
LinShim6 - Implementation of the Shim6 protocol
http://inl.info.ucl.ac.be/LinShim6

Documentation - Version 0.6.x

Sébastien Barré
Université Catholique de Louvain

Belgium

Feb. 2008

Contents

1 Introduction 2

2 The user point of view 2
2.1 Installation 3
2.2 The shim6d interface 3
2.3 In case of problems 4

3 LinShim6 overall architecture 4

4 The shim6d daemon 4
4.1 Overview of the source files 5
4.2 pipe.c: Using a pipe to serialize access to shared data 5

5 Triggering a context establishment 6

6 Sending requests to the kernel : RTNetlink 6

7 The XFRM framework 6
7.1 Introduction to policies and states 6
7.2 xfrm policies . 8
7.3 xfrm states . 9

8 The path of a packet through the networking stack 12
8.1 Incoming packets 14
8.2 Outgoing packets 14

9 REAP Implementation 14
9.1 Triggering an exploration 15
9.2 Sending probes 15
9.3 About (un)verified locators 16

10 cgatool 16
10.1 CGA generation 16
10.2 Verification 17
10.3 cgatool console 17

1

Appendix 18

A Shim6 control messages sent through Netlink 18
A.1 SHIM6_NL_NEW_LOC_ADDR : Announce the apparition of a new locator 18
A.2 SHIM6_NL_DEL_LOC_ADDR : Announce the removal of a locallocator 18
A.3 SHIM6_NL_NEW_CTX : A new context must be created 18
A.4 REAP_NL_NOTIFY_IN : Incoming packet notification 18
A.5 REAP_NL_NOTIFY_OUT : Outgoing packet notification 19
A.6 REAP_NL_START_EXPLORE : Begin a new exploration 19
A.7 REAP_NL_SEND_KA : Send a keepalive 19

1 Introduction

This document presents the UCL implementation of Shim6, forthe Linux Kernel. It will evolve concur-
rently with the implementation. The aim is to present the implementation from three sides :

• The user point of view (implications on user programs, Shim6API)

• The programmer point of view : interfaces betweenLinShim6, the kernel and the shim6d daemon.

• LinShim6internals.

An other goal of this document is to present current ongoing work, as well as parts that could be done
by external developpers interested in joining the project.

The work presented here is based on my master’s thesis[Bar06]. The thesis (written in French) discusses
in details the first version of the implementation and can be downloaded athttp://inl.info.ucl.
ac.be/publications/shim6-masterthesis.

Like the whole project, this documentation is a work in progress. Every comment, suggestion of
improvement, or proposal to participate is welcome. Comments regarding the code or the documentation
may be sent to the mailing list :shim6-impl@lists.gforge.info.ucl.ac.be(subscription athttp://lists.
gforge.info.ucl.ac.be/mailman/listinfo/shim6-impl.)

The version documented here is 0.6. This (still partially) implements [NB07] and almost fully [AvB07]
(only the keepalive option is not supported currently and the exploration method can be made more effi-
cient).

Note that a complementary document [Bar07] gives a global overview of the architecture. You can also
download it from the INL website.

2 The user point of view

Shim6 is a new sublayer inside IPv6. It is intended to be absolutely invisible by upper layers. Never-
theless, it could be useful for applications to specify thatthey either want or don’t want to use the shim.
Alternatively, some applications may want to have special control over the shim.

• current situation : Currently, applications aren’t able to control the shim. When the first IPv6
packet is sent to a new destination, a Shim6 negotiation is triggered. However, you can easily
implement your own heuristic for triggering a Shim6 contextnegotiation by modifying the file
shim6_pkt_listener.c. The easiest is to specify another packet number threshold,but you can also
add a timestamp to the packet listener, so as to have a time threshold, or use port information in the
packet to make a decision.

• the future : The intent for the future is to support a Shim6 API, like the one specified in [KBSS07].

2

2.1 Installation

Installing the patch : Patch the kernel the usual way, then typemake xconfig. The Shim6 option is
available under Networking/Networking options/Shim6 support. It is currently not possible to compile it
as a module.

Shim6 won’t work with only the recompiled kernel. You will also need to install the LinShim6-x.y.z
tarball. The LinShim6 daemon can be installed like any otherpackage :

tar -zxvf LinShim6-x.y.z.tar.gz
cd LinShim6-x.y.z
./configure [--disable-debug] [enable-debug-kref]

[--enable-log-expl-time]
[--disable-cgacheck]
[CPPFLAGS="-isystem /usr/src/linux/include"]

make
make install (as root)
cgad (as root)
shim6d (as root)

The configuration options are set by default to enable most debug messages (you are encouraged to
let debug messages and report problems). Thelog-expl-time option may be enabled if you want
to do measurements of exploration times. If enabled, several informations about explorations will be
stored inside/etc/shim6/expl.log. Informations are the locators used before and after the exploration, the
exploration time (defined as the time interval between leaving and coming back to the operational state),
and the number of probes sent and received.

Thedisable-cgacheck option allows to build a LinShim6 that will accept unsecuredlocator sets.
That option exists only for interoperability tests (experimental phase) and should not be set otherwise. The
local use of CGA by LinShim6 is not disabled by that option, however.

The last option may prove useful if the configure script cannot manage to find your Linux kernel
headers.

2.2 The shim6d interface

Since version 0.4.3, the user interface with shim6d has beenchanged : Previously, a signal handler for
SIGUSR1 created files with a dump of state information. This has been removed and replaced with a telnet
server. This gives much more flexibility, for example one cancontrol the shim6d daemon from a distant
machine by connecting to port 50000. The currently available commands are :

• ls : List all states. States are named by their context tag written in hexadecimal form.

• cat <state>: Provides much information about a specific state, named with its context tag written in
hexadecimal form.

• rm <state> : Deletes a specific context state, both in the daemon and in the kernel. Note that if the
shim6d process is killed, every context state is automatically deleted.

• quit | exit : Close the telnet connection.

