
Pluginizing QUIC∗

Quentin De Coninck, François Michel, Maxime Piraux, Florentin Rochet, Thomas Given-Wilson,

Axel Legay, Olivier Pereira, Olivier Bonaventure

UCLouvain, Belgium

firstname.lastname@uclouvain.be

https://pquic.org

ABSTRACT
Application requirements evolve over time and the underlying

protocols need to adapt. Most transport protocols evolve by negoti-

ating protocol extensions during the handshake. Experience with

TCP shows that this leads to delays of several years or more to

widely deploy standardized extensions. In this paper, we revisit the

extensibility paradigm of transport protocols.

We base our work on QUIC, a new transport protocol that en-

crypts most of the header and all the payload of packets, which

makes it almost immune to middlebox interference. We propose

Pluginized QUIC (PQUIC), a framework that enables QUIC clients

and servers to dynamically exchange protocol plugins that extend

the protocol on a per-connection basis. These plugins can be trans-

parently reviewed by external verifiers and hosts can refuse non-

certified plugins. Furthermore, the protocol plugins run inside an

environment that monitors their execution and stops malicious

plugins. We demonstrate the modularity of our proposal by im-

plementing and evaluating very different plugins ranging from

connection monitoring to multipath or Forward Erasure Correc-

tion. Our results show that plugins achieve expected behavior with

acceptable overhead. We also show that these plugins can be com-

bined to add their functionalities to a PQUIC connection.

CCS CONCEPTS
• Networks → Transport protocols; Network protocol design;

KEYWORDS
PQUIC, QUIC, Transport protocol, Network architecture, Plugin,

Protocol operation, eBPF

ACM Reference Format:
Quentin De Coninck, François Michel, Maxime Piraux, Florentin Rochet,

Thomas Given-Wilson, Axel Legay, Olivier Pereira, Olivier Bonaventure.

2019. Pluginizing QUIC. In SIGCOMM ’19: 2019 Conference of the ACM Special
Interest Group on Data Communication, August 19–23, 2019, Beijing, China.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3341302.3342078

∗
This work does not raise any ethical issues. Quentin De Coninck and François Michel

are both F.R.S.-FNRS Research Fellows. Axel Legay is also affiliated with Aalborg

University.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGCOMM ’19, August 19–23, 2019, Beijing, China
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5956-6/19/08. . . $15.00

https://doi.org/10.1145/3341302.3342078

1 INTRODUCTION
Transport protocols including TCP [79], RTP [34], SCTP [91] or

QUIC [51, 58] play a key role in today’s Internet. They extend

the packet forwarding service provided by the network layer and

include a variety of end-to-end services. A transport protocol is usu-

ally designed to support a set of requirements. Protocol designers

know that these requirements evolve over time and all these proto-

cols allow clients to propose the utilization of extensions during

the handshake.

These negotiation schemes have enabled TCP and other trans-

port protocols to evolve over recent decades [24]. A modern TCP

stack supports a long list of TCP extensions (Windows scale [52],

timestamps [52], selective acknowledgments [65], Explicit Con-

gestion Notification [81] or multipath extensions [32]). However,

measurements indicate that it remains difficult to deploy TCP exten-

sions [35, 45]. The Windows scale and selective acknowledgment

options took more than a decade to be widely deployed [35]. The

timestamp option is still not supported by a major desktop OS [3].

Multipath TCP is only available on one major mobile OS [2]. This

slow deployment of TCP extensions is caused by three main factors.

First, popular stacks rarely implement TCP extensions unless they

have been approved by the IETF. Second, TCP is still part of the

operating system and client and servers implementations are not up-

graded at the same speed. Often, maintainers of client (resp. server)

implementations wait until server (resp. client) implementations

support a new extension before implementing it. This results in a

chicken-and-egg deployment problem. Third, some middleboxes

interfere with the deployment of new protocol extensions [42, 46].

Initially proposed by Google to replace HTTP2/TLS/TCP, QUIC

[58] addresses some of these deployment issues. A QUIC connection

starts with a handshake during which transport parameters are

exchanged and TLS keys are negotiated. QUIC then encrypts all

the user data and most of the packet headers, this prevents most of

the interferences from middleboxes [58]. QUIC includes a flexible

framing mechanism to encode user data and control information.

QUIC frames are exchanged inside packets that are encrypted and

authenticated using the keys derived by TLS. Like SCTP, QUIC

supports the reliable delivery of data over multiple streams and

includes congestion control schemes and retransmission techniques

to recover from packet losses.

Google’s version of QUIC was proprietary and did not require

IETF consensus to be updated. As QUIC runs above UDP it is possi-

ble to ship it as a library which can be updated as often as appli-

cations. Measurements indicate that Google updated its version of

QUIC at the same pace as its Chrome browser [87].

59

https://doi.org/10.1145/3341302.3342078
https://doi.org/10.1145/3341302.3342078

SIGCOMM ’19, August 19–23, 2019, Beijing, China Q. De Coninck, F. Michel, M. Piraux, F. Rochet et al.

We believe that the openness of the Internet is a key element

of its success, and ultimately anyone should be able to tune or ex-

tend Internet protocols to best fit their needs. Traditional transport

protocols like TCP are tuned by using configuration variables or

socket options [25] and more recently with eBPF code [8]. Although

recent works enable an application to add new TCP options [97],

it remains impossible to precisely configure the underlying TCP

stack.

In this paper, we completely revisit the extensibility of transport

protocols. We consider that transport protocols should provide a set

of basic functions which can be tuned, combined and dynamically

extended to support new use cases on a per-connection basis. Such

an approach could enable QUIC applications to adapt the underly-

ing transport layer to their specific needs, e.g., using specialized

retransmission algorithms or taking advantage of non-standard

extensions. This would bring innovation back in the transport layer

with researchers and software developers being able to easily imple-

ment, test and deploy new protocol features. For this, we leverage

the extensibility and security features of QUIC. We make four main

contributions in this paper.

• We design a technique where an extension to the QUIC pro-

tocol is broken down in a protocol plugin which can be dy-

namically attached to an existing implementation. These plu-

gins interact with this implementation through code which

is dynamically inserted at specific locations called protocol
operations.

• We propose a safe and scalable technique that enables the

on-demand exchange of protocol plugins over QUIC con-

nections. This solves the deployment problem of existing

protocol extensions.

• We implement a prototype of Pluginized QUIC (PQUIC) by

extending picoquic [48], one of the most complete imple-

mentations of IETF QUIC [76]. We add to picoquic a virtual
machine that allows executing the bytecode of protocol plu-

gins in a platform independent manner while monitoring

their behavior.

• We demonstrate the benefits of PQUIC through plugins that

add newmonitoring capabilities, support forMultipath QUIC

[19], the Unreliable Datagram Extension [75] and several

Forward Erasure Correction techniques.

This paper is organized as follows. Section 2 overviews the de-

sign of PQUIC and how a PQUIC implementation supports plugins.

Section 3 discusses the security models, attacks and how PQUIC

solves them when exchanging plugins over QUIC connections. Sec-

tion 4 presents several use cases of protocol extension with plugins.

Section 5 describes how plugin properties can be verified. Section 6

contrasts with related works. Section 7 discusses the broader im-

plications and questions of this work. Section 8 concludes and

considers future work.

2 LOCAL PLUGIN INSERTION
Our design for Pluginized QUIC (PQUIC) builds upon the QUIC

protocol whose specification is being finalized within the IETF
1
[51].

This IETF specification is based on an initial design from Google

that is used by Chrome and other applications [58]. From a protocol

1
We base this work on the version 14 of the IETF QUIC drafts [51].

viewpoint, there are few differences between PQUIC and QUIC. We

defer the explanation of these differences until Section 3.

From the implementation viewpoint, the main difference be-

tween a PQUIC implementation
2
and a QUIC one is that PQUIC is

easily customizable on a per-connection basis. This customization

relies upon a modular, extensible design that allows adding and

modifying behaviors for the target flows. A PQUIC implementation

can be extended by dynamically loading one or more protocol plug-
ins. A protocol plugin consists of platform-independent bytecode

which can be executed within the PQUIC implementation.

APQUIC implementationprovides anAPI to protocol plu-
gins.Most protocol implementations are designed as black-boxes

that expose a small external API to applications. For example, a TCP

implementation exposes the socket API. A PQUIC implementation

can be represented as a gray-box containing a set of functions that

are exposed to protocol plugins. In PQUIC, we call these functions

protocol operations. These are common routines being part of any

implementation, and the workflow of PQUIC can be expressed as a

succession of such protocol operations. As in a C API, each protocol

operation has a specification and a set of conditions under which it

should be called. Sample protocol operations in PQUIC include the

parsing and the processing of frames, setting the retransmission

timer, updating the RTT, removing acknowledged frames from the

sending buffer, etc.

On-the-fly protocol plugin insertion. A pluglet consists of
bytecode instructions implementing a function, e.g., computing

an RTT estimate. A manifest contains the globally unique plugin

name and indicates how to link several pluglets to a connection,

i.e., to which protocol operations they should be attached. The

combination of pluglets and the manifest forms a protocol plugin.
Once a PQUIC connection is established, PQUIC can potentially

load plugins at any time.

Isolation between connections and between plugins. Each
plugin is instantiated to operate on a given connection. Our frame-

work ensures that each instance has its own memory which is only

shared among pluglets of this plugin. The plugin memory is isolated

from access or sharing with any other plugin or connection. This

yields strong memory safety guarantees for the plugins and the

sharing of information. Interactions are still possible through the

protocol operation interface or by calling the functions exposed by

PQUIC. However, these are clearly defined information flows that

ease reasoning about the behavior and the safety of the plugins.

The rest of this section details the core elements of PQUIC. We

first describe the environment executing pluglets. Then, we elabo-

rate on the concept of protocol operations. We finally describe how

PQUIC interfaces with pluglets.

2.1 Pluglet Runtime Environment (PRE)
Pluglets are the building blocks of the protocol plugins. These

pieces of bytecode are independent of the PQUIC implementation

itself. Therefore, we need to provide an environment to execute

them. This environment has to solve two major concerns. First, it

has to provide an abstraction where plugins can run regardless of

2
We applied the principles described in this section to two very different QUIC imple-

mentations. We first implemented an early prototype based on quic-go [13] written in

Go. We then based our work on picoquic [48] written in C. This paper only discusses

picoquic, the quic-go version is described in a technical report [21].

60

Pluginizing QUIC SIGCOMM ’19, August 19–23, 2019, Beijing, China

the underlying hardware and operating system. Second, given the

untrusted nature of the plugins, the environment should keep each

pluglet under control.

To address these two issues, PQUIC executes plugins inside a

lightweight virtual machine (VM). Various VMs have been pro-

posed for different purposes [4, 30, 36, 39, 61, 101]. In this paper,

our Pluglet Runtime Environment (PRE) relies on a user-space im-

plementation [49] of the eBPF VM [30]. Although being present

in the Linux kernel since 2014 where it has been used to support

various services [8, 26, 37], the eBPF VM can be too restrictive to

implement some legitimate behaviors. The kernel-space eBPF VM

includes a verifier that is very conservative, as it puts hard limits

on the size and complexity of an acceptable eBPF program.

Our implementation extends a relaxed version of the eBPF veri-

fier with additional monitoring capabilities. Those are similar to

works in Software-Based Fault Isolation [100, 106]. First, our PRE

checks simple properties of the bytecode to ensure its (apparent)

validity. This includes checking that: (i) the bytecode contains an
exit instruction, (ii) all instructions are valid (known opcodes and

values), (iii) the bytecode does not contain trivially wrong opera-

tions (e.g., dividing by zero), (iv) all jumps are valid, and (v) the
bytecode never writes to read-only registers. Furthermore, our PRE

statically verifies the validity of stack accesses. A plugin is rejected

if any of the above checks fails for one of its pluglets.

