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ABSTRACT

Transport protocols such as TCP, SCTP or QUIC are sup-
posedly extensible thanks to their flexible packet formats.
However, implementations also need to be modified to sup-
port such extensions and changing those extensions remains
difficult. Furthermore, it is difficult for an application to finely
tune the underlying protocol to its needs.

Our proposed protocol plugins address these two needs.
A protocol plugin is a small executable code which can be
dynamically plugged inside an implementation on a per-con-
nection basis. We first propose a methodology to modify an
existing implementation to support protocol plugins. We ap-
ply this methodology to two different QUIC implementations
written in C and Go. We then demonstrate how servers can
extend client stacks with protocol plugins that implement Tail
Loss Probe, Explicit Congestion Notification, pacing rate and
different acknowledgement strategies. We then discuss how
protocols should leverage protocol plugins.

1 INTRODUCTION

Extensibility is an important feature that is found in success-
ful Internet protocols, including TCP, HTTP, TLS, ... To be
expandable, a protocol must use an extensible syntax for its
messages. TCP [42] relies on TCP options. These options are
structured as variable-length Type-Length-Value fields which
can be placed in the extended segment header. Over the years,
a variety of TCP options have been defined [13]. However,
the limited size of the TCP extended header is now a severe
constraint on the extensibility of TCP. SCTP [48] solved this
problem by encoding each packet as a fixed header followed
by a series of chunks. The QUIC protocol [34], went one step
further by introducing frames and 32 bits version numbers.
Given their extensible syntax, it should be simple to extend
transport protocols. This is true when considering a single im-
plementation. However, deploying a TCP extension is much
more challenging [30]. It requires coordination among im-
plementers who need to agree on the specification of the
modification, implement it correctly and then ship the mod-
ified code. This process takes several years or more. It took
almost a decade to fully deploy TCP Selective Acknowledge-
ments, Window Scale and Timestamps [22]. The deployment
of TCP Fast Open [8] is still ongoing [49]. In the early days,
support for a new extension was required on both clients and
servers. Nowadays, middleboxes such as firewalls or load
balancers also need to be upgraded to enable the deployment
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of new protocol extensions [30, 47]. This has resulted in a
growing ossification of the transport layer.

QUIC addresses this ossification in two ways [34]. First,
QUIC encrypts and authenticates almost all packets and most
of its packet headers. This prevents middleboxes from inter-
fering with the protocol itself. Second, QUIC is implemented
above UDP as a regular application or a library. This sim-
plifies the deployment of new versions of the protocol and
contrasts with TCP and SCTP that are usually implemented
inside the operating system and require OS upgrades to deploy
new features. Measurements indicate that Google changes the
QUIC version used by Chrome several times per year [46].
However, only the (few large) organisations that implement
and deploy both servers and clients can extend their QUIC
stack so easily.

Another problem with current transport protocols is that
it is very difficult for an application to tune the underlying
implementation to its needs. A chat application does not need
the same features as a video streaming application or a bulk
transfer. TCP stacks [15] support a small number of socket
options which can be applied on a per-connection basis (e.g.,
enabling the Nagle algorithm, configuring keep-alives or the
windows) and system-wide configuration parameters (e.g.,
activation of TCP extensions, maximum windows, or conges-
tion control mechanisms).

In this paper, we argue for truly extensible transport proto-
cols. We believe that implementations should be easily cus-
tomisable by both peers on a per-connection basis. In Sect. 2,
we revisit protocol implementations by introducing anchors
specific to protocol operations in order to inject plugin code
run inside virtual machines. Section 3 explores the feasibility
and the potential overhead of this design by instrumenting two
different QUIC implementations. Section 4 concludes this
paper by discussing open questions raised by our proposed
design.

2 PROTOCOL PLUGINS

In this section, we advocate for a design that enables protocol
implementations to be much more customisable by support-
ing the insertion of protocol plugins. A protocol plugin is a
small block of executable code which can be dynamically
inserted in an implementation to modify its operation on a
per-connection basis. For this, we first need to identify the
core operations in the protocol. Implementations then require
anchors where plugins can be inserted. Finally, plugins need
an execution environment in which they can be run.
Pluggable Operations. To support protocol plugins we
first need to identify and instrument the main operations of an
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Figure 1: Simplified description of the sending process of
QUIC.

implementation. From the protocol specification and its imple-
mentation, we identify high-level operations. These perform
actions that produce a given outcome. We call these high-level
procedures pluggable operations. Each pluggable operation
has its own specification. A first example of pluggable opera-
tion is the congestion control algorithm. It reacts to specific
events (e.g., packet loss, packet marking, rtt measurements,
...) and updates the congestion window as well as its own
state. Various congestion control schemes [6, 27] have been
implemented as modules in the Linux kernel. Our proposal
matches calls for increased flexibility with congestion control
schemes [37]. Another example is the computation of the
retransmission timer. Various methods have been proposed
to compute this timer [40, 41, 50]. Other operations are also
made pluggable, such as packet sending, packet reception or
the generation of protocol messages.