• get timelog: Only available if thelog-expl-time option was enabled when callingconfigure
for the package. Dumps the content of/etc/shim6/expl.log.

• set timelog: Only available if thelog-expl-time option was enabled when callingconfigure
for the package. Deletes theexpl.logfile. This is useful for automating exploration measurement.

3

Figure 1: LinShim6 overall architecture

2.3 In case of problems

Error reports are very welcome and can be sent through the bugtracking system. You just need to follow
theSubmit a bug reportlink on the LinShim6 web page1.

Error/info messages during execution are appended inside the /var/log/messagesfile or another one,
depending on your configuration.

3 LinShim6 overall architecture

In order to get a global view of the system, we invite you to first read [Bar07] before to proceed. For the
sake of convenience, we reproduce here the big picture of theLinShim6 architecture (fig. 1).

Next sections will go deeper into the details of each part of that architecture. The upper part will be
described in section 4. Section 5 introduces thepacket listenermodule, responsible for deciding when and
for which flow to start a Shim6 negotiation. Next the RTNetlink interface is described (section 6), so that
we can follow with the details of thexfrm framework (section 7).

4 The shim6d daemon

Since version 0.5, almost all theLinShim6code has been moved to the daemon. This is why the previously
called reapd daemon is now called shim6d (but it performs both Shim6 and Reap operations). Only fail-
ure detection and packet transformation are still done inside the kernel, for efficiency reasons (these two
functions require work for each packet sent or received).

1http://inl.info.ucl.ac.be/LinShim6

4

4.1 Overview of the source files

The daemon provides several functions that are separated indifferent files :

• main.c: Main thread. It does the necessary work to become a daemon, initializes every module,
then sits in an infinite loop, listening for three kinds of events, namely network messages (probes,
keepalives, I1, R1, . . .), kernel netlink messages and pipe messages (requests from the other threads,
see below).

• shim6d.c: performs every Shim6 related function (except address rewriting which is let to the ker-
nel). The user space contexts are maintained there, inside aULID hashtable and a ct hashtable (to
look up either by ULIDs or by context tags). The main job of this module is to negotiate new contexts
with peers, upon request by the kernel (four-way handshake).

• reapd.c: Implements the path exploration part of the REAP protocol.When a failure is detected by
the kernel (send timer expiry) or an exploring probe is received, this module performs the exploration,
and updates thexfrm context states when a new working locator pair is found.

• raw_socket.c: Tools for easily sending or receiving Shim6/Reap control packets. Only control
packets are received, thanks to the filter present in thelinux_src/net/ipv6/raw.cfile of the kernel.

• shim6_netlink.c: Responsible for the Netlink communication with the kernel.

• xfrm.c: Communicates with thexfrm framework inside the kernel through theRTNETLINK API.
The kernel side of the communication is implemented inlinux_src/net/xfrm/xfrm_user.c. This mod-
ule has a thread that listens toxfrm messages from the kernel. This thread is necessary by designof
theRTNETLINK API.

• info_server.c: Runs in its own thread. This is the implementation of theLinShim6information
server, waiting for telnet connexions on port 5000.

• pipe.c: Manages the transmission of requests from some threads to the main thread. This system
has been designed to improve concurrency management. Before version 0.5, many semaphores were
used to protect shared data, accessed concurrently from thetimer or theinfo_serverthread (now also
thexfrm thread). But this was a useless complexity. We have then introduced the rule that any
shim6 data (contexts and hash tables) may only be accessed bythe main thread. The mechanism
used is explained in section 4.2.

4.2 pipe.c : Using a pipe to serialize access to shared data

Since only the main thread may access the shim6 data, we need to be able to ask for some service from the
other threads. For example, if some user typesls on the telnet console, the hash tables must be accessed to
list the currently available contexts.

Instead of directly accessing the data, theinfo_serverpushes a request on the pipe, by calling :

pipe_push_event(PIPE_EVENT_INFO_SRV,command);

Thanks to theselect() system call, the main thread may be awoken by any event among network
messages, netlink messages or pipe requests. Upon reception of a pipe request,pipe_run_handler()
is called (pipe.c) and the message is dispatched to the correct handler. Then the command is executed
inside the handler, that is, from the main thread. This provides a natural way of serializing execution, and
allows for the removal of many mutexes.

Note that delegating actions to another thread implies sometimes the need to wait for the action to com-
plete, before to do anything else. This is the case of the infoserver. If you typels, the info server thread
will ask the main thread to perform the listing action. But the prompt cannot be displayed before the listing
action completes. Thus after pushing the request to the pipe(pipe_push_event()), the info server
thread waits for a synchronization signal from the main thread (pthread_cond_wait()). When the
listing action is done, the main thread sends the synchronization signal (pthread_cond_signal()),
resulting in the info server thread displaying the prompt again.

5

5 Triggering a context establishment

Currently the context establishment trigger doesn’t use thexfrm framework. It is implemented as a sepa-
rate module,shim6_pkt_listener.c, that does something similar to connexion tracking : For each outgoing
packet that is the first of an exchange, an entry is inserted inside a hashtable. It is removed if no packet is
seen for the same exchange during more than one minute.

If the trigger condition is met, aSHIM6_NL_NEW_CTX message is sent to the daemon (app. A.3),
so that a Shim6 negotiation is triggered. Currently the onlysupported trigger condition is the number of
packets exchanged, it is configured by default to one packet.

By modifying the fileshim6_pkt_listener.c, one can quite easily implement its own heuristic for trigger-
ing a Shim6 function. Currently the only heuristic is to trigger a negotiation afternb_pkts_triggerpackets
has been sent or received. This variable is currently set to one. Furthermore, this heuristic only triggers a
context establishment if an outgoing packet is seen, in order to avoid a third party to be able to make the
host create Shim6 states for arbitrary address pairs (whichwould be a potential DoS attack).

Once the decision has been taken to trigger a context negotiation, the kernel just sends aSHIM6_NL_NEW_CTX
netlink message to the Shim6 Netlink multicast group.

