
ROUTING IN NEXT GENERATION WORKSHOP, 2007 1

Implementing SHIM6 using the Linux XFRM
framework

Sébastien Barré, Olivier Bonaventure

Université catholique de Louvain (UCL), Belgium

I. I NTRODUCTION

T
HE Shim6 proposal [1] by IETF to solve the multihoming
problem for IPv6 is reaching a consensus, although some

aspects are still criticized. It is important for the success of a
solution to test it in real conditions, but this has not been done
yet.

The Shim6 approach relies on an ID/locator split concept,
where the mapping is done inside the end-hosts, thanks to a
new shim sublayer located in the IPv6 part of the networking
stack. If a host owns several locators, an application willing
to connect to another end point will use one of them as Up-
per Layer IDentifier (ULID), and the Shim6 new sublayer will
provide the ability to change the locators at will while keep-
ing the identifiers constant (rewriting the source and destination
address fields on-the-flight). Another protocol, REAP [2] (for
REAchability Protocol), provides failure detection and recov-
ery capabilities to Shim6. It is able to detect a failure and send
probes to the available locator pairs until a new working path
is found. Then the Shim6 layer is told to change the currently
used locators and the communication can continue without any
change in the application.

Because the approach allows one to change locators during
an exchange, it is necessary to provide a mean for verifying that
the used locators are actually owned by the peer. Shim6 can
use two mechanisms for that : Hash Based Addresses [3] are a
set of addresses linked together, so that one can verify thattwo
addresses have been generated by the same host. Cryptograph-
ically Generated Addresses [4] are a hash of a public key and
allow, together with a signature, to verify that the sender of a
signed message is the actual owner of the CGA address used.

Since last year, we published evolving versions of the first
publicly available Shim6 implementation, LinShim6. In this
paper , we present the new architecture of the last version, 0.51.
While the previous one was a prototype implementation, this
new version, a major rewrite, is designed to provide good per-
formance and be easily extensible to support cooperation with
other protocols that also use the XFRM architecture[5], [6]. Ma-
jor improvements include careful separation between kernel and
user space, cleaner insertion inside the kernel and better concur-
rency management.

In this paper, we start by presenting the XFRM framework.
Then we describe our new design, highlighting the performance
and modularity benefits obtained from the new architecture.Fi-
nally, we conclude the paper and discuss future directions.

Sébastien Barré is supported by a grant from FRIA (Fonds pourla Formation
à la Recherche dans l’Industrie et dans l’Agriculture), rued’Egmont 5 - 1000
Bruxelles, Belgium

1 http://inl.info.ucl.ac.be/LinShim6

II. T HE XFRM FRAMEWORK

XFRM (for transformer) is a network programming frame-
work included in the Linux kernel [7] to permit flexible trans-
formation of packets. The framework obeys to aSerialized Data
State model, as described in Yoshifuji et al. [8].

The idea is to be able to modify the path of packets through
the networking stack based on some policies. The framework,
originally designed to implement IPsec [5], has later been used
for the Mobile IPv6 implementation [6].

A policy is made of aselector, a direction, an action and a
template. The policy is applied to a packet if it matches the
selector and is flowing in thedirection of that policy (inbound
or outbound). The selector mechanism allows one to use the
addresses, ports, address family and protocol number as fields
for the matching (see [9, sec. 4.4.1] for the precise semantics
of a selector). Now let us assume that a packet matches a given
policy. In that case thetemplate is used to get a description of
the tranformations needed for that kind of packet. Let us further
assume that the packet needs AH (Authentication Header) and
ESP (Encapsulating Security Payload) tranformation [9]. Then
the corresponding states (one for AH and the other one for ESP)
are found and a linked list ofdst structures is created. Adst
structure is normally the result of a routing table lookup, and
contains information about the outgoing interface as well as a
pointer to the function that must be called to send the packet
(for exampleip_output or ip6_output). As shown in
figure 1, those structures may be linked together, so that several
output functions are called sequentially.

After thedst path has been created, the linked list is cached
for that socket, so that additionnal packets will flow through the
IPsec layer as if it was part of the standard networking stack.

While outgoing packets are attached to one or several states
by usingdst entries (as shown in fig. 1), incoming packets
are processed differently. Since those packets already have ex-
tension headers (for example AH and ESP), with lookup keys
such as the SPI (Security Parameter Index), it is only necessary
to lookup the XFRM states according to the information con-
tained inside each extension header.

XFRM policies and states are created and managed from user
space, with akey manager (as called inside the kernel) that com-
municates with the kernel part of XFRM by using the Netlink
API [10].

Figure 1. Dynamically created path for IPsec packets



2 ROUTING IN NEXT GENERATION WORKSHOP, 2007

Figure 2. Shim6 overall architecture

III. L INSHIM 6 0.5 : OVERALL ARCHITECTURE

The Shim6 mechanism introduces a new sublayer inside the
IPv6 layer, somehow like AH, ESP or Mobile IPv6. The flex-
ible and modular, yet efficient XFRM framework thus fulfills
particularly well the needs of the Shim6 transformations : after
a Shim6 context (negotiated in user space) becomes established,
XFRM policies and states are created, so that the packets match-
ing the policies now go throughshim6_output() (pointed
to bydst->output, see fig. 1) andshim6_input() func-
tions.