As a more detailed example, let us consider how a QUIC
implementation sends frames. The QUIC specification [33]
does not yet include a Finite State Machine (FSM) with ex-
plicit states and transitions, but it is possible to infer them
from the specification and the available implementations. Fig-
ure 1 shows a simplified overview of the operations performed
when sending a QUIC packet. This process can be triggered
by the reception of a (processed) packet, a request to transmit
application data when congestion window is open or the expi-
ration of a timer. At this point, a QUIC implementation first
checks whether an outstanding packet needs to be retransmit-
ted. Then, the content of the packet, i.e., the public header
and the frames, is generated. These frames can either be new
ones or retransmissions, depending on the outcome of the
first operation. Then, the packet is protected and sent over the
network. Finally, since QUIC ensures reliable delivery, the
sending host sets the retransmission timer.

In this example, we identify five pluggable operations: Se-
lectRetransmission, GenerateHeader, GenerateFrames, Send-
Packet and SetTimer. Implementations provide a default be-
haviour for each pluggable operation. This behaviour can
be bypassed by the injecting of plugins. For instance, an ex-
tension can compute a different value for the retransmission
timer by inserting a plugin for the SetTimer operation. In

addition, transitions between the operations are also made
pluggable. By default, these transitions are no-ops.

Inserting Plugins. We use the name plugin anchors to
identify the locations within a protocol implementation where
a protocol plugin can be inserted. There are two types of
plugin anchors. The first type corresponds to a pluggable
operation. In this case, the plugin can replace the default be-
haviour associated to the pluggable operation. For instance,
an extension can implement the Nagle algorithm [36] by pre-
venting SendPacket to send a too short packet, and delaying it
using SetTimer and reconsidering it in SelectRetransmission.
The other type corresponds to pluggable transitions. These
allow extending the protocol by adding processing which is
different from existing pluggable operations. For example,
an extension might want to insert a plugin for the AfterSend-
Packet transition to compute the current packet transmission
rate and adapt the behaviour of the sender. We associate a
unique identifier to each plugin anchor to enable the insertion
of a protocol plugin at this specific location in the imple-
mentation. We also associate with this identifier the input
parameters and the output that are expected from each plu-
gin. To achieve plugin insertion, there are several ways to
implement plugin anchors [10, 26, 38].

Running Plugins. The last point that is required to exe-
cute protocol plugins is an execution environment. A simple
approach would be to plug native code directly in the running
implementation. This would efficiently utilise the available
hardware, but would force developers to create a plugin for
each specific implementation and hardware platform. Further-
more, native code has potentially full access to the protocol
implementation, which creates obvious safety concerns. A
better approach is to execute the protocol plugins inside a
virtual machine. Various virtual machines have been proposed
for different purposes [3, 17, 23, 28, 35, 51]. We have three
main requirements for this virtual machine. Firstly, it must
provide isolation between the protocol plugins and protocol
implementation to ensure that a malicious plugin will not be
able to break the protocol implementation or interfere with
other connections. Secondly, it should be possible to exe-
cute it inside protocol implementations written in different
programming langages. Thirdly, it must efficiently run the
protocol plugins.

To meet these three requirements, we opt for the eBPF vir-
tual machine [17] for similar reasons as Amit et al. [1], even
if the context is different. eBPF is a modern variant of the
BPF virtual machine that was introduced to support flexible
packet filters [3]. The eBPF virtual machine is included in the
Linux kernel since 2014 where it is used to support services
like seccomp [14], tracing and performance monitoring [25]
or some TCP extensions [5]. eBPF prevents several safety
problems by ensuring memory isolation and there is a limit
on the number of instructions that the eBPF bytecode can
execute (eBPF is not Turing-complete and does not support
infinite loops). Furthermore, it is possible to ensure that some
eBPF bytecode will not access external memory or loop [52].
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Figure 2: A server pushing code plugins to modify the
client behaviour over a connection.