6 Sending requests to the kernel : RTNetlink

In figure 1, we can see that the xfrm manager of theLinShim6daemon communicates with anxfrm
framework controller through the RTNetlink interface.

In our implementation, we use a library written by Alexey Kuznetsov that communicates with the
xfrm framework controller (net/xfrm/xfrm_user.c) through message passing over netlink[SKKK03]. The
mapping from message number to message handler can be found at line 2033 ofxfrm_user.c(in kernel
2.6.23).

Whenxfrm policies or states (explained later) must be created, theirdescription is first created in
user space inside the daemon (src/xfrm.c), then passed to the RTNetlink interface and interpreted bythe
xfrm_user.cfile. The real creation ofxfrm entities is thus implemented insidexfrm_user.c.

7 The XFRM framework

The kernel space part ofLinShim6has completely changed since version 0.5 ofLinShim6. The hashtables
and shim6 contexts have disappeared from the kernel (they are now in user space only), and have been
replaced in the kernel by thexfrm architecture.

Now only the context trigger, the address rewriting and the failure detection are done in kernel space,
because each of these parts need actions to be taken for each packet coming in or going out.

In the next subsections we introduce thexfrm framework and our use of that framework for the spe-
cific purpose of Shim6 implementation. You can find additional documentation on that framework in
[YMN +04], where one of the main authors the Linux IPv6 stack explains the general design ideas. The ap-
plication of the framework for IPsec is described in [KME04], its application for Mobile IPv6 is explained
in [MN04], and its application for Shim6 is described here, as well as in [Bar07] where a general overview
is given.

7.1 Introduction to policies and states

Because IPsec makes uses of an SPD (Security Policy Database) and SAs (Security Associations), the
xfrm framework also works with policies and states.

Packets going out first go through apolicy lookup, in order to determine the output path that the
packet must follow. For example if some flow needs AH and ESP transformations, the policy associ-
ated to that flow will specify that the output path must be set to ah6_output()→ esp6_output()
→ ip6_output() (if the address family is IPv6). In the case of Shim6, the policy will specify that the
output path must beshim6_output()→ ip6_output().

6

A policy is applied to a flow if its selector matches the flow. A selector has the following structure
(linux_src/include/linux/xfrm.h) :

/∗ S e l e c t o r , used as s e l e c t o r both on p o l i c y r u l e s (SPD) and SAs. ∗ /

s t r u c t x f r m _ s e l e c t o r
{

x f r m _ a d d r e s s _ t daddr ;
x f r m _ a d d r e s s _ t saddr ;
__be16 d p o r t ;
__be16 dpor t_mask ;
__be16 s p o r t ;
__be16 spor t_mask ;
__u16 f a m i l y ;
__u8 p r e f i x l e n _ d ;
__u8 p r e f i x l e n _ s ;
__u8 p r o t o ;
i n t i f i n d e x ;
u i d _ t u s e r ;

} ;

Selectors allow to match packets against addresses, ports and protocols, as well as ranges thanks to the
masks. If some field in the selector is set 0, it is interpretedas ‘any’.

For the case of Shim6, selectors are defined as follows (daemon_src/xfrm.c).

Outgoing packets : All fields are ‘any’, except :

• the addresses : <ULID_local, ULID_peer>

• the user :getuid()

• the family :AF_INET6

Incoming packets : Also the addresses, user and family are the only filled in fields. Strangely enough at
first sight, the <src,dst> address pair is set to <ULID_peer,any>. This is to be able to efficiently reuse the
existingxfrm hashtables, with minimal extensions to support Shim6, as explained in section 7.3.

If there is a match between a given packet header and a policy,then the path of the packet is appropri-
ately changed. We specify the path of a packet in the IPv6 stack by using atemplate vector. A template
describes a given transformation. For example if we want to successively apply AH, ESP then Shim6
transformation2, entry 0 of the template array would describe the AH transformation, entry 1 the ESP
transformation and entry 2 would describe the Shim6 transformation.

The last part of the xfrm framework is the state, historically known assecurity association. A security
association maintains all the state necessary for performing a given transformation. It is also unidirectional,
because of the design of the IPsec protocol.

The Shim6 Security Associations : In the case of Shim6, the outbound transformer must be able to
perform failure detection and ULIDs to locators rewriting.It thus need to contain the ULID pair, the
Locator pair and the Context tag that will be inserted in the Shim6 header in case of transformation. A
flag is also present to specify that address rewriting is needed or is not. Similar data is maintained in the
reverse Security Association for performing the reverse translation. Note that the context tag stored in the
outbound SA is the peer context tag (written to outbound packets), while the one stored in the inbound
SA is the local context tag (expected in received packets from the peer). We also need to store the REAP
failure detection timers. They are stored in a memory area whose pointer is shared by the inbound and
outbound SA. We need to do that since the Keepalive and Send timers must be started when packets flow
in one direction, and stopped when they flow in the other direction.

2This is an example, currently the implementation only allows Shim6 transformations. Extension to IPsec support shouldbe
simple, however.

7

The next sections will describe with more details the way policies, selectors, templates and Security
Associations are dealt with in the case ofLinShim6.

All xfrm operations by the daemon part ofLinShim6are implemented insrc/xfrm.c(in the daemon
tarball).

7.2 xfrm policies

A policy embodies aselector, adirection, anaction and atemplate. After the shim6 negotiation
by the daemon terminates, the first thing the daemon does is create the kernel part of the shim6 state, which
consists in two policies and two states. We explain here the role of policies.

A policy is represented by a structure defined ininclude/net/xfrm.h:

s t r u c t x f rm_po l i cy
{

. . .
s t r u c t x f r m _ s e l e c t o r s e l e c t o r ;
s t r u c t d s t _ e n t r y ∗ bund les ;
u16 f a m i l y ;
. . .
u8 a c t i o n ;
. . .
s t r u c t xf rm_tmpl xf rm_vec [XFRM_MAX_DEPTH] ;

}

The policy structure is filled in initially byxfrm_add_policy() (net/xfrm/xfrm_user.c), upon re-
ception of aXFRM_MSG_NEW_POLICYmessage from user space.

