corresponding entry in ConvReq is set
to REQ STATUS ALLOWED.

Network monitoring

The role of the network monitoring thread (netmon) is threefold. It must
(i) garbage collect expired conversations, (ii) synchronize the production graph
with the staging graph if the network topology has changed and (iii) recompute
conversations as needed.

To achieve this, netmon keeps three timers. The first one is gc time and
is triggered once every GC FLOWS TIMEOUT milliseconds. The default value is
one second. The gc flows() function is called each time this timer expires. Its
role is to (i) build a list of expired conversations and (ii) iterate over this list and
remove each conversation. The second timer is gs mod as defined in the network
state. It is reset whenever a change is performed on a node or edge in the staging
graph. The third timer is gs dirty, also defined in the network state. It is reset
only on the first change to the staging graph since it was synchronized with the
production graph. Those two timers expire after resp. GSYNC SOFT TIMEOUT
(default at 5 milliseconds) and GSYNC HARD TIMEOUT (default at 50 millisec-
onds). When either of those timers expire, then netmon synchronizes the pro-
duction and staging graphs, and triggers the recomputation of potentially affected
conversations. The purpose of this pair of timers is to avoid synchronizing the
graphs and recomputing the conversations at each topology change. Such a buffer
helps to absorb bursts of changes. For example, if a network node fails, its con-
nected links will be signalled as failed one after the other. Thus, it is more efficient
to wait for all the links to come down, rather than trigger recomputations for each
of them. This is the purpose of the gs mod timer. The gs dirty timer ensures
that the controller will not wait indefinitely when topology changes happen at a
frequency that always reset the gs mod timer.

To synchronize the network graphs, netmon calls the
netstate graph sync() function. This function (i) atomically copies
the staging graph, (ii) computes the three helper hashtables, (iii) sets the
processed copy as the production graph, and (iv) destroys the former production
graph. If references to nodes and edges that were part of the former production
graph still exist, the corresponding structures will be freed only when the
reference count drops to zero.

The recomputation of conversations is realized by the
recompute flows(), recompute flow(), and flow affected()
functions. The first function builds a list of affected conversations by it-
erating over the set of active conversations. Each conversation for which
flow affected() returns true is added to the list. Once the list is computed,

102 Chapter 5. Rethinking IPv6 Enterprise Networks

the recompute flow() function is called on each of its elements. This last
function is very similar to the process request() function. If the list of
segments that implements the network path of the conversation has changed, then
the new list of segments is updated in the ConvState table.

5.3.6 Application API

To facilitate the deployment of SR-aware applications, we implement a user
API that abstracts the utilization of the DNS extensions and the interactions with
the kernel. To support our DNS extensions, we modify the c-ares DNS li-
brary [139]. We implement a custom library, libsrdns, that provides an API to
handle SR-enabled sockets. For example, the library exposes the sr socket()
function that takes as input the socket type (e.g., TCP or UDP), the destination
name and port, the local application name, and optional bandwidth and latency
parameters. Using this input, the function (i) resolves the destination name and
fetches any associated binding segment, (ii) creates a socket with the correspond-
ing type and (iii) attaches an SRH with the binding segment to the socket.

5.4 Evaluation

In this section, we evaluate SDN Resolver through two angles. First, we
use microbenchmarks to measure several aspects of the controller performances.
Then, we evaluate how SDN Resolver behaves when all its components are inte-
grated in an emulated network.4

5.4.1 Microbenchmarks

Conversation requests

The fundamental operations that the controller needs to support is handling
conversation requests and generating the corresponding conversation state. We
measure how the controller handles conversation requests under a high load. We
proceed as follows. First, we initialize an empty OVSDB database with the SRDB
schema. We populate the NodeState and LinkState tables using the Abilene
topology [140], composed of 11 nodes and 15 links. This topology can represent
the core of a middle-sized enterprise network. With a benchmarking tool that
leverages our SRDB subsystem, we generate batches of conversation requests, at

4Those evaluations are performed on a four years old laptop using a Core i7-3740QM running
at 2.7 GHz with 8 GB of RAM.

5.4. Evaluation 103

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100 1000 10000

R
eq

ue
st

s

Time (milliseconds)

Request completion time with 1 worker thread

2,000 req/s
4,000 req/s

10,000 req/s

Figure 5.10: Request completion time with single worker thread for various
loads.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100 1000 10000

R
eq

ue
st

s

Time (milliseconds)

Request completion time with 10,000 req/s

1 worker thread
2 worker threads
4 worker threads

Figure 5.11: Request completion time with various worker threads for 10,000
reqs/s.

104 Chapter 5. Rethinking IPv6 Enterprise Networks

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100

R
eq

ue
st

s

Time (milliseconds)

Request completion time with 4 worker threads

2,000 req/s
4,000 req/s

10,000 req/s

Figure 5.12: Request completion time with four worker threads for various
loads.

a configurable uniform rate, and without path constraints. The source and des-
tination of each request are selected at random. We measure the delay between
the insertion of the request in the ConvReq table and the insertion of the conver-
sation state in the ConvState table and plot this delay with the benchmarking
tool. The request completion time is defined as the time elapsed between those
two events. As such, it measures (i) the insertion of the conversation request
in OVSDB, (ii) the reception of the ConvReq entry by the controller’s moni-
tor, (iii) the processing of the request and generation of the conversation state,
including the path segmentation, (iv) the insertion of the conversation state into
OVSDB, and (v) the reception of the ConvState entry by the benchmarking
tool’s monitor.

To estimate the load that an SDN Resolver would need to sustain, we looked
at the main DNS resolver of our university campus. This campus gathers about
5,000 employees and 28,000 students. Three DNS resolvers serve the campus
and the load is well balanced between them. Their statistics show that the DNS
resolvers load never exceeds 1,000 requests per second. We consider this as a
baseline for our benchmarks.

In a first batch of measurements, we evaluate how the controller performs over
various request rates, using a single worker. The results are shown in Figure 5.10.

5.4. Evaluation 105

At 2,000 requests per second, the requests are consistently processed at the sub-
millisecond level. At 4,000 reqs/s, the completion time noticeably increases for
more than half of the requests but stays below 10 milliseconds. At 10,000 reqs/s,
the controller is unable to cope with the load and the completion time increases
by three orders of magnitude.

In a second batch of measurements, we measure the horizontal scaling of the
controller with additional workers. We load this controller with 10,000 reqs/s.
The results are shown in Figure 5.11. As previously shown, a single worker is
unable to cope with this load and the completion time quickly reaches about one
second. Doubling the number of workers (i.e., 2 workers) consistently improves
the completion time. About 40% of the requests are completed within less than
a millisecond. The remaining 60% require between 10 and 25 milliseconds. By
doubling again the number of workers (i.e., 4 workers), about 70% of the requests
complete within less than a millisecond. The remaining 30% take between 10 and
25 milliseconds.

In Figure 5.12, we show the evolution of the request completion time for var-
ious rates using 4 workers. At 2,000 and 4,000 reqs/s, the request completion
time remains below one millisecond. As previously shown, 70% of the requests
at 10,000 reqs/s are also completed within a millisecond.