The eBPF implementation in the Linux kernel includes such
a verifier. It is also possible to attach an eBPF virtual ma-
chine to a user-space application [32]. The absence of infinite
loops in the eBPF virtual machine is beneficial from a safety
viewpoint.

However, it restricts the operations that protocol plugins
can execute since they cannot contain loops without clear
variant. Furthermore, plugins also need to access the con-
nection context and possibly maintain their own state. We
solve these problems by introducing a dedicated API. First, it
allows plugins to access and modify the current connection
context provided by the implementation. Second, it provides
a per-context memory area opaque to the implementation that
can be used by plugins to store state between their execu-
tions. Third, it exposes helper functions implemented by the
implementation to plugins. These helper functions provide
basic services that are required by different plugins and would
be difficult to implement entirely in eBPF. For example, we
provide helper functions to allocate memory on the shared
memory between the virtual machine and the implementation,
set/get a socket option and read/write on a socket since the
eBPF code cannot execute system calls.

2.1 How to Dynamically Attach a Plugin ?

The last element of our architecture is how protocol plug-
ins can be dynamically attached to a running implementa-
tion. There are two possible approaches. A first possibility
is to let an application inject a protocol plugin to extend the
underlying implementation. This could be considered as a
generalisation of the socket options that are supported by
TCP implementations. For example, an interactive applica-
tion could inject support for Tail Loss Probe [16] to tune
TCP’s retransmission strategy to its needs. An extension of
TCP-BPF [5] could provide such a feature.

However, this is not the main use case for protocol plug-
ins. The main benefits of our proposal will be realised when
servers will be able to push protocol plugins on the clients
after the connection handshake. Given the restricted size of
the TCP options and the risk of middlebox interferences [30],

this cannot be applied to TCP. However, this vision can be re-
alised with a protocol such as QUIC [34]. Figure 2 illustrates
our proposal. QUIC includes a secure handshake, encrypts
and authenticates all the exchanged packets. After the secure
handshake, the server can easily send protocol plugins as
eBPF bytecode with their identifier to the client over a ded-
icated stream to modify the client implementation for this
specific connection. The solution is symmetric and the client
could also inject eBPF bytecode. It is likely that a similar
approach would be applicable for other protocols where a
connection starts with a secure handshake including TLS,
SCTP over DTLS, of HTTP/2 over TLS.

3 A QUIC PROTOTYPE

To demonstrate the feasibility and the benefits of protocol
plugins, we develop a series of plugins for two different im-
plementations of QUIC [2]. The choice of QUIC is motivated
by its clean and flexible design which makes it easy to de-
fine new frames. Furthermore, as QUIC packets are both en-
crypted and authenticated, middleboxes cannot interfere with
the transmission of plugin code or our proposed extensions.

From a systems viewpoint, it should be possible to support
protocol plugins on different implementations written in dif-
ferent programming languages. We first use picoquic [31],
one of the C implementations being developed within the
IETF to support the QUIC standardisation [33]. Our sec-
ond implementation is mp—quic [11]. This is an extension
of quic—go, a Go implementation of Google’s variant of
QUIC. This implementation supports Multipath QUIC [12].

To execute the protocol plugins, we link a user-space eBPF
virtual machine written in C [32] to each of these implemen-
tations. We write the protocol plugins in C code and use
the clang and 11vm tools to produce the eBPF bytecode
which can be injected inside our QUIC implementations. The
eBPF virtual machine interacts with the QUIC implementa-
tion through a structure stored in the shared memory. To make
implementations pluggable, we inserted (i) a map of plugins
for each connection context with a dedicated API to inject
code, (ii) an API implementing anchors, testing if a plugin
is present to run it and processing the shared context, and
(iii) code integrating the eBPF virtual machine as a library.
Then, at applicative-level, hosts can communicate the plugins
alongside with their identifiers over a dedicated QUIC data
stream. The receiver can then inject the plugins by using the
dedicated API. We perform our experiments in the Mininet
environment [29].