In the above listing, we find the selector, the action, and thetemplate vector. These three things make
the core of the policy and will be explained hereafter in thissection. The family is simplyAF_INET6 in
our case. Note that the direction is not part of the structure, because policies are stored in different tables
according to their direction.

The possible directions areXFRM_POLICY_OUT, for outgoing packets, orXFRM_POLICY_IN, for
incoming packets. These two policies are actually quite different.

Outbound policy : The outbound policy serves to detect the packets when they are still in the transport
layer, and change their outgoing path, in such a way that theygo through the Shim6 layer. For Shim6
packets, our intention is not to filter out packets, thus xfrmactionis alwaysXFRM_POLICY_ALLOW. The
selector is set to match with theidentifiers (ULIDs), not the locators. This is because we are still above
the Shim6 layer. Atemplatemust also be assigned to the policy (policy creation by the daemon is done in
xfrm_add_shim6_ctx (src/xfrm.c)). The template provides a description of the “transformation” that
will be performed. Note that in the context ofxfrm with Shim6, the word “transformation” is used for
address rewriting, but also timer updates for REAP failure detection, even if no actual transformation is
performed. This is because we use thexfrm “transform” mechanism to perform both functions.

The Shim6 daemon defines the templates increate_shim6_tmpl() (src/xfrm.c). The template
indicates that the address family is IPv6 and the protocol isShim6. Note that we store 32 low order bits of
the context tag in the spi field of the template. This is to get efficient context-tag based lookup of Shim6
context, and will be explained later.

The policy lookup for outgoing packets is done in the transport layer, right after the routing table lookup
(see fig. 3). For the case of TCP, the function of interest isinet6_csk_xmit() (net/ipv6/inet6_connection_sock.c) :
First a check is done to see if a routing cache entry is present. Note that the routing cache entry is also an
xfrm cache and thus XFRM policy lookup is only necessary whenthe first packet is sent (or when the pol-
icy is changed). The routing table is consulted byip6_dst_lookup() and immediately after the xfrm
policy table is consulted byxfrm_lookup(). Note that UDP does the same thing inupdv6_sendmsg
(net/ipv6/udp.c), and the raw sockets implement it inrawv6_sendmsg (net/ipv6/raw.c). This part of
outgoing packet processing is represented in the upper-right part of figure 3.

Let’s now dig into thexfrm_lookup() function (filenet/xfrm/xfrm_policy.c). If no policy is cached
for that particular socket, then a general policy lookup is performed (xfrm_policy_lookup()). The

8

Figure 2: Linked list of output functions

lookup uses a hashtable and verifies a matching between the packet header and the selector we have con-
figured previously. If no matching policy is found, xfrm processing is now finished. If a policy is found,
then the corresponding template is resolved, leading to theconstruction of abundle of transformations.
CurrentlyLinShim6only supports one transformation for a given flow (future work includes supporting
for example chaining AH or ESP transformation with Shim6). In the case of Shim6, The bundle contains
only one entry, for Shim6. As indicated previously, the outgoing path of the packet must be changed. The
outgoing path is described by a linked list ofdst structures. Each such structure contains a pointer to
a dst_output() function. After a basic routing table lookup, the linked list only contains one entry,
which points toip6_output() (net/ipv6/ip6_output.c). Figure 2 shows the state of the linked list after
the execution ofxfrm_lookup().

Figure 2 also shows that a dst structure contains an entry called dst->xfrm. This entry is of type
struct xfrm_state*, and points to the real Shim6 state, that must have been created before, since
thexfrm_lookup function only performs a lookup for such a state, it does not create it. The lookup
is performed based on the same selector as defined previously. More details onxfrm states are given in
section 7.3.

Inbound policy : The inbound policies are used differently from the outboundpolicies. The main dif-
ference can be summarized by saying that outgoing packets experience apolicy→statesequence, while
incoming packets experience astate→policy sequence. This can be observed by comparing the left and
right part of fig. 3. For the outbound direction, the policy dictates the transformations that the packet will
undergo. For the inbound direction, we receive a packet witha given order of extension headers. The
extension headers are parsed, and a ‘transformation vector’ is built as the headers are parsed, so that the
sequence of transformations is remembered. Next,xfrm6_policy_check() verifies that the observed
sequence of headers were indeed authorized. The Shim6 inbound policy is only necessary to prevent Shim6
packets from being dropped by thexfrm subsystem.

In the case of Shim6, we currently only support one transformation (the Shim6 transform). Thus our
inbound policy simply verifies that the received packet werea normal Shim6 packet, without any other
transformation.

Shim6 policies are defined by theLinShim6daemon inxfrm_add_shim6_ctx() (src/xfrm.c). Note
that the policies are defined with the ULIDs in the selectors,because policies are managed in the transport
layer. They thus need not be updated (xfrm_update_shim6_ctx() upon update of the context (that
is, change of the current locators). Nevertheless,xfrm_update_shim6_ctx() does make a policy
update for the outbound direction only, because this triggers a routing cache flush as a side effect. This
flush is necessary to force a new routing table lookup for the concerned sockets, since the new locators may
need to go out through a different interface.

Thexfrm implementation of policies is located innet/xfrm/xfrm_policy.c. In the next section, we will
describe the state-related implementation, located innet/xfrm/xfrm_state.c.