Existing OpenFlow controllers such as Beacon and NOX have been shown to
return responses at a higher rate [141, 142, 143]. However, SDN Resolver will
receive several orders of magnitude less requests than a standard OpenFlow con-
troller. Indeed, only conversation requests (i.e., DNS requests) are handled by
SDN Resolver. In contrast with an OpenFlow controller, an SDN Resolver does
not need to act on a per-flow basis. Furthermore, DNS caching is known to per-
form very well [144] and directly applies to an SDN Resolver.

Those benchmarks are significant in a twofold manner. First, they show that
the controller is able to cope with the typical load of a DNS resolver in a large
enterprise network. Furthermore, it efficiently scales with respect to the available
CPU power. The benchmarks also show that the reference implementation of the
OVSDB protocol can sustain such a load. This result is important as it shows that,
while OVSDB was not originally designed to be a signalling protocol, it can still
be used as such without major performance issues, as proposed in [129].

Reaction to link failures

Link failures are inevitable in a network. When a link fails, the SDN Re-
solver potentially needs to recompute all the paths that were using the failed link.
This recomputation is not required to preserve the connectivity since IGP con-
vergence and SR-based fast reroute techniques cover this part of the recovery.
We evaluate how quickly the controller handles the recomputation of conversa-

106 Chapter 5. Rethinking IPv6 Enterprise Networks

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180 200

S
w

ee
ps

Time (milliseconds)

Conversation states sweep time over 1,000 random link flaps

1,000 conv.
5,000 conv.

10,000 conv.
50,000 conv.

100,000 conv.

Figure 5.13: Time to sweep the full conversation states in a link failure event.

tions in case of link failures. Using the Abilene topology, we generated various
numbers of conversation states with random sources and destinations, without
path constraints. Then, we simulated random link flaps by updating entries in
the LinkState table. When such an event happens, the controller sweeps the
conversation states to decide which one must be recomputed. Without path con-
straints, the controller simply recomputes a new shortest path for conversations
that were using the faulty link. The results are shown in Figure 5.13. We observe
that there is a constant delay of approximately 5 milliseconds. This corresponds to
the controller’s recomputation timer, which enables to absorb bursts of link state
changes. In average, the time spent on each conversation is approximately 0.6
microseconds. With a database of 100,000 active conversations, the average full
sweep is completed within 65 milliseconds.

After the sweep, the controller recomputes the affected conversations. It takes
about 0.2 milliseconds to recompute a single conversation. Considering 100,000
active conversations, in the extremely unlikely case where all the conversations
are affected by a link failure, it would take 20 seconds to sequentially recompute
all of them. This time can be reduced by distributing the recomputations over
multiple threads.

5.4. Evaluation 107

Client

A

B

C

D

E

F

Server

Controller

1
1 1

1
1

5

1
1

1

1

Figure 5.14: Emulated network topology. Each link has a unit weight. The
numbers represent the link delays in milliseconds.

5.4.2 Emulated network
To evaluate our SDN Resolver architecture and implementation in an end-

to-end setting, we instantiated a virtual network in a Mininet-like environment.
The topology is shown in Figure 5.14. Each node is assigned an IPv6 prefix
and contains pre-computed shortest-path routes towards each other node. The
Controller node contains the main components of SDN Resolver, i.e., the
controller, DNS proxy, and OVSDB server. It also hosts a regular DNS server.
The DNS server maps the server.test.sr domain name to the main IPv6
address of the server node. Nodes A and F are access routers and each of them
contains a DNS forwarder and a routing daemon.

In a first experiment, we generate conversation requests for
server.test.sr from the client. We measure the time needed to com-
plete the request, as seen by the client. Then, we compare this delay against the
time needed to complete a regular DNS request. In a first batch of measurements,
we use the network topology as shown in Figure 5.14. The round-trip time
between the client and the controller is thus 6 milliseconds. In a second batch
of measurements, we increase the delay of each link between the client and
the controller to 5 milliseconds. As a result, the round-trip time between the
client and the controller increases to 30 milliseconds. The results are shown in
Figure 5.15. We observe that the conversation request completion time consists
of one RTT between the client and the controller, plus, on average, a constant
overhead of 5 milliseconds. This overhead can be explained by the fluctuations of
the virtualized environment. More importantly, the fact that conversation requests
use one RTT shows that they will not be more affected by the network conditions
than regular DNS requests.

In our setup, we did not explore the effect of DNS caching. The DNS proxy
and forwarders could cache the controller-generated binding segments to speed
up conversation requests for specific use cases. For example, if a client applica-

108 Chapter 5. Rethinking IPv6 Enterprise Networks

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

R
eq

ue
st

s

Time (milliseconds)

Conversation request completion time over 1,000 requests

DNS RTT=6ms
SRDNS RTT=6ms

DNS RTT=30ms
SRDNS RTT=30ms

Figure 5.15: Conversation request completion time for various RTTs.

tion closes a conversation and quickly re-establishes it without changes in path
constraints, then caching might be beneficial. The cache TTL should be low, to
prevent from using obsolete network paths. In [144], the authors show that low
TTL caching has no adverse effects on DNS resolvers hit rates.

In a second experiment, we observe the effects of link failures on active
conversations. To realize this, we use the network topology as shown in Fig-
ure 5.14. First, we request a conversation between the client and the server, with a
minimum-latency path constraint. The controller then configures router A with a
binding segment B1 mapping to the computed list of segments. In the initial net-
work state, this list contains only the segment for node F. Indeed, the minimum
latency path is also the shortest IGP path. Similarly, router F is configured with
another binding segment B2 mapping to a list of segments that consists of node A.
The client node is configured to use the binding segment B1 for all packets sent to
the server node, and the server node is configured to use the binding segment B2

for all packets sent to the client node. Then, from the client node, we run ICMPv6
echo-request measurements every 10 milliseconds. This precision was the best
we could obtain with the ping6 tool in our virtualized environment. Then, we
repeatedly shut down the (A − B) link, wait for the controller reaction, then switch
the link up again.

Figure 5.16 shows one cycle of this experiment. Between t = 0 and t = 80 ms,

5.4. Evaluation 109

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 100 200 300 400 500 600 700 800

Link down

IGP convergence

Controller update

Link up

IGP convergence

Controller update

R
ou

nd
-t

rip
 ti

m
e

(m
ill

is
ec

on
ds

)

Time (milliseconds)

Observed ping round-trip time

RTT

Figure 5.16: Controller reaction to link failure.

Table 5.4: Binding segments and paths evolution.

