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ABSTRACT

Where distributed agents must share voluminous set mem-
bership information, Bloom filters provide a compact, though
lossy, way for them to do so. Numerous recent networking
papers have examined the trade-offs between the bandwidth
consumed by the transmission of Bloom filters, and the er-
ror rate, which takes the form of false positives, and which
rises the more the filters are compressed. In this paper, we
introduce the retouched Bloom filter (RBF), an extension
that makes the Bloom filter more flexible by permitting the
removal of selected false positives at the expense of gen-
erating random false negatives. We analytically show that
RBFs created through a random process maintain an overall
error rate, expressed as a combination of the false positive
rate and the false negative rate, that is equal to the false
positive rate of the corresponding Bloom filters. We further
provide some simple heuristics that decrease the false posi-
tive rate more than than the corresponding increase in the
false negative rate, when creating RBFs. Finally, we demon-
strate the advantages of an RBF over a Bloom filter in a dis-
tributed network topology measurement application, where
information about large stop sets must be shared among
route tracing monitors.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Network
Topology; E.4 [Coding and Information Theory]: Data
Compaction and Compression

General Terms

Algorithms, Performance
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1. INTRODUCTION
The Bloom filter is a data structure that was introduced

in 1970 [1] and that has been adopted by the networking
research community in the past decade thanks to the band-
width efficiencies that it offers for the transmission of set
membership information between networked hosts. A sender
encodes the information into a bit vector, the Bloom filter,
that is more compact than a conventional representation.
Computation and space costs for construction are linear in
the number of elements. The receiver uses the filter to test
whether various elements are members of the set. Though
the filter will occasionally return a false positive, it will never
return a false negative. When creating the filter, the sender
can choose its desired point in a trade-off between the false
positive rate and the size. The compressed Bloom filter,
an extension proposed by Mitzenmacher [2], allows further
bandwidth savings.

Broder and Mitzenmacher’s survey of Bloom filters’ net-
working applications [3] attests to the considerable interest
in this data structure. Variants on the Bloom filter con-
tinue to be introduced. For instance, Bonomi et al.’s [4]
d-left counting Bloom filter is a more space-efficient version
of Fan et al.’s [5] counting Bloom filter, which itself goes be-
yond the standard Bloom filter to allow dynamic insertions
and deletions of set membership information. The present
paper also introduces a variant on the Bloom filter: one
that allows an application to remove selected false positives
from the filter, trading them off against the introduction of
random false negatives.

This paper looks at Bloom filters in the context of a net-
work measurement application that must send information
concerning large sets of IP addresses between measurement
points. Sec. 5 describes the application in detail. But here,
we cite two key characteristics of this particular applica-
tion; characteristics that many other networked applications
share, and that make them candidates for use of the variant
that we propose.

First, some false positives might be more troublesome
than others, and these can be identified after the Bloom
filter has been constructed, but before it is used. For in-
stance, when IP addresses arise in measurements, it is not
uncommon for some addresses to be encountered with much
greater frequency than others. If such an address triggers a
false positive, the performance detriment is greater than if
a rarely encountered address does the same. If there were a
way to remove them from the filter before use, the applica-
tion would benefit.

Second, the application can tolerate a low level of false



negatives. It would benefit from being able to trade off the
most troublesome false positives for some randomly intro-
duced false negatives.

The retouched Bloom filter (RBF) introduced in this pa-
per permits such a trade-off. It allows the removal of se-
lected false positives at the cost of introducing random false
negatives, and with the benefit of eliminating some random
false positives at the same time. An RBF is created from
a Bloom filter by selectively changing individual bits from
1 to 0, while the size of the filter remains unchanged. As
Sec. 3.2 shows analytically, an RBF created through a ran-
dom process maintains an overall error rate, expressed as a
combination of the false positive rate and the false negative
rate, that is equal to the false positive rate of the corre-
sponding Bloom filter. We further provide a number of sim-
ple algorithms that lower the false positive rate by a greater
degree, on average, than the corresponding increase in the
false negative rate. These algorithms require at most a small
constant multiple in storage requirements. Any additional
processing and storage related to the creation of RBFs from
Bloom filters are restricted to the measurement points that
create the RBFs. There is strictly no addition to the critical
resource under consideration, which is the bandwidth con-
sumed by communication between the measurement points.

Some existing Bloom filter variants do permit the suppres-
sion of selected false positives, or the removal of information
in general, or a trade-off between the false positive rate and
the false negative rate. However, as Sec. 6 describes, the
RBF is unique in doing so while maintaining the size of the
original Bloom filter and lowering the overall error rate as
compared to that filter.

The remainder of this paper is organized as follows: Sec. 2
presents the standard Bloom filter; Sec. 3 presents the RBF,
and shows analytically that the reduction in the false pos-
itive rate is equal, on average, to the increase in the false
negative rate even as random 1s in a Bloom filter are re-
set to 0s; Sec. 4 presents several simple methods for selec-
tively clearing 1s that are associated with false positives,
and shows through simulations that they reduce the false
positive rate by more, on average, than they increase the
false negative rate; Sec. 5 describes the use of RBFs in a
network measurement application; Sec. 6 discusses several
Bloom filter variants and compares RBFs to them; finally,
Sec. 7 summarizes the conclusions and future directions for
this work.

2. BLOOM FILTERS
A Bloom filter [1] is a vector v of m bits that codes the

membership of a subset A = {a1, a2, . . . , an} of n elements
of a universe U consisting of N elements. In most papers,
the size of the universe is not specified. However, Bloom
filters are only useful if the size of U is much bigger than
the size of A.

The idea is to initialize this vector v to 0, and then take
a set H = {h1, h2, . . . , hk} of k independent hash functions
h1, h2, . . . , hk, each with range {1, . . . , m}. For each element
a ∈ A, the bits at positions h1(a), h2(a), . . . , hk(a) in v are
set to 1. Note that a particular bit can be set to 1 several
times, as illustrated in Fig. 1.