A global view of our design is given in figure 2. The upper
part of the figure runs in user space as a daemon, and currently
works with four threads (represented as dashed boxes). One is
a telnet server that provides a Command Line Interface
(CLI) to the daemon. The second one is thetimer thread, that
wakes up each time an expiration event happens. TheXFRM
manager listens to messages from the XFRM framework. Fi-
nally the main thread listens to messages from the network or
the kernel, and reacts appropriately.

One of the major improvements of this new architecture is
the insertion of arequest manager. Its role is to sim-
plify concurrency problems caused by external threads (that
is, all threads except the main one) wanting to access Shim6
data structures (also used by the main thread). For example
the telnet thread may want to dump the Shim6 states, or
thetimer thread may want to access the appropriate context
before sending a probe. This led in previous versions to com-
plex mutex schemes, that did not improve the concurrency, since
each event was served by only a few lines of code.

A better scheme for avoiding concurrent access to critical
data structures (contexts and hashtables) is to prohibit direct ac-
cess to those structures from threads other than the main one.
Instead, a genericRequest manager has been written, so
that external threads now send a request for service througha
pipe. The main thread then performs the service as soon as it is
ready. If several requests are sent concurrently, they are queued
inside the pipe.

When a new Shim6 session starts, packets flow through the
kernel and are counted by thepacket listener module.
This module uses the netfilter hooksNF_IP6_LOCAL_IN and

NF_IP6_LOCAL_OUT to detect new exchanges and notify the
daemon through the Netlink interface when a configured num-
ber (currently one) of packets has been seen for that flow. Note
that, since Shim6 works at the IP layer, if several transport
flows are started between two hosts, only one network flow is
seen by thepacket listener module. Later thepacket
listener could probably be integrated in the XFRM frame-
work rather than use the netfilter hooks.

When theshim6d daemon is asked to create a new context,
a four way handshake is performed, across theraw socket,
attached to the protocolIPPROTO_SHIM6. An important point
to note is that the same protocol number is used for control
and data plane in the Shim6 protocol, which means that the
raw socket would normally receive any data message equipped
with a Shim6 extension header. For efficiency reasons, we pre-
vent this by adding a Shim6 filter inside the raw socket im-
plementation, as already done for several ICMPv6 messages
(ICMPv6 filters may be configured from user space through the
ICMP6_FILTER socket option).

Now suppose that the Shim6 (user space) context becomes
established. We need to start the failure detection module,
and thus make the packets go through the Shim6 transform-
ers,shim6_output() andshim6_input(). Actually the
transformer only performs address rewriting if ULIDs differ
from locators. If not, it simply notifies the REAPFailure
detection module that a packet has been seen. That module
maintains the Keepalive and Send timers [2], and notifies the
daemon if a failure has been detected. The result is that the
REAP path exploration module starts sending probes
across theraw socket until a new operational path has been
found.

We decided to split the REAP protocol in two parts, respec-
tively for kernel and user space. Again, this is for efficiency
reasons : We try to keep as much as possible the protocols in
user space, without sacrificing efficiency. But failure detection
needs a timer to be updated for each packet sent or received, and
thuscannot be implemented in user space.

Finally, when a new path has been found, theXFRM
manager is notified to update the Shim6 XFRM states, so
that theShim6 transform module now adds the extension
header and rewrites the addresses.

IV. I NCOMING PACKETS

As other extension headers, the Shim6 extension header
is registered in the kernel as a protocol. This al-
lows the standard dispatching function of the Linux kernel
(ip6_input_finish()) to direct the packet through the
correct XFRM state.

The receiving process is illustrated in figure 3 : first the
packet is sent to the raw sockets that are listening for that pro-
tocol number (left part of the figure). If the next header value in
the IPv6 header isIPPROTO_SHIM6 for example, the packet
is delivered to theraw socket module of the daemon (if not
filtered before).

Next, ip6_input_finish() enters a loop that parses
each next header and calls the appropriate handler. If a Shim6
header is found, the corresponding handler is called and a con-
text tag based lookup is performed to find an XFRM context.



IMPLEMENTING SHIM6 USING THE LINUX XFRM FRAMEWORK 3

Figure 3. Incoming packet flow

Packets that do not contain the extension header also need to
go through theshim6_input() function, since they may be
using the ULIDs. In that case the standard dispatching func-
tion will not send the packet through XFRM, so we do that
manually by callingshim6_input_std(). Actually in that
case we do as if the Shim6 header was present, looking at what
would be its place regarding extension header order, so as togo
through Shim6 at the right step (see Nordmark and Bagnulo [1,
sec. 4.6]). This case is shown in the right part of fig. 3.