Second, our PREmonitors the correct operation of the pluglets by

injecting specific instructions when their bytecode is JITed. These

monitoring instructions check that the memory accesses operate

within the allowed bounds. To achieve this, we add a register to the

VM that cannot be used by pluglets. This register is used to check

that the memory accesses performed by a pluglet remain within

either the plugin dedicated memory or the pluglet stack. Any viola-

tion of memory safety results in the removal of the plugin and the

termination of the connection. The LLVM Clang compiler supports

the compilation of C code into eBPF. This allows us to abstract

the development of pluglets from eBPF bytecode and propose a

convenient C API for writing pluglets.

2.2 Protocol Operations
In order to attach pluglets to PQUIC, we define an API revealing the

insertion points and the interface between PQUIC and the pluglets.

We break down the protocol execution flow into generic subroutines.

These specified procedures are called protocol operations. Each has

its human-readable identifier, inputs, outputs and specifications. A

protocol operation with a parameter has a high-level goal, but its

actual behavior, and therefore its function, changes depending on

the given parameter. This provides a generic entry point allowing

the definition of new behaviors without changing the caller for, e.g.,

the serialization of new QUIC frames. Our PQUIC implementation

currently includes 72 protocol operations. Four of them take a

parameter.
3
We can split these operations into several categories.

A first category concerns the handling of the QUIC frames. This

includes their parsing, processing and writing. A second category

groups all the internal processing of QUIC. It contains the logic for

retransmissions, updating the RTT, deciding which stream to send

next, etc. A third category involves QUIC packet management. It

3
Please refer to https://pquic.org for the latest numbers.

process_ack_frame update_rtt

(a) Monolithic design.

process_frame [ACK] update_rtt

PRE

PRE

POST

R
E

P
L

A
C

E

R
E

P
L

A
C

E

POST

(b) PQUIC design.

Figure 1: Turning a monolithic design into protocol opera-
tions with the ACK processing example. It also illustrates
the different anchors for the pluglets.

includes setting the Spin Bit [96], retrieving the connection IDs,

etc. A fourth category contains several events in the connection

workflow, whose protocol operations have empty anchor points,

i.e., no default behavior. For instance, a protocol operation exists

after decoding all frames of an incoming packet or after a packet

loss.

To illustrate how an implementation can be split into protocol

operations, consider the example shown in Figure 1a. The process-

ing of an ACK frame would likely be performed in its dedicated

function. One of its sub tasks is the computation of the RTT estima-

tion, which is implemented in its own function too. PQUIC keeps

the same programming flow. As shown in Figure 1b, PQUIC func-

tions are wrapped by a protocol operation whose human-readable

string identifier describes its goal. While the name of the protocol

operation and the original function are similar, the processing of

ACK frames is linked to a more generic process_frame operation

taking ACK as parameter. As illustrated, a given protocol operation

can call other operations. Furthermore, protocol operations are split

into three anchors, each of which is a possible insertion point for

a pluglet. Protocol operations with parameters propose a specific

set of anchors for each parameter value. The first anchor, called

replace, consists of the actual implementation of the operation. This

part is usually provided by the original PQUIC function. This mode

enables a pluglet to override the default behavior. Because it may

modify the connection context, at most one pluglet can replace a
given protocol operation. If a second one tries to replace the same

operation, it will be rejected and the plugin it belongs to will be

rolled back. The two other anchors, pre and post, attach the plugin

just before (resp. just after) the protocol operation invocation. These

modes are similar to the eBPF kprobes in the Linux kernel [55]. By

default, those are no-ops in PQUIC. Unlike the replace anchor, any
number of pre and post pluglets can be inserted for a given protocol

operation. However, they only have read access to the connection

context and the operation arguments and outputs. The only write

accesses they have is to their pluglet stack and their plugin-specific

memory. In the rest of the paper, unless explicitly stated, we discuss

pluglet insertions in replace mode, and refer to pluglet inserted in

pre and post as passive pluglets.

61

https://pquic.org

SIGCOMM ’19, August 19–23, 2019, Beijing, China Q. De Coninck, F. Michel, M. Piraux, F. Rochet et al.

Figure 2: Attaching PREs in replace mode to protocol opera-
tions.

Functions Usage

get/set Access/modify connection fields.

pl_malloc/pl_free Management of the plugin memory.

get_opaque_data Retrieve a memory area shared by pluglets.

pl_memcpy/pl_memset Access/modify data outside the PRE

plugin_run_protoop Execute protocol operations.

reserve_frames Book the sending of QUIC frames.

Table 1: PQUIC API exposed to pluglet bytecode.

2.3 Attaching Protocol Plugins
Implementing protocol extensions may require a combination of

several pluglets forming a plugin. The PRE provides a limited in-

struction set and isolates the bytecode from the host implementa-

tion. Therefore, plugins require an interface with which they can

operate on their connection. Moreover, a plugin might need to share

some state among its pluglets.

To address these needs, PQUIC is organized as illustrated in

Figure 2. As explained in the previous section, the behavior of a

protocol operation is either provided by a built-in function (e.g.

param_op [p1]) or overridden by a pluglet (e.g. noparam_op1).
Observe that plugins can also provide new protocol operations

absent from the original PQUIC implementation. This can be done

either by hooking a new parameter value for an existing protocol

operation (e.g. like param_op [p2]) or by adding a new protocol

operation (e.g. noparam_op2). PQUIC is thus extensible by design.

A PRE is created for each inserted pluglet. Each PRE contains its

own registers and stack. The PRE heap memory points to an area

common to all pluglets of a plugin, as illustrated in Figure 2. This

link, ensured by the PQUIC implementation, provides a communica-

tion channel between pluglets. In addition to the isolation benefits,

this architecture ensures that aggressive or ill memory manage-

ment only affects the plugin itself. Thanks to our PRE, pointer

dereferencing is restricted only to the pluglet stack or its plugin

memory. In addition, the pluglet also needs to communicate with

the host implementation to interact with its connection. As in a

related work [1], PQUIC exposes some functions to the PRE. These

functions form an API that pluglets can use (Table 1). We detail its

six major operations below.

Exposing connectionfields through getters and setters. Let-
ting plugins directly access the fields of PQUIC structures makes

the injected code very dependent on PQUIC internals. Consider

the case of two hosts with different PQUIC versions. If the newest

version added a new field to a structure being used by a pluglet,

the offset contained in its bytecode would point to a possibly dif-

ferent field, leading to undefined behavior. Therefore, this interface

abstracts the implementation internals from the pluglets, making

them compatible with different PQUIC versions or implementa-

tions. In addition, it allows the PQUIC host to monitor which fields

A

B C

(a) Without plugins.

A

B C

(b) With p1 plugin.

A

B C

(c) With p2 plugin.

A

B C

(d) With both p1 and p2 plugins.

Figure 3: Combining plugins requires protocol operation
monitoring. (a), (b) and (c) are valid calls graphs while (d)
is not since it creates a loop between B and C.

are accessed by the injected code. A host could thus reject plugins

based on the fields that it wishes to access. For example, a client

could refuse plugins that modify the Spin Bit, as it is not encrypted.
Similarly, depending on its local user policies, a host could accept

or deny a plugin accessing the TLS state.
4

Managing plugin memory. Pluglets might need to keep per-

sistent data across calls. Therefore, we provide functions to allocate

and free memory in the plugin dedicated area. Our framework ded-

icates a fixed-size memory area split into constant size blocks [56].

Such approach provides algorithmic Θ(1) time memory allocation

while limiting fragmentation.

Retrieving data shared by pluglets. Pluglets from the same

plugin might need to access a common data structure. Pluglets can

assign an identifier to a given plugin memory area enabling them

to retrieve and modify it consistently.

Modifying connection memory area. Plugins might need to

modify memory outside the PRE. For instance, a pluglet might need

to write a new frame inside a buffer. The API keeps control on the

plugin operations by checking the accessed memory areas.

Calling other protocol operations. This is required when a

protocol operation depends on another one. However, such capabil-

ity raises potential safety issues. As plugins can call any protocol

operation, a PQUIC implementation needs to take care of possible

loops due to these calls. To prevent such loops, the call graph of

the protocol operations must always remain loop-free. However,

ensuring this property for any combination of loop-free plugins

is not practical to assess before executing them due to the com-

binatorial state explosion. Consider the example shown in Fig. 3.

There are three protocol operations A, B and C , all guaranteed to

terminate. Even if both p1 and p2 plugins are legitimate, their com-

bination might introduce an infinite loop, as shown in Figure 3d.

To avoid this situation, a PQUIC implementation keeps track of all

the currently running protocol operations in the call stack. If a call

is requested for an operation that is already running, PQUIC stops

the connection and raises an error.

Scheduling the transmission of QUIC frames. PQUIC pro-

vides a way for pluglets to reserve a slot for sending frames, whether

they define a new frame or use an existing type. However, it should

enforce two rules. First, plugins must not prevent PQUIC from send-

ing application data. Therefore, as long as there is payload data to

be sent, standard QUIC frames such as STREAM, ACK and MAX_DATA

4
We do not currently expose TLS keys to plugins.

62

Pluginizing QUIC SIGCOMM ’19, August 19–23, 2019, Beijing, China

should have a guaranteed fraction of the available congestion win-

dow. Second, a plugin sending many large frames should not be

able to starve other plugins. Concurrently active plugins should

have a potentially fair share of the sending congestion window. To

achieve this, PQUIC includes a frame scheduler which is a com-

bination of class-based queuing [31] and deficit round robin [89].

Frames are classified based on their origin, either from the core

implementation itself or from plugins. When both classes are push-

ing frames, the scheduler ensures that the core ones get at least

x% of the available congestion window. A deficit round robin then

distributes the remaining budget between the plugin frames.

2.4 Interacting with Applications
We showed how plugins can interact within PQUIC. Plugins can

also interact with the application using PQUIC. This allows them

to extend the application-facing interface of PQUIC to bring new

functionalities. For example, a plugin could implement a message

mode for QUIC to supplement the standardized ordered byte-stream

abstraction [51]. This communication is established in a per-plugin

bidirectional manner. First, an application can call external protocol
operations. These are new anchor points that can be defined when

injecting pluglets. The external mode is similar to the replace mode,

but it makes the protocol operation only executable by the applica-

tion. This allows it to directly invoke new methods, e.g. queuing

a message to be sent. Second, a plugin can asynchronously push

messages back to the application, so that it remains independent of

the application control flow.

2.5 Reusing Plugins across Connections
The plugin injection involves the creation and the insertion of PREs

at their anchor and the instantiation of the plugin heap. These re-

main dedicated to a given connection for its entire lifetime. Once the

connection completes, the plugin resources may be freed. Neverthe-

less, it is likely that plugins get reused on subsequent connections.

Furthermore, PREs only depend on the pluglets and are isolated

from the connections on which they operate. Therefore, to limit

the injection overhead, we introduce a cache storing the plugin

associated PREs and memory. When a new connection injects the

same plugin, it can reuse the cached PREs as is, without verifying or

compiling the pluglets again. The plugin heap must be reinitialized

to avoid leaking information between unrelated connections.

3 EXCHANGING PLUGINS
The previous section has described the system aspects of PQUIC

and the possibility of extending a PQUIC implementation through

protocol plugins that are injected on the local host. As TLS 1.3 is an

integral part of QUIC, third parties such as middleboxes or attackers

cannot modify the data exchanged over such a connection. Proto-

col plugins could, therefore, be exchanged over an existing QUIC

connection. Accepting remote protocol plugins poses the challenge

of establishing the trust in their validity, e.g. their termination. We

first propose an open system solving this challenge.

Our system bears a similarity to Certificate Transparency [59].

Both are using a Merkle tree as the base for the system log and allow

each party to contribute to their global protection only by checking

their own safety. Our design enables independent developers to

Plugin
Repository

PV1 PV2 ...

Developer

Client Server

Lookup for
Proof

Publish
Check own bindings

 Pull

Pull and
build Merkel Tree

QUIC Plugins
Exchange

Figure 4: Secure Plugin Management System.

publish their own plugins for which the PQUIC peers’ trust in their

validity is established by independent plugin validators (PV). Yet, we

have fundamental differences from Certificate Transparency in the

various roles of the distributed system, and within the construction

of the system log itself. As opposed to Certificate Transparency, no

party has to track the entire log to keep the users safe. We directly

offer to plugin developers an efficient mean, i.e., logarithmic in

the number of plugins published, to check whether any spurious

plugin has been published on their behalf. This prevents the need for

third party monitor to emerge. A second important design choice

make PQUIC peers able to formulate their safety requirements by

combining the PVs they trust. This process allows end-users to pin

security requirements as a logic expression. The validity of plugins

with respect to this expression can be efficiently checked.