In order to check if an element b of the universe U belongs
to the set A, all one has to do is check that the k bits at
positions h1(b), h2(b), . . . , hk(b) are all set to 1. If at least
one bit is set to 0, we are sure that b does not belong to

h1(b)

h2(b)h2(a)

h1(a)

1 1 1 0000000

Figure 1: A Bloom filter with two hash functions
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Figure 2: The false positives set

A. If all bits are set to 1, b possibly belongs to A. There is
always a probability that b does not belong to A. In other
words, there is a risk of false positives. Let us denote by
FP the set of false positives, i.e., the elements that do not
belong to A (and thus that belong to U −A) and for which
the Bloom filter gives a positive answer. The sets U , A, and
FP are illustrated in Fig. 2. (B is a subset of FP that will
be introduced below.) In Fig. 2, FP is a circle surrounding
A. (Note that FP is not a superset of A. It has been colored
distinctly to indicate that it is disjoint from A.)

We define the false positive proportion fP as the ratio of
the number of elements in U−A that give a positive answer,
to the total number of elements in U −A:

fP =
|FP|

|U −A|
(1)

We can alternately define the false positive rate, as the
probability that, for a given element that does not belong
to the set A, the Bloom filter erroneously claims that the
element is in the set. Note that if this probability exists
(a hypothesis related to the ergodicity of the system that
we assume here), it has the same value as the false positive
proportion fP. As a consequence, we will use the same no-
tation for both parameters and also denote by fP the false
positive rate. In order to calculate the false positive rate,
most papers assume that all hash functions map each item in
the universe to a random number uniformly over the range
{1, . . . , m}. As a consequence, the probability that a specific
bit is set to 1 after the application of one hash function to
one element of A is 1

m
and the probability that this specific

bit is left to 0 is 1− 1
m

. After all elements of A are coded in
the Bloom filter, the probability that a specific bit is always
equal to 0 is

p0 =

„

1−
1

m

«kn

(2)

As m becomes large, 1
m

is close to zero and p0 can be
approximated by

p0 ≈ e
−

kn

m (3)

The probability that a specific bit is set to 1 can thus be



Figure 3: fP as a function of k, m and n.

expressed as

p1 = 1− p0 (4)

The false positive rate can then be estimated by the prob-
ability that each of the k array positions computed by the
hash functions is 1. fP is then given by

fP = pk
1

=
“

1−
`

1− 1
m

´kn
”k

≈
“

1 − e−
kn

m

”k

(5)

The false positive rate fP is thus a function of three pa-
rameters: n, the size of subset A; m, the size of the filter;
and k, the number of hash functions. Fig. 3 illustrates the
variation of fP with respect to the three parameters individ-
ually (when the two others are held constant). Obviously,
and as can be seen on these graphs, fP is a decreasing func-
tion of m and an increasing function of n. Now, when k

varies (with n and m constant), fP first decreases, reaches
a minimum and then increases. Indeed there are two con-
tradicting factors: using more hash functions gives us more
chances to find a 0 bit for an element that is not a member
of A, but using fewer hash functions increases the fraction
of 0 bits in the array. As stated, e.g., by Fan et al. [5], fP is
minimized when

k =
m ln 2

n
(6)

for fixed m and n. Indeed, the derivative of fP (estimated
by eqn. 3) with respect to k is 0 when k is given by eqn. 6,
and it can further be shown that this is a global minimum.

Thus the minimum possible false positive rate for given
values of m and n is given by eqn. 7. In practice, of course,
k must be an integer. As a consequence, the value furnished
by eqn. 6 is rounded to the nearest integer and the resulting
false positive rate will be somewhat higher than the optimal
value given in eqn. 7.

f̂P =

„

1

2

« m ln 2

n

≈ (0.6185)
m

n (7)

Finally, it is important to emphasize that the absolute
number of false positives is relative to the size of U−A (and
not directly to the size of A). This result seems surprising as
the expression of fP depends on n, the size of A, and does
not depend on N , the size of U . If we double the size of
U −A (and keep the size of A constant) we also double the

absolute number of false positives (and obviously the false
positive rate is unchanged).

3. RETOUCHED BLOOM FILTERS
As shown in Sec. 2, there is a trade-off between the size

of the Bloom filter and the probability of a false positive.
For a given n, even by optimally choosing the number of
hash functions, the only way to reduce the false positive
rate in standard Bloom filters is to increase the size m of
the bit vector. Unfortunately, although this implies a gain
in terms of a reduced false positive rate, it also implies a
loss in terms of increased memory usage. Bandwidth usage
becomes a constraint that must be minimized when Bloom
filters are transmitted in the network.

3.1 Bit Clearing
In this paper, we introduce an extension to the Bloom

filter, referred to as the retouched Bloom filter (RBF). The
RBF makes standard Bloom filters more flexible by allow-
ing selected false positives to be traded off against random
false negatives. False negatives do not arise at all in the
standard case. The idea behind the RBF is to remove a
certain number of these selected false positives by resetting
individually chosen bits in the vector v. We call this pro-
cess the bit clearing process. Resetting a given bit to 0 not
only has the effect of removing a certain number of false
positives, but also generates false negatives. Indeed, any
element a ∈ A such that (at least) one of the k bits at posi-
tions h1(a), h2(a), . . . , hk(a) has been reset to 0, now triggers
a negative answer. Element a thus becomes a false negative.

To summarize, the bit clearing process has the effects of
decreasing the number of false positives and of generating a
number of false negatives. Let us use the labels F ′

P and F ′

N

to describe the sets of false positives and false negatives after
the bit clearing process. The sets F ′

P and F ′

N are illustrated
in Fig. 4.

After the bit clearing process, the false positive and false
negative proportions are given by

f ′

P =
|F ′

P|

|U −A|
(8)

f ′

N =
|F ′

N|

|A|
(9)

Obviously, the false positive proportion has decreased (as
F ′

P is smaller than FP) and the false negative proportion
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Figure 4: False positive and false negative sets after

the selective clearing process

has increased (as it was zero before the clearing). We can
measure the benefit of the bit clearing process by introducing
∆fP, the proportion of false positives removed by the bit
clearing process, and ∆fN, the proportion of false negatives
generated by the bit clearing process:

∆fP =
|FP| − |F

′

P|

|FP|
=

fP − f ′

P

fP
(10)

∆fN =
|F ′

N|

|A|
= f

′

N (11)

We, finally, define χ as the ratio between the proportion of
false positives removed and the proportion of false negatives
generated:

χ =
∆fP

∆fN
(12)

χ is the main metric we introduce in this paper in order
to evaluate the RBF. If χ is greater than 1, it means that
the proportion of false positives removed is higher than the
proportion of false negatives generated.