3.1 Protocol Plugins for picoquic

As both picoquic and eBPF plugins are written in C, we
use a C structure to implement the shared data structure. More
precisely, when a plugin executes, it receives a pointer to a
dedicated memory area that it can directly access and mod-
ify. We consider two use cases with picoquic. The first
is Tail Loss Probe (TLP) [16]. TLP is a TCP extension that
improves the performance of interactive applications when



TLP plugin
=== No plugin

CDF over runs
eloloNoNaN o)

WON-PO\CX)O

0 40 50 60 70 80 90 100 110
Stream Completion Time (ms)

Figure 3: Adding plugins to implement TLP helps to re-
duce latency if the packet opening the stream is lost.

the last packet of a burst is lost. Our second use case is
adding to QUIC support for Explicit Congestion Notifica-
tion (ECN) [18].

3.1.1 A Protocol Plugin for Tail Loss Probe . Flach et
al. [16] showed that small loss recovery additions can improve
protocol performance. In particular, the proposed Reactive
approach aims to alleviate the retransmission timeouts at
client side when request tail losses occur. This algorithm, also
known as Tail Loss Probe (TLP), can be enabled in Linux
devices through sysct1.

To ensure this behaviour over the connection, we develop
the TLP extension injected to the client by the server. Our ex-
tension improves the retransmission strategy of picoquic
by retransmitting the last outstanding packet when the timer
set up by the Reactive approach [16] fires. As suggested by
Fig. 1, this extension instruments two pluggable operations:
SetTimer is modified to also compute the TLP timer and Se-
lectRetransmission now checks for expirations of the TLP
timer to quickly retransmit the last outstanding packet. This
behaviour is implemented in 81 lines of C code' which are
compiled into 2.6 KB of eBPF bytecode.

Our server pushes the TLP extension to the client after
the QUIC handshake. To demonstrate the benefits of this plu-
gin, we consider a simple Mininet [29] scenario. The client
uses the QUIC connection to send short requests that trig-
ger short answers by the server. Each request is sent in a
dedicated QUIC stream and the network exhibits a 10 ms
round-trip-time. We then compute the completion time of a
stream carrying one request and one response packet, when
the first request packet is always lost. Figure 3 shows the
CDF of these completion times over 100 runs. As expected,
the request/response exchanges complete faster with the TLP
strategy. With the Reactive approach and a single outstanding
packet, the timer fires at 1.5 X RTT + WDT while RTO fires
at RTT + 4 X RTTy, + WDT, with WDT being the worst-case
delayed-ack timer. With the impact of the delayed-ack timer,
it takes 30 ms to react with our extension, compared to 50 ms
without. Our plugin therefore allows faster retransmissions of
lost client requests.

3.1.2 Supporting ECN with a Protocol Plugin. The
IETF QUIC working is currently debating on the best ap-
proach to include ECN inside QUIC [53]. We implemented in

! As these plugins replace built-in code, they also contain regular RTO timer
computations. Only 36 lines actually implement TLP.

5 Mbps, 2.5 ms 50 Mbps, 2.5

Client R1

21,0 .
2 / = = ECN plugin
EO 5 II = No plugin
o
w |
a
So0.0 I : : :

10.5 11.0 11.5 12.0 12.5

Stream Completion Time (s)

Figure 4: Thanks to the ECN plugin injected on the client
by the server, the transfer time is reduced.

picoquic the July 2018 proposal which defines the ACK—

_ECN frame [43] to carry ECN feedback. This ACK_ECN

frame is sent when a host receives a QUIC packet with the
Congestion Experienced (CE) bit set. Our plugin is imple-
mented in 152 lines of C code and is compiled into 5.6 KB. It
modifies five pluggable operations in picoquic. AfterPack-
etRead to check whether the received packet had the CE bit
set. GenerateFrames is extended to create the new ACK_ECN
frame reporting the number of packets with the CE bit set.
InitOpaqueData is an anchor run when the code is injected
to initialise the opaque field to store the number of packets
received with the CE bit set. ParseFrames is extended to parse
the ACK_ECN frame. AfterParseFrames is modified to reduce
the congestion window based on received ACK_ECN frame.
These five operations implement the basic support for ECN
in QUIC [43]. This plugin can be pushed by the server to the
client at the beginning of the QUIC connection. Notice that
successfully pushing the plugin allows the server to skip the
ECN negotiation phase, as the injected code ensures client
support.

To demonstrate the ECN plugin, we consider the network
shown in the upper part of Fig. 4. Each router uses a buffer
limited to 5 times the bandwidth-delay product (BDP) with
tail drop. If ECN is activated, routers use the Random Early
Detection queuing strategy [19] with ECN marking when
the buffer exceeds 2 x BDP. The server sends 5 MB over
a single stream, and we repeat each experiment 10 times
for each configuration. Figure 4 provides the CDF of the
times to reliably transfer 5 MB. Without our ECN plugin, we
configure the routers to drop packets when congestion occurs.
In this case, picoquic takes 11.5 seconds in the median
case to transfer 5 MB. With our ECN plugin, the server reacts
quicker to congestion, decreasing the round-trip-time and
retransmitted frames induced by packet buffering. This leads
to roughly one second of spared completion time.