In the following sections, we explain some of the additional secu-

rity properties our system offers. Finally, we describe our extension

to the QUIC protocol to support the exchange of protocol plugins

over a QUIC connection.

3.1 Distributing Trust
A simple approach for establishing trust in plugins would be for an

application developed by foo.com and using PQUIC to only accept

plugins from authenticated foo.com servers. We go beyond this

restrictive approach and propose the open system illustrated in

Figure 4. It includes four types of participants: (i) the plugin devel-

opers, (ii) the Plugin Repository (PR) that hosts protocol plugins,

(iii) the plugin validators that vouch for plugins validity and (iv)
the PQUIC peers.

Plugin developers may be independent of the PQUIC imple-

menters. They write plugins and publish them on the PR. Publish-

ing a plugin forms a binding, which we define as the concatenation

of the globally unique plugin name with the bytecodes of all its

pluglets and the associated manifest, i.e.

bindinд = pluдinname | |pluдincode

The PR holds all protocol plugins from all developers and centralizes

the secure communication between all participants.

A plugin validator (PV) validates the correct functioning of a

plugin. The validation itself depends on the PV capabilities as de-

scribed in Section 5. PVs can obtain the source code from developers

willing to ease their validation, but must first check that they are

able to reproduce the submitted code. PVs can serve the bytecodes

of plugins they validated. The state of our system, i.e. the plugins

63

SIGCOMM ’19, August 19–23, 2019, Beijing, China Q. De Coninck, F. Michel, M. Piraux, F. Rochet et al.

hosted on the PR and their validation by PVs, progresses on a dis-

crete time scale defined by the epoch value. At each epoch, plugins

can be added or updated, and each PV can update their plugins

validation.

Each PV builds aMerkle Prefix Tree [68] containing the plugins it

successfully validated and digitally signs its root, forming a Signed

Tree Root (STR). The STR is sent to the PR. A PV can build at most

one tree per epoch. More details on building the Merkle Prefix Tree

by PVs are provided in Section 3.3. When the PR is offline, the PVs

can serve their own STRs. The absence of a plugin in a tree can

be due to two reasons. Either the validation failed or no validation

took place at that epoch. The failure cause is communicated to the

PR. Plugin developers monitor the validations published by PVs to

ensure the tested plugins match the submitted code.

Before exchanging plugins, PQUIC peers must provide evidence

of plugin validity. Our system allows expressing requirements in

terms of PV approbation. More precisely, if PVi is the identifier

of a PV, a PQUIC implementation can send a logical formula that

expresses its required validation, e.g., PV1∧(PV2∨PV3). This design
allows the PQUIC peers to precisely express their required safety

guarantees.

Our system is distributed. This makes PQUIC peers tolerant to

participant failures. In the previous example, if both the PR and PV3
are offline, then the peer can rely on both PV1 and PV2 to validate

the provided plugin.

3.2 Threat Model and Security Goals
Our distributed system addresses the following threat model. Any

participant can act maliciously. Plugin developers may publish

malicious code. A PQUIC peer may want to inject illegitimate code.

PVs may give false assertions on the validity of a plugin. The PR

may equivocate on the STRs received from PVs. Both PR and PVs

may modify the code served, or impersonate the developers.

Our system offers the guarantee that some aforementioned prob-

lems are immediately detected, and the others are eventually de-

tected. It also ensures that a plugin name securely summarizes its

code. Furthermore, a PQUIC peer is always able to identify which

party faulted. As a result, given that the PR and PVs can be freely

selected by PQUIC peers, we assume that they are willing to pro-

tect their reputations, which could be degraded upon discovering

problems. In summary, our system covers the following security

goals.

Central identities, distributed validation. The PR central-

izes the identities of both developers and PVs. A PV can publish

its current STR necessary for the proof of consistency, and notify

developers about plugins that failed its validation. A developer can

publish plugins, report PVs equivocations and inconsistencies of

its bindings at all PVs.

Non-equivocation. A PV cannot equivocate by presenting dif-

ferent STRs to different PQUIC peers. If it does, participants even-

tually detect this with the help of others. An STR acts as a tamper-

resistant log for all the bindings validated by a PV. We assume

that regular checks for non-equivocation of STRs are performed

by other participants and reported on the PR. For instance, other

PVs could query the STR of a particular PV and compare it with

the STRs maintained by the PR. We provide more details on how

Root = H(h
0
||h

1
)

H(pluginname) = ‘010’011...

h
0
= H(h

00
|| h

01
)
0 1

...
h

01
= H(h

010
|| h

011
)

1
0

0

h
010

= H(pluginname || plugincode)

1

h
1

...h
00...h
00

......h
011

Figure 5: Proof of consistency. Red values forms the authen-
tication path, and green values are re-computed to verify
that it matches the root.

the STRs are stored by the PR in Appendix B.1. Any PQUIC peer

may eventually learn about an equivocation on any received STR.

Secure human-readable names for plugins. When a PQUIC

peer wants to use a plugin, it does not need to reason about de-

velopers identity or plugin validity. The name is globally unique,

human-readable and unequivocally matches a plugin.

Detection of spurious plugins. If a PV injects a spurious bind-

ing, the developer owning the plugin name will be able to detect

this and alert PQUIC peers through the PR. A peer may be abused

before the detection happens. However, the end-user will eventually

know which PV faulted.

3.3 System Overview
PVs retrieve plugins from the PR. They build a Merkle Prefix Tree at

each epoch containing all successfully validated plugins. Each path

to the leaf of this binary tree represents a prefix, and bindings are
placed in leaves depending on the truncated bits of H (pluдinname).
For instance, in a 3-depth tree, the prefix of the left-most leaf is

‘000’. Empty leaves are replaced by a large constant value c chosen
by the PV. Interior nodes are hashed as H (hl | |hr) with hl (resp. hr)
being the hash value of the left (resp. right) child subtree.

Leaf nodes contain one or more bindings. Several bindings may

be located at a same leaf node when the hash prefix of different

names (H (pluдinname)) collides. In this case, the leaf node contains

a linked list of bindings. Under the assumption of uniform hashing,

we can engineer the depth of the tree such that a collision happens

with low probability, depending on the number of plugins within

the PR. Without collision, the leaf node value is defined as:

hleaf = H (bindinд)

If there is any collision, the leaf node value concatenates the bind-

ings i, j, ... as follows:

hleaf = H (H (bindinдi)| |H (bindinдj)| |...)

After having updated its Merkle tree, the PV digitally signs its

root and publishes the STR to the PR where its public-key infor-

mation is available for all participants (handling STRs is further

described in Appendix B.1).

The tree computation is inspired by CONIKS [67], but our con-

struction differs so that bindings are located in the tree depending

on the hash value of their plugin names, which makes it impossible

for a PV to put two bindings for the same plugin and to stealthily

populate one with a malicious code. We provide a detailed security

analysis in Appendix B.2.

64

Pluginizing QUIC SIGCOMM ’19, August 19–23, 2019, Beijing, China

A PQUIC peer willing to send a plugin over a QUIC connection

needs to provide the authentication paths from PVs that fulfill this

peer’s required validation, e.g., PV1 ∧ (PV2 ∨PV3). Obtaining a path
only requires sending the name of the plugin to a PV. The PV then

computes the authentication path in Θ(loд(n) + α), with α = n/m
being the load factor defined from n the number of plugins andm
the number of available leaves.

The PV then sends back to the PQUIC peer the authentication

path for the binding corresponding to the requested plugin name

(Figure 5). The hash values of any other bindings that may be part

of this leaf are also sent back by the PV. The PQUIC peer then

sends the plugin alongside the corresponding authentication paths

obtained from a set of validators matching the other peer’s required

validation. PQUIC peers can preemptively fetch authentication

paths for the plugins they intend to use at each epoch.

Finally, the peer receiving the plugin recomputes the root value

from the binding and the authentication path to match the STR

cached for the current epoch as illustrated on Figure 5. If the com-

puted root matches the STR, then the plugin is accepted. We provide

a more detailed efficiency analysis of this scheme in Appendix B.3.

When verifying a binding at a PV, a developer sends the name of

the corresponding plugin to this PV. If only a single hashed binding

is present in the tree, the developer checks that it match theirs. If

multiple hashed bindings are present, i.e. because of a collision,

the developer receives their clear text. This allows them to discern

whether the collision was due to a prefix collision or the PV added

a spurious binding.

If the PV tree does not contain the hashed binding of a given

plugin, its developer obtains a proof of absence, i.e., an authenti-

cation path to the linked-list without the developer’s binding or

an authentication path to the constant value c indicating an empty

leaf such that it matches the truncated bits of H (pluдinname).

3.4 Exchanging QUIC plugins
Given the flexibility of QUIC, it is relatively simple to modify it

to support the exchange of plugins. The QUIC connection estab-

lishment packets contain QUIC transport parameters such as the

maximum number of streams, the maximum packet size or the

idle timeout [51]. To enable plugin injection, PQUIC proposes

two new QUIC transport parameters: supported_plugins and

plugins_to_inject, both containing an ordered list of protocol

plugins identifiers. The first announces the plugins a PQUIC peer

can inject locally. These plugins are stored inside its local cache.

The second announces the plugins that a PQUIC peer would like to

communicate to the other PQUIC peer. Once the QUIC handshake

has completed, both peers have a complete view of the available

and requested plugins. Then, there can be two outcomes: (a) all
plugins requested for injection are already available. In this case,

they are injected as local plugins, as explained in Section 2, in

the order described by the plugins_to_inject transport param-

eter. Otherwise, (b) one or more plugins are unavailable locally,

they are then transferred as illustrated in Figure 6. In this exam-

ple, the client announces the support of a monitoring plugin while

the server would like to inject a FEC plugin into the client. First,

the client announces its required validation formula for missing

plugins, here FEC, with the PLUGIN_VALIDATE frame. Second, the

ServerClient

Initial(0): CRYPTO(CH(supported_plugins=[monitoring]))

· · ·
Initial(0): CRYPTO(SH(plugins_to_inject=[fec]))

1-RTT(0): PLUGIN_VALIDATE(fec, PV
1
∧ (PV

2
∨ PV

3
))

1-RTT(0): PLUGIN_PROOF(fec, APPV
1

, APPV
2

), PLUGIN(fec)

Figure 6: Example flow for the exchange of the FEC plugin.

{d
1 , bw

1 , l
1 }

{d2,
bw2

, l2}

Client

R1

R2

R3 Server

Figure 7: Network topology used for experiments.

Proven ELF Compressed

Plugin LoC Pluglets terminating Size size

Monitoring 500 14 13 86 kB 27 kB

Datagram 500 11 8 28 kB 25 kB

Multipath 2600 32 29 138 kB 40 kB

FEC 2500 51 37 238 kB 61 kB

Table 2: Statistics for each implemented plugin.

server responds with authentication paths from PVs that fulfill this

formula in a PLUGIN_PROOF frame. The requested plugin is then

transferred over the plugin stream in PLUGIN frames, akin to the

QUIC cryptographic stream. When receiving the remote plugin,

the client performs the check of the proof of consistency. Upon

success, it stores the plugin in its local cache. Remote plugins are

not activated for the current connection, but rather offered in sub-

sequent connections as part of the locally available plugins. While

PQUIC is capable of injecting plugins at any time (see Section 2),

synchronizing their injection between two hosts raises issues that

are prevented by this conservative choice.

While the exchange mechanisms introduce some overhead, we

believe it remains acceptable. The fixed cost of exchanging plugin

bytecodes is only present during the first connection, as subsequent

ones will take advantage of the PQUIC caching system described in

Section 2.5. Furthermore, if the plugin is not mandatory for the use

of the application (e.g., adding FEC to protect the data transfer), the

plugin exchange does not prevent data from being transmitted over

the connection. Indeed, data and plugin streams can be concurrently

used thanks to the QUIC frame multiplexing.