7.3 xfrm states

Like the policies,xfrm states are created by the functionxfrm_add_shim6_ctx() (src/xfrm.c). xfrm
states are defined through a structurestruct xfrm_state described ininclude/net/xfrm.h. Some parts

9

of this structure are given below :

s t r u c t x f r m _ s t a t e
{

/∗ Note : b y d s t i s re−used dur i ng gc ∗ /
s t r u c t h l i s t _ n o d e byds t ;
s t r u c t h l i s t _ n o d e bys rc ;
s t r u c t h l i s t _ n o d e bysp i ;
. . .
s t r u c t xf rm_id i d ;
s t r u c t x f r m _ s e l e c t o r s e l ;
. . .
s t r u c t x f r m _ l i f e t i m e _ c f g l f t ;
. . .
/∗ Shim6−r e l a t e d data ∗ /
s t r u c t sh im6_data ∗shim6 ;
. . .
s t r u c t x f r m _ l i f e t i m e _ c u r c u r l f t ;
. . .
/∗ Refe rence t o data common t o a l l t h e i n s t a n c e s o f t h i s
∗ t r a n s f o r m e r . ∗ /

s t r u c t xf rm_type ∗ t ype ;
s t r u c t xfrm_mode ∗mode ;
. . .
/∗ P r i v a t e data o f t h i s t rans fo rmer , f o rmat i s opaque ,
∗ i n t e r p r e t e d by x f rm_ type methods .∗ /

void ∗ d a t a ;
}

/∗ I d e n t o f a s p e c i f i c x f r m _ s t a t e . I t i s used on i n p u t t o lookup
∗ t h e s t a t e by (sp i , daddr , ah / esp) or t o s t o r e i n f o r m a t i o n about
∗ sp i , p r o t o c o l and t u n n e l address on o u t p u t .
∗ /

s t r u c t xf rm_id
{

x f r m _ a d d r e s s _ t daddr ;
__be32 s p i ;
__u8 p r o t o ;

} ;

The hashtables : The three fieldsbydst, bysrc andbyspi, are the collision lists of three different
hashtables. Each hashtable permits retrieving anxfrm state with a different key (resp. dst, src or spi). The
corresponding lookup functions, located innet/xfrm/xfrm_state.care :

• xfrm_state_lookup() : Uses thebyspi hashtable. The exact key used is the tuple
(daddr,spi,proto,family). Note that the contexts with null spi (x->id.spi is 0) are
not inserted in that hashtable.

• xfrm_state_lookup_byaddr() : Uses thebysrc hashtable. The exact key used is the tuple
(daddr,saddr,family).

• xfrm_state_find() : Uses thebydst hashtable. The exact key used is the tuple

With our LinShim6 patch, we define two additional lookup functions, necessary for proper operation
of the Shim6 protocol.

• xfrm_state_lookup_byct() : Performs a context tag based lookup. Because we don’t want
to pollute kernel code with additional hashtables, we reusethe SPI hashtable (where of course, SPI

10

does not mean Security Parameter Index). The SPI is 32 bits long, while the context tag is 47 bits
long. Thus we store the 32 low order bits of the context tag in the SPI field of the Shim6xfrm state.
So that those bits are used as a key for finding the context. Thexfrm_state_lookup_byct()
function computes the hash and iterates over the collision list (that is, thebyspi collision list) until
the matching state is found. A state is considered to match ifits family is AF_INET6 protocol is
IPPROTO_SHIM6 the 47 bits of context tag match and thexfrm state is inbound.

• xfrm_state_lookup_byulid_in() : Performs a ULID-based lookup for inbound states. The
outbound Shim6 states are found with the standardxfrm_state_lookup_byaddr() function.
But for the inbound states, things are more complicated because thexfrm framework expects the
source and destination addresses carried inside the incoming packet to be the identifiers for the
context. Thus we must use thelocatorsasxfrm identifiers if we want to use the standard functions.
This is not acceptable since two different Shim6 states may use the same locator pair, and thus the
locator pair is not a unique identifier.

The solution is to store the identifiers in theshim6 field of the structurexfrm_state, and create
this custom lookup function. In order to still make an efficient lookup, we make use of thebysrc
hashtable. The exact key used is the tuple(saddr,daddr,family), where the source address is
the remote identifier. However, we must set the destination address toany (::), to avoid a conflict
with thebyspi hashtable, which uses that address as part of its key.

The two functions described above make possible for the sameinboundxfrm state to receive packets,
either with any locators and the Shim6 extension header (xfrm_state_lookup_byct()), or without
the extension header and using the ULIDs as locators(xfrm_state_lookup_byulid_in()).

Selector and identifier : The next two fields are the selector and the identifier. The selector is the same
as the one used for defining the associated policy. It is used to identify a state, but it is not sufficient, since
the selector actually identifies arange of states (because of the possibility to define masks for addresses
and ports). Thus thedaddr field of thexfrm id is the particular address associated to that flow. Because
of the one-one relationship between Shim6 policies and states, thedaddr field from the selector and the
xfrm id are the same.

Note that theproto field also exists in both the selector and xfrm id structures.Again, the meaning
is different. In the selector, the proto field indicates thatthe upper layer flow must have the given protocol
number. Shim6 sets this field to 0 (any), becauseShim6 associations are only based on network data, not
at all on transport data. On the other hand theproto field of thexfrm id refers to the protocol number
of the particular transformation performed with that state(Remember that each state is responsible for only
one transformation, and thus a vector of states must be used if several transforms are to be applied). In the
case of Shim6, we put there the Shim6 protocol number. We temporarily chose 61, since IANA has not yet
given a number for the Shim6 protocol.

Shim6-related data : Thexfrm states have a pointer to each possible transform data. Thus there are
other fields for AH, ESP, . . . (not shown here). Unused pointers are set to NULL. Our Shim6 structure is
defined as follows (include/linux/shim6.h)

/∗ shim6 data t o be s t o r e d i n s i d e s t r u c t x f r m _ s t a t e∗ /
s t r u c t sh im6_data {

/∗ i nbound − c t i s c t _ l o c a l
∗outbound − c t i s c t _ p e e r∗ /

__u64 c t ;
/∗ i nbound − i n 6 _ l o c a l i s ULID_local , i n6_peer i s ULID_peer
∗outbound − i n 6 _ l o c a l i s l p _ l o c a l , i n6_peer i s l p _ p e e r∗ /

s t r u c t i n6_addr i n 6 _ p e e r ;
s t r u c t i n6_addr i n 6 _ l o c a l ;

/∗ f l a g s∗ /
__u8 f l a g s ;

11

d e f i n e SHIM6_DATA_TRANSLATE 0x1 /∗ T r a n s l a t i o n a c t i v a t e d∗ /
d e f i n e SHIM6_DATA_INBOUND 0x2 /∗ c o n t e x t i s inbound∗ /
d e f i n e SHIM6_DATA_UPD 0x4 /∗ c o n t e x t update∗ /
} ;

As shown in the comments, the content depends on whether the state is inbound or outbound. If the context
is inbound, eitherxfrm_state_lookup_byct() will use the local context tag to find the state, or
xfrm_sate_lookup_byulid_in()will use the identifiers. If the context is outbound, then we need
to replace the identifiers (stored in the selector) with the locators, and insert the Shim6 extension header
with the peer context tag.

