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Abstract— With today’s peer-to-peer applications, more and
more content is available from multiple sources, increasing so the
number of available paths between a source and a content. This
is not however the only origin of multiple paths. Indeed, in the
near future, hosts will benefit from multiple paths to reach one
destination host due to the deployment of dual-stack IPv4/IPv6
hosts, but also due to new techniques such as shim6 currently
being discussed within the IRTF Routing Research Group. All
these hosts will need to rank paths in order to select the best one
to reach a given destination/content. In this paper, we discuss
a generic service that works in any context requiring a path
selection. This service is scalable, lightweight and designed to be
readily deployed in ISP, corporate, or campus networks.

I. INTRODUCTION

While, previously, a single path between two machines

was assumed, we are now seeing with the evolution of the

Internet topology expansion the rising of multiple paths with

different performances. In such a context, it is crucial for

both applications and operators to easily select the path that

better suits their needs. This is clearly the issue we tackle

in this paper by proposing a generic path selection service

that works in any context requiring a path selection. Our

service requires minimal changes (i.e., a server installation)

in the current Internet architecture and implementation, is

scalable, lightweight, and designed to be easily deployed in

ISP, corporate, or campus networks.

In Sec. I-A, we state that the path selection issue is not

only limited to peer-to-peer applications. In Sec. I-B, we

review the applications and operators requirements for a path

selection service. Finally, in Sec. I-C, we look over the existing

solutions and explain that, despite their inherent benefits, they

are insufficient for solving any path selection issue.

A. Path Selection Issues

During the last years, we have seen the emergence of

technologies severely challenging three assumptions that have

driven the development of most Internet protocols and mech-

anisms. A first assumption is that (usually) one address is

associated to each host. Secondly, the forwarding of packets

is often exclusively based on the destination address. For this

reason, there is usually a single path between one source (or

client) and one destination (or server). At last, the Internet was

designed with the client-server model in mind assuming that

many clients receive information from (a smaller number of)

servers. During the last years, these assumptions have been

severely challenged.

The client-server model does not correspond to the current

operation of many applications. First, large servers are usually

replicated and various content distribution networks are used

to distribute content [1], [2], [3]. Second, the proliferation of

peer-to-peer applications implies that most clients also act as

server. This is currently creating several problems in many

Internet Service Provider (ISP) networks [4]. In such a context,

the client-server asymmetry does not hold anymore as earlier.

For a given content, clients have to choose between multiple

destination addresses.

Moreover, due to the transition from IPv4 to IPv6 many

hosts will be dual-stack for the foreseeable future [5]. Fur-

thermore, measurements show that, in today’s Internet, IPv4

and IPv6 do not provide the same performance, even for

a single source-destination pair [6]. This implies that, to

reach a destination supporting both IPv4 and IPv6, a source

can achieve better performance by selecting the stack that

provides the best performance. However, today, this selection

is based on simple heuristics. For instance, as highlighted by

Matsumoto et al. [7], IPv6 is chosen prior to IPv4 in most

of the dual-stack configurations although IPv4 offers the best

performance in most of the environments [6].

In addition, an increasing number of ISPs, but also campus

and corporate networks have chosen to become multihomed

by being attached to two or more ISPs [8]. For these networks,

multihoming offers two main benefits: technical and economi-

cal redundancy, i.e., they remain connected to the Internet even

if the link that attaches them to one of their ISPs fails or if

one of their ISPs becomes bankrupt. Another important benefit

shown by several studies (see, for instance, Akella et al. [9])

is that multihoming allows sites to choose paths with a better

quality. However, these benefits have a serious hidden cost,

namely this multihoming growth is one of the main factors

responsible for the growth of the BGP routing tables which

could become a problem in the next future [10], [11].

During the last years, the shim6 working group of the

Internet Engineering Task Force (IETF) has been developing

a new solution to the multihoming problem that relies on the

utilization of multiple IPv6 addresses on each end-host. The

effort within the shim6 working group has been focused on

individual hosts such as laptops attached to a CATV and an

ADSL provider and not on campus and corporate networks

that could even more benefit from shim6 if their needs were

adequately addressed [12].

Finally, the Locator/Identifier Separation Protocol [13]

(LISP) is currently being discussed within the IRTF Routing

Research Group (RRG) and has been proposed as one of

the possible alternatives to achieve a better scaling of the

Internet architecture. LISP distinguishes between identifiers

and locators. The identifiers are used to identify endhosts.
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The locators are assigned to ingress routers that implement the

LISP tunneling scheme. LISP thus allows an identifier to be

reachable through multiple locators, increasing so the number

of available paths.