Event B1 B2 Effective path RTT
Initial ⟨F⟩ ⟨A⟩ (A − B − F) 8 ms

Link down + IGP converg. ⟨F⟩ ⟨A⟩ (A − C − E − F) 18 ms
Controller update ⟨D,F⟩ ⟨D,A⟩ (A − C − D − E − F) 12 ms

Link up + IGP converg. ⟨D,F⟩ ⟨D,A⟩ (A − C − D − E − F) 12 ms
Controller update ⟨F⟩ ⟨A⟩ (A − B − F) 8 ms

the path is the best possible one, i.e., (A − B − F) with a round-trip time of roughly
8 ms. At t = 80 ms, the link (A − B) is shut down. It takes about 30 milliseconds
for the routes to change and the new path to be visible. The path converges to
the now-shortest path, i.e., (A − C − E − F). However, this path is also the longest-
delay path with a round-trip time of about 18 ms. The controller is notified of the
link failure and recomputes the affected paths. At t = 170 ms, the recomputed
path is visible. During that time interval, (i) the controller was notified of the link
failure, (ii) recomputed the new paths, (iii) it updated the ConvState table
with the updated list of segments, (iv) the routing daemons on nodes A and F
were notified of the update, and (v) they updated their respective routing table to
reflect the new list of segments. The new lists of segments are now resp. ⟨D,F⟩
and ⟨D,A⟩ for nodes A and F, which correspond to the current minimum latency

110 Chapter 5. Rethinking IPv6 Enterprise Networks

path. The measured round-trip time is about 12 milliseconds. At t = 420 ms, the
link (A − B) is brought back up and the new IGP routes converge at t = 450 ms.
Note that the path does not change after the convergence. Indeed, the current lists
of segments force the packets to transit through node D. However, the link state
change triggers path recomputations and the controller’s updates are visible at
t = 480 ms. The packets then resume their original shortest and minimum latency
path. Table 5.4 shows a summary of the binding segments and effective paths at
each step.

5.5 Related and future work
Software Defined Networks have been a hot topic in the research community

since the publication of [145]. Several survey papers have analyzed this vast lit-
erature in details [22, 146, 147]. In this section, we compare Software Resolved
Networks (SRN) with several of the key related work. We structure the compari-
son according to the bottom-up approach adopted in section IV of [22].

The dataplane layer of SRNs differs from many proposed SDN solutions.
SRNs operate in networks composed of IPv6 routers. To fully benefit from SRNs,
the ingress routers need to support the binding segments that are part of SRv6
[19, 29]. Given that all IPv6 routers can forward packets with an SRH, it is
possible to incrementally deploy SRNs starting with some upgraded hosts and
ingress routers. Classical SDN solutions [20, 22] use flow tables installed on mod-
ified switches. Special solutions have been proposed to support legacy switches
[148, 149].

A second difference between SRNs and OpenFlow-based SDNs is the south-
bound interface. SDNs rely on the OpenFlow protocol to configure flow tables on
the switches. Future deployments could leverage more programmable switches
[150]. In SRNs, the controller interacts with the routers through OVSDB tables.
Note that while traditional SDN networks require the installation of flow tables
on all routers, in SRNs the controller only interacts with the edge routers. The
controller does not need to interact with the other routers which improves the
scalability of SRNs. SRNs leverage Segment Routing to select and enforce net-
work paths. Several SDN solutions also encode paths inside packets. Hari et al.
propose in [151] to encode network paths inside the layer-2 MAC addresses of
the packets on the first switch of the path. Jeyakumar et al. propose in [152] to
leverage the 20-bit flow label field in the IPv6 header and the 6-bit DS field in the
IPv4 header to dynamically parametrize middleboxes. SRNs can also force spe-
cific conversations through middleboxes and pass parameters using TLVs inside
the SRH [29].

Another important difference is that the endhosts participate actively in SRNs

5.6. Conclusion 111

with their DNS requests. This implies that our SDN resolvers can use policies
based on DNS names and not only addresses and ports. Other SDN solutions
such as PANE [107] use a related approach. PANE proposes an API enabling the
applications to interact with the controller. This API is implemented with a new
protocol, while SRNs extend the DNS protocol. Beyond SDN and enterprise net-
works, researchers have proposed several architectures where content is retrieved
directly with names [153, 154].

As future work, the next step should be to experiment with SRNs in real net-
works. This can be incrementally realized by implementing partial support for
SRv6 in networks where IPv6 is already deployed. For example, one could up-
grade a few edge routers to support SRv6, and deploy an SDN Resolver that would
serve a subset of the network. Such experiments would provide insight on this
novel architecture and create a feedback loop to improve SRNs and SDN Resolver.
We discussed a few aspects of SDN Resolver, however, a lot of them are still un-
explored. For example, operating and synchronizing multiple active controllers
in a master-master fashion within a single network could lead to unexpected side
effects and is worth exploring.

From an SRv6 point of view, SRNs could greatly benefit from the network
programming model proposed in [29] and explained in Section 2.2. By imple-
menting binding segments in the Linux kernel, we already leveraged a subset of
this model. If fully implemented, such a model would enable network operators
with even more flexibility to control and program their network. For example,
SDN Resolver could dynamically steer conversations through a chain of virtual
functions. The controller would then be able to change the parameters of those
functions by updating the relevant segments in the SRv6 policy, according to, e.g.,
the state of the network.

5.6 Conclusion
In this chapter, we presented Software Resolved Networks, an SDN-like ar-

chitecture for enterprise networks. Like OpenFlow-based SDN solutions, SRNs
enable the network operators to specify policies that control the network paths
that are used by applications. For this, SRNs leverage the IPv6 Segment Routing
architecture and the DNS protocol. There are two important differences between
SRNs and SDNs. First, SRNs enable the applications to directly interact with the
controller to specify path requirements like delay or bandwidth. This interaction
is performed by using extensions to the DNS protocol. Second, SRNs do not re-
quire per-flow state in all network nodes. The controller installs state on the access
routers but not on the core routers. We implement a complete prototype of an SRN
network on Linux hosts, routers and servers. Our performance evaluation shows

112 Chapter 5. Rethinking IPv6 Enterprise Networks

that our prototype meets the performance expectations of enterprise networks.

Chapter 6

Conclusion

The scale and complexity of current networks warrant appropriate technolo-
gies and tools to operate them. A plethora of protocols and systems for network
management rose and fell over the last few dozen years. Today, the ones that were
selected and currently deployed in most production networks are not necessarily
the best fit for their purposes. Indeed, multiple factors play a role in the adoption
of technologies. Those factors do not always include elements suitable for fu-
ture evolution of networks, such as scalability. Segment Routing is an attempt to
bridge the gap between the distributed protocols managing the majority of current
networks, and the paradigm shifting principles of Software-Defined Networking,
as prominently spearheaded by OpenFlow.

In this thesis, we explored the potential of Segment Routing in its IPv6 fla-
vor. SRv6 is an efficient and fine-grained network management architecture. Its
source routing paradigm enables network operators to easily implement traffic en-
gineering without adding state in the core network. By providing an abstraction
layer over classical distributed protocols, SRv6 enables to centralize the network
control while still relying on the resilience of such protocols. Another important
feature of SRv6 is its inherent ability to extend its reach up to the endhosts. By
bringing together the best of the distributed protocols and the SDN world, SRv6
paves the way for research areas hitherto unexplored. The main contributions of
this thesis are the following.

In Chapter 3, we presented our open-source implementation of SRv6 in the
Linux kernel. This implementation was merged into the mainline tree and is avail-
able in the official Linux kernel since v4.10. As SRv6 is still considered an ex-
perimental feature, a reference open-source implementation enables the practical
validation of the SRv6 specifications before advancing further in the standardiza-
tion process. Furthermore, it also enables other researchers to use, explore, and
extend SRv6. We presented in details the different components of our implemen-

113

114 Chapter 6. Conclusion

tation and evaluated its performance on real hardware. Experiments showed that
our implementation yields performances very close to regular IPv6 forwarding for
the main operations of SRv6, and is able to scale linearly with the available CPU
resources. We also provided guidelines for future implementers and suggested
some potential next steps to improve the SRv6 Linux implementation.