4 USE CASES
Protocol plugins can be used to implement various extensions to

PQUIC. With less than 100 lines of C code a PQUIC plugin can

add the equivalent of Tail Loss Probe in TCP [29], or support for

Explicit Congestion Notification [102]. Due to space limitations,

this section focuses on more complex use cases that demonstrate

the extensibility of PQUIC with four very different protocol plugins.

65

SIGCOMM ’19, August 19–23, 2019, Beijing, China Q. De Coninck, F. Michel, M. Piraux, F. Rochet et al.

Our first plugin (Section 4.1) adds new monitoring capabilities to

PQUIC. This is a relatively simple plugin that collects statistics by

reading state variables. It provides similar features as Web100 [64],

the MIB-2 or the TCP_INFO socket options for TCP. Our second

plugin (Section 4.2) extends PQUIC to support unreliable messages

[75]. We use it to implement a VPN service that is similar to the ones

using DTLS [70]. This demonstrates the possibility of extending

the PQUIC interface proposed to the application. Our third plugin

(Section 4.3) adds multipath capabilities [20] to PQUIC. This plugin

demonstrates the possibility of using PQUIC over several network

paths. Our fourth plugin (Section 4.4) provides a flexible framework

that adds support for Forward Erasure Correction to PQUIC. This

demonstrates the possibility of building modular plugins including

complex computations. Table 2 summarizes the complexity of these

plugins by lines of C code, number of pluglets, and size of bytecode.

We evaluate the performance of these four plugins in a lab

equipped with Intel Xeon X3440 processors, 16GB of RAM and

1 Gbps NIC, running Linux kernel 4.19 and configured as shown

in Figure 7. The links between R1, R3 and R2, R3 are configured

using NetEm [41] to add transmission delays and using HTB to limit

their bandwidth. Losses are generated using a seeded random loss

generator attached to the routers. This allows fair performance

comparisons as the same loss pattern is applied when an experi-

ment is replayed. One-way delay d is expressed in milliseconds,

bandwidth bw in Mbits and uniform losses l as a percentage of

packets transmitted.

To evaluate the plugins in a wide range of environments, we use

the experimental design approach [28]. We define ranges on the

possible values for the parameters presented and use the WSP algo-

rithm [88] to broadly sample this parameter space into 139 points.

Each parameter combination is run 9 times and the median run is

reported. This mitigates a possible bias in parameter selection and

gives a general confidence in the experiment results. Unless other-

wise noted, we use the parameters range {d1∈[2.5, 25]msec,bw1 ∈

[5, 50]Mbps, l1 = 0,d2 = d1,bw2 = bw1, l2 = l1}, and assume that

both links have similar bandwidth, delay and loss characteristics.

Note that when links are lossless, congestion-induced losses can

still be observed due to the limited bandwidth and router buffers.

All plugins are cached on both client and server.

4.1 Monitoring PQUIC
QUIC is an encrypted protocol that leaves only a small fraction of

its headers in cleartext, preventing third-party flow performance

analysis for events such as losses and retransmissions [22, 90]. The

QUIC working group has reached consensus on disclosing a single

bit in the header, called the Spin Bit [96], to enable third parties to

measure the RTT of a connection, but no solution is proposed for

other metrics such as retransmissions, losses, etc.

Design. Our monitoring plugin adds passive pluglets, i.e. plu-

glets that hook to pre and post anchors, to several protocol opera-

tions in PQUIC to record the performance indicators (PI) such as the

bytes/packets sent/received, lost, received out-of-order, etc. A set

of PIs are recorded during the handshake and a second are updated

while the connection is active. Our plugin exports these PIs to a

local daemon that sends them over UDP to a collector. A similar

approach could be used to feed an SNMP agent that maintains a

QUIC MIB.

Implementation. Each pluglet is hooked to a particular step

of the connection. Upon the arrival or transmission of a packet,

the relevant PIs are updated. Once a set of PI is complete, either

because the connection was established or terminated, it is sent to

the local daemon.

4.2 QUIC VPN
Given the security of QUIC, it could be interesting to use it as a

replacement for TLS-based VPNs. Experience with such VPNs indi-

cate that DTLS [70] provides a better user experience that using TLS

over TCP because of the well-known TCP-over-TCP performance

problems [47, 63].

We leverage the flexibility of PQUIC with a plugin that supports

unreliable messages in addition to the reliable QUIC bytestreams.

This plugin supports a new DATAGRAM frame [75] that only main-

tains the transported data boundaries but not transmission order

nor reliable delivery.

Design. We implement a simple VPN that captures raw IP pack-

ets and passes them to PQUIC. We chose to encapsulate the user

traffic at the IP level because this allows handling of all types of

packets.

We modified the PQUIC client and server to carry IP datagrams

between Linux tunnel interfaces. This was done by adding 70 lines,

modifying 10 lines and removing 200 lines in the picoquic sample

applications. This VPN application leverages a key point of our

design presented in Section 2.4, i.e. a plugin is also able to extend

the API exposed to the application. Our VPN application reads IP

datagrams from the tunnel interface and writes them to the message

socket exposed by the Datagram plugin. It reads the received IP

datagrams from the message socket and writes them to the tunnel

interface. This simplistic approach and the default PQUIC param-

eters lead to an overhead of 44 bytes per conveyed IP datagram

when used over IPv4. This overhead could be minimized by using

techniques such as header compression, but these are outside the

scope of this paper.

Evaluation. We evaluate the overhead introduced by our VPN

in terms of Download Completion Time (DCT) for a single file

transfer using TCP
Cubic

. We compare the file transfer times inside

and outside the VPN tunnel for different file sizes. We only use the

top path of Figure 7 and explore the default parameters range. We

used a 1400-byte MTU inside the tunnel and 1500 outside. The VPN

overhead of 44 bytes per conveyed packet translates into a bound

on the DCT ratio of 1.031. Figure 8 illustrates the CDF of the DCT

ratio obtained. For short files, the DCT is mostly below the bound

computed. When transferring small amounts of data, the network

path buffers can accommodate the VPN encapsulation overhead

and only the VPN processing time affects the DCT. For longer files,

the DCT ratio is more stable and mainly caused by the per-packet

overhead.

4.3 Multipath QUIC
A key design point of QUIC is that it includes connection IDs

in the packet’s public header [51]. Unlike TCP or UDP, a QUIC

connection is not bound to a given 4-tuple (IPsrc, IPdst, portsrc,

66

Pluginizing QUIC SIGCOMM ’19, August 19–23, 2019, Beijing, China

0.95 1.00 1.05 1.10 1.15 1.20 1.25

DCT in/out

0.00

0.25

0.50

0.75

1.00

C
D

F

1.5 kB

10 kB

50 kB

1 MB

10 MB

Figure 8: DCT ratio of TCP in and outside a client-server
PQUIC tunnel.

10KB 50KB 1MB 10MB

0.5

1.0

1.5

2.0

S
p

ee
d
u
p

ra
ti

o

mp-quic

10KB 50KB 1MB 10MB

Multipath plugin

File size

Figure 9: Over two symmetric network paths, multipath
tends to complete transfers twice faster than single-path.

port
dst

) but to these IDs. This makes QUIC resilient to events such

as NAT rebinding. This also opens the possibility of letting a single

QUIC connection use multiple paths [19, 99]. Adding multipath

capabilities to a transport protocol creates challenges as shown by

Multipath TCP [32, 80].

Design & Implementation. We implement a PQUIC plugin

that provides basic multipath capabilities similar to proposed Mul-

tipath QUIC extensions [20]. Our plugin supports the exchange of

path connection IDs and host addresses. It then associates a path

ID between each pair of host addresses. Once the connection has

been established, packets are scheduled in a round-robin manner

between available paths and it uses a new ACK frame to acknowl-

edge received packets with path-specific packet numbers. We also

implement a packet scheduler sending packets on the path having

the lowest RTT to mimic Multipath TCP [80], but do not evaluate

it due to space constraints.

Evaluation. To assess the performance of our plugin, we con-

sider the network scenario shown in Figure 7 and use the two paths

with the default parameter range. For both single path and multi-

path settings, we record the time between a GET request issued by

the client and the reception of the last byte of the server response.

We then compute the ratio of the single path completion time over

the multipath one to obtain the speedup ratio. We observe its evo-

lution with the size of the requested file and compare it with the

ratio obtained using the original implementation of mp-quic [19].
Figure 9 shows that with small files, there is little gain in using two

paths. This is not surprising since each path is constrained by its

initial congestion window. Notice that the initial path window of

mp-quic (32 kB), inherited from quic-go [13], is twice the default

one of PQUIC (16 kB). This explains the small speedup gain of

our plugin on 50 KB files. With larger files, both mp-quic and our

plugin efficiently use the two available paths. The speedup ratio of

both the native mp-quic implementation and our multipath plugin

tends to reach 2 with 10 MB files.

4.4 Forward Erasure Correction QUIC
The QUIC protocol provides reliable delivery by using classical

retransmission-based mechanisms. These techniques are coupled

with congestion control and usually assume that losses are mainly

caused by congestion. This assumption is not always true and there

are situations (e.g. wireless networks) where losses are caused by

other factors than congestion [85]. Researchers have proposed a

variety of recovery techniques that transmit redundant data to

enable the receiver to recover from packet losses without needing

retransmissions [11, 82, 92]. These are computationally intensive

as packets need to be encoded by the sender and decoded by the

receiver.

We leverage the flexibility of PQUIC to implement a flexible

framework inspired by QUIC-FEC, a recent design and implemen-

tation of FEC in QUIC [69]. Our plugin sends redundancy (Repair

Symbols) to enable PQUIC receivers to recover lost QUIC pack-

ets without waiting for retransmissions and therefore meeting the

delay constraints. This design goes beyond the naive XOR-based

solution that was tested in Google-QUIC [40] before being removed

from the protocol since it led to negative experimental results [54].

Design & Implementation. Our FEC Plugin allows plugging

different FEC Frameworks, currently providing both block and

sliding-window-based codes. It adds several protocol operations

and can be extended to change the FEC Framework (block or sliding-

window-based), the erasure-correcting code (ECC) used and which

part of the data should be protected. Due to space limitations we

only consider the sliding-window-based encoding in this section.

Our frameworks attach passive pluglets to protocol operations that

send and receive packets. Each packet containing QUIC stream

frames that needs to be sent will be protected by sending Repair

Symbols (RS) later. On the receiver-side, the FEC-protected packets

are added to their respective FEC encoding window. The missing

packets of a window are recovered upon reception of RS.

Our FEC plugin adds two new types of frames, the FEC RS frame

and the FEC ID frame. The first contains a RS while the latter iden-

tifies the packets that are FEC-protected and their corresponding

window.

Using the new protocol operations added by our framework, we

provide two pluglets implementing different ECCs. The first one

implements a XOR code similar to the one proposed by Google [40].

A XOR RS is generated by doing an XOR operation between all the

packets in the encoding window. It is thus simple to compute and

can be used on lightweight clients. It can however only recover from

the loss of a single packet, as only one Repair Symbol can be gener-

ated from the same encoding window. The second code is a Random

Linear Code (RLC) [33]. A RLC RS is generated by computing a

linear combination with randomly chosen coefficients between all

the packets of the encoding window. Conversely to the XOR code,

this code can generate multiple Repair Symbols for the same set

of Source Symbols. It can thus handle the loss of more than one

packet per FEC window. However, its recovery process, i.e. solving

a system of linear equations whose unknowns are the lost packets,

is more computationally intensive. Other erasure-correcting codes

could easily be added by implementing new pluglets.

Our FEC plugin also includes other protocol operations to cus-

tomize its behavior. One can choose between protecting the entire

67

SIGCOMM ’19, August 19–23, 2019, Beijing, China Q. De Coninck, F. Michel, M. Piraux, F. Rochet et al.