3.2 Protocol Plugins for mp—quic

We use mp—quic to demonstrate that protocol plugins can
be pushed in an implementation written in a different lan-
guage than C and explore multipath use cases. To enable
the eBPF virtual machine to interact with mp—quic, we use
cgo [24]. This standard go package allows to call C code
(and by extension eBPF code) from a go program. Unlike
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picoquic, mp—quic requires data to be copied into a par-
ticular structure passed to cgo and eventually to the virtual
machine.

3.2.1 Tuning ACKs with a Protocol Plugin. Our first
multipath use case is a scenario with asymmetric bandwidth
shown in the upper part of Fig. 5. In this environment, it
would be beneficial to send the data over the bottom path and
the acknowledgements over the upper one. This is possible
with QUIC since frames are independent of the packet carry-
ing them [12] in contrast with Multipath TCP [20, 44] where
acknowledgements must be sent on the same path as data.
However, as stated in the QUIC specification [9], changing
the acknowledgement strategy can affect performance since
latency measurements make some assumptions on when ac-
knowledgements are generated. Protocol plugins prevent this
ambiguity since a host can push the plugin that implements
its chosen strategy.

We consider the network shown in Fig. 5, where both paths
are asymmetric, with a 20 MB bulk download. Sending ac-
knowledgements on the same path as data is not the best
strategy, as acknowledgements would saturate the R2-R3 link.
With this strategy, our Mininet experiments (plain curve of
Figure 5) show that the client needs between 6 and 10 sec-
onds to download the 20 MB file from the server. We then
implement a plugin that attaches to the SelectACKPath opera-
tion on the client to force it to send all acknowledgements on
the upper path. The dotted curve of Figure 5 shows that this
strategy significantly reduces the download times as acknowl-
edgements are returned quickly to the server and they do not
saturate the upper link.

3.2.2 Restricting the Pacing Rate. Our last use case
is inspired by smartphones. Multipath protocols such as Mul-
tipath TCP [20] enable them to simultaneously use both the
WiFi and the cellular network. This enables fast handovers
which is the main reason why Apple uses Multipath TCP
on their smartphones [4]. However, many users have volume
caps on their cellular plans and don’t want to use the cellular
network for large downloads when WiFi is available.

In this situation, the smartphone needs to control the opera-
tion of the server to restrict the bandwidth consumed on the
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Figure 6: Three plugins controlling the rate over an ex-
pensive path.

cellular network. However, a server using a multipath proto-
col cannot easily determine whether a given path reaches a
smartphone through its cellular or its WiFi interface. We ad-
dress this problem with a protocol plugin that is pushed by the
smartphone to the server at the beginning of the connection.
This plugin is attached to the congestion control mechanism
on the server and throttles its congestion window over the
cellular path but not over the WiFi one. By writing 10 lines in
C, our 0.5 KB plugin allows this behaviour. Figure 6 shows
the effect of three plugin versions over a two-path scenario
with 80 Mbps 50 ms RTT links. The first one, injected after
the handshake, limits the rate to 3 MB/s. The second one,
inserted after three seconds, caps the speed to 10 MB/s. The
third one, added after six seconds, constraints the link to 1
MB/s. Our results presented in Fig. 6 confirm the effect of
these plugins and demonstrate that plugins can be injected at
any time on a connection after the handshake.

3.3 The Cost of Protocol Plugins

The proposed protocol plugins come with a trade-off between
customisation and performance. Two factors influence their
performance. First, there is a network overhead to exchange
protocol plugins on a per connection basis. Second, there is
some computational overhead to call plugin code instead of
native one.

Network Overhead. The first overhead of protocol plugins
is the transmission of the executable code. Table 2 shows the
size of the bytecode of the plugins for the use cases studied
in this section. With the eBPF user-space virtual machine
used for our experiments, the executable codes are ELF files.
The plugin sizes rarely exceed a few KB. This overhead is
negligible for video streaming applications, or the download
of large webpages over HTTP/2 or QUIC. Our largest plugin,
the ECN one that is attached to five anchors only consumes
5.6 KB which is comparable to TLS certificate chains [45].
The picoquic use cases require larger ELF files because
they are more complex than the mp—quic ones and need to
be attached to several operations.