3.2 Randomized Bit Clearing
In this section, we analytically study the effect of ran-

domly resetting bits in the Bloom filter, whether these bits
correspond to false positives or not. We call this process the
randomized bit clearing process. In Sec. 4, we discuss more
sophisticated approaches to choosing the bits that should be
cleared. However, performing random clearing in the Bloom
filter enables us to derive analytical results concerning the
consequences of the clearing process. In addition to provid-
ing a formal derivation of the benefit of RBFs, it also gives
a lower bound on the performance of any smarter selective
clearing approach (such as those developed in Sec. 4).

We again assume that all hash functions map each element
of the universe U to a random number uniformly over the
range {1, . . . , m}. Once the n elements of A have been coded
in the Bloom filter, there is a probability p0 for a given
bit in v to be 0 and a probability p1 for it to be 1. As a
consequence, there is an average number of p1m bits set to
1 in v. Let us study the effect of resetting to 0 a randomly
chosen bit in v. Each of the p1m bits set to 1 in v has a
probability 1

p1m
of being reset and a probability 1− 1

p1m
of

being left at 1.
The first consequence of resetting a bit to 0 is to remove

a certain number of false positives. If we consider a given
false positive x ∈ FP, after the reset it will not result in a

positive test any more if the bit that has been reset belongs
to one of the k positions h1(x), h2(x), . . . , hk(x). Conversely,
if none of the k positions have been reset, x remains a false
positive. The probability of this latter event is

r1 =

„

1−
1

p1m

«k

(13)

As a consequence, after the reset of one bit in v, the
false positive rate decreases from fP (given by eqn. 5) to
f ′

P = fPr1. The proportion of false positives that have been
eliminated by the resetting of a randomly chosen bit in v is
thus equal to 1− r1:

∆fP = 1− r1 (14)

The second consequence of resetting a bit to 0 is the gen-
eration of a certain number of false negatives. If we consider
a given element a ∈ A, after the reset it will result in a neg-
ative test if the bit that has been reset in v belongs to one of
the k positions h1(a), h2(a), . . . , hk(a). Conversely, if none
of the k positions have been reset, the test on a remains
positive. Obviously, the probability that a given element
in A becomes a false negative is given by 1 − r1 (the same
reasoning holds):

∆fN = 1− r1 (15)

We have demonstrated that resetting one bit to 0 in v

has the effect of eliminating the same proportion of false
positives as the proportion of false negatives generated. As
a result, χ = 1. It is however important to note that the
proportion of false positives that are eliminated is relative
to the size of the set of false positives (which in turns is
relative to the size of U − A, thanks to eqn. 5) whereas
the proportion of false negatives generated is relative to the
size of A. As we assume that U −A is much bigger than A

(actually if |FP| > |A|), resetting a bit to 0 in v can eliminate
many more false positives than the number of false negatives
generated.

It is easy to extend the demonstration to the reset of s bits
and see that it eliminates a proportion 1−rs of false positives
and generates the same proportion of false negatives, where
rs is given by

rs =

„

1−
s

p1m

«k

(16)

As a consequence, any random clearing of bits in the
Bloom vector v has the effect of maintaining the ratio χ

equal to 1.

4. SELECTIVE CLEARING
Sec. 3 introduced the idea of randomized bit clearing and

analytically studied the effect of randomly resetting s bits
of v, whether these bits correspond to false positives or not.
We showed that it has the effect of maintaining the ratio χ

equal to 1. In this section, we refine the idea of randomized
bit clearing by focusing on bits corresponding to elements
that trigger false positives. We call this process selective
clearing.

As described in Sec. 2, in Bloom filters (and also in RBFs),
some elements in U −A will trigger false positives, forming
the set FP. However, in practice, it is likely that not all false
positives will be encountered. To illustrate this assertion,
let us assume that the universe U consists of the whole IPv4



Algorithm 1 Random Selection

Require: v, the bit vector.
Ensure: v updated, if needed.
1: procedure RandomSelection(B)
2: for all bi ∈ B do

3: if MembershipTest(bi, v) then

4: index ← Random(h1(bi), . . . , hk(bi))
5: v[index] ← 0
6: end if

7: end for

8: end procedure

addresses range. To build the Bloom filter or the RBF, we
define k hash functions based on a 32 bit string. The subset
A to record in the filter is a small portion of the IPv4 address
range. Not all false positives will be encountered in practice
because a significant portion of the IPv4 addresses in FP

have not been assigned.
We record the false positives encountered in practice in

a set called B, with B ⊆ FP (see Fig. 2). Elements in B

are false positives that we label as troublesome keys, as they
generate, when presented as keys to the Bloom filter’s hash
functions, false positives that are liable to be encountered
in practice. We would like to eliminate the elements of B

from the filter.
In the following sections, we explore several algorithms for

performing selective clearing (Sec. 4.1). We then evaluate
and compare the performance of these algorithms (Sec. 4.2).

4.1 Algorithms
In this section, we propose four different algorithms that

allow one to remove the false positives belonging to B. All
of these algorithms are simple to implement and deploy. We
first present an algorithm that does not require any intel-
ligence in selective clearing. Next, we propose refined al-
gorithms that take into account the risk of false negatives.
With these algorithms, we show how to trade-off false posi-
tives for false negatives.

The first algorithm is called Random Selection. The main
idea is, for each troublesome key to remove, to randomly
select a bit amongst the k available to reset. The main
interest of the Random Selection algorithm is its extreme
computational simplicity: no effort has to go into selecting a
bit to clear. Random Selection differs from random clearing
(see Sec. 3) by focusing on a set of troublesome keys to
remove, B, and not by resetting randomly any bit in v,
whether it corresponds to a false positive or not. Random
Selection is formally defined in Algorithm 1.