10−1 100 101

DCT PQUICFEC/PQUIC

0.00

0.25

0.50

0.75

1.00

C
D

F

10−1 100 101

DCT PQUICFEC/PQUIC

0.00

0.25

0.50

0.75

1.00

1.5 KB 10 KB 50 KB 1 MB

Figure 10: DCT ratio between PQUIC with and without the
FEC plugin. Left: only the end of stream is protected. Right:
The whole stream is protected.

data transfer or only the last packets of a stream by using different

pluglets. The first mode can reduce the data delivery delay of real-

time applications while the second mode can reduce the Download

Completion Time (DCT) of a bulk data transfer by recovering from

tail losses without spending too much bandwidth for sending the

Repair Symbols. The number of FEC pluglets shown in Table 2

sums the number of pluglets of the window-based FEC Framework

with both XOR and RLC ECCs and the two transmission modes

described above.

Evaluation. In this section, we evaluate FEC in the In-Flight

Communications use-case, where the delay and losses are important

and FEC might improve the performances. This scenario explores

the parameters range {d1 ∈ [100, 400],bw1 ∈ [0.3, 10], l1 ∈ [1, 8]},

based on the experimental results of Rula et al. [86]. Figure 10 com-

pares the performance of downloading a regular HTTP object with

and without the FEC plugin. On the left graph only the end of the

data stream is protected (i.e., some Repair Symbols are only sent at

the end of the connection), while on the right graph the whole data

stream is protected, by sending 5 Repair Symbols every 25 Source

Symbols. As we can see, there is a benefit in only protecting the end

of the stream for larger file transfers. Protecting the whole trans-

fer requires more bandwidth which negatively impacts the DCT.

Packets lost in the middle of the transfer can be easily recovered

through retransmissions without a significant impact on the DCT.

Only sending redundancy at the end of the transfer considerably

lowers the negative impact on the bandwidth needed during the

connection and still reduces the DCT ratio when losses occur on

the last packets of the stream.

4.5 QUIC Multipath VPN
As demonstrated in the previous sections, our PQUIC plugins pro-

vide a range of extensions to the protocol. Furthermore, given the

isolation provided by PQUIC, it is possible to load different plug-

ins on a given PQUIC implementation provided that they do not

replace the same protocol operation. All the plugins discussed in

this section have orthogonal features. They can be combined to

provide more advanced services. As an example of the flexibility

of our approach, we demonstrate how the multipath plugin (see

Section 4.3) can be injected together with the Datagram plugin (see

Section 4.2).

We evaluate the performance of combining these two plugins in

a setting akin to the evaluation of the Datagram plugin but with

the two paths of Figure 7 and by exploring the default parameters

range. We measure the ratio of Download Completion Times (DCT)

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

DCT in/out

0.00

0.25

0.50

0.75

1.00

C
D

F

1.5 kB

10 kB

50 kB

1 MB

10 MB

Figure 11: DCT ratio of TCP in and outside a multipath
client-server tunnel.

Plugin x̃ Goodput σ /x̃ x̃ Load Time

PQUIC, no plugin 1104.2 Mbps 3.8% 0.0 ms

Monitoring (a) 1037.3 Mbps 4.6% 6.35 ms

Multipath 1-path (b) 756.6 Mbps 3.1% 8.28 ms

a and b 714.2 Mbps 4.4% 13.00 ms

FEC XOR EOS 661.5 Mbps 3.2% 11.70 ms

FEC RLC EOS 648.0 Mbps 4.5% 11.22 ms

FEC XOR 516.6 Mbps 3.2% 11.71 ms

FEC RLC 187.4 Mbps 1.1% 11.21 ms

Table 3: Benchmarking plugins over 10Gbps links (20 runs).

when running a single TCP
Cubic

file transfer inside and outside the

multipath VPN tunnel for different file sizes.

As expected, we do not observe any benefit in using multipath

for tunneling a short TCP transfer. However, as file size grows the

benefits of multipath become clear. By spreading the traffic over

the two symmetric paths, our combined plugins reach a DCT ratio

that tends to 0.55 as illustrated in Figure 11.

4.6 Plugin Overhead
The balance between flexibility and performance is a classical trade-

off. Google and the IETF have decided to runQUIC over UDP despite

the fact that Google measured that “QUIC’s server CPU-utilization
was about 3.5 times higher than TLS/TCP” [50]. The performance

gap between TCP and UDP has since been slightly reduced, but

UDP remains slower [18]. As PQUIC delegates the execution of the

plugins to the PRE, there is a processing overhead due to the JIT

compilation, the runtime verifications performed by our monitor at

each memory access, and the utilization of the API to safely access

PQUIC state variables.

Executing code in the PRE is less efficient than running native

code. With computationally expensive micro-benchmarks that are

not shown due to space limitations, we determined that the PRE is

two times slower than native code. Such overhead could probably

be mitigated by using a more optimized VM. Finally, our get/set

API is five times slower compared to direct memory accesses in

micro benchmarks.

To observe this performance impact inmore bandwidth-intensive

environments, we benchmark our PQUIC implementation by mea-

suring the completion time of a 1 GB download between two servers

with 10Gbps NICs running two Intel Xeon E5-2640 v3 CPUs. We

do not run the benchmarks on the lab setup used in Section 4 to

benefit from newer instructions sets, e.g, AES-NI, and to focus on

the plugin execution overhead. Note that PQUIC is single-threaded

and thus does not benefit from the additional CPU cores.

Table 3 reports the median achieved goodput, its relative vari-

ance and the plugin loading time for each plugins. PQUIC achieves

68

Pluginizing QUIC SIGCOMM ’19, August 19–23, 2019, Beijing, China

a median goodput of 1104.2 Mbps. This low performance compared

to TCP is partly due to the fact that picoquic, the implementation

on which PQUIC is based, has not been optimized for performance

yet. Indeed, as the QUIC specification is still evolving, there is lim-

ited interest in deeply optimizing a QUIC implementation at this

stage. Comparing PQUIC to the version of picoquic we based our

work on could allow measuring the impact of adding our approach

to a QUIC implementation. However, this is technically challeng-

ing, as PQUIC contains also performance improvements and bug

fixes to picoquic. There is thus no picoquic version matching the

current state of PQUIC. We could also compare the latest version

of picoquic with PQUIC. However, picoquic has substantially

evolved during our work, adding many degrees of freedom that

would confuse the performance evaluation.

When evaluating our monitoring plugin, we observe a goodput

reduction of 7% which matches the additional 8% CPU instructions

executed. We also observed a 10% increase of TLB load misses

caused by the context switches between PQUIC code and the PREs.

Given that the monitoring code complexity is low, these results

illustrate the overhead of adding several pluglets within the critical

path.

Benchmarking the multipath plugin over a single path achieves

a goodput of 756.6 Mbps. Several factors explain this reduction.

First, the acknowledgments are created by the plugin using MP_ACK
frames, which constitutes a significant part of the client execu-

tion time. Second, the multipath plugin provides a path manager

and a path-aware frame scheduler. This adds several new protocol

operations into the packet processing and creation loop.

Combining both the monitoring and multipath plugin results in

a 9% reduction compared to multipath only. This demonstrate that

plugins with orthogonal features are efficiently combined using

PQUIC.

The FEC plugin achieves lower rates, but two major factors affect

this result. First, the specific FEC scheme used impacts the compu-

tational cost, as RLC is more expensive than XOR. RLC complexity

is proportional to the size of the sending window. Second, FEC

introduces a bandwidth cost by generating repair symbols over

the network with the code rate 5/6, limiting the achieved goodput.

Restricting their generation to the end of the stream (EOS) reduces

this cost. Finally, because protocol plugins do not change the ex-

tensions specifications they implement, a peer could include them

natively to improve performance.

Inserting plugins takes time, as described in the last column of

Table 3. This time is proportional to the number of inserted pluglets

and their complexity. The instantiation of PREs (between 4 and 7

ms) is the major contributor to this loading time. Note that this

overhead is only present when there is no cached plugin available.

If the host previously loaded the plugin in a completed connection,

it can reuse its PREs as described in Section 2.5 to load the plugin

in less than 30 µs.
Plugins can be exchanged between PQUIC peers over the net-

work as described in Section 3.4. To limit the exchange overhead,

we rely on a ZIP compression scheme to transfer plugins. We take

advantage from the fact that pluglets from a given plugin can con-

tain duplicate code from common functions. Table 2 shows that

compressing the plugin reduces the exchanged overhead compared

to a plain exchange of the ELF files. Assuming the plugin exchange

starts at the beginning of the connection with an initial congestion

window of 16 KB, it lasts 2-3 RTTs on average.

5 VALIDATING PLUGINS
As explained in Section 3, PQUIC peers can request proofs of the

validity of protocol plugins when receiving them over a QUIC con-

nection. This validation is carried out by the Plugin Validators

described in Section 3. These validators can apply a range of tech-

niques, from manual inspection, privacy checks [27, 60], to fuzzing

[73] or using formal methods to validate the plugins submitted

by developers. Formal methods are attractive because they enable

validators to provide strong proofs for network protocols [5, 6, 12].

A very important property for any code is its (correct) termina-

tion. If a protocol plugin would be stuck in an infinite loop with

some specific input, then it would obviously be unsafe to use it in

a PQUIC implementation. To demonstrate the possibility of using

formal techniques to validate protocol plugins, we have used the

state-of-the-art T2 [9, 16] automated termination checker. This tool

checks termination of programs written in the T2 language imple-

menting a counter example-guided abstraction refinement proce-

dure. This procedure builds on the seminal works on transition

invariants (used to characterize termination) [77] and predicate

abstraction (used to simplify the representation) [78] to build a

proof of termination, or to disprove it. It is a counter-example based

approach starting from an abstracted version of the system, and

refining it until either no counter example to termination can be

found, or there is a clear proof that the system does not terminate.

The procedure largely depends on the abstraction built by the tool

and may not terminate. T2 has been extended to handle a large

fragment of Computational Tree Logic (CTL) [14, 15]. T2 concepts

are used in most existing verification tools for termination such as

Ultimate [98]. Verifying CTL reduces to an extended termination

proof of the program combined with CTL information in states.

Therefore, we focus here on the termination property.

Using the appropriate tools [57, 62], we checked the termination

of our pluglets by compiling their C source code to T2 programs.We

proved the termination of nearly all the pluglets of the monitoring

plugin. The T2 prover assumes the termination of external functions,

i.e., functions of the PQUIC implementation available through the

PRE. We also proved the termination of most of the pluglets of

our complex plugins, such as FEC (including the XOR ECC) and

multipath, as reported in Table 2. To obtain those proofs, we had to

slightly modify the source code of some pluglets to ease the proof

process. For example, we added an explicit size to null-terminated

linked lists and used it to bound the loops iterating over the lists.

Three of the multipath pluglets could not be proven due to their

complexity. Since T2 can export its termination proofs in files,

these could be attached to the plugins to be the proof-carrying code

proposed by Necula [72]. However, given the size and complexity of

these proofs, it is unreasonable to expect a PQUIC implementation

to download and process them when loading plugins.

6 RELATEDWORKS
Improving the flexibility of networks is a topic widely studied in

the literature. In the late nineties, active networks [93, 94] were

proposed as a solution to bring innovation inside the network.

69

SIGCOMM ’19, August 19–23, 2019, Beijing, China Q. De Coninck, F. Michel, M. Piraux, F. Rochet et al.

Various techniques were proposed to place bytecode inside packets

so that routers could execute it while forwarding them. PLAN [43],

ANTS [103] and router plugins [23] are examples of such active

techniques. Interest in active networks slowly decreased in the

early 2000s [10], but Software Defined Networks [66] and P4 [7]

can be considered as some of their successors.

Most of the work on active networks focused on the network

layer and only a few researchers addressed the extensibility of the

transport protocols. CTP [104] is transport protocol that is com-

posed of various micro-protocols that can be dynamically combined

at runtime through the Cactus [44] system. STP [74] enables the

utilization of code written in Cyclone [53] to extend a TCP imple-

mentation. icTCP [38] exposes TCP state information and control

to user-space applications to enable them to implement various

extensions. To our knowledge, these techniques have not been de-

ployed. We believe our approach can be deployed at a large scale

as it relies on QUIC which prevents middlebox interference and

enables a safe exchange of protocol plugins. Our plugins go beyond

the extensions proposed for STP and icTCP. CCP [71] provides a

framework to write congestion control schemes in transport pro-

tocols in a generic way. Although we did not describe it in this

paper, a new congestion controller could easily be implemented as

a protocol plugin.