In Chapter 4, we explored how Segment Routing can help to solve specific
networking issues in novel and efficient ways. We focused on two aspects in par-
ticular. First, we proposed to leverage traffic duplication over disjoint paths to en-
able robust low-latency communications for real-time applications. We leveraged
SRv6 to steer the duplicated traffic over pre-computed disjoint paths. Simulations
showed that the Linux TCP stack is able to cope with the duplicated traffic and
absorb sudden jitter or packet losses. In a second aspect, we developed SCMon,
a network monitoring technique that leverages the Segment Routing architecture
to send probes over cycles, from a single vantage point. Those cycles enable to
fully cover the network and explore ECMP components as well as specific links
in a bundle. The result is a scalable solution that does not requires per-router con-
figuration. Simulations on real topologies showed that SCMon is able to detect
single-link failures within milliseconds.

In Chapter 5, we designed Software Resolved Networks, a new architecture
for IPv6 enterprise networks. SRNs leverage SRv6 to enforce network paths. An
SDN-like central controller, called the SDN Resolver, interacts with applications
through the DNS protocol. The applications can specify path requirements for
their flows, such as bandwidth or latency, by sending DNS requests. The con-
troller then configures the access router of the requesting application with the
appropriate SRv6 policy. A path identifier, implemented as a binding segment, is
attached to this policy. This PathID is returned to the application, which subse-
quently uses this identifier to steer its packets through the corresponding network
path. We extended the SRv6 implementation in the Linux kernel and implemented
a complete prototype of an SDN Resolver. We evaluated our prototype through
benchmarks and simulations, and showed that it meets the performance expecta-
tions of enterprise networks.

In the future, we expect that SRv6 will gain wider adoption and deployment.
Through its unique properties, coupled with the SDN paradigm, we envision that
a growing number of actors of the networking community will be able to reap the
benefits of IPv6 Segment Routing.

Bibliography

[1] Jon Postel. Internet Protocol. RFC 791, September 1981.

[2] Steve E. Deering. Internet Protocol, Version 6 (IPv6) Specification. RFC
2460, December 1998.

[3] Christian Hopps. Analysis of an Equal-Cost Multi-Path Algorithm. RFC
2992, November 2000.

[4] C. Hedrick. Routing Information Protocol. RFC 1058, June 1988.

[5] John Moy. OSPF Version 2. RFC 2328, April 1998.

[6] Dennis Ferguson et al. OSPF for IPv6. RFC 5340, October 2015.

[7] ISO/IEC. Information technology – Intermediate System to Intermediate
System intra-domain routeing. ISO/IEC 10589:2002, March 2008.

[8] Yakov Rekhter, Susan Hares, and Dr. Tony Li. A Border Gateway Protocol
4 (BGP-4). RFC 4271, January 2006.

[9] Arun Viswanathan, Eric C. Rosen, and Ross Callon. Multiprotocol Label
Switching Architecture. RFC 3031, January 2001.

[10] Dan Tappan, Yakov Rekhter, Alex Conta, Guy Fedorkow, Eric C. Rosen,
Dino Farinacci, and Dr. Tony Li. MPLS Label Stack Encoding. RFC 3032,
January 2001.

[11] Bob Thomas, Loa Andersson, and Ina Minei. LDP Specification. RFC
5036, October 2007.

[12] Robert T. Braden, Lixia Zhang, Steven Berson, Shai Herzog, and Sugih
Jamin. Resource ReSerVation Protocol (RSVP) – Version 1 Functional
Specification. RFC 2205, September 1997.

115

116 BIBLIOGRAPHY

[13] Daniel O. Awduche, Lou Berger, Der-Hwa Gan, Dr. Tony Li, Dr. Vijay
Srinivasan, and George Swallow. RSVP-TE: Extensions to RSVP for LSP
Tunnels. RFC 3209, December 2001.

[14] Adrian Farrel, Olufemi Komolafe, and Seisho Yasukawa. An Analysis of
Scaling Issues in MPLS-TE Core Networks. RFC 5439, February 2009.

[15] Clarence Filsfils, Nagendra Kumar Nainar, Carlos Pignataro, Juan Camilo
Cardona, and Pierre Francois. The segment routing architecture. In
Global Communications Conference (GLOBECOM), 2015 IEEE, pages 1–
6. IEEE, 2015.

[16] George Neville-Neil, Pekka Savola, and Joe Abley. Deprecation of Type 0
Routing Headers in IPv6. RFC 5095, December 2007.

[17] Clarence Filsfils, Stefano Previdi, Bruno Decraene, Stephane Litkowski,
and Rob Shakir. Segment Routing Architecture. Internet-Draft draft-
ietf-spring-segment-routing-11, Internet Engineering Task Force, February
2017. Work in Progress.

[18] Clarence Filsfils, Pierre Francois, Stefano Previdi, Bruno Decraene,
Stephane Litkowski, Martin Horneffer, Igor Milojevic, Rob Shakir, Saku
Ytti, Wim Henderickx, Jeff Tantsura, Sriganesh Kini, and Edward Crabbe.
Segment Routing Use Cases. Internet-Draft draft-filsfils-spring-segment-
routing-use-cases-01, Internet Engineering Task Force, October 2014.
Work in Progress.

[19] Stefano Previdi, Clarence Filsfils, Brian Field, Ida Leung, J. Linkova,
Ebben Aries, Tomoya Kosugi, Eric Vyncke, and David Lebrun. IPv6
Segment Routing Header (SRH). Internet-Draft draft-ietf-6man-segment-
routing-header-05, Internet Engineering Task Force, February 2017. Work
in Progress.

[20] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick
McKeown, and Scott Shenker. Ethane: Taking control of the enterprise.
In SIGCOMM ’07, pages 1–12, New York, NY, USA, 2007. ACM.

[21] Nick McKeown et al. Openflow: Enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev., 38(2):69–74, March 2008.

[22] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig. Software-defined networking: A comprehensive sur-
vey. Proceedings of the IEEE, 103(1):14–76, Jan 2015.

BIBLIOGRAPHY 117

[23] Stefano Previdi, Clarence Filsfils, Bruno Decraene, Stephane Litkowski,
Martin Horneffer, and Rob Shakir. Source Packet Routing in Networking
(SPRING) Problem Statement and Requirements. RFC 7855, May 2016.

[24] Clarence Filsfils, Stefano Previdi, Ahmed Bashandy, Bruno Decraene,
Stephane Litkowski, Martin Horneffer, Edward Crabbe, Jeff Tantsura, and
Rob Shakir. Segment Routing with MPLS data plane. Internet-Draft draft-
ietf-spring-segment-routing-mpls-07, Internet Engineering Task Force,
February 2017. Work in Progress.

[25] Stefano Previdi, Clarence Filsfils, Ahmed Bashandy, Stephane Litkowski,
Bruno Decraene, Jeff Tantsura, and Hannes Gredler. IS-IS Exten-
sions for Segment Routing. Internet-Draft draft-ietf-isis-segment-routing-
extensions-10, Internet Engineering Task Force, February 2017. Work in
Progress.

