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ABSTRACT
Enterprise networks often need to implement complex poli-
cies that match business objectives. They will embrace IPv6
like ISP networks in the coming years. Among the benefits
of IPv6, the recently proposed IPv6 Segment Routing (SRv6)
architecture supports richer policies in a clean manner. This
matches very well the requirements of enterprise networks.

In this paper, we propose Software Resolved Networks
(SRNs), a new architecture for IPv6 enterprise networks. We
apply the fundamental principles of Software Defined Net-
works, i.e., the ability to control the operation of the network
through software, but in a different manner that also involves
the endhosts. We leverage SRv6 to enforce and control net-
work paths according to the network policies. Those paths
are computed by a centralized controller that interacts with
the endhosts through the DNS protocol. We implement a
Software Resolved Network on Linux endhosts, routers and
controllers. Through benchmarks and simulations, we analyze
the performance of those SRNs, and demonstrate that they
meet the expectations of enterprise networks.
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1 INTRODUCTION
IPv6 adoption in the global Internet has grown in a spectacular
fashion. Pushed by the increasing pressure of the IPv4 address-
ing space exhaustion, Content Delivery Networks (CDN) and
Internet Service Providers (ISP) have deployed IPv6 at a large
scale [45]. Today, a growing fraction of mobile and home
users rely on IPv6 to access web-based services [12, 13, 64]
and some mobile providers have deployed IPv6-only net-
works. This IPv6 wave has not yet reached the majority of
enterprise networks but the most advanced ones have already
pledged to move to an IPv6-only architecture [3, 27, 33, 41].
With significantly fewer users than large providers, small
and middle-sized enterprises do not feel the same pressure to
move to IPv6 as ISPs. Many consider IPv6 as simply a variant
of IPv4 with more addresses and have difficulties in justifying
the cost of an IPv6 deployment. This incorrect assumption
plays a key role in the current status quo of IPv6 deployment
in enterprise networks.

In parallel, many entreprises are seduced by Software De-
fined Networks (SDN) [10, 35, 42] that promise to simplify
the management of their networks. These are often more com-
plex than ISP networks, given the need to support a variety
of business policies [40, 58]. These policies correspond to
various business objectives that need to be met by the net-
work. A first example is Quality of Service. Many entreprise
networks have deployed Voice over IP and video services that
require special QoS in particular on low bandwidth wide area
links. A second example is the need for fine grained access
control. It is frequent in enterprises to restrict access to parts
of the network for some classes of users. These restrictions
can be implemented by using firewalls, routing policies and
other techniques. A third example is the need to support spe-
cific paths for specific applications, e.g. to use dedicated links
or support extranet services. A fourth example is the large
number of middleboxes that are deployed in many enterprise
networks [55]. Several types of SDN networks have been
proposed (see [35] for a detailed survey). They typically rely
on a logically centralized controller that interacts with the
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network devices (routers, switches and sometimes middle-
boxes) to support the network policies defined by the operator.
OpenFlow is a popular protocol that enables SDN controllers
to interact with network devices [42].

In this paper, we propose a new architecture to instantiate
the SDN vision in IPv6 enterprise networks. To achieve this,
we leverage IPv6 Segment Routing (SRv6) [20, 47], a recent
feature of IPv6 enabled by the flexibility of the protocol.
SRv6 is a modern source routing paradigm that allows to
steer packets through an ordered list of instructions, called
segments. Those segments are encoded in each packet as
IPv6 addresses, inside a Segment Routing Header (SRH)
[47]. Numerous use cases have been documented [8] and
network vendors have demonstrated implementations [22].
On endhosts, we have recently added SRv6 support to the
mainline Linux kernel [38]. However, to the extent of our
knowledge, enterprise networks have not yet deployed this
technology.

We propose a variant of the SDN architecture that we call
Software Resolved Networks (SRN). An SRN is a network
that is managed by a logically centralized controller. The
name SRN originates from the fact that our architecture co-
locates its controller with a DNS resolver and uses extensions
of the DNS protocol to interact with endhosts. In develop-
ing Software Resolved Networks, we make the following
contributions.

An architecture implementing an application-centric SDN
paradigm suitable for enterprise networks (§2, §3). This ar-
chitecture supports conversations between applications, reg-
ulated by their interactions with the controller through the
DNS protocol.
DNS extensions enabling (i ) applications to embed traffic
and/or path requirements in their DNS requests and (ii ) the
controller to return the appropriate path to the applications
(§3).
A prototype implementation running on Linux that demon-
strates the feasibility of our approach and enables other re-
searchers to replicate and expand our results. We extend the
SRv6 implementation included in the mainline Linux kernel
[38] and provide a complete implementation of a modular
controller, as well as extensions to DNS libraries (§5).
Measurements demonstrating the flexibility of our prototype
and its performance through various microbenchmarks and
experiments in an emulated network (§6).