B. Path Selection Requirements

1) Applications: Sec. I-A told us that we are heading

towards an Internet that makes available a set of paths to

the host (in terms of source and/or destination addresses)

for reaching, for instance, a content. In such a context, it

is thus crucial for applications1 to select the path (i.e., the

< source, destination > addresses pair) that better suits

their requirements. These requirements might be expressed in

terms of network performances, such as delay, bandwidth, or

jitter. In addition, it would be interesting for applications to in-

crease their reliability. Indeed, by taking into account multiple

paths, whenever the current path fails, it should be possible

to quickly and easily switch to another path [14]. Further

investigation should reveal the real benefits or drawbacks of

such a switch. Another requirement for applications refers to

the cost associated to network usage. Applications might want

to favor the cheapest path and, consequently, decrease their

networking bills. In addition, battery-based devices would like

to avoid consuming too much resources when selecting a path.

This means that, ideally, the paths evaluation should be done

elsewhere. Finally, applications should be able to decide by

themselves which path to use, meaning that the path selection

cannot be forced on them by a third party but rather suggested.

2) Operators: If it is important for applications to select

a path among a set of available ones, allowing each appli-

cation to make this selection by itself is not a sustainable

solution (for scaling and triggered control/responsiveness and

consistency/performance reasons). Instead, letting applications

to cooperate with operators might lead to a win-win situation.

Indeed, by helping applications to select a path, operators

can meet their own requirements. The first requirement of an

operator concerns the details it should reveal to allow the path

selection. It is obvious that operators do not wish to disclose

details on their topologies as well as their policies. Operators

might also have the will to influence both incoming and

outgoing traffic so that they could control their own network

usage in terms of performance but also in terms of cost and

traffic engineering (i.e., some links could be defined as primary

links while others are backup links).

As a global requirement (i.e., it is common to applications

and operators), any path selection service deployed should be

scalable, should not imply a change in the Internet hardware

(i.e., routers), and should not add any state information in

routers. Further, it should avoid ISPs need to cooperate with

each other for allowing path selection. Finally, it should

be able to address nowadays path selection challenges but

also future scenarios, i.e., the path selection service must be

generic.

It is worth to notice that any path selection service should

be able to answer the three fundamentals requirements enacted

1By “applications”, we understand any network-based application described
earlier in this section and, thus, not only peer-to-peer.
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1. Request
src: [IPA, IPB]
dst: [IPC, IPD, IPE]
perf. criteria: bw

2. Response
[(PrefA, PrefC),

(PrefB, PrefC),
(PrefA, PrefD)]

TTL: 600,000
Opsa server

client

Fig. 1. OPSA request and response formats (information elements)

by Akella et al. [15]. Firstly, the path selection service must

be able to monitor a path performance. Second, the service

must be able to direct traffic over the selected path. Finally, the

service must be capable of predicting the future paths behavior

in order to divert traffic to the most appropriated paths.

C. Related Work

A number of vendors tackled this path selection issue and

proposed proprietary solutions, most of these being based on

BGP, NAT, or rewriting [16], [17], [18], [19]. The research

community also proposed solutions to similar problems. For

instance, Bagnulo et al. proposed a mechanism where the

source prefix of shim6 [20] data packets is rewritten by the

site routers [21]. Aggarwal et al. proposed an oracle service

that would be configured by the network operator and queried

by peer-to-peer applications [22]. Xie et al. propose P4P, a

solution to give topology hints to peer-to-peer clients [23]. In

P4P, ISPs maintain trackers which are contacted by peer-to-

peer client to retrieve information about the topology. All these

solutions mostly suffer from a lack of genericity as they all

intend to solve a given path selection problem and cannot be

directly applied to another problem.

II. OPEN PATH SELECTION ARCHITECTURE

In this section, we alleviate the aforementioned solutions

limitations by discussing what is, to the best of our knowledge,

the first generic information path selection service. We call

such a service Open Path Selection Architecture (OPSA). This

architecture is generic as it can be applied in any of the

contexts depicted in Sec. I-A and aims at simplifying the path

selection process. Our point with OPSA is to permit the path

selection while allowing both operators and applications to

meet their requirements.

OPSA works as request/response service in which a client

sends a request to the service. The service is then in charge

of selecting the server that can process the client request

and reply with a response. OPSA can thus be deployed in

anycast [24]. A client refers to an entity having to select

a path or to rank paths, such as peer-to-peer applications,

content distribution networks, but also traffic engineering

capable routers (e.g., LISP [13]), or network proxies (e.g., P-

Shim6 [25]). Besides, a client can have one or more addresses
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such as multihomed nodes or dual-stack hosts. A server refers

to the entity that is supposed to perform path ranking based on

available information. The client/server model is not the only

way to implement a path selection service. We however believe

that it is generic enough so that it can be applied directly to

several contexts (e.g., ISP, corporate, campus).

Requests sent by clients contain the following information:

a list of source addresses, a list of destination addresses and an

optional performance criterion (e.g., maximize the bandwidth).