Recall that B is the set of troublesome keys to remove.
This set can contain from only one element to the whole set
of false positives. Before removing a false positive element,
we make sure that this element is still falsely recorded in
the RBF, as it could have been removed previously. Indeed,
due to collisions that may occur between hashed keys in the
bit vector, as shown in Fig. 1, one of the k hashed bit po-
sitions of the element to remove may have been previously
reset. Algorithm 1 assumes that a function Random is de-
fined and returns a value randomly chosen amongst its uni-
formly distributed arguments. The algorithm also assumes
that the function MembershipTest is defined. It takes two
arguments: the key to be tested and the bit vector. This
function returns true if the element is recorded in the bit

Algorithm 2 Minimum FN Selection

Require: v, the bit vector and vA, the counting vector.
Ensure: v and vA updated, if needed.
1: procedure MinimumFNSelection(B)
2: CreateCV(A)
3: for all bi ∈ B do

4: if MembershipTest(bi, v) then

5: index ← MinIndex(bi)
6: v[index] ← 0
7: vA[index] ← 0
8: end if

9: end for

10: end procedure

11:
12: procedure CreateCV(A)
13: for all ai ∈ A do

14: for j = 1 to k do

15: vA[hj(ai)]++
16: end for

17: end for

18: end procedure

vector (i.e., all the k positions corresponding to the hash
functions are set to 1). It returns false otherwise.

The second algorithm we propose is called Minimum FN
Selection. The idea is to minimize the false negatives gener-
ated by each selective clearing. For each troublesome key to
remove that was not previously cleared, we choose amongst
the k bit positions the one that we estimate will generate the
minimum number of false negatives. This minimum is given
by the MinIndex procedure in Algorithm 2. This can be
achieved by maintaining locally a counting vector, vA, stor-
ing in each vector position the quantity of elements recorded.
This algorithm effectively takes into account the possibility
of collisions in the bit vector between hashed keys of ele-
ments belonging to A. Minimum FN Selection is formally
defined in Algorithm 2.

For purposes of algorithmic simplicity, we do not entirely
update the counting vector with each iteration. The cost
comes in terms of an over-estimation, for the heuristic, in
assessing the number of false negatives that it introduces
in any given iteration. This over-estimation grows as the
algorithm progresses. We are currently studying ways to
efficiently adjust for this over-estimation.

The third selective clearing mechanism is called Maxi-
mum FP Selection. In this case, we try to maximize the
quantity of false positives to remove. For each troublesome
key to remove that was not previously deleted, we choose
amongst the k bit positions the one we estimate to allow
removal of the largest number of false positives, the position
of which is given by the MaxIndex function in Algorithm 3.
In the fashion of the Minimum FN Selection algorithm, this
is achieved by maintaining a counting vector, vB , storing in
each vector position the quantity of false positive elements
recorded. For each false positive element, we choose the
bit corresponding to the largest number of false positives
recorded. This algorithm considers as an opportunity the
risk of collisions in the bit vector between hashed keys of
elements generating false positives. Maximum FP Selection
is formally described in Algorithm 3.

Finally, we propose a selective clearing mechanism called
Ratio Selection. The idea is to combine Minimum FN Se-



Algorithm 3 Maximum FP Selection

Require: v, the bit vector and vB , the counting vector.
Ensure: v and vB updated, if needed.
1: procedure MaximumFP(B)
2: CreateFV(B)
3: for all bi ∈ B do

4: if MembershipTest(bi, v) then

5: index ← MaxIndex(bi)
6: v[index] ← 0
7: vB [index] ← 0
8: end if

9: end for

10: end procedure

11:
12: procedure CreateFV(B)
13: for all bi ∈ B do

14: for j = 1 to k do

15: vB [hj(bi)]++
16: end for

17: end for

18: end procedure

lection and Maximum FP Selection into a single algorithm.
Ratio Selection provides an approach in which we try to
minimize the false negatives generated while maximizing the
false positives removed. Ratio Selection therefore takes into
account the risk of collision between hashed keys of elements
belonging to A and hashed keys of elements belonging to B.
It is achieved by maintaining a ratio vector, r, in which
each position is the ratio between vA and vB . For each
troublesome key that was not previously cleared, we choose
the index where the ratio is the minimum amongst the k

ones. This index is given by the MinRatio function in Algo-
rithm 4. Ratio Selection is defined in Algorithm 4. This al-
gorithm makes use of the CreateCV and CreateFV func-
tions previously defined for Algorithms 2 and 3.

Details on the algorithmic and spatial complexity of these
selective clearing algorithms are to be found in our technical
report [6].

4.2 Evaluation
We conduct an experiment with a universe U of 2,000,000

elements (N = 2,000,000). These elements, for the sake of
simplicity, are integers belonging to the range [0; 1,999,9999].
The subset A that we want to summarize in the Bloom filter
contains 10,000 different elements (n = 10,000) randomly
chosen from the universe U . Bloom’s paper [1] states that
|U | must be much greater than |A|, without specifying a
precise scale.

The bit vector v we use for simulations is 100,000 bits
long (m = 100,000), ten times bigger than |A|. The RBF
uses five different and independent hash functions (k = 5).
Hashing is emulated with random numbers. We simulate
randomness with the Mersenne Twister MT19937 pseudo-
random number generator [7]. Using five hash functions
and a bit vector ten times bigger than n is advised by Fan
et al. [5]. This permits a good trade-off between membership
query accuracy, i.e., a low false positive rate of 0.0094 when
estimated with eqn. 5, memory usage and computation time.
As mentioned earlier in this paper (see Sec. 2), the false
positive rate may be decreased by increasing the bit vector
size but it leads to a lower compression level.

Algorithm 4 Ratio Selection

Require: v, the bit vector, vB and vA, the counting vectors
and r, the ratio vector.