2 ENTERPRISE NETWORKS
Most entreprises, notably within a campus, have a dense net-
work, i.e., there are many possible paths between a given pair
of hosts through the network. From a high level viewpoint,
a mathematician could represent the network engineer’s job
as a function M that maps the end-to-end communication

flows on specific network paths, or the empty path when a
flow is prohibited by the network policies. The output of this
mapping function typically depends on a mix of configuration
parameters (link weights, IP addresses, VLANs, access lists,
etc.), the state of the network links and nodes, and the charac-
teristics (e.g., source and destination addresses and ports) of
the packets exchanged for each flow.

In practice, functionM can be realised by using a variety
of technologies. A very simple approach in a small network
is to use the Spanning Tree protocol. In this case, the active
network topology is restricted to a tree and there is only
one path for each end-to-end flow. Several variants of this
approach have been deployed. IP routing protocols such as
OSPF are other popular examples. In this case, functionM
becomes a shortest path algorithm whose main parameters
are the link weights and the status of the links and nodes.
Packets follow the shortest path, possibly with per-flow load
balancing when there are equal cost paths. Enterprise network
operators have deployed a variety of solutions to leverage
paths other than the shortest ones. Some have used several
routing protocols [40], configured VLANs or access lists [58]
or used BGP inside the enterprise [36]. Others have relied on
policy routing to provide finer control on the selection of the
end-to-end paths. Integrated Services [7] was proposed as an
architecture to add resource reservations for end-to-end flows.
With this architecture, packets are still forwarded along the
shortest path and the RSVP protocol [66] is used to maintain
per-flow state on the intermediate nodes.

Various realisations of the Software Defined Networks
(SDN) paradigm have revisited this problem. Instead of us-
ing a distributed protocol with configuration parameters that
sometimes indirectly influence the end-to-end paths, SDN
relies on a logically centralised controller that implements
functionM and programs the intermediate nodes to realise
the chosen network path for a given end-to-end flow. A simple
realisation is to intercept the first packet of each flow on the
edge node, forward it to the controller that selects the path
and programs the intermediate nodes by using the OpenFlow
protocol [42]. A wide range of solutions have been proposed
under the generic umbrella of a logically centralised controller
[35].

Any realisation of functionM is always a tradeoff between
the number of parameters that the network operators can
tune and the amount of state that needs to be maintained on
the network nodes. Some enterprises require solutions that
provide a very fine-grained control on the mapping of traffic
flows onto network paths, possibly on a per connection or a
per source/destination pair basis. On the other hand, network
operators need to minimize the amount of state that must be
installed and maintained on each node for obvious scalability
reasons.



Software Resolved Networks SOSR ’18, March 26–27, 2018, Los Angeles, CA, USA

Enterprise networks are composed of three main types of
network devices: layer-2 switches, layer-3 routers and middle-
boxes [55]. We distinguish three types of layer-3 routers. At
the edge are access and border routers. Hosts are connected
to access routers. Border routers are connected to upstream
providers. Core routers are only connected to other enterprise
routers. We use Router Advertisements [56] (RAs) and State-
Less Address AutoConfiguration (SLAAC) to assign one or
more IPv6 addresses to the hosts. The DNS configuration of
the hosts can be distributed through RAs or DHCPv6 [39].

Routers exchange routing information by using a link state
routing protocol such as OSPFv3 [19]. In particular, we as-
sume that the link state routing protocol used in the enterprise
supports traffic engineering extensions that distribute unidi-
rectional link metrics such as bandwidth utilization and link
delay [1].

2.1 IPv6 Segment Routing
Segment Routing (SR) is a modern instantiation of the source
routing paradigm, currently being standardized within the
IETF [20]. SR can be used on top of an MPLS or IPv6 dat-
aplane to steer packets through an ordered list of segments.
The MPLS variant of SR was the first to be defined. It is now
supported by most router vendors [22] and deployed by sev-
eral major ISPs [60], most often for traffic engineering [5, 26]
and fast-reroute [4] purposes. However, since more and more
service providers and enterprises are now transitioning from
IPv4 to IPv6, running Segment Routing over the plain IPv6
dataplane (without MPLS) is a good opportunity for further
network simplification.