To deploy protocol plugins, we design a secure plugin manage-

ment system that bares similarities to Certificate Transparency [59].

Our construction has the major difference that plugin developers do

not have to scan the entire tree in order to detect spurious plugins

linked to their owned name, but only the branches in which their

plugins lie.

Our Plugin Runtime Environment is based on a simple user-

space implementation of the eBPF VM [30, 49]. Other execution

environments that provide built-in memory checks such as CHERI-

MIPS [105] or WebAssembly [39] could be a valid alternative to our

PRE. Evaluating their relevance in the protocol plugin context is

part of our future work.

7 DISCUSSION
Extending the behavior of client-side protocol implementations is

difficult. First, deploying client updates can take several months

or even years. Second, it remains unpractical to tune a protocol

implementation when connections require very different services.

Currently, experimental QUIC extensions such as MP-QUIC [19]

andQUIC-FEC [69] are implemented as code-source forks. Updating

the base QUIC protocol and combining these extensions impose a

significant engineering and maintenance burden, which is currently

only affordable by large Internet companies. We envision PQUIC

implementations to be both simple and stable, providing connection-

specific extensions through plugins. PQUIC could enable developer

to focus on one implementation interface while still supporting very

different implementation internal architectures, such as zero-copy

and partial hardware offload.

Through its plugins, PQUIC provides quick deployments of ex-

tension prototypes. Still, the benefits of plugins for complex stan-

dardized extensions do not fade. For instance, while the FEC spec-

ification [83] describes its wire format, the algorithms defining

the correction scheme mainly depend on the application. Whereas

server implementations would likely provide built-in support of

the FEC extension for better performances, PQUIC provides more

flexible tuning at client-side than a simple on/off extension switch.

Similarly, for Multipath QUIC, plugins remain desirable to let the

server push algorithms to the client that are tailored to the applica-

tion needs, such as a specific path scheduler.

8 CONCLUSIONS AND FUTUREWORK
Extensibility is a key requirement for many protocol designs. We

leverage the unique features of QUIC to propose a new extensibility

model that we call Pluginized QUIC (PQUIC). A PQUIC implemen-

tation is composed of a set of protocol operations which can be

enriched or replaced by protocol plugins. These plugins are byte-
codes executed by a Protocol Runtime Environment that ensures

their safety and portability. The plugins can be dynamically loaded

by an application that uses PQUIC or received from the remote host

thanks to our secure plugin management system. We demonstrate

the benefits of this approach by implementing very different pro-

tocol plugins that add monitoring, multipath, VPN and Forward

Erasure Correction capabilities to QUIC.

This new protocol extensibility model opens several directions

for future work. First, a similar approach could be used for other

networking protocols in both the data plane and the control plane.

Second, new techniques ensuring the implementation conformance

to protocol specifications could be explored. These could leverage

the PQUIC interface to assess that a plugin composition is correct.

A third direction would be to revisit how we design protocols

robustness [84].

Another direction would be to develop new verification tech-

niques adapted to pluginized protocols. While our PRE detects and

prevents the execution of a range of incorrect and malicious pro-

grams, there remain areas of improvements in the domain of static

eBPF verification techniques.

Finally, PQUIC could be the starting point for the next version of

QUIC. This would require the IETF to also specify protocol opera-

tions to ensure the inter-operability of plugins among different im-

plementations. To achieve this, one must identify the minimal core

protocol operations required. This set should be simple enough to

allow very different implementations, having possibly very specific

internal architectures such as zero-copy support, to inter-operate.

Instead of adding more and more features to a monolithic imple-

mentation, developers could leverage the inherent extensibility of

a pluginized protocol to develop a simple set of kernel features that

are easy to extend.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd, Ankit Singla,

for their valuable comments. We also thank Christian Huitema, as

well as the IO Visor, clang and T2 teams and all the developers

of the open-source softwares without which this work wouldn’t

be possible. This work is partially supported by funding from the

Walloon Government (DGO6) within the MQUIC project, and the

Digitrans project (convention number 7618).

70

Pluginizing QUIC SIGCOMM ’19, August 19–23, 2019, Beijing, China

REFERENCES
[1] Nadav Amit and Michael Wei. 2018. The design and implementation of hyper-

upcalls. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). 97–112.
[2] Apple. 2018. Improving Network Reliability Using Multipath TCP.

(2018). https://developer.apple.com/documentation/foundation/

urlsessionconfiguration/improving_network_reliability_using_multipath_tcp.

[3] Praveen Balasubramanian. 2018. Usage for timestamp options in the wild. (Sept.

2018). https://mailarchive.ietf.org/arch/legacy/msg/tcpm/11522.

[4] Andrew Begel, Steven McCanne, and Susan L. Graham. 1999. BPF+: Exploiting

global data-flow optimization in a generalized packet filter architecture. ACM
SIGCOMM Computer Communication Review 29, 4 (1999), 123–134.

[5] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. 2017. Verified

models and reference implementations for the TLS 1.3 standard candidate. In

2017 IEEE Symposium on Security and Privacy (SP). IEEE, 483–502.
[6] Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith,

and Keith Wansbrough. 2005. Rigorous specification and conformance testing

techniques for network protocols, as applied to TCP, UDP, and sockets. In ACM
SIGCOMM Computer Communication Review, Vol. 35. ACM, 265–276.

[7] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer

Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and

David Walker. 2014. P4: Programming protocol-independent packet processors.

ACM SIGCOMM Computer Communication Review 44, 3 (2014), 87–95.

[8] Lawrence Brakmo. 2017. TCP-BPF: Programmatically tuning TCP behavior

through BPF. NetDev 2.2 (2017).
[9] Marc Brockschmidt and Heidy Khlaaf. 2019. T2 Temporal Prover. http://mmjb.

github.io/T2/.

[10] Ken Calvert. 2006. Reflections on network architecture: an active networking

perspective. ACM SIGCOMM Computer Communication Review 36, 2 (2006),

27–30.

[11] Georg Carle and Ernst W Biersack. 1997. Survey of error recovery techniques

for IP-based audio-visual multicast applications. IEEE Network 11, 6 (1997),

24–36.

[12] Andrey Chudnov, Nathan Collins, Byron Cook, Joey Dodds, Brian Huffman,

Colm MacCárthaigh, Stephen Magill, Eric Mertens, Eric Mullen, Tasiran Serdar,

Aaron Tomb, and EddyWestbrook. 2018. Continuous formal verification of Ama-

zon s2n. In International Conference on Computer Aided Verification. Springer,
430–446.

[13] Lucas Clemente and Marten Seemann. 2018. quic-go. Source code.

https://github.com/lucas-clemente/quic-go.

[14] Byron Cook, Alexey Gotsman, Andreas Podelski, Andrey Rybalchenko, and

Moshe Y. Vardi. 2007. Proving that programs eventually do something good.

ACM SIGPLAN Notices 42, 1 (2007), 265–276.
[15] Byron Cook, Eric Koskinen, and Moshe Vardi. 2011. Temporal property verifica-

tion as a program analysis task. In International Conference on Computer Aided
Verification. Springer, 333–348.

[16] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2006. TERMINA-

TOR: beyond safety. In International Conference on Computer Aided Verification.
Springer, 415–418.

[17] Scott A. Crosby and Dan S. Wallach. 2009. Efficient Data Structures For Tamper-

Evident Logging. In USENIX Security Symposium. 317–334.

[18] Willem de Bruijn and Eric Dumazet. 2018. Optimizing UDP for content delivery:

GSO, pacing and zerocopy. In Linux Plumbers Conference.
[19] Quentin De Coninck and Olivier Bonaventure. 2017. Multipath QUIC: Design

and Evaluation. In Proceedings of the 13th International Conference on emerging
Networking EXperiments and Technologies. ACM, 160–166.

[20] Quentin De Coninck and Olivier Bonaventure. 2018. Multipath Extension for
QUIC. Internet-Draft draft-deconinck-quic-multipath-01. Internet Engineering

Task Force.

[21] Quentin De Coninck and Olivier Bonaventure. 2019. The Case for Protocol
Plugins. Technical Report. https://hdl.handle.net/2078.1/216493

[22] Piet De Vaere, Tobias Bühler, Mirja Kühlewind, and Brian Trammell. 2018. Three

Bits Suffice: Explicit Support for Passive Measurement of Internet Latency in

QUIC and TCP. In Proceedings of the Internet Measurement Conference 2018. ACM,

22–28.

[23] Dan Decasper, Zubin Dittia, Guru Parulkar, and Bernhard Plattner. 1998. Router

plugins: A software architecture for next generation routers. ACM SIGCOMM
Computer Communication Review 28, 4 (1998), 229–240.

[24] Martin Duke, Robert Braden, Wesley M. Eddy, Ethan Blanton, and Alexander

Zimmermann. 2015. A Roadmap for Transmission Control Protocol (TCP)

Specification Documents. RFC7414. (Feb. 2015), 57 pages.

[25] Tom Dunigan, Matt Mathis, and Brian Tierney. 2002. A TCP tuning daemon. In

SC’02: Proceedings of the 2002 ACM/IEEE Conference on Supercomputing. IEEE,
1–16.

[26] Jake Edge. 2015. A seccomp overview. Linux Weekly News (September 2015).

https://old.lwn.net/Articles/656307/.

[27] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. 2011.

PiOS: Detecting Privacy Leaks in iOS Applications. In Network and Distributed

System Security Symposium (NDSS’11). 177–183.
[28] Ronald Aylmer Fisher. 1935. The design of experiments. Oliver & Boyd.

[29] Tobias Flach, Nandita Dukkipati, Andreas Terzis, Barath Raghavan, Neal Card-

well, Yuchung Cheng, Ankur Jain, Shuai Hao, Ethan Katz-Bassett, and Ramesh

Govindan. 2013. Reducing web latency: the virtue of gentle aggression. In ACM
SIGCOMM Computer Communication Review, Vol. 43. ACM, 159–170.

[30] Matt Fleming. 2017. A thorough introduction to eBPF. Linux Weekly News
(December 2017). https://old.lwn.net/Articles/740157/.

[31] Sally Floyd and Van Jacobson. 1995. Link-sharing and resource management

models for packet networks. IEEE/ACM transactions on Networking 3, 4 (1995),

365–386.

[32] Alan Ford, Costin Raiciu, Mark Handley, and Olivier Bonaventure. 2013. TCP

Extensions for Multipath Operation with Multiple Addresses. RFC 6824. (Jan.

2013), 64 pages. https://www.rfc-editor.org/rfc/rfc6824.txt

[33] Christina Fragouli, Jean-Yves Le Boudec, and Jörg Widmer. 2006. Network

coding: an instant primer. ACM SIGCOMM Computer Communication Review
36, 1 (2006), 63–68.

[34] Ron Frederick, Stephen L. Casner, Van Jacobson, and Henning Schulzrinne. 1996.

RTP: A Transport Protocol for Real-Time Applications. RFC 1889. (Jan. 1996).

https://doi.org/10.17487/RFC1889

[35] Kensuke Fukuda. 2011. An analysis of longitudinal TCP passive measurements

(short paper). In International Workshop on Traffic Monitoring and Analysis.
Springer, 29–36.

[36] Nicolas Geoffray, Gaël Thomas, Julia Lawall, Gilles Muller, and Bertil Folliot.

2010. VMKit: a substrate for managed runtime environments. ACM Sigplan
Notices 45, 7 (2010), 51–62.

[37] Brendan Gregg. 2015. eBPF: One Small Step. (May 2015).

http://www.brendangregg.com/ blog/2015-05-15/ebpf-one-small-step.html.

[38] Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

2004. Deploying Safe User-Level Network Services with icTCP. In OSDI. 317–
332.

[39] AndreasHaas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,

Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the web

up to speed with WebAssembly. ACM SIGPLAN Notices 52, 6 (2017), 185–200.
[40] Ryan Hamilton, Janardhan Iyengar, Ian Swett, and Alyssa Wilk. 2016. QUIC:

A UDP-Based Secure and Reliable Transport for HTTP/2. Internet-Draft draft-
hamilton-early-deployment-quic-00.