The OPSA server processes the request and builds a list of all

possible paths based on those two lists. This possible paths

list is then ranked so that the first item in the list is the

most promising choice for the client while the last one is

the worst. Instead of replying with complete addresses, the

OPSA server can work with prefixes. Working with prefixes

offers several advantages compared to full IP addresses. It first

permits to reduce the replies size (e.g., a single prefix can

include several addresses indicated in the request) as well as

the amount of potential paths to process. Secondly, it avoids to

reveal topology details and network policies to clients. Finally,

when a cache is implemented, it allows a client to use a request

results for several path selection problems with respect to the

fact that addresses belong to the already processed prefix.

Nevertheless, using prefixes has some drawbacks. First, when

using prefixes as a way to aggregate information, precision can

be lost (e.g., the reachability of a prefix is not the same as the

reachability of an host). In addition, clients must work with

end-to-end addresses which means that they must perform a

best match on the returned prefixes to select the best end-to-

end addresses.

In addition to a prefixes pair ranked list, the OPSA replies

contain a time-to-live (TTL) information indicating how long

the path ranking remains valid. This TTL is defined by net-

work operators and is strongly dependent to the performance

criterion provided by the client. When the TTL expires, it is

up to the client to possibly contact the OPSA service to obtain

a new path.

Considering ranked prefixes pairs list allows OPSA to hide

to the client the topology and network policies. It also reduces

the risk of attacks or the disclosure of sensitive information

to competitors. It further allows the operators to modify the

ranking algorithms according to their needs or the state of the

art without disturbing clients. It thus separates the clients and

operators while enabling cooperation.

The content of both request and response is illustrated in

Fig. 1.

A. An implementation of OPSA

Fig. 2 shows the high level design of OPSA. It is based

on three modules or engines. The first engine, named Path

Information Collector (PIC,) is in charge of gathering various

information on paths (e.g., performances, policies, costs, . . . )

and is described in Sec. II-A.1. Next, collected data must be

efficiently represented and stored so that the processing cost

of using it to rank paths is minimal. The engine in charge of

representing and storing data is the Knowledge Base (KB – see

Sec. II-A.2). Finally, OPSA must be able to combine various

Internet
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Fig. 2. OPSA general behavior

information on paths so that it can rank them. This last engine

is the Decision Engine (DE – see Sec. II-A.3).

1) Path Information Collector: As depicted in Fig. 2, PIC

collects paths information. Information are of two types: (i)
administrative information, (ii) measurements information.

Administrative information characterizes paths with network

policies (e.g., firewalls, billing, routers graceful shutdown. . . )

but also routing information (e.g. BGP, IGP, static routes).

On the contrary, measurement information characterizes paths

with their intrinsic properties. These path properties could

be collected with active measurements (e.g., latency, jitter,

bandwidth, path diversity) or passive measurements (e.g., TCP

trace analysis, traffic matrices, SNMP).

Administrative information characterizes paths based on

high-level criteria. For instance, universities are often di-

rectly connected to the national research network and use

a commercial ISP for accessing the Internet. Furthermore,

research networks often replicate important FTP servers like

GNU/Linux distributions. Thus, when upgrading GNU/Linux

hosts, universities should prefer data from the research net-

work to commercial FTPs servers. In that case, administrative

information should be sufficient to take efficient decisions.

However, for paths performance dependent applications like

VoIP, administrative information are not sufficient and perfor-

mances information must be taken into account. Thus, in this

case, the best path will be the one meeting the administrative

requirements and the path performances criteria.

In addition to metrics collection, the PIC translates the

different metrics into path attributes. Attributes are a stan-

dardized representation of the metrics, independent of their

nature. The simplest way to transform metrics in attributes

is to convert them into integer values. This idea comes from

the LOCALPREF attribute used by BGP [26] where complex

metrics are summarized as an integer. Attributes are transitive

so that the comparison between different unrelated paths is

made possible. That is, if A > B and B > C then A > C
for a given attribute. OPSA attributes have no direct meaning:

a high attribute value for a path does not mean that this path

is preferable to another with a lower value.

2) Knowledge Base: Once paths have been characterized,

their attributes are stored in the KB. The KB might be seen

as a database gathering all attributes of various paths. The KB

must face two main challenges. First, it must be possible to get

back any path attribute as quickly as possible. Second, given

the potentially large number of paths and attributes in the KB,

the KB must be as compact as possible.
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3) Decision Engine: On one hand, the PIC and the KB

model paths performances and properties. On the other hand,

the DE compares the paths in order to select the best according

to some criteria. To do so, the DE defines Cost Functions (CF).

A CF returns the cost of a < source, destination > pair (i.e.,

a path) for a given criterion. The cost is a numerical value

characterizing a path according to one or more metrics. The

cost must respect two constraints. First, the lower the cost, the

better the path. Second, costs have to respect transitivity. As

for attributes, transitivity is the key point of CFs as it allows

one to estimate the cost of any path independently and then

order them after wards. Transitivity allows caching and parallel

computation of costs.