The two first flags are self-explained. The third one is set to 1by the daemon when communicat-
ing the structure to the kernel (xfrm_update_shim6_ctx() - src/xfrm.c), to tell the kernel that
the given state is an update, not a new Shim6 context. This information is used in the kernel side by
shim6_init_state() (net/ipv6/shim6.c).

lifetime : Thecurlft field keeps track of the number of bytes, packets, and secondsthe state have
seen. In Shim6 we are more interested in the lifetime in seconds, since we want to remove a state if it is
no longer used. The time is updated inshim6_input() andshim6_output() (net/ipv6/shim6.c).
The timeouts are configured by setting thelft field of that state. This is done through a message from
user space. LinShim6 configures the timeout toSHIM6_TEARDOWN_TIMEOUT (defaults to 10 minutes)
in xfrm_lft() (src/xfrm.c). As can be seen in that function, there exist a soft and a hardtimeout.
Both are managed inxfrm_timer_handler()(net/xfrm/xfrm_state.c). The hard timer automatically deletes
the state and notifies the daemon, while the soft timer just notifies the daemon. In LinShim6 we only set
the soft timer, because it is not sufficient to delete the state, we need to delete the inbound and outbound
states and policies, as well as the daemon state. The expiry notification is sent through RTNetlink (see fig.
1), and handled byxfrm_rcv() (src/xfrm.c).

type and mode : Eachxfrm transform is defined by a mode and a type. Currently 5 transform modes
can be seen inxfrm. Each mode is defined by aXFRM_MODE_* constant ininclude/linux/xfrm.hand a
specific file,net/ipv6/xfrm6_mode_*.c. Themodedefines an input and an output function, thatmodify the
packet structure appropriately. Thetype also defines an input and an output function, thatchange the
packet contentaccording to the particular transformation. Thus, the samemode may be used with several
types if they need the same transformation.

For Shim6, we defined both a new mode and a new type. Our new Shim6 mode (net/ipv6/xfrm6_mode_shim6.c)
performs a conditional packet structure modification. Thatis, if theSHIM6_DATA_TRANSLATE flag is
set, then the locators differ from the ULIDs and space must bereserved for the Shim6 extension header.
On the other hand, if the locators and ULIDs are the same, thenno packet modification is needed.

The Shim6 type is defined inshim6.c. It registers theshim6_input() andshim6_output()
functions, that perform the real work of the Shim6 sublayer.Those functions resp. callreap_notify_in()
andreap_notify_out() (reap.c) for updating the REAP timers.

REAP timers : REAP timers are placed in the privatedata field of the state, because they need to be
shared by the inbound and outbound state. We allocate a memory space for the REAP context when creating
the outbound Shim6xfrm state, then the inbound state is just linked to it (seeshim6_init_state()
(net/ipv6/shim6.c))

8 The path of a packet through the networking stack

The anchor points ofLinShim6inside the Linux Kernel are as shown in figure 3. In this section we sum-
marize the path of packets by describing this figure.

12

Figure 3: Packet path inside the IPv6 stack withLinShim6

13

8.1 Incoming packets

Incoming packets go through the Shim6 packet listener when hitting theIP6_LOCAL_IN netfilter hook.
If an entry already exist for that packet, the correspondingcounter is incremented, if not nothing is done
(only outgoing packet may generate a new entry in that module).

Next theip6_input_finish() function verifies if a raw socket is listening for that packet. It is
the case of Shim6 control packets, that directly go through the Shim6 filter (and pass the filter), to finally
arrive in the LinShim6 daemon, as indicated in the general architecture (fig. 1).

ip6_input_finish() then iterates over each extension header and calls the corresponding han-
dler. The behaviour for Shim6 depends on whether the Shim6 extension header is present or not.

• with the extension : Like other extension headers, the Shim6 payload extensionheader is reg-
istered as an IPv6 protocol, so that it is dispatched the normal way by the ‘resubmit’ loop in
ip6_input_finish(). In this case theshim6_input() function is called to handle the
packet. This can be either a Shim6 control packet or a payloadpacket. In the first case, the packet is
sent to the raw socket and interpreted by the daemon.

In the later case, the payload extension header is used to match a context (shim6_xfrm_input_ct()),
the addresses are translated and the packet is further processed by the ‘resubmit’ loop inip6_input_finish().

• without the extension: This case is more complicated since we need to match the packet against
a potential Shim6 context, at the right step. When the extension header is present, we can parse the
extension headers normally, and be sure that Shim6 will be managed at the right place. Without the
extension, we need to do as if it were there.

Thus, the chosen solution is to use theshim6_input_std() function for packets without exten-
sion headers, and insert some code inip6_input_finish() to check when to send the packet
to the Shim6 layer (relative to other extension headers), incase the Shim6 header is not present. The
shim6_input_std() function in turn callsshim6_xfrm_input_ulid() in order to enter
the xfrm framework, with a context lookup based on the ULIDs.

Later, in the transport layer, a call toxfrm6_policy_check() verifies that the transformed packet
was indeed acceptable according to the local policies.

8.2 Outgoing packets

The first outgoing packet of a newly opened socket has no routing cache yet. For that packet only
ip6_dst_lookup() finds the outgoing interface through the routing table. The source address is also
chosen there according to RFC3484 rules[Dra03] if it was left unspecified by the application.