[41] Stephen Hemminger. 2005. Network emulation with NetEm. In Australia’s
National Linux Conference. 18–23.

[42] Benjamin Hesmans, Fabien Duchene, Christoph Paasch, Gregory Detal, and

Olivier Bonaventure. 2013. Are TCP extensions middlebox-proof?. In Proceed-
ings of the 2013 workshop on Hot topics in middleboxes and network function
virtualization. ACM, 37–42.

[43] Michael Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter, and Scott

Nettles. 1998. PLAN: A packet language for active networks. ACM SIGPLAN
Notices 34, 1 (1998), 86–93.

[44] Matti A. Hiltunen, Richard D. Schlichting, Xiaonan Han, Melvin M. Cardozo,

and Rajsekhar Das. 1999. Real-time dependable channels: Customizing QoS

attributes for distributed systems. IEEE Transactions on Parallel and Distributed
Systems 10, 6 (1999), 600–612.

[45] Michio Honda, Felipe Huici, Costin Raiciu, Joao Araujo, and Luigi Rizzo. 2014.

Rekindling network protocol innovation with user-level stacks. ACM SIGCOMM
Computer Communication Review 44, 2 (2014), 52–58.

[46] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh, Mark

Handley, and Hideyuki Tokuda. 2011. Is it still possible to extend TCP?. In

Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement
conference. ACM, 181–194.

[47] Osamu Honda, Hiroyuki Ohsaki, Makoto Imase, Mika Ishizuka, and Junichi

Murayama. 2005. Understanding TCP over TCP: effects of TCP tunneling on

end-to-end throughput and latency. In Performance, Quality of Service, and
Control of Next-Generation Communication and Sensor Networks III, Vol. 6011.
International Society for Optics and Photonics, 60110H.

[48] Christian Huitema. 2018. picoquic. Source code. https://github.com/

private-octopus/picoquic.

[49] IO Visor Project. 2018. Userspace eBPF VM. Source code.

https://github.com/iovisor/ubpf.

[50] Janardhan Iyengar and Ian Swett. 2018. QUIC: Developing and Deploying a

TCP Replacement for the Web. In Netdev 0x12.
[51] Jana Iyengar and Martin Thomson. 2018. QUIC: A UDP-Based Multiplexed and

Secure Transport. Internet-Draft draft-ietf-quic-transport-14. Work in Progress.

[52] Van Jacobson, Robert Braden, and Dave Borman. 1992. TCP Extensions for High

Performance. RFC1323. (May 1992), 37 pages.

[53] Trevor Jim, Gregory Morrisett, Dan Grossman, Michael Hicks, James Cheney,

and Yanling Wang. 2002. Cyclone: A Safe Dialect of C. In USENIX Annual
Technical Conference, General Track. 275–288.

[54] Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-Rotaru, and

Alan Mislove. 2017. Taking a long look at QUIC: an approach for rigorous

evaluation of rapidly evolving transport protocols. In Proceedings of the 2017

71

https://developer.apple.com/documentation/foundation/urlsessionconfiguration/improving_network_reliability_using_multipath_tcp
https://developer.apple.com/documentation/foundation/urlsessionconfiguration/improving_network_reliability_using_multipath_tcp
http://mmjb.github.io/T2/
http://mmjb.github.io/T2/
https://hdl.handle.net/2078.1/216493
https://www.rfc-editor.org/rfc/rfc6824.txt
https://doi.org/10.17487/RFC1889
https://github.com/private-octopus/picoquic
https://github.com/private-octopus/picoquic

SIGCOMM ’19, August 19–23, 2019, Beijing, China Q. De Coninck, F. Michel, M. Piraux, F. Rochet et al.

Internet Measurement Conference. ACM, 290–303.

[55] Jim Keniston, Prasanna S. Panchamukhi, and Masami Hiramatsu. 2016. Kernel

probes (kprobes). (2016). Documentation provided with the Linux kernel

sources.

[56] Ben Kenwright. 2012. Fast Efficient Fixed-Size Memory Pool: No Loops and

No Overhead. In The Third International Conference on Computational Logics,
Algebras, Programming, Tools, and Benchmarking.

[57] Heidy Khlaaf, Marc Brockschmidt, Stephan Falke, Deepak Kapur, and

Carsten Sinz. 2015. llvm2KITTeL tailored for T2. Source code.

https://github.com/hkhlaaf/llvm2kittel.

[58] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,

Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey,

Jeremy Dorfman, Jim Roskind, Kulik, Joanna, Patrik Westin, Raman Tenneti,

Robbie Shade, Ryan Hamilton, Victor Vasiliev, Wan-Teh Chang, and Zhongyi

Shi. 2017. The QUIC transport protocol: Design and Internet-scale deployment.

In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication. ACM, 183–196.

[59] Ben Laurie, Adam Langley, and Emilia Kasper. 2013. Certificate Transparency.

RFC 6962. (June 2013), 27 pages. https://www.rfc-editor.org/rfc/rfc6962.txt

[60] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,

Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick

McDaniel. 2015. IccTA: Detecting inter-component privacy leaks in Android

apps. In Proceedings of the 37th International Conference on Software Engineering.
IEEE Press, 280–291.

[61] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2014. The Java
virtual machine specification. Pearson Education.

[62] LLVM Team. 2019. Clang: a C language family frontend for LLVM. (2019).

https://clang.llvm.org/.

[63] Daniel Lukaszewski and Geoffrey Xie. 2017. Multipath transport for virtual

private networks. In 10th USENIX Workshop on Cyber Security Experimentation
and Test (CSET 17). USENIX.

[64] Matt Mathis, John Heffner, and Raghu Reddy. 2003. Web100: extended TCP in-

strumentation for research, education and diagnosis. ACM SIGCOMM Computer
Communication Review 33, 3 (2003), 69–79.

[65] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. 1996. TCP

Selective Acknowledgment Options. RFC2018. (Oct. 1996), 12 pages.

[66] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-

terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:

enabling innovation in campus networks. ACM SIGCOMM Computer Communi-
cation Review 38, 2 (2008), 69–74.

[67] Marcela Melara, Aaron Blankstein, Joseph Bonneau, Edward Felten, and Michael

Freedman. 2015. CONIKS: Bringing Key Transparency to End Users. In USENIX
Security Symposium, Vol. 2015. 383–398.

[68] Ralph C. Merkle. 1987. A digital signature based on a conventional encryption

function. In Conference on the theory and application of cryptographic techniques.
Springer, 369–378.

[69] François Michel, Quentin De Coninck, and Olivier Bonaventure. 2019. QUIC-

FEC: Bringing the benefits of Forward Erasure Correction to QUIC. IFIP Net-
working (2019).

[70] Nagendra Modadugu and Eric Rescorla. 2004. The Design and Implementa-

tion of Datagram TLS. In Network and Distributed System Security Symposium
(NDSS’04).

[71] Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal, Srinivas

Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari Balakrishnan. 2018.

Restructuring endpoint congestion control. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication. ACM, 30–43.

[72] George C. Necula. 2002. Proof-carrying code. Design and implementation. In

Proof and system-reliability. Springer, 261–288.
[73] Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. MoonShine: Optimiz-

ing OS Fuzzer Seed Selection with Trace Distillation. In 27th USENIX Security
Symposium (USENIX Security 18). 729–743.

[74] Parveen Patel, Andrew Whitaker, David Wetherall, Jay Lepreau, and Tim Stack.

2003. Upgrading transport protocols using untrusted mobile code. ACM SIGOPS
Operating Systems Review 37, 5 (2003), 1–14.

[75] Tommy Pauly, Eric Kinnear, and David Schinazi. 2018. An Unreliable Datagram
Extension to QUIC. Internet-Draft draft-pauly-quic-datagram-01.

[76] Maxime Piraux, Quentin De Coninck, and Olivier Bonaventure. 2018. Observing

the Evolution of QUIC Implementations. In Proceedings of the Workshop on the
Evolution, Performance, and Interoperability of QUIC. ACM, 8–14.

[77] Andreas Podelski and Andrey Rybalchenko. 2004. Transition invariants. In

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science,
2004. IEEE, 32–41.

[78] Andreas Podelski and Andrey Rybalchenko. 2005. Transition predicate abstrac-

tion and fair termination. ACM SIGPLAN Notices 40, 1 (2005), 132–144.
[79] Jon Postel. 1981. Transmission Control Protocol. RFC793. (Sept. 1981), 91 pages.

[80] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda,

Fabien Duchene, Olivier Bonaventure, and Mark Handley. 2012. How hard can

it be? Designing and implementing a deployable multipath TCP. In Proceedings

of the 9th USENIX conference on Networked Systems Design and Implementation.
USENIX Association, 399–412.

[81] K. K. Ramakrishnan, Sally Floyd, and David L. Black. 2001. The Addition of

Explicit Congestion Notification (ECN) to IP. RFC 3168. (Sept. 2001), 63 pages.

Updated by RFCs 4301, 6040, 8311.

[82] Luigi Rizzo. 1997. Effective erasure codes for reliable computer communication

protocols. ACM SIGCOMM computer communication review 27, 2 (1997), 24–36.

[83] Vincent Roca, Ian Swett, and Marie-Jose Montpetit. 2019. Sliding Window
Random Linear Code (RLC) Forward Erasure Correction (FEC) Schemes for QUIC.
Internet-Draft draft-roca-nwcrg-rlc-fec-scheme-for-quic-01. IETF Secretariat.

[84] Florentin Rochet, Olivier Bonaventure, and Olivier Pereira. 2019. Flexible Anony-

mous Network. In 12thWorkshop on Hot Topics in Privacy Enhancing Technologies
(HotPETs 2019).

[85] John P. Rula, Fabián E. Bustamante, and David R. Choffnes. 2016. When IPs

Fly: A Case for Redefining Airline Communication. In Proceedings of the 17th
International Workshop on Mobile Computing Systems and Applications. ACM,

9–14.

[86] John P. Rula, James Newman, Fabián E. Bustamante, Arash Molavi Kakhki,

and David Choffnes. 2018. Mile High WiFi: A First Look At In-Flight Internet

Connectivity. In Proceedings of the 2018 World Wide Web Conference on World
Wide Web. International World Wide Web Conferences Steering Committee,

1449–1458.

[87] Jan Rüth, Ingmar Poese, Christoph Dietzel, and Oliver Hohlfeld. 2018. A First

Look at QUIC in the Wild. In International Conference on Passive and Active
Network Measurement. Springer, 255–268.

[88] Jenny Santiago, Magalie Claeys-Bruno, and Michelle Sergent. 2012. Construc-

tion of space-filling designs using WSP algorithm for high dimensional spaces.

Chemometrics and Intelligent Laboratory Systems 113 (2012), 26–31.
[89] Madhavapeddi Shreedhar and George Varghese. 1996. Efficient fair queuing

using deficit round-robin. IEEE/ACM Transactions on networking 4, 3 (1996),

375–385.

[90] Emile Stephan, Mathilde Cayla, Arnaud Braud, and Fred Fieau. 2017. QUIC

Interdomain Troubleshooting. (July 2017). Internet draft, draft-stephan-quic-

interdomain-troubleshooting-00.txt, work in progress.

[91] Randall R. Stewart, Qiaobing Xie, Ken Morneault, Chip Sharp, Hanns Juergen

Schwarzbauer, Tom Taylor, Ian Rytina, Malleswar Kalla, Lixia Zhang, and Vern

Paxson. 2000. Stream Control Transmission Protocol. RFC2960. (Oct. 2000),

134 pages.

[92] Jay Kumar Sundararajan, Devavrat Shah, Muriel Médard, Szymon Jakubczak,

Michael Mitzenmacher, and João Barros. 2011. Network coding meets TCP:

Theory and implementation. Proc. IEEE 99, 3 (2011), 490–512.

[93] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J. Wether-

all, and Gary J. Minden. 1997. A survey of active network research. IEEE
communications Magazine 35, 1 (1997), 80–86.