Ensure: v, vA, vB and r updated, if needed.
1: procedure Ratio(B)
2: CreateCV(A)
3: CreateFV(B)
4: ComputeRatio()
5: for all bi ∈ B do

6: if MembershipTest(bi, v) then

7: index ← MinRatio(bi)
8: v[index] ← 0
9: vA[index] ← 0

10: vB [index] ← 0
11: r[index] ← 0
12: end if

13: end for

14: end procedure

15:
16: procedure ComputeRatio

17: for i = 1 to m do

18: if v[i] ∧ vB [i] > 0 then

19: r[i] ← vA[i]
vB [i]

20: end if

21: end for

22: end procedure

For our experiment, we define the ratio of troublesome
keys compared to the entire set of false positives as

β =
|B|

|FP |
(17)

We consider the following values of β: 1%, 2%, 5%, 10%,
25%, 50%, 75% and 100%. When β = 100%, it means that
B = FP and we want to remove all the false positives.

Each data point in the plots represents the mean value
over fifteen runs of the experiment, each run using a new
A, FP, B, and RBF. We determine 95% confidence intervals
for the mean based on the Student t distribution.

We perform the experiment as follows: we first create the
universe U and randomly affect 10,000 of its elements to A.
We next build FP by applying the following scheme. Rather
than using eqn. 5 to compute the false positive rate and then
creating FP by randomly affecting positions in v for the false
positive elements, we prefer to experimentally compute the
false positives. We query the RBF with a membership test
for each element belonging to U −A. False positives are the
elements that belong to the Bloom filter but not to A. We
keep track of them in a set called FP. This process seems
to us more realistic because we evaluate the real quantity of
false positive elements in our data set. B is then constructed
by randomly selecting a certain quantity of elements in FP,
the quantity corresponding to the desired cardinality of B.
We next remove all troublesome keys from B by using one
of the selective clearing algorithms, as explained in Sec. 4.1.
We then build F ′

N, the false negative set, by testing all el-
ements in A and adding to F ′

N all elements that no longer
belong to A. We also determine F ′

P, the false positive set
after removing the set of troublesome keys B.

Fig. 5 compares the four algorithms in terms of the num-
ber s of reset bits required to remove troublesome keys in
B. The horizontal axis gives β and the vertical axis, in log



Figure 5: Number of bits reset

Figure 6: Effect on χ

scale, gives s. The confidence intervals are plotted but they
are too tight to appear clearly.

We see that Random Selection and Minimum FN Selec-
tion need to work more, in terms of number of bits to reset,
when β grows, compared to Maximum FP Selection and Ra-
tio Selection. In addition, we note that the Ratio Selection
algorithm needs to reset somewhat more bits than Maxi-
mum FP Selection (the difference is too tight to be clearly
visible on the plots).

Fig. 6 evaluates the performance of the four algorithms.
It plots β on the horizontal axis and χ on the vertical axis.
Again, the confidence intervals are plotted but they are gen-
erally too tight to be visible.

We first note that, whatever the algorithm considered, the
χ ratio is always above 1, meaning that the advantages of
removing false positives overcome the drawbacks of gener-
ating false negatives, if these errors are considered equally
grave. Thus, as expected, performing selective clearing pro-
vides better results than randomized bit clearing. Ratio Se-
lection does best, followed by Maximum FP, Minimum FN,
and Ratio Selection.

The χ ratio for Random Selection does not vary much with
β compared to the three other algorithms. For instance, the
χ ratio for Ratio Selection is decreased by 31.3% between
β=1% and β=100%.

To summarize, one can say that, when using RBF, one can
reliably get a χ above 1.4, even when using a simple selective

clearing algorithm, such as Random Selection. Applying a
more efficient algorithm, such as Ratio Selection, allows one
to get a χ above 1.8. Such χ values mean that the proportion
of false positives removed is higher than the proportion of
false negatives generated.

In this section, we provided and evaluated four simple
selective algorithms. We showed that two algorithms, Max-
imum FP Selection and Ratio Selection, are more efficient in
terms of number of bits to clear in the filter. Among these
two algorithms, we saw that Ratio Selection provides better
results, in terms of the χ ratio.

5. CASE STUDY
Retouched Bloom filters can be applied across a wide

range of applications that would otherwise use Bloom fil-
ters. For RBFs to be suitable for an application, two criteria
must be satisfied. First, the application must be capable of
identifying instances of false positives. Second, the applica-
tion must accept the generation of false negatives, and in
particular, the marginal benefit of removing the false posi-
tives must exceed the marginal cost of introducing the false
negatives.

This section describes the application that motivated our
introduction of RBFs: a network measurement system that
traces routes, and must communicate information concern-
ing IP addresses at which to stop tracing. Sec. 5.1 evaluates
the impact of using RBFs in this application.

Maps of the internet at the IP level are constructed by
tracing routes from measurement points distributed through-
out the internet. The skitter system [8], which has provided
data for many network topology papers, launches probes
from 24 monitors towards almost a million destinations.
However, a more accurate picture can potentially be built by
using a larger number of vantage points. Dimes [9] heralds a
new generation of large-scale systems, counting, at present
8,700 agents distributed over five continents. As Donnet
et al. [10] (including authors on the present paper) have
pointed out, one of the dangers posed by a large number
of monitors probing towards a common set of destinations
is that the traffic may easily be mistaken for a distributed
denial of service (DDoS) attack.

One way to avoid such a risk would be to avoid hitting
destinations. This can be done through smart route tracing
algorithms, such as Donnet et al.’s Doubletree [10]. With
Doubletree, monitors communicate amongst themselves re-
garding routes that they have already traced, in order to
avoid duplicating work. Since one monitor will stop trac-
ing a route when it reaches a point that another monitor
has already traced, it will not continue through to hit the
destination.

Doubletree considerably reduces, but does not entirely
eliminate, DDoS risk. Some monitors will continue to hit
destinations, and will do so repeatedly. One way to further
scale back the impact on destinations would be to introduce
an additional stopping rule that requires any monitor to stop
tracing when it reaches a node that is one hop before that
destination. We call such a node the penultimate node, and
we call the set of penultimate nodes the red stop set (RSS).

A monitor is typically not blocked by its own first-hop
node, as it will normally see a different IP address from the
addresses that appear as penultimate nodes on incoming
traces. This is because a router has multiple interfaces, and
the IP address that is revealed is supposed to be the one that



sends the probe reply. The application that we study in this
paper conducts standard route traces with an RSS. We do
not use Doubletree, so as to avoid having to disentangle the
effects of using two different stopping rules at the same time.