Right after thatxfrm_lookup() checks if anxfrm policy exists for that flow, in which case it
constructs the bundle of transformations corresponding tothat flow. This determines the sequence of
skb->dst->output() functions that will be called later. For Shim6, the output function isshim6_output().

When hitting the netfilterIP6_LOCAL_OUT hook, the packet goes through the Shim6 packet listener
module, that creates an entry for that flow. If the packet is the first one with this address pair (from any
socket), theLinShim6daemon is notified to start a Shim6 negotiation (with the current heuristic). The other
packets will just cause the corresponding counter to be incremented.

If a routing cache entry already exists for a given socket (see fig. 3,sk->sk_dst_cache), the calls
toip6_dst_lookup() andxfrm_lookup() are not needed. For that reason we must flush the socket
caches when we change the current locators of a flow, since this may result in a change of the outgoing
interface.

9 REAP Implementation

As previously mentioned, the REAP implementation is split in a kernel and a user space part. The division
may be summarized by figure 4.

14

Figure 4: Interaction kernel/userspace for REAP

The REAP protocol runs in user space, almost independently from the kernel. The idea is to manage
the send and keepalive timers in kernel space. Then, if the send timer occurs to timeout, the kernel informs
the REAP daemon (by netlink), in order to start an exploration. When the exploration is terminated, the
REAP daemon informs the kernel about the new operational address pair to be used.

The daemon also has its own send timer, which is used only during an exploration (while the kernel
send timer is used only when the reap context is in state operational).

9.1 Triggering an exploration

Two things can trigger an exploration :

• Send timer expiry : This is detected by the kernel, which sends a netlink messageREAP_NL_START_EXPLORE
to the daemon. This results in the daemon starting the exploration process.

• Receiving a probe message : The probes are received by both the daemon and the kernel, so that it
isn’t necessary to send a netlink message from one to the other. The kernel just goes into inbound_ok
state and adapts its timers, but lets the daemon perform the exploration.

9.2 Sending probes

The REAP context maintains a list of sent and received probe reports (with the locator pair used and the
nonce of each probe). This list is kept during the whole time of an exploration. It is cleared either after the
reception of probe operational or 10 seconds after the reception of a probe inbound ok. (because in the first
case we are certain that the peer is operational, in the second we hope so, but this is not sure. That’s why
we keep the locators during 10 seconds after ending an exploration).

15

9.3 About (un)verified locators

HBA is not supported in versions 0.6.x. But CGA is supported since version 0.6.
We have used the DoCoMo SEND implementation as a starting point for CGA support in LinShim6.

DoCoMo SEND provides a way to configure CGAs with different levels of granularity, ranging from one
CGA PDS for the whole system, to a specific CGA PDS per address.

LinShim6 reuses the DoCoMo SEND configuration file for CGA parameters, thus benefiting from the
same granularity. When starting, it registers every existing CGA address in the system, as well as every
CGA PDS. However, only one PDS is sent to the peer for a given shim6 session, to be in accordance with
the draft, Annex D.4. The chosen PDS is the one associated with the ULID pair used for that session. This
means that LinShim6 is able to manage several PDS for different Shim6 sessions, while keeping exactly
one PDS for a given session.

10 cgatool

Since Version 0.6.1, a new binary is available in the LinShim6 tarball and called cgatool. It is a tool
originated from the DoCoMo SEND implementation, and integrated in the LinShim6 package. It has also
been modified to better suit the needs of LinShim6. Note that the text of this section is almost completely
taken from the DoCoMo SEND documentation, and is reproducedhere for the sake of convenience.

10.1 CGA generation

When generating a CGA, use the-g or --gen command line argument. To generate, you must provide a
key, an IPv6 prefix, and a CGA sec value. There are four ways to provide a key:

1. Provide a certificate with-C or --certfile.

2. Provide a PEM-encoded RSA key pair with-k or --keyfile.

3. Generate a RSA key on the fly with-R or --rsa <bits>. You must also provide a keyfile with
-k to which to write the new key. Note that the number of bits for the key is amandatory argument.
If you fail to give it, you will receive an errorEVP_PKEY_assign_RSA() failed.

4. Provide DER-encoded CGA parameters with-D or --derfile.

Provide an IPv6 prefix with-p or --prefix <prefix>.
Provide a CGA sec value with-s or --sec <sec value>.
When generating, you must also provide a derfile with-D to which to write the new DER-encoded

CGA parameters.

Some examples:

• Provide the key from mykey.pem:
cgatool -g -k mykey.pem -o myder -p 2000:: -s 1

• Provide the key from myder:
cgatool -g -D myder -o myder -p 2000:: -s 1

• Generate from the example parameters provided in rfc3972:

cgatool --gen -D rfc_example.params -o myder -p fe80:: -s 1
fe80::3c4a:5bf6:ffb4:ca6c

16

The amount of time needed for CGA generation depends on the speed of your hardware and the sec value.
You should choose the largest sec value your hardware and patience can reasonably handle. On a 2GHz
Pentium 4, sec=1 usually takes just a few milliseconds, while sec=2 takes at least a few hours. The faster
your hardware (and the more patient you are), the larger the sec value you can use. The largest possible sec
value is 7. If you provide the key from a derfile, cgatool will use the modifier in the CGA parameters, and
will not search for a new modifier. Once finished generating, cgatool will print the new CGA to stdout, and
write the CGA parameters to the provided derfile.

10.2 Verification

You will ordinarily not need to manually verify CGAs. This functionality is provided for experimentation
and sanity checks. When verifying, use the-v or --ver command line argument. To verify, you must
provide the CGA to be verified, and the CGA’s DER-encoded parameters. Provide the address with-a or
--address, and the derfile with the-D or--derfile argument. For example:
cgatool --ver -a 2000::2073:8e00:6d:aa09 -D myder

10.3 cgatool console

Run cgatool with the-i or--interactive command line argument. You can set all the arguments one-
by-one, and use theshowcommand to display current CGA context state. If you setUSE_THREADS=y in
Makefile.config, you can also use multiple threads to search for the CGA modifier in parallel. (Of course,
this is only useful if you have a multi-processor and / or multi-core system3). Set the number of threads
to use with ’thrcnt <num>’. While generating, cgatool will search a certain number of modifiers, and then
check for interrupts (i.e. You can halt generation with ˆC).The number of modifiers searched between
interrupt checks is called the batchsize. You can change this value with the ’batchsize <num>’ command.
The default batchsize is500000.