Another important point of CFs is enabling combinations to

create more complicated CFs.

To ranks paths, the DE calls the appropriate CF for each

possible path to rank. It then creates the ranked paths list such

that the best paths are those with the lowest cost and the worst

with the highest. Paths in the returned list are grouped and the

list is ordered by rank. The first group of paths in the list

contains all the paths with the same lowest cost value. The

second group contains those with the second lowest cost and

so on. For instance, a possible ordering of the ranked paths

A : 1, B : 2, C : 1 and D : 3 is (A : 1, C : 1, B : 2,D : 3)
. At that point it is important to recall that OPSA must not

expose the topology and policies. Thus, the ranking cannot

represent the absolute cost but the relative order of the paths

with respect to to their cost. For instance, if paths A,B,C and

D have a cost of 1, 4, 1 and 7 respectively, the ranking value

should be A : 1, B : 2, C : 1 and D : 3 which does not reveal

the cost of the paths.

B. Path Selection Example

In the following, we present two examples of path selection

algorithms. First, we present how to select the path with the

more promising bandwidth. After, an example of billing based

path selection algorithm is illustrated.

In the two examples, we assume that the function

update prefix(src,dst,a,v) tags path from src to

dst with value v for attribute a. In addition, function

path attributes(src, dst) returns all the attributes

of the path from src to dst.

The most promising bandwidth path selection algorithm is

two folds. First, the PIC part is responsible of estimating the

available bandwidth of the paths and to update the bandwidth

information stored. If available bandwidth from src to dst

is 123Mbps, the wrapper first converts the available bandwidth

into a simple numerical value. Let say that by convention the

bandwidth is expressed in Kbps, the value becomes 123000.

If the attribute representing the available bandwidth is called

ABW, the KB update is:

update prefix(src,dst,’ABW’,123000)

Second, the available bw cf CF is added and is such

that paths with higher available bandwidth are preferred to

those with less available bandwidth. The CF would be:

available bw cf(src, dst):int

begin

attributes ← path attributes(src, dst)

return (MAX BW – attributes{’ABW’})
end

This function shows the typical architecture of a CF. First,

path attributes are retrieved. Then cost is computed as a func-

tion of the attributes. In this example, MAX BW is the capacity

of the best possible path in the network (typically the capacity

of the best link). The cost is build as the difference between the

MAX BW constant and the path available bandwidth because the

cost must be the smallest for the path with the higher available

bandwidth. By construction, the available bw cf CF is

transitive as the available bandwidth attribute is transitive.

The previous example focused on measurement information.

The next example illustrates a path selection based on an

administrative information. It is common for providers to

charge their clients on the 95th percentile. In this example,

we suppose that the client is multihomed, receives one IPv6

prefix per ISP and uses source routing. We also assume that

the client already monitors the cost of its links. Then, if the

cost of using ISPA which provides prefix 2001 : DB8 :: /48
is $ 1,500.00, the KB is updated by:

update prefix(2001:DB8::/48,::/0,’COST’,2)

if we suppose that the attribute representing the 95th charg-

ing cost is named COST and only remember the ceiling value

of the cost in kilo dollars. We observe that the use of prefixes

instead of addresses offers a simple way to represent a large

variety of paths (all the possible paths from the ISP in this

example).

Lets call minimize cost cf the CF for that metric. It is

implemented by:

minimize cost cf(src, dst):int

begin

attributes ← path attributes(src, dst)

return attributes{’COST’}
end

This CF is transitive and respects the minimize costs state-

ment.

III. CONCLUSION

In this position paper, we explained that we are going

towards an Internet that makes multiple paths available be-

tween a source and a destination. We argued that the best

path selection is an important issue that is not limited to

peer-to-peer applications. Choosing the best path could be of

interest for current applications but also under development

applications.

We further explained that not only applications but also

operators have requirements when selecting path. We argued

that making both applications and operators cooperating for

the path selection process might lead to a win-win situation,

as both will meet their requirements.

We next discussed an open path selection architecture

(OPSA). Respecting the OPSA architecture has different ad-

vantages. First, by definition, it agrees with the three funda-

mental requirements stated by Akella et al. for path selection

algorithm [15]. Furthermore, it allows operators to modify

path selection algorithms without having to notify clients.
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Finally, OPSA is generic (i.e., it can be applied to any current

and future path selection issues) scalable and supports new

functionalities.

As OPSA is intended to be deployed in ISP, corporate and

campus networks, it is obvious that such a service requires

a certain level of standardization. Clearly, the communication

protocol between the client and the service must be rigorously

defined. Further, the way the PIC performs active measure-

ments might follow principles and metrics defined within the

IPPM working group.
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