[26] Peter Psenak, Stefano Previdi, Clarence Filsfils, Jeff Tantsura, Wim Hen-
derickx, Hannes Gredler, and Rob Shakir. OSPF Extensions for Segment
Routing. Internet-Draft draft-ietf-ospf-segment-routing-extensions-11, In-
ternet Engineering Task Force, February 2017. Work in Progress.

[27] Daniel Voyer, Daniel Bernier, John Leddy, Clarence Filsfils, Stefano Pre-
vidi, Stefano Salsano, Antonio Cianfrani, David Lebrun, Olivier Bonaven-
ture, Prem Jonnalagadda, Milad Sharif, Hani Elmalky, Ahmed Abdelsalam,
Robert Raszuk, Arthi Ayyangar, Dirk Steinberg, and Wim Henderickx. In-
sertion of IPv6 Segment Routing Headers in a Controlled Domain. Internet-
Draft draft-voyer-6man-extension-header-insertion-00, Internet Engineer-
ing Task Force, March 2017. Work in Progress.

[28] Shane Amante, Jarno Rajahalme, Sheng Jiang, and Brian E. Carpenter.
IPv6 Flow Label Specification. RFC 6437, November 2011.

[29] Clarence Filsfils, John Leddy, Daniel Voyer, Daniel Bernier, Dirk Stein-
berg, Robert Raszuk, Satoru Matsushima, David Lebrun, Bruno Decraene,
Bart Peirens, Stefano Salsano, Gaurav Naik, Hani Elmalky, Prem Jonnala-
gadda, Milad Sharif, Arthi Ayyangar, Satish Mynam, Ahmed Bashandy,
Kamran Raza, Darren Dukes, Francois Clad, and Pablo Camarillo Garvia.
SRv6 Network Programming. Internet-Draft draft-filsfils-spring-srv6-
network-programming-00, Internet Engineering Task Force, March 2017.
Work in Progress.

[30] Randeep Bhatia, Fang Hao, Murali Kodialam, and TV Lakshman. Op-
timized network traffic engineering using segment routing. In Computer

118 BIBLIOGRAPHY

Communications (INFOCOM), 2015 IEEE Conference on, pages 657–665.
IEEE, 2015.

[31] Renaud Hartert, Stefano Vissicchio, Pierre Schaus, Olivier Bonaventure,
Clarence Filsfils, Thomas Telkamp, and Pierre Francois. A declarative and
expressive approach to control forwarding paths in carrier-grade networks.
In SIGCOMM ’15, pages 15–28, New York, NY, USA, 2015. ACM.

[32] Fang Hao, Murali Kodialam, and TV Lakshman. Optimizing restora-
tion with segment routing. In Computer Communications, IEEE INFO-
COM 2016-The 35th Annual IEEE International Conference on, pages 1–9.
IEEE, 2016.

[33] Luca Davoli, Luca Veltri, Pier Luigi Ventre, Giuseppe Siracusano, and Ste-
fano Salsano. Traffic engineering with segment routing: Sdn-based ar-
chitectural design and open source implementation. In Software Defined
Networks (EWSDN), 2015 Fourth European Workshop on, pages 111–112.
IEEE, 2015.

[34] Alessio Giorgetti, Piero Castoldi, Filippo Cugini, Jeroen Nijhof, Francesco
Lazzeri, and Gianmarco Bruno. Path encoding in segment routing. In
Global Communications Conference (GLOBECOM), 2015 IEEE, pages 1–
6. IEEE, 2015.

[35] Stefano Salsano, Luca Veltri, Luca Davoli, Pier Luigi Ventre, and Giuseppe
Siracusano. Pmsrpoor man’s segment routing, a minimalistic approach to
segment routing and a traffic engineering use case. In Network Operations
and Management Symposium (NOMS), 2016 IEEE/IFIP, pages 598–604.
IEEE, 2016.

[36] David Miller. IPv6 SR merge commit into net-next. https:
//git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/commit/
?id=5db5b395150186d4a177ebfa563894af302ab3ad, November 2016.

[37] Linux community. Linux 4.10 ChangeLog. https://kernelnewbies.org/
Linux 4.10, February 2017.

[38] David Lebrun and Olivier Bonaventure. Implementing IPv6 Segment Rout-
ing in the Linux Kernel. In Proceedings of the 2017 Applied Networking
Research Workshop. ACM, 2017.

[39] Jonathan Corbet. JLS2009: Generic receive offload. https://lwn.net/
Articles/358910/.

https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/commit/?id=5db5b395150186d4a177ebfa563894af302ab3ad
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/commit/?id=5db5b395150186d4a177ebfa563894af302ab3ad
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/commit/?id=5db5b395150186d4a177ebfa563894af302ab3ad
https://kernelnewbies.org/Linux_4.10
https://kernelnewbies.org/Linux_4.10
https://lwn.net/Articles/358910/
https://lwn.net/Articles/358910/

BIBLIOGRAPHY 119

[40] Michael Kerrisk. Namespaces in operation, part 1: namespaces overview.
https://lwn.net/Articles/531114/.

[41] Jonathan Corbet. Network namespaces. https://lwn.net/Articles/219794/.

[42] N. Handigol et al. Reproducible network experiments using container-
based emulation. In CoNEXT, 2012.

[43] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik
Markov. The first collision for full sha-1. IACR Cryptology ePrint Archive,
2017:190, 2017.

[44] Paul McKenney and Jonathan Walpole. What is RCU, Fundamentally?
https://lwn.net/Articles/262464/, December 2007.

[45] Paul McKenney and Jonathan Walpole. What is RCU? Part 2: Usage. https:
//lwn.net/Articles/263130/, January 2008.

[46] Paul McKenney and Jonathan Walpole. RCU part 3: the RCU API. https:
//lwn.net/Articles/264090/, January 2008.

[47] Kathleen Nichols and Van Jacobson. Controlling queue delay. Commun.
ACM, 55(7):42–50, July 2012.

[48] Jonathan Corbet. TSO sizing and the FQ scheduler. https://lwn.net/Articles/
564978/, August 2013.

[49] Dave Taht, Toke Hoeiland-Joergensen, Paul McKenney, Jim Gettys, and
Eric Dumazet. The FlowQueue-CoDel Packet Scheduler and Active Queue
Management Algorithm. Internet-Draft draft-ietf-aqm-fq-codel-06, Inter-
net Engineering Task Force, March 2016. Work in Progress.

[50] Tom Herbert and Willem de Bruijn. Scaling in the Linux Networking Stack.
https://www.kernel.org/doc/Documentation/networking/scaling.txt.

[51] Eric Dumazet. Busypolling next generation. http://netdevconf.org/2.1/
slides/apr6/dumazet-BUSY-POLLING-Netdev-2.1.pdf.

[52] Robert Olsson. Pktgen the linux packet generator. In Proceedings of the
Linux Symposium, Ottawa, Canada, volume 2, pages 11–24, 2005.

[53] Cisco Systems. Segment Routing - The Fast Data Project (FD.io). http:
//www.segment-routing.net/open-software/vpp/.