Note that keepalives and probes are processed by both the
failure detection (kernel) andpath exploration
(daemon) modules. In that case, the next handler (after
functionreap_input()) is ipv6_nodata_rcv() which
simply terminates the processing since the next header is
IPPROTO_NONE (59).

We extended the XFRM lookup functions to support ULID
and context tag based lookups. The current XFRM framework
maintains three hashtables : one uses the IPsec Security Param-
eter Index (SPI) as key [9], the second one uses the address pair
and the last one uses a request ID (manually configured iden-
tifier used by IPsec). Rather than creating new data structures,
we use the address pair based lookup for ULIDs, and SPI based
lookup to find contexts on the basis of the context tag (the 32
low order bits of the context tag are used for that purpose). This
way we can benefit from the performance of hashtable lookups,
while keeping the existing data structures.

V. K EEPING ONE CONTEXT FOR EACH DIRECTION

Since IPsec works on a unidirectional basis, the XFRM
framework only supports unidirectional contexts. For thisrea-
son, we split the previously unique Shim6 context into two
XFRM contexts. The outbound context stores the peer’s con-
text tag and the locator pair (written in each outgoing packet),
while the inbound context stores the local context tag and ULID
pair.

But this solution is not sufficient for the failure detection
module, which really needs a shared data area : when a packet
goes out, a timer is started (Send timer). Thus we should main-
tain a timer structure inside theoutbound context.

But the same timer is stopped when a packet comes in. It
means that, when we have one context in hand, we actually need
to get the corresponding reverse context also.

We solve this problem by using the private data pointer of
an XFRM context. It is private in the sense that its meaning is
not known by the XFRM framework and its usage is let to the
particular instance of the transformer (Shim6). This allows us
to do a reverse lookup at context creation only. After that, the
shared memory area (only used by REAP) is accessible from
both contexts. A reference counter is used to ensure that we
free this memory only when the last XFRM context has been
destroyed.

VI. CONCLUSION AND FUTURE WORK

In this abstract, we discussed the current version of the Lin-
Shim6 implementation2. We explained design choices that
should lead to best performance, while staying modular. Nev-
ertheless, Shim6 processing is still an additional overhead and
should be subject to measurements in real environments, espe-
cially to evaluate its impact on heavily loaded servers.

We emphasized the inherent flexibility of the XFRM frame-
work. One of the benefits of using such a framework is that it
permits the use of multiple mechanisms at the same time. For
example, one could imagine using IPsec over Shim6 as sug-
gested by Nordmark and Bagnulo [1]. This has still not been
tested, however, and is kept for future work.

Our current work is to add HBA/CGA and attach live Shim6
machines to the IPv6 Internet. This will be reported during the
workshop.

REFERENCES

[1] E. Nordmark and M. Bagnulo, “Shim6: Level 3 Multihoming Shim
Protocol for IPv6,” Internet draft, draft-ietf-shim6-proto-09.txt, work in
progress, October 2007.

[2] J. Arkko and I. van Beijnum, “Failure Detection and Locator Pair Explo-
ration Protocol for IPv6 Multihoming,” draft-ietf-shim6-failure-detection-
09.txt, work in progress, July 2007.

[3] M. Bagnulo, “Hashed Based Adresses (HBA),” draft-ietf-shim6-hba-
03.txt, work in progress., June 2007.

[4] T. Aura, “Cryptographically Generated Addresses (CGA),” RFC 3972
(Proposed Standard), Mar. 2005, Updated by RFCs 4581, 4982.

[5] M. Kanda, K. Miyazawa, and H. Esaki, “USAGI IPv6 IPsec development
for Linux,” in International Symposium on Applications and the Internet,
January 2004, pp. 159–163.

[6] K. Miyazawa and M. Nakamura, “IPv6 IPsec and Mobile IPv6 imple-
mentation of Linux,” inProceedings of the Linux Symposium, July 2004,
vol. 2, pp. 371–380.

[7] K. Wehrle, F. Pählke, H. Ritter, D. Müller, and M. Bechler, The Linux
Networking Architecture, Prentice Hall, 2005.

[8] H. Yoshifuji, K. Miyazawa, M. Nakamura, Y. Sekiya, H. Esaki, and J. Mu-
rai, “Linux IPv6 Stack Implementation Based on Serialized Data State
Processing,” IEICE TRANSACTIONS on Communications, vol. E87-B,
no. 3, pp. 429–436, March 2004.

[9] S. Kent and K. Seo, “Security Architecture for the Internet Protocol,” RFC
4301 (Proposed Standard), Dec. 2005.

[10] J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov, “Linux Netlink as an
IP Services Protocol,” RFC 3549 (Informational), July 2003.

[11] S. Barré, “LinShim6 - Implementation of the Shim6 proto-
col,” Tech. Rep., Université catholique de Louvain, November 2007,
http://inl.info.ucl.ac.be/LinShim6.

2 A more detailed description may be found in [11]