How does one build the red stop set? The penultimate
nodes cannot be determined a priori. However, the RSS
can be constructed during a learning round in which each
monitor performs a full set of standard traceroutes, i.e., until
hitting a destination. Monitors then share their RSSes. For
simplicity, we consider that they all send their RSSes to a
central server, which combines them to form a global RSS,
that is then redispatched to the monitors. The monitors
then apply the global RSS in a stopping rule over multiple
rounds of probing.

Destinations are only hit during the learning round and
as a result of errors in the probing rounds. DDoS risk di-
minishes with an increase in the ratio of probing rounds to
learning rounds, and with a decrease in errors during the
probing rounds. DDoS risk would be further reduced if we
apply Doubletree in the learning round, as the number of
probes that reach destinations during the learning round
would then scale less then linearly in the number of mon-
itors. However, our focus here is on the probing rounds,
which use the global RSS, and not on improving the effi-
ciency of the learning round, which generates the RSS, and
for which we already have known techniques.

The communication cost for sharing the RSS among mon-
itors is linear in the number of monitors and in the size of
the RSS representation. It is this latter size that we would
like to reduce by a constant compression factor. If the RSS
is implemented as a list of 32-bit vectors, skitter’s million
destinations would consume 4 MB. We therefore propose
encoding the RSS information in Bloom filters. Note that
the central server can combine similarly constructed Bloom
filters from multiple monitors, through bitwise logical or

operations, to form the filter that encodes the global RSS.
The cost of using Bloom filters is that the application will

encounter false positives. A false positive, in our case study,
corresponds to an early stop in the probing, i.e., before the
penultimate node. We call such an error stopping short, and
it means that part of the path that should have been dis-
covered will go unexplored. Stopping short can also arise
through network dynamics, when additional nodes are in-
troduced, by routing changes or IP address reassignment,
between the previously penultimate node and the destina-
tion. In contrast, a trace that stops at a penultimate node is
deemed a success. A trace that hits a destination is called a
collision. Collisions might occur because of a false negative
for the penultimate node, or simply because routing dynam-
ics have introduced a new path to the destination, and the
penultimate node on that path was previously unknown.

As we show in Sec. 5.1, the cost of stopping short is far
from negligible. If a node that has a high betweenness cen-
trality (Dall’Asta et al. [11] point out the importance of
this parameter for topology exploration) generates a false
positive, then the topology information loss might be high.
Consequently, our idea is to encode the RSS in an RBF.

As described in the Introduction, there are two criteria
for being able to profitably employ RBFs, and they are both
met by this application. First, false positives can be iden-
tified and removed. Once the topology has been revealed,
each node can be tested against the Bloom filter, and those
that register positive but are not penultimate nodes are false

positives. The application has the possibility of removing
the most troublesome false positives by using one of the se-
lective algorithms discussed in Sec. 4. Second, a low rate
of false negatives is acceptable and the marginal benefit of
removing the most troublesome false positives exceeds the
marginal cost of introducing those false negatives. Our aim
is not to eliminate collisions; if they are considerably re-
duced, the DDoS risk has been diminished and the RSS
application can be deemed a success. On the other hand,
systematically stopping short at central nodes can severely
restrict topology exploration, and so we are willing to ac-
cept a low rate of random collisions in order to trace more
effectively. These trade-offs are explored in Sec. 5.1.

Table 1 summarizes the positive and negative aspects of
each RSS implementation we propose. Positive aspects are
a success, stopping at the majority of penultimate nodes,
topology information discovered, the eventual compression
ratio of the implementation, and a low number of collisions
with destinations. Negative aspects of an implementation
can be the topology information missed due to stopping
short, the load on the network when exchanging the RSS
and the risk of hitting destinations too many times. Sec. 5.1
examines the positive and negative aspects of each imple-
mentation.

5.1 Evaluation
In this section, we evaluate the use of RBFs in a tracerout-

ing system based on an RSS. We first present our method-
ology and then, discuss our results.

Our study is based on skitter data [8] from January 2006.
This data set was generated by 24 monitors located in the
United States of America, Canada, the United Kingdom,
France, Sweden, the Netherlands, Japan, and New Zealand.
The monitors share a common destination set of 971,080
IPv4 addresses. Each monitor cycles through the destina-
tion set at its own rate, taking typically three days to com-
plete a cycle.

For the purpose of our study, in order to reduce computing
time to a manageable level, we work from a limited set of
10 skitter monitors, all the monitors sharing a list of 10,000
destinations, randomly chosen from the original set. In our
data set, the RSS contains 8,006 different IPv4 addresses.

We compare the following three RSS implementations:
list, Bloom filter and RBF. The list would not return any er-
rors if the network were static, however, as discussed above,
network dynamics lead to a certain error rate of both colli-
sions and instances of stopping short. For the RBF imple-
mentation, we consider β values (see eqn. 17) of 1%, 5%,
10% and 25%. We employ the Ratio Selection algorithm, as
defined in Sec. 4.1. For the Bloom filter and RBF implemen-
tations, the hashing is emulated with random numbers. We
simulate randomness with the Mersenne Twister MT19937
pseudo-random number generator [7].

To obtain our results, we simulate one learning round on
a first cycle of traceroutes from each monitor, to generate
the RSS. We then simulate one probing round, using a sec-
ond cycle of traceroutes. In this simulation, we replay the
traceroutes, but apply the stopping rule based on the RSS,
noting instances of stopping short, successes, and collisions.

Fig. 7 compares the success rate, i.e., stopping at a penul-
timate node, of the three RSS implementations. The hori-
zontal axis gives different filters size, from 10,000 to 100,000,
with an increment of 10,000. Below the horizontal axis sits



Implementation Positive Negative

Success Topo. discovery Compression No Collision Topo. missed Load Collision
List X X X X
Bloom filter X X X
RBF X X X X

Table 1: Positive and negative aspects of each RSS implementation

Figure 7: Success rate

another axis that indicates the compression ratio of the fil-
ter, compared to the list implementation of the RSS. The
vertical axis gives the success rate. A value of 0 would mean
that using a particular implementation precludes stopping
at the penultimate node. On the other hand, a value of 1
means that the implementation succeeds in stopping each
time at the penultimate node.