[54] Roopa Prabhu. MPLS tutorial. http://www.netdevconf.org/1.1/
proceedings/slides/prabhu-mpls-tutorial.pdf.

https://lwn.net/Articles/531114/
https://lwn.net/Articles/219794/
https://lwn.net/Articles/262464/
https://lwn.net/Articles/263130/
https://lwn.net/Articles/263130/
https://lwn.net/Articles/264090/
https://lwn.net/Articles/264090/
https://lwn.net/Articles/564978/
https://lwn.net/Articles/564978/
https://www.kernel.org/doc/Documentation/networking/scaling.txt
http://netdevconf.org/2.1/slides/apr6/dumazet-BUSY-POLLING-Netdev-2.1.pdf
http://netdevconf.org/2.1/slides/apr6/dumazet-BUSY-POLLING-Netdev-2.1.pdf
http://www.segment-routing.net/open-software/vpp/
http://www.segment-routing.net/open-software/vpp/
http://www.netdevconf.org/1.1/proceedings/slides/prabhu-mpls-tutorial.pdf
http://www.netdevconf.org/1.1/proceedings/slides/prabhu-mpls-tutorial.pdf

120 BIBLIOGRAPHY

[55] Tom Herbert and Petr Lapukhov. Identifier-locator addressing for IPv6.
Internet-Draft draft-herbert-nvo3-ila-04, Internet Engineering Task Force,
March 2017. Work in Progress.

[56] Jonathan Corbet. Identifier Locator addressing. https://lwn.net/Articles/
657012/.

[57] Ramon R Fontes, Samira Afzal, Samuel HB Brito, Mateus AS Santos, and
Christian Esteve Rothenberg. Mininet-wifi: Emulating software-defined
wireless networks. In Network and Service Management (CNSM), 2015
11th International Conference on, pages 384–389. IEEE, 2015.

[58] Jeff Ahrenholz. Comparison of core network emulation platforms. In Mil-
itary Communications Conference, 2010-MILCOM 2010, pages 166–171.
IEEE, 2010.

[59] University of Zagreb. Integrated Multiprotocol Network Emulator/Simula-
tor. http://imunes.net/.

[60] Maurizio Pizzonia and Massimo Rimondini. Netkit: network emulation for
education. Software: Practice and Experience, 46(2):133–165, 2016.

[61] Jeff Dike et al. User-mode linux. In Annual Linux Showcase & Conference,
2001.

[62] Jeremy Grossmann. Graphical Network Simulator-3. https://www.gns3.
com/.

[63] Dynamips. https://github.com/GNS3/dynamips/.

[64] Tomas Hruby, Cristiano Giuffrida, Lionel Sambuc, Herbert Bos, and An-
drew S. Tanenbaum. A neat design for reliable and scalable network stacks.
In Proceedings of the 12th International on Conference on Emerging Net-
working EXperiments and Technologies, CoNEXT ’16, pages 359–373,
New York, NY, USA, 2016. ACM.

[65] Tom Herbert, Lucy Yong, and Osama Zia. Generic UDP Encapsulation.
Internet-Draft draft-ietf-intarea-gue-01, Internet Engineering Task Force,
March 2017. Work in Progress.

[66] François Aubry, David Lebrun, Yves Deville, and Olivier Bonaventure.
Traffic duplication through segmentable disjoint paths. In IFIP Networking
Conference (IFIP Networking), 2015, pages 1–9. IEEE, 2015.

https://lwn.net/Articles/657012/
https://lwn.net/Articles/657012/
http://imunes.net/
https://www.gns3.com/
https://www.gns3.com/
https://github.com/GNS3/dynamips/

BIBLIOGRAPHY 121

[67] Francois Aubry, David Lebrun, Stefano Vissicchio, Minh Thanh Khong,
Yves Deville, and Olivier Bonaventure. Scmon: Leveraging segment rout-
ing to improve network monitoring. In 35th Annual IEEE International
Conference on Computer Communications, INFOCOM 2016, San Fran-
cisco, CA, USA, April 10-14, 2016, pages 1–9, 2016.

[68] J. Adler. Raging bulls: How wall street got addicted to light-speed trading.
Wired, Aug. 2012.

[69] R. Martin. Wall street’s quest to process data at the speed of light. Infor-
mation Week, 2007.

[70] A. Vulimiri, P. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker.
Low latency via redundancy. In CoNEXT ’13, 2013.

[71] B. Briscoe et al. Reducing internet latency: A survey of techniques and
their merits. Communications Surveys Tutorials, IEEE, 2014.

[72] Debasis Mandal and Bivas Mitra. Shared path protection in dwdm mesh
networks. In 8th International Conference on the Information Technology,
Bhubaneswar, India, 2005.

[73] Wen-Ping Chen, Fu-Hung Shih, Wen-Shyang Hwang, et al. The multiple
path protection of dwdm backbone optimal networks. J. Inf. Sci. Eng.,
25(3):733–745, 2009.

[74] Neil Spring, Ratul Mahajan, David Wetherall, and Thomas Anderson. Mea-
suring isp topologies with rocketfuel. IEEE/ACM Trans. Netw., 12(1):2–16,
February 2004.

[75] QEMU, the FAST! processor emulator. http://www.qemu.org.

[76] Kernel Virtual Machine. http://linux-kvm.org.

[77] Ernst W Biersack. Performance evaluation of forward error correction in
an atm environment. Selected Areas in Communications, IEEE Journal on,
11(4):631–640, 1993.

[78] Jay Kumar Sundararajan, Devavrat Shah, Muriel Médard, Szymon
Jakubczak, Michael Mitzenmacher, and Joao Barros. Network cod-
ing meets tcp: Theory and implementation. Proceedings of the IEEE,
99(3):490–512, 2011.

http://www.qemu.org
http://linux-kvm.org

122 BIBLIOGRAPHY

[79] Colin Perkins, Orion Hodson, and Vicky Hardman. A survey of packet
loss recovery techniques for streaming audio. Network, IEEE, 12(5):40–
48, 1998.

[80] M. Balakirshnan et al. Maelstrom: Transparent error correction for com-
munication between data centers. In IEEE/ACM Trans. on Networking,
2011.

[81] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger,
Timur Friedman, Matthieu Latapy, Clémence Magnien, and Renata Teix-
eira. Avoiding traceroute anomalies with paris traceroute. In Proceedings
of the 6th ACM SIGCOMM conference on Internet measurement, pages
153–158. ACM, 2006.

[82] Brice Augustin, Timur Friedman, and Renata Teixeira. Measuring Load-
balanced Paths in the Internet. In IMC, pages 149–160, 2007.

[83] Cristel Pelsser, Luca Cittadini, Stefano Vissicchio, and Randy Bush. From
Paris to Tokyo: On the Suitability of ping to Measure Latency. In IMC,
2013.

[84] D. Katz and D. Ward. Bidirectional forwarding detection (bfd). RFC 5880,
2010.

[85] M. Chiba, A. Clemm, S. Medley, J. Saloway, S. Thombare, and E. Ye-
davalli. Cisco service-level assurance protocol. RFC 6812, 2013.

[86] Ross Cartlidge and Nicolas Guilbaud. Topology Aware Blackbox Monitor-
ing. NANOG presentation, 2013.

[87] A. Kvalbein et al. Fast IP Network Recovery Using Multiple Routing Con-
figurations. In INFOCOM, 2006.