[94] David L. Tennenhouse and David J. Wetherall. 1996. Towards an active network

architecture. ACM SIGCOMM Computer Communication Review 26, 2 (1996),

5–17.

[95] Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopoulos, Charalampos Pa-

pamanthou, Nikos Triandopoulos, and Srinivas Devadas. 2018. Transparency

Logs via Append-only Authenticated Dictionaries. Cryptology ePrint Archive,

Report 2018/721. (2018). https://eprint.iacr.org/2018/721.

[96] Brian Trammell andMirja Kuehlewind. 2018. The QUIC Latency Spin Bit. Internet-
Draft draft-ietf-quic-spin-exp-01.

[97] Viet Hoang Tran and Olivier Bonaventure. 2019. Beyond socket options: making

the Linux TCP stack truly extensible. IFIP Networking (2019). http://hdl.handle.

net/2078.1/214176

[98] Ultimate Team. 2018. Ultimate. Source code. https://github.com/ultimate-

pa/ultimate.

[99] Tobias Viernickel, Alexander Froemmgen, Amr Rizk, Boris Koldehofe, and Ralf

Steinmetz. 2018. Multipath QUIC: A deployable multipath transport protocol.

In 2018 IEEE International Conference on Communications (ICC). IEEE, 1–7.
[100] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1994.

Efficient software-based fault isolation. ACM SIGOPS Operating Systems Review
27, 5 (1994), 203–216.

[101] Kunshan Wang, Yi Lin, Stephen M. Blackburn, Michael Norrish, and Antony L.

Hosking. 2015. Draining the swamp: Micro virtual machines as solid founda-

tion for language development. In LIPIcs-Leibniz International Proceedings in
Informatics, Vol. 32. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[102] Magnus Westerlund. 2018. Proposal for adding ECN support to QUIC. (2018).

https://github.com/quicwg/base-drafts/pull/1372.

[103] David J. Wetherall, John V. Guttag, and David L. Tennenhouse. 1998. ANTS:

A toolkit for building and dynamically deploying network protocols. In Open
Architectures and Network Programming, 1998 IEEE. IEEE, 117–129.

[104] Gary Wong, Matti Hiltunen, and Richard Schlichting. 2001. A configurable and

extensible transport protocol. In Proceedings IEEE INFOCOM 2001. Conference
on Computer Communications. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Society. IEEE, 319–328.

72

https://www.rfc-editor.org/rfc/rfc6962.txt
https://eprint.iacr.org/2018/721
http://hdl.handle.net/2078.1/214176
http://hdl.handle.net/2078.1/214176

Pluginizing QUIC SIGCOMM ’19, August 19–23, 2019, Beijing, China

[105] Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W. Moore,

JonathanAnderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Norton,

and Michael Roe. 2014. The CHERI capability model: Revisiting RISC in an age

of risk. In ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA). IEEE, 457–468.

[106] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis

Ormandy, Shiki Okasaka, NehaNarula, andNicholas Fullagar. 2009. Native client:

A sandbox for portable, untrusted x86 native code. In 30th IEEE Symposium on
Security and Privacy. IEEE, 79–93.

Appendices are supporting materials that have not been peer

reviewed.

A RESEARCH REPRODUCIBILITY
PQUIC and all the plugins presented in the paper are available

at https://pquic.org. The scripts required to reproduce the results

presented are also made available.

B DETAILS ON THE PLUGIN MANAGEMENT
SYSTEM

B.1 Storing STRs
Each PV signs a root at each epoch and publishes the root to all

participants through the PR which would act as a provider for those

roots, or through direct connections. STRs from different epochs

should be stored in an append-only log structure, preventing any

tampering from the PR and PVs. CONIKS [67] suggests using a

hashchain, which makes verification of the data structure to audit

to be of linear complexity with the number of epochs. Other solu-

tions with various advantages and inconveniences are possible too,

such as a History Tree [17] or append-only authenticated dictio-

naries [95]. Fundamentally, the performance of the data structure

to handle the history of roots does not matter much since an epoch,

yet undefined in this work, is assumed to last several hours, which

should not make the data structure’s scaling an issue. The real issue

is to notice the equivocation in a reasonable time. Noticing equivo-

cation requires secure communications with other participants or

auditors of the system, which might not be automated.

B.2 Security Analysis
Our threat model assumes that any participant to the distributed

system of trust for plugin management may act maliciously. A

developer may publish malicious code; a PQUIC peer may want to

inject illegitimate code. PVs may give false assertions on the validity

of a plugin. The PR may equivocate on the STRs received from PVs.

Both PR and PVs may modify the code served, or impersonate the

developers. We claim to have designed a transparent system such

that part of those issues are efficiently and immediately detected,

and the others are eventually detected, leading to a loss of reputation

for the culprit. In this security analysis, we focus on explaining

the security role of developer and PQUIC lookups, how we obtain

human-readable names for plugins and non-equivocation.

B.2.1 The role of the lookups. Lookups to the bindings handled

by PVs are performed from different parties for different security

guarantees. On the one hand, each developer performs a developer
lookup once for each of his plugin they own and at each epoch to

verify the presence of spurious plugins. On the other hand, PQUIC

peers may do a PQUIC user lookup to the validator to obtain proofs

of consistency in order to inject a plugin to the peer.

For developer lookup, the developer sends the name of a plugin

to a PV and receives back an authentication path as in Figure 5,

plus the clear text for all other bindings from the linked-list located

at the same leaf (i.e., the elements pluginname | | plugincode). Then,

to detect a spurious plugin, the developer performs the following

checks: 1) verify in the linked-list of plugins whether any other

name is different from his plugin; 2) compute the leaf hash value, as

described in Section 3.3 and check that it matches the one received

in the authentication path; 3) compute the root of the tree and

checks that the root matches the STR of the current epoch. If any

of these checks fails, the developer must report an alert. Each de-

veloper performing their developer lookup is a necessary condition

to obtain the "secure human-readable name for plugins" property

that we prove below.

For efficiency reasons, the amount of information in the output

of the validator is not the same for PQUIC user lookup. For PQUIC
user lookup (which returns a proof of consistency), the difference

with a developer lookup only lays down in the data sent back from

the PV. The PV sends back the requested binding in clear text but

does not for any other binding within the linked-list. For any other

binding located at the same leaf, the PV sends back its hash value

to reduce the bandwidth consumption. Consequently of this band-

width optimization, the secure human-readable property requires

the developer to correctly perform his check and report its validity

at the PR (if multiple bindings are located at the leaf). Yet, one

remains to prove that there exist only one valid authentication path

in the tree for a given plugin (see below).

B.2.2 Human-readable names for plugins. The following theo-
rems help us to prove that our system offers secure human readable

names for plugins.

Theorem B.1. Under the assumption thatH is a uniformly random
function, there exists only one valid authentication path in the tree
for a given plugin.

Proof. Let RO : {0, 1}∗ → {0, 1}n an oracle access to an uni-

formly random function. Let A an adversary trying to compute an

authentication path for the bindingm′ = pluдinname | |pluдincodeA .

To provide a valid but fake authentication path to the leaf located

at the truncated bits of H(pluдinname), A has to findm′
givenm

such that:

H(m | |m′) = H(m′ | |m) (1)

Assuming H(x) := RO(x), A has to perform q queries, each

of probability
1

2
n to verify equation 1. By the union bound, the

adversary succeeds with probability
q
2
n = negl(n). □

Theorem B.2. Under the assumption that H is a collision-resistant
hash function, c a constant value representing an empty leaf different
for each PV and n < m with n the number of plugins and m the
number of leaves, then rooti is unique for PV i .

Proof. Let TR a function computing the Tree Root from succes-

sive applications of H. If H : {0, 1}∗ → {0, 1}n , then the probability

for rooti and rootj to collide is
1

2
n . By the union bound, we have

73

https://pquic.org

SIGCOMM ’19, August 19–23, 2019, Beijing, China Q. De Coninck, F. Michel, M. Piraux, F. Rochet et al.

the probability that any collision happens for the root of PVs to be

q2

2
n for q attempts.

Consequently, we can claim that the success for an adversary

A having access to a random oracle such that TR(x) := RO(x) is
bounded by:

Pr

[
ARO (·) → (x ,x ′),RO(x) = RO(x ′)

]
≤

q2

2
n = negl(n)

□

Under the assumption that developers perform lookups, and

because it exists only one valid authentication path in the tree for

a given plugin, and because each root is unique, a plugin name

matches unequivocally a legitimate bytecode with the security

properties offered by a PV.

B.2.3 Non-Equivocation. Consider an attack where a PV wants

a particular PQUIC user to plug a malicious plugin. To achieve

that, the PV needs to add this plugin to his tree. However, doing

so exposes the malicious act to the developer checking the valid-

ity of the plugins linked to his namespace. To avoid this, the PV

may build a second Merkle Tree and expose the correct one when

the developer performs a lookup and the malicious one for the

PQUIC user. However, it is computationally infeasible to build two

different trees that hash to the same root. Therefore, under the

assumption that PQUIC users can eventually compare their root

value with one of the other participants or independent auditors,

our system provides non-equivocation. That is, PVs are not able

to maintain different Merkle Trees (hence different STRs) without

being eventually pilloried.

B.3 Efficiency Analysis
Apart from offering transparency and achieving the security goals

described in Section 3.2, our plugin management system has to

provide good performance for PQUIC users as we want the plugins

to be loaded as fast as possible.

When a plugin is not in the PQUIC cache, we have to verify the

proof of consistency received from the peer. This verification has a

complexity of Θ(loд(n) + α) to recompute the root value and com-

pare it to the known STR, with n the number of plugins handled by

the PV and α the load factor. To have a better intuition of the CPU

cost, we may compare the efficiency of the proof of consistency

check with traditional signature schemes that are usually consid-

ered for certification. Let Vr f y be the signature verification of a

signature scheme. In theory, the computational cost of checking

the proof of consistency (O(d) applications of a hash function with

d the depth of the tree) is faster by a factor of

time(Vr f y(H (m)))

time(H (m)) + d ∗ time(H (h0 | |h1))

than the verification of an authoritative signature on messagem
withh0,h1 as the hash output of both subtrees, for a similar security

level (e.g., using SHA256 and ECDSA over F256). Given that Vr f y
must hash the messagem, which is in our context the whole binding

m = pluдinname | |pluдincode , and given that the time to compute

H scales linearly with the size of the input, we have

time(H (m)) >> d ∗ time(H (h0 | |h1))
since size(m) >> d ∗ size(h0 | |h1). The improvement factor on tra-

ditional signature schemes can then be written as:

≈
time(H (m)) + time(Vr f y)

time(H (m))

The communication cost between participants scales logarithmi-

cally with the number of plugins handled by a PV, and the informa-

tion can be cached. More precisely, the bandwidth consumption for

the proof of consistency has a complexity of Θ(λ(loд(n) + α)), with
λ the size of H’s output. At the PV, the binary tree can be computed

within a few seconds for millions of entries [67]. Knowing that

the Merkle Tree must be recomputed at each epoch (which can

be hours or days, and must be decided by the system), the time

required by a PV to build its Merkle Tree is negligible.

74

	Abstract
	1 Introduction
	2 Local Plugin Insertion
	2.1 Pluglet Runtime Environment (PRE)
	2.2 Protocol Operations
	2.3 Attaching Protocol Plugins
	2.4 Interacting with Applications
	2.5 Reusing Plugins across Connections

	3 Exchanging plugins
	3.1 Distributing Trust
	3.2 Threat Model and Security Goals
	3.3 System Overview
	3.4 Exchanging QUIC plugins

	4 Use Cases
	4.1 Monitoring PQUIC
	4.2 QUIC VPN
	4.3 Multipath QUIC
	4.4 Forward Erasure Correction QUIC
	4.5 QUIC Multipath VPN
	4.6 Plugin Overhead

	5 Validating Plugins
	6 Related Works
	7 Discussion
	8 Conclusions and Future Work
	References
	A Research Reproducibility
	B Details on the Plugin Management System
	B.1 Storing STRs
	B.2 Security Analysis
	B.3 Efficiency Analysis