Aknowledgements

This work has been funded by the FRIA (Fonds pour la Formationà la Recherche dans l’Industrie et dans
l’Agriculture, rue d’Egmont 5 - 1000 Bruxelles, Belgium).

I would like to thank John Ronan for the bug reports he provided, thus helping in the improvement
of this work. Thanks also to Shinta Sugimoto and Miika Komu for the constructive discussion held on
the usagi mailing list. The original idea to use thexfrm framework for Shim6 implementation has been
suggested by Shinta Sugimoto. Masahide Nakamura also provided some explanations about the xfrm
architecture. Junxiu Lu provided several bug reports and recently joined the project as a developer. Thanks
to Marcelo Bagnulo and his research group for interesting discussions and comments about this work.

3This feature was present in DoCoMo SEND and the corresponding code has been kept in LinShim6. But it is not yet integrated
nor tested

17

Appendix
A Shim6 control messages sent through Netlink

While xfrm has its own RTNetlink interface for communicating with userspace, we still use our own
Netlink channel for sending some messages from the kernel totheLinShim6daemon. Note that as integra-
tion with thexfrm framework continues, this interface may completely disappear in the future.

A.1 SHIM6_NL_NEW_LOC_ADDR : Announce the apparition of a new locator

* -----------------------------------

* | IPv6 addr. (128 bits) |

* -----------------------------------

• from kernel to daemon

• role : Add a locator in the local locator list for the daemon. The body of the message is only the new
locator.

A.2 SHIM6_NL_DEL_LOC_ADDR : Announce the removal of a local locator

* -----------------------------------

* | IPv6 addr. (128 bits) |

* -----------------------------------

• from kernel to daemon

• role : Removes a locator from the local locator list in the daemon. The body of the message is only
the locator.

A.3 SHIM6_NL_NEW_CTX : A new context must be created

* ---

* |local ulid (128 bits) | peer ulid (128 bits) |

* ---

• from kernel to daemon

• role : Announce to the daemon that the condition to trigger a Shim6 negotiation is met for the given
ULIDs. Currently, this is sent by the packet listener module(shim6_pkt_listener.c).

A.4 REAP_NL_NOTIFY_IN : Incoming packet notification

* ---------------------------------------

* | local context tag (64 bits, 47 used) |

* ---------------------------------------

• from kernel to daemon

• role : Notifies the daemon that a packet belonging to the context with given context tag has been
received. This is used only when there is an ongoing exploration process for the affected context.

18

A.5 REAP_NL_NOTIFY_OUT : Outgoing packet notification

* ---------------------------------------

* | local context tag (64 bits, 47 used) |

* ---------------------------------------

• from kernel to daemon

• role : Notifies the daemon that a packet belonging to the context with given context tag has been
sent. This is used only when there is an ongoing exploration process for the affected context.

A.6 REAP_NL_START_EXPLORE : Begin a new exploration

* ---------------------------------------

* | local context tag (64 bits, 47 used) |

* ---------------------------------------

• from kernel to daemon

• The (kernel) send timer has expired. The daemon must start a new exploration. Note that a the
daemon can also decide by itself to start an exploration, forexample if a locator disappears (as is the
case when the wire is unplugged) or an exploring probe is received.

A.7 REAP_NL_SEND_KA : Send a keepalive

* ---------------------------------------

* | local context tag (64 bits, 47 used) |

* ---------------------------------------

• from kernel to daemon

• role : Asks the daemon to send a keepalive for the specified context.This is necessary because in
operational state, the keepalive timer is maintained inside the kernel.

19

References

[AvB07] J. Arkko and I. van Beijnum. Failure Detection and Locator Pair Exploration Protocol for IPv6
Multihoming. Internet Draft, IETF, July 2007. <draft-ietf-shim6-failure-detection-09.txt>,
work in progress.

[Bar06] S. Barré. Développement d’extensions au Kernel Linux pour supporter le multihoming IPv6.
Master’s thesis, UCL, 2006.

[Bar07] S. Barré. Implementing SHIM6 using the Linux XFRM framework. InRouting In Next
Generation workshop, Madrid, dec 2007.

[Dra03] R. Draves. Default Address Selection for Internet Protocol version 6 (IPv6). RFC 3484,
Internet Engineering Task Force, February 2003.

[KBSS07] M. Komu, M. Bagnulo, K. Slavov, and S. Sugimoto. Socket Application Program Interface
(API) for Multihoming Shim. Internet Draft, IETF, July 2007. <draft-ietf-shim6-multihome-
shim-api-03.txt>, work in progress.

[KME04] M. Kanda, K. Miyazawa, and H. Esaki. USAGI IPv6 IPsecdevelopment for Linux. InInter-
national Symposium on Applications and the Internet, pages 159–163, January 2004.

[MN04] K. Miyazawa and M. Nakamura. IPv6 IPsec and Mobile IPv6 implementation of Linux. In
Proceedings of the Linux Symposium, volume 2, pages 371–380, July 2004.

[NB07] E. Nordmark and M. Bagnulo. Level 3 multihoming shim protocol. Internet draft, draft-ietf-
shim6-proto-08.txt, work in progress, May 2007.

[SKKK03] J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov. Linux Netlink as an IP Services Protocol.
RFC 3549 (Informational), July 2003.

[YMN +04] H. Yoshifuji, K. Miyazawa, M. Nakamura, Y. Sekiya, H. Esaki, and J. Murai. Linux IPv6
Stack Implementation Based on Serialized Data State Processing. IEICE TRANSACTIONS on
Communications, E87-B(3):429–436, March 2004.

20