[88] R. Sedgewick and K. Wayne. Algorithms. Pearson Education, 2011.

[89] OVH. Ovh network weathermap. http://weathermap.ovh.net.

[90] Peng Wu et al. Alarm correlation engine (ACE). In NOMS, 1998.

[91] He Yan et al. G-RCA: A Generic Root Cause Analysis Platform for Service
Quality Management in Large IP Networks. In CoNEXT, 2010.

[92] Ramana Rao Kompella et al. Detection and Localization of Network Black
Holes. In INFOCOM, 2007.

BIBLIOGRAPHY 123

[93] N. Duffield, F. Lo Presti, V. Paxson, and D. Towsley. Network loss tomog-
raphy using striped unicast probes. IEEE/ACM Transactions on Network-
ing, 14(4):697–710, Aug 2006.

[94] Liang Ma et al. On optimal monitor placement for localizing node failures
via network tomography. Performance Evaluation, 2015.

[95] Y. Breitbart et al. Efficiently monitoring bandwidth and latency in IP net-
works. In INFOCOM, 2001.

[96] Mehdi Nikkhah and Roch Guérin. Migrating the internet to ipv6: an ex-
ploration of the when and why. IEEE/ACM Transactions on Networking,
24(4):2291–2304, 2016.

[97] Peng Wu, Yong Cui, Jianping Wu, Jiangchuan Liu, and Coert Metz. Transi-
tion from ipv4 to ipv6: A state-of-the-art survey. Communications Surveys
& Tutorials, IEEE, 15(3):1407–1424, 2013.

[98] Lorenzo Colitti, Steinar H Gunderson, Erik Kline, and Tiziana Refice.
Evaluating ipv6 adoption in the internet. In Passive and active measure-
ment, pages 141–150. Springer, 2010.

[99] Jakub Czyz, Mark Allman, Jing Zhang, Scott Iekel-Johnson, Eric Oster-
weil, and Michael Bailey. Measuring ipv6 adoption. ACM SIGCOMM
Computer Communication Review, 44(4):87–98, 2015.

[100] Haythum Babiker, Irena Nikolova, and Kiran Kumar Chittimaneni. De-
ploying ipv6 in the google enterprise network. lessons learned. In Pro-
ceedings of the 25th international conference on Large Installation System
Administration, LISA, page 10, 2011.

[101] T. Hollmann. A history of IPv6 challenges in facebook data centers. Net-
work @Scale conference, 2016.

[102] F. Martin. Ipv6 inside linkedin part ii.
https://engineering.linkedin.com/blog/2016/08/ipv6-inside-linkedin-
part-ii–back-to-the-future, 2016.

[103] Marcus Keane. IPv6-only at Microsoft.
https://blog.apnic.net/2017/01/19/ipv6-only-at-microsoft/, January 2017.

[104] David A Maltz, Geoffrey Xie, Jibin Zhan, Hui Zhang, Gı́sli Hjálmtỳsson,
and Albert Greenberg. Routing design in operational networks: A look
from the inside. In SIGCOMM’04, pages 27–40. ACM, 2004.

124 BIBLIOGRAPHY

[105] Yu-Wei Eric Sung, Xin Sun, Sanjay G Rao, Geoffrey G Xie, and David A
Maltz. Towards systematic design of enterprise networks. IEEE/ACM
Transactions on Networking (TON), 19(3):695–708, 2011.

[106] Justine Sherry et al. Making middleboxes someone else’s problem: network
processing as a cloud service. ACM SIGCOMM Computer Communication
Review, 42(4):13–24, 2012.

[107] Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shri-
ram Krishnamurthi. Participatory networking: An api for application con-
trol of sdns. SIGCOMM Comput. Commun. Rev., 43(4):327–338, August
2013.

[108] Lorenzo Colitti, Dr. Vinton G. Cerf, Stuart Cheshire, and David Schinazi.
Host Address Availability Recommendations. RFC 7934, July 2016.

[109] Paul A. Vixie et al. Extension Mechanisms for DNS (EDNS(0)). RFC
6891, October 2015.

[110] Dr. Thomas Narten, Richard P. Draves, and Suresh Krishnan. Privacy
Extensions for Stateless Address Autoconfiguration in IPv6. RFC 4941,
September 2007.

[111] Yakov Rekhter and Jim Bound. Dynamic Updates in the Domain Name
System (DNS UPDATE). RFC 2136, April 1997.

[112] Brian Wellington. Secure Domain Name System (DNS) Dynamic Update.
RFC 3007, November 2000.

[113] Robert Soulé, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pedone,
Robert Kleinberg, Emin Gun Sirer, and Nate Foster. Merlin: A language
for provisioning network resources. In Proceedings of the 10th ACM Inter-
national on Conference on emerging Networking Experiments and Tech-
nologies, pages 213–226. ACM, 2014.

[114] Mark Reitblatt, Marco Canini, Arjun Guha, and Nate Foster. Fattire:
Declarative fault tolerance for software-defined networks. In Proceedings
of the second ACM SIGCOMM workshop on Hot topics in software defined
networking, pages 109–114. ACM, 2013.

[115] IEEE. 802.1X - Port Based Network Access Control.
http://www.ieee802.org/1/pages/802.1x.html.

BIBLIOGRAPHY 125

[116] William A. Simpson, Dr. Thomas Narten, Erik Nordmark, and Hesham
Soliman. Neighbor Discovery for IP version 6 (IPv6). RFC 4861, Septem-
ber 2007.

[117] Syam Madanapalli, Jaehoon Jeong, Soohong Daniel Park, and Luc Beloeil.
IPv6 Router Advertisement Options for DNS Configuration. RFC 6106,
November 2010.

[118] Alia Atlas et al. OSPF Traffic Engineering (TE) Metric Extensions. RFC
7471, October 2015.

[119] Zheng Wang, Mark A. Carlson, Walter Weiss, Elwyn B. Davies, and
Steven L. Blake. An Architecture for Differentiated Services. RFC 2475,
March 2013.

[120] Daniel B. Grossman. New Terminology and Clarifications for Diffserv.
RFC 3260, April 2002.

[121] Robert T. Braden, Dr. David D. Clark, and Scott Shenker. Integrated Ser-
vices in the Internet Architecture: an Overview. RFC 1633, March 2013.

[122] Victor Firoiu, Dr. Bruce S. Davie, and Anna Charny. An Expedited For-
warding PHB (Per-Hop Behavior). RFC 3246, March 2002.

[123] Walter Weiss, Dr. Juha Heinanen, Fred Baker, and John T. Wroclawski.
Assured Forwarding PHB Group. RFC 2597, June 1999.

[124] Fred Baker, David L. Black, Dr. Kathleen M. Nichols, and Steven L. Blake.
Definition of the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers. RFC 2474, December 1998.

[125] Fred Baker, Jozef Babiarz, and Kwok Ho Chan. Configuration Guidelines
for DiffServ Service Classes. RFC 4594, August 2006.

[126] Dr. Lixia Zhang et al. Resource ReSerVation Protocol (RSVP) – Version 1
Functional Specification. RFC 2205, March 2013.

[127] Fred Baker, Dr. Bruce S. Davie, and Carol Iturralde. Aggregation of RSVP
for IPv4 and IPv6 Reservations. RFC 3175, September 2001.