The IPv6 flavor of Segment Routing (SRv6) relies on a ded-
icated IPv6 routing extension header, called Segment Routing
Header (SRH) [47]. Each SRv6 segment is an IPv6 address
representing an intermediate function to be executed at a
specific location in the network. The active segment is the
destination address in the IPv6 header, while the complete list
of segments is carried in the SRH. Transit nodes on the way
to the active segment are thus doing plain IPv6 forwarding.
SRv6 support is only required at the intermediate destinations,
also called segment routing endpoints. This enables incremen-
tal deployment of SRv6 where only a subset of the network
devices are capable of processing the SRH. Each segment
belongs to an IPv6 prefix that can be advertised by the parent
node in the routing protocol. As such, SRv6-enabled traffic
can leverage existing ECMP paths computed by the under-
lying IGP. When a packet reaches the active segment parent
node, the SR endpoint function encoded in the host part of
the IPv6 address is triggered. Such functions include moving
forward to the next segment, forwarding the packet on a given

link, as well as any arbitrary user-defined operation. For inter-
operability purposes, a small set of basic SRv6 functions is
being defined at the IETF [21].

An SRH is added to a packet when it is steered into an
SRv6 policy. This steering can be achieved by the source, an
SR endpoint or any transit node along the path of the packet.
At the source, a socket option can be configured by the appli-
cation to send out packets with a specific SRH. Alternatively,
a routing entry can be mapped to the SRH insertion func-
tion. All packets matching the route will then receive an SRH
with the configured list of segments. This list may contain a
segment associated with a special endpoint function, called
a binding segment. Such a segment maps to another SRv6
policy, i.e., another list of segments. When a packet arrives
at the binding segment parent node, it is steered into the SR
policy associated with the binding segment, and is augmented
with the corresponding SRH. Depending on the policy config-
uration, the new SRH can either be added through encapsu-
lation within an outer IPv6 header, or inserted between the
existing IPv6 and SR headers [62]. Finally, an SRv6 steering
policy may be installed on any SR-capable node to encapsu-
late or insert an SRH into transiting packets, based on their
destination address or any other classification mechanism. En-
capsulation is the preferred mode for tenant isolation (VPN),
persistent traffic engineering (e.g., latency optimization) or
service chaining within a segment routed domain. The traffic
is encapsulated at the ingress edge of the domain and the
last segment in the SRH is associated with a decapsulation
function, which removes the outer IPv6 and SR headers at the
egress edge.

3 SOFTWARE RESOLVED NETWORKS
A key principle of Software Resolved Networks (SRN) is to
let applications have an active role in the management of their
flows.

When an application running on a client host communi-
cates with a server, the packets carried from one endpoint
to the other are usually called a unidirectional flow. In this
paper, we always associate this flow with a return flow. In
other terms, we consider that two applications always com-
municate in a bi-directional fashion. We call this pair of flows
a conversation. We distinguish the two endpoints of a conver-
sation. The application that initiates a conversation is called
a client application. The process of initiating a conversation
is referred to as establishing a conversation. Conversely, an
application accepting conversations is called a server appli-
cation. We also distinguish applications with respect to their
location. An application whose endpoints are located inside
the enterprise is called an internal application. Likewise, an
application whose endpoints are located outside the enterprise
is called an external application.



SOSR ’18, March 26–27, 2018, Los Angeles, CA, USA D. Lebrun et al.

We make two reasonable assumptions about the enterprise
network: (i ) all endpoints are reachable over IPv6 and (ii )
all endpoints are identified by DNS names. Each device in
the network is properly named according to a DNS naming
plan. Furthermore, we leverage the large number of IPv6 ad-
dresses [11]. For example, each server may receive several
IPv6 addresses, and each address is only used by a particular
application. Furthermore, we assume that server applications
are never referred to by their IPv6 address at the application
layer, but rather by their DNS name1. The applications use the
DNS protocol to interact with the controller. We prefer to use
DNS instead of a signalling protocol such as RSVP or NSIS
for two main reasons. First, our architecture does not create
state on core routers. Second, DNS is easy to extend, widely
implemented and well-known by network operators. Further-
more, using the DNS minimises the additional delay caused
by the creation of the network path. To facilitate this interac-
tion, the default resolver configured for these applications is
the controller itself (the SDN Resolver), acting transparently
as a regular DNS resolver.

When a client application initiates a conversation to a server
application in a Software Resolved Network, it performs the
following operations. First, it issues a DNS request to resolve
the name of the server application into an IPv6 address. Then,
it sends data to the resolved address. As the DNS resolver is
actually the controller, it may automatically perform appropri-
ate actions, such as allocating a network path. Furthermore,
the client can embed in the DNS request requirements about
the conversation, using existing DNS extensions [61]. For
example, those requirements can list the expected bandwidth
and latency. We name such a DNS request a conversation
request. Along with the