Performance Overhead. Executing the protocol plugin in-
side a virtual machine provides portability and isolation, but
is slower than native code. Furthermore, the interactions with
the instrumented implementation can also introduce some
overhead. To quantify this overhead, we benchmark our im-
plementations by measuring the throughput on localhost when



BPF Code | CGO noop | BPF noop | Preparing structure | Empty structure to CGO | Empty structure to BPF

251% | 49% | 6.1% | 89 %

\ 217 % \ 217 %

Table 1: mp—quic performance difference with relation to native Go code.

Use case || TLP | ECN | ACK Path | Pacing Rate
Size(KB) [ 26 [ 56 | 10 | 05
Table 2: Network overhead of plugins for each studied
use case.

transferring 50 MB. This is a standard benchmark used by
the quic—go implementation.

We first consider the picoquic implementation and the
TLP plugin, executed after each packet sent. Over 90 runs,
we observed that both with and without the TLP plugin, pi-—
coquic reaches roughly 160 Mbps,? showing no significant
impact from the plugin.

We now consider the mp—quic implementation. The pac-
ket scheduler is a critical component for multipath proto-
cols [39] and previous works proposed to make it flexible to
application needs [21]. We consider the lowest-latency packet
scheduler, both in native Go code (no plugin) and as a plugin.
This plugin weights around 3 KB for 107 lines of C code. The
scheduler is called for each packet to be sent. Table 1 indicates
that in mp-quic, this plugin reduces the achieved through-
put by 25% compared to its native Go variant. As described in
Sect. 3.2, cgo bridges the Go implementation with the eBPF
VM. To communicate with the eBPF VM, mp—quic must
first prepare a structure that exposes the connection context to
the VM. As mp—quic cannot predict which fields of the con-
nection context will actually be used it must put all of them
in the structure. This consumes CPU time. If the scheduler in
native Go code also fills such structure, performance drops
by 9%. However, the main overhead comes from the stack
switch induced by cgo. Its impact depends on the size of the
interface structure. Running native Go scheduler with a cgo
no-op without any communicated data decrease the perfor-
mance by 5%. Doing the same with a 8 KB communicated
structure lowers the performance by 22%. In such cases, we
do not observe any difference between cgo and BPF no-ops.

4 DISCUSSION

In this paper, we have proposed and implemented protocol
plugins, allowing transport protocol to be customisable on a
per-connection basis. We also provided early results with sev-
eral use cases showing the feasibility of such design with two
implementations written in C and Go. However, our approach
raises open questions.

Which protocols can benefit from plugins? Our results
show that QUIC can obviously be extended and tuned by
using protocol plugins. Beyond QUIC, would a similar ap-
proach work in the network, transport, application layer and

2This is roughly four times slower than vanilla mp—quic.

for control-plane protocols? The past experience with active
networks [7] shows that this does not fit with connectionless
network protocols. Remotely injected TCP plugins also ap-
pear difficult given the prevalence of middleboxes. For the
other protocols, integrity protection, e.g., with TLS, seems to
be an important prerequisite for protocol plugins.

How should we specify a protocol that supports plug-
ins? Assume that the next version of QUIC includes protocol
plugins. Should it be specified as a small set core operations
and leave the other features as plugins, or as a large set of
operations and only use plugins to finely tune these opera-
tions? How do we specify the virtual machine, the pluggable
operations and the API that any implementations needs to
expose? How can we test the interoperability of such imple-
mentations?

How can we verify the safety of plugins? Remotely in-
jected code raises obvious security concerns. Hosts should
be able to verify the validity of the plugins that they received
before running them. A first approach would be to use code-
signing and trusted entities that certify plugins. Another ap-
proach would be to use verification techniques to validate
the received bytecode. In all cases, each pluggable opera-
tion should have verifiable safety and liveness properties to
prevent, e.g., a client from disabling the server congestion
control algorithm by injecting malicious plugins.

What are the system implications ? Our prototype uses
the eBPF virtual machine. This execution environment works,
but other environments might provide better performance,
stronger isolation properties or could interact more easily
with implementations written in other langages than C. Can
we leverage the eBPF support on smart NICs ? Can we apply
a similar approach to in-kernel implementations and user-
space implementations that leverage DPDK, XDP or similar
APIs?
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