[128] Ben Pfaff and Bruce Davie. The Open vSwitch Database Management
Protocol. RFC 7047, December 2013.

126 BIBLIOGRAPHY

[129] Bruce Davie, Teemu Koponen, Justin Pettit, Ben Pfaff, Martin Casado,
Natasha Gude, Amar Padmanabhan, Tim Petty, Kenneth Duda, and Anu-
pam Chanda. A database approach to sdn control plane design. SIGCOMM
Comput. Commun. Rev., 47(1):15–26, January 2017.

[130] Stephen Nadas. Virtual Router Redundancy Protocol (VRRP) Version 3 for
IPv4 and IPv6. RFC 5798, March 2010.

[131] Pierre Francois, Clarence Filsfils, John Evans, and Olivier Bonaventure.
Achieving sub-second igp convergence in large ip networks. SIGCOMM
Comput. Commun. Rev., 35(3):35–44, July 2005.

[132] Stefano Salsano, Alessio Botta, Paola Iovanna, Marco Intermite, and An-
drea Polidoro. Traffic engineering with ospf-te and rsvp-te: Flooding re-
duction techniques and evaluation of processing cost. Computer Commu-
nications, 29(11):2034 – 2045, 2006.

[133] Hilmi E Egilmez, S Tahsin Dane, K Tolga Bagci, and A Murat Tekalp.
Openqos: An openflow controller design for multimedia delivery with end-
to-end quality of service over software-defined networks. In Signal & In-
formation Processing Association Annual Summit and Conference (APSIPA
ASC), 2012 Asia-Pacific, pages 1–8. IEEE, 2012.

[134] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar,
and Minlan Yu. Simple-fying middlebox policy enforcement using sdn.
ACM SIGCOMM computer communication review, 43(4):27–38, 2013.

[135] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi
Kobayashi, Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov,
William Snow, et al. Onos: towards an open, distributed sdn os. In Proceed-
ings of the third workshop on Hot topics in software defined networking,
pages 1–6. ACM, 2014.

[136] Advait Abhay Dixit, Fang Hao, Sarit Mukherjee, TV Lakshman, and Ra-
mana Kompella. Elasticon: an elastic distributed sdn controller. In Pro-
ceedings of the tenth ACM/IEEE symposium on Architectures for network-
ing and communications systems, pages 17–28. ACM, 2014.

[137] Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends. DNS
Security Introduction and Requirements. RFC 4033, March 2005.

[138] Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends. Pro-
tocol Modifications for the DNS Security Extensions. RFC 4035, March
2005.

BIBLIOGRAPHY 127

[139] D. Sternberg and others. C-Ares. https://c-ares.haxx.se.

[140] Internet2. Historical abilene data.
http://noc.net.internet2.edu/i2network/live-network-status/historical-
abilene-data.html.

[141] Amin Tootoonchian, Sergey Gorbunov, Yashar Ganjali, Martin Casado, and
Rob Sherwood. On controller performance in software-defined networks.
Hot-ICE, 12:1–6, 2012.

[142] David Erickson. The beacon openflow controller. In Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined net-
working, pages 13–18. ACM, 2013.

[143] Alexander Shalimov, Dmitry Zuikov, Daria Zimarina, Vasily Pashkov, and
Ruslan Smeliansky. Advanced study of sdn/openflow controllers. In Pro-
ceedings of the 9th central & eastern european software engineering con-
ference in russia, page 1. ACM, 2013.

[144] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris. Dns per-
formance and the effectiveness of caching. IEEE/ACM Transactions on
networking, 10(5):589–603, 2002.

[145] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Open-
flow: enabling innovation in campus networks. ACM SIGCOMM Computer
Communication Review, 38(2):69–74, 2008.

[146] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to sdn.
Queue, 11(12):20, 2013.

[147] Wenfeng Xia, Yonggang Wen, Chuan Heng Foh, Dusit Niyato, and Haiy-
ong Xie. A survey on software-defined networking. IEEE Communications
Surveys & Tutorials, 17(1):27–51, 2015.

[148] Dan Levin, Marco Canini, Stefan Schmid, Fabian Schaffert, and Anja Feld-
mann. Panopticon: Reaping the benefits of incremental sdn deployment
in enterprise networks. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 333–345, Philadelphia, PA, June 2014. USENIX
Association.

[149] Cheng Jin, Cristian Lumezanu, Qiang Xu, Hesham Mekky, Zhi-Li Zhang,
and Guofei Jiang. Magneto: Unified fine-grained path control in legacy
and openflow hybrid networks. In Proceedings of the Symposium on SDN
Research, pages 75–87. ACM, 2017.

128 BIBLIOGRAPHY

[150] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jen-
nifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. P4: Programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review, 44(3):87–95, 2014.

[151] Adiseshu Hari, TV Lakshman, and Gordon Wilfong. Path switching:
reduced-state flow handling in sdn using path information. In Proceed-
ings of the 11th ACM Conference on Emerging Networking Experiments
and Technologies, page 36. ACM, 2015.

[152] Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong Geng, Changhoon
Kim, and David Mazières. Millions of little minions: Using packets for low
latency network programming and visibility. ACM SIGCOMM Computer
Communication Review, 44(4):3–14, 2015.

[153] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy,
Kye Hyun Kim, Scott Shenker, and Ion Stoica. A data-oriented (and be-
yond) network architecture. In ACM SIGCOMM Computer Communica-
tion Review, volume 37, pages 181–192. ACM, 2007.

[154] Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass,
Nicholas H Briggs, and Rebecca L Braynard. Networking named content.
In Proceedings of the 5th international conference on Emerging networking
experiments and technologies, pages 1–12. ACM, 2009.

	Preamble
	Acknowledgments
	Table of Contents
	Introduction
	Networking principles and protocols
	Source routing paradigm
	Decoupling the control plane
	Conclusion

	Segment Routing
	IPv6 Segment Routing
	Operations
	HMAC validation

	Network programming
	Related work
	Conclusion

	Implementation of IPv6 Segment Routing in Linux
	Networking in the Linux kernel
	Socket buffers
	Packet processing
	Network namespaces

	Data plane support
	Control plane support
	HMAC
	Testing
	Nanonet framework
	Limits of same-kernel testing

	Performances
	Setup
	Measurements

	Network programming support
	Related and future work
	Conclusion

	Exploring IPv6 Segment Routing
	Traffic duplication for latency-critical applications
	Duplication over segmented disjoint paths
	Implementation and evaluation
	Related work
	Conclusion

	Fine-grained network monitoring with SCMon
	Network coverage with segmented cycles
	Implementation and evaluation
	Related work
	Conclusion

	Conclusion

	Rethinking IPv6 Enterprise Networks
	Software Resolved Networks
	SDN Resolver
	Enterprise network
	Traffic management principles
	Path segmentation
	SRN Control plane
	Fault tolerance
	Security implications
	Comparison with OpenFlow

	Implementation
	Kernel modifications
	Path ID propagation
	Segment Routing Database
	Graph library
	Controller implementation
	Application API

	Evaluation
	Microbenchmarks
	Emulated network

	Related and future work
	Conclusion

	Conclusion