Looking first at the list implementation (the horizontal
line), we see that the list implementation success rate is not
1 but, rather, 0.7812. As explained in Sec. 5.1, this can be
explained by the network dynamics such as routing changes
and dynamic IP address allocation.

With regards to the Bloom filter implementation, we see
that the results are poor. The maximum success rate, 0.2446,
is obtained when the filter size is 100,000 (a compression ra-
tio of 2.5 compared to the list). Such poor results can be
explained by the troublesomeness of false positives. Fig. 8
shows, in log-log scale, the troublesomeness distribution of
false positives. The horizontal axis gives the troublesome-
ness degree, defined as the number of traceroutes that stop
short for a given key. The maximum value is 104, i.e., the
number of traceroutes performed by a monitor. The verti-
cal axis gives the number of false positive elements having
a specific troublesomeness degree. The most troublesome
keys are indicated by an arrow towards the lower right of
the graph: nine false positives are, each one, encountered
10,000 times.

Looking now, in Fig. 7, at the success rate of the RBF,
we see that the maximum success rate is reached when β

= 0.25. We also note a significant increase in the success
rate for RBF sizes from 10,000 to 60,000. After that point,
except for β = 1%, the increase is less marked and the suc-
cess rate converges to the maximum, 0.7564. When β =
0.25, for compression ratios of 4.2 and lower, the success
rate approaches that of the list implementation. Even for
compression ratios as high as 25.6, it is possible to have a
success rate over a quarter of that offered by the list imple-

Figure 8: Troublesomeness distribution

Figure 9: Stopping short rate

mentation.
Fig. 9 gives the stopping short rate of the three RSS im-

plementations. A value of 0 means that the RSS implemen-
tation does not generate any instances of stopping short.
On the other hand, a value of 1 means that every stop was
short.

Looking first at the list implementation, one can see that
the stopping short rate is 0.0936. Again, network dynamics
imply that some nodes that were considered as penultimate
nodes during the learning phase are no longer located one
hop before a destination.

Regarding the Bloom filter implementation, one can see
that the stopping short rate is significant. Between 0.9981
(filter size of 103) and 0.7668 (filter size of 104). The cost
of these high levels of stopping short can be evaluated in
terms of topology information missed. Fig. 10 compares the
RBF and the Bloom filter implementation in terms of nodes
(Fig. 10(a)) and links (Fig. 10(b)) missed due to stopping
short. A value of 1 means that the filter implementation



(a) nodes

(b) links

Figure 10: Topology information missed

missed all nodes and links when compared to the list im-
plementation. On the other hand, a value of 0 mean that
there is no loss, and all nodes and links discovered by the
list implementation are discovered by the filter implementa-
tion. One can see that the loss, when using a Bloom filter,
is above 80% for filter sizes below 70,000.

Implementing the RSS as an RBF allows one to decrease
the stopping short rate. When removing 25% of the most
troublesome false positives, one is able to reduce the stop-
ping short between 76.17% (filter size of 103) and 84,35%
(filter size of 104). Fig. 9 shows the advantage of using an
RBF instead of a Bloom filter. Fig. 10 shows this advantage
in terms of topology information. We miss a much smaller
quantity of nodes and links with RBFs than Bloom filters
and we are able to nearly reach the same level of coverage
as with the list implementation.

Fig. 11 shows the cost in terms of collisions. Collisions
will arise under Bloom filter and list implementations only
due to network dynamics. Collisions can be reduced under
all RSS implementations due to a high rate of stopping short
(though this is, of course, not desired). The effect of stop-
ping short is most pronounced for RBFs when β is low, as
shown by the curve β = 0.01. One startling revelation of
this figure is that even for fairly high values of β, such as
β = 0.10, the effect of stopping short keeps the RBF collision
cost lower than the collision cost for the list implementation,
over a wide range of compression ratios. Even at β = 0.25,

Figure 11: Collision cost

Figure 12: Metrics for an RBF with m=60,000

the RBF collision cost is only slightly higher.
Fig. 12 compares the success, stopping short, and collision

rates for the RBF implementation with a fixed filter size of
60,000 bits. We vary β from 0.01 to 1 with an increment
of 0.01. We see that the success rate increases with β until
reaching a peak at 0.642 (β = 0.24), after which it decreases
until the minimum success rate, 0.4575, is reached at β =
1. As expected, the stopping short rate decreases with β,
varying from 0.6842 (β = 0) to 0 (β = 1). On the other hand,
the collision rate increases with β, varying from 0.0081 (β
= 0) to 0.5387 (β = 1).

The shaded area in Fig. 12 delimits a range of β values for
which success rates are highest, and collision rates are rel-
atively low. This implementation gives a compression ratio
of 4.2 compared to the list implementation. The range of
β values (between 0.1 and 0.3) gives a success rate between
0.7015 and 0.7218 while the list provides a success rate of
0.7812. The collision rate is between 0.1073 and 0.1987,
meaning that in less than 20% of the cases a probe will hit
a destination. On the other hand, a probe hits a destination
in 12.51% of the cases with the list implementation. Finally,
the stopping short rate is between 0.2355 and 0.1168 while
the list implementation gives a stopping short rate of 0.0936.

In closing, we emphasize that the construction of B and
the choice of β in this case study are application specific. We
do not provide guidelines for a universal means of determin-
ing which false positives should be considered particularly



troublesome, and thus subject to removal, across all applica-
tions. However, it should be possible for other applications
to measure, in a similar manner as was done here, the po-
tential benefits of introducing RBFs.

6. RELATED WORK
Bloom’s original paper [1] describes the use of his data

structure for a hyphenation application. As described in
Broder and Mitzenmacher’s survey [3], early applications
were for dictionaries and databases. In recent years, as the
survey describes, there has been considerable interest in the
use of Bloom filters in networking applications. Authors of
the present paper have earlier described the use of Bloom
filters for a network measurement application [12]. Other
examples abound.

The Bloom filter variant that is closest in spirit to the
RBF is Hardy’s anti-Bloom filter [13], as it allows explicit
overriding of false positives. An anti-Bloom filter is a smaller
filter that accompanies a standard Bloom filter. When que-
ried, the combination generates a negative result if either
the main filter does not recognize a key or the anti-filter
does.

Compared to the anti-Bloom filter, an advantage of the
RBF is that it requires no additional space beyond that
which is used by a standard Bloom filter. However, a thor-
ough analysis of the comparative merits would be of inter-
est. This would require an examination of how to best size
an anti-filter, and a study of the trade-offs between false
positives suppressed and false negatives generated by the
anti-filter.

Another variant that is close in spirit to the RBF is Fan
et al.’s counting Bloom filter (CBF) [5], as it allows explicit
removal of elements from the filter. The CBF effectively
replaces each cell of a Bloom filter’s bit vector with a multi-
bit counter, so that instead of storing a simple 0 or a 1, the
cell stores a count. This additional space allows CBFs to not
only encode set membership information, as standard Bloom
filters do, but to also permit dynamic additions and deletions
of that information. One consequence of this new flexibility
is that there is a chance of generating false negatives. They
can arise if the counters overflow. Fan et al. suggest that the
counters be sized to keep the probability of false negatives
to such a low threshold that they are not a factor for the
application (four bits being adequate in their case).

RBFs differ from CBFs in that they are designed to re-
move false positives, rather than elements that are truly
encoded in the filter. Whereas the CBF’s counting tech-
nique could conceivably be used to remove false positives,
by decrementing their counts, we do not believe that this
would be a fruitful approach. Consider a CBF with the
same spatial complexity as an RBF, that is, with a one bit
counter. Decrementing the count for a false positive in a
CBF would mean resetting as many as k bits, one for each
hash function. The resetting operation in an RBF involves
only one of these bits, so it will necessarily generate fewer
false negatives.

There are few studies of the possibility of trading off false
positives against false negatives in variants of Bloom fil-
ters. An exception is Laufer et al.’s careful analysis [14] of
the trade-offs for their generalized Bloom filter (GBF) [15].
With the GBF, one moves beyond the notion that elements
must be encoded with 1s, and that 0s represent the absence
of information. A GBF starts out as a random vector of

both 1s and 0s, and information is encoded by setting cho-
sen bits to either 0 or 1. As a result, the GBF is a more
general binary classifier than the standard Bloom filter, with
as one consequence that it can produce either false positives
or false negatives.

A GBF employs two sets of hash functions, g1, . . . , gk0
and

h1, . . . , hk1
to set and reset bits. To add an element x to the

GBF, the bits corresponding to the positions g1(x), . . . , gk0
(x)

are set to 0 and the bits corresponding to h1(x), . . . , hk1
(x)

are set to 1. In the case of a collision between two hash
values gi(x) and hj(x), the bit is set to 0. The member-
ship of an element y is verified by checking if all bits at
g1(y), . . . , gk0

(y) are set to 0 and all bits at h1(y), . . . , hk1
(y)

are set to 1. If at least one bit is inverted, y does not belong
to the GBF with a high probability. A false negative arises
when at least one bit of g1(y), . . . , gk0

(y) is set to 1 or one bit
of h1(y), . . . , hk1

(y) is set to 0 by another element inserted
afterwards. The rates of false positives and false negatives
in a GBF can be traded off by varying the numbers of hash
functions, k0 and k1, as well as other parameters such as the
size of the filter.

RBFs differ from GBFs in that they allow the explicit re-
moval of selected false positives. RBFs also do so in a way
that allows the overall error rate, expressed as a combina-
tion of false positives and false negatives, to be lowered as
compared to a standard Bloom filter of the same size. We
note that the techniques used to remove false positives from
standard Bloom filters could be extended to remove false
positives from GBFs. For a false positive key, x, either one
would set one of the bits g1(x), . . . , gk0

(x) to 1 or one of the
bits h1(x), . . . , hk1

(x) to 0.
Bonomi et al. also provide a Bloom filter variant in which

it is possible to trade off false positives and false negatives.
Their d-left counting Bloom filter (dlCBF) [4, 16], has as its
principal advantage a greater space efficiency than the CBF.
Like the CBF, it can produce false negatives. It can also
produce another type of error called “don’t know”. Bonomi
et al. describe experiments that measure the rates for the
different kinds of errors.

RBFs differ from dlCBFs in the same way as they differ
from standard CBFs: they are designed to remove false posi-
tives rather than elements that have been explicitly encoded
into the vector, and they do so by resetting one single bit
rather than decrementing a series of bits.

7. CONCLUSION
The Bloom filter is a lossy summary technique that has

attracted considerable attention from the networking re-
search community for the bandwidth efficiencies it provides
in transmitting set membership information between net-
worked hosts.

In this paper, we introduced the retouched Bloom filter
(RBF), an extension that makes Bloom filters more flexible
by permitting selected false positives to be removed at the
expense of introducing some random false negatives. The
key idea is to remove each false positive by resetting a care-
fully chosen bit in the bit vector that makes up the filter.

We analytically demonstrated that the trade-off between
false positives and false negatives is at worst neutral, on
average, when randomly resetting bits in the bit vector,
whether these bits correspond to false positives or not. We
also proposed four algorithms for efficiently deleting false
positives. We evaluated these algorithms through simula-



tion and showed that RBFs created in this manner will in-
crease the false negative rate by less than the amount by
which the false positive rate is decreased.

In this paper, we described a network measurement appli-
cation for which RBFs can profitably be used. In this case
study, traceroute monitors, rather than stopping probing at
a destination, terminate their measurement at the penulti-
mate node. The monitors share information on the set of
penultimate nodes, the red stop set (RSS). We compared
three different implementations for representing the RSS in-
formation: list, Bloom filter, and RBF. Using filters reduces
the bandwidth requirements, but the false positives can sig-
nificantly impact the amount of topology information that
the system gleans. We demonstrated that using an RBF,
in which the most troublesome false positives are removed,
will increase the coverage of a filter implementation. While
the rate of collisions with destinations will increase, it can
still be lower than for the list implementation.

In future work, we hope to demonstrate techniques to ap-
ply the RBF concept earlier in the construction of the filter.
At present, we allow the Bloom filter to be built, and then
remove the most troublesome false positives. It should be
possible to avoid recording some of these false positives in
the filter to begin with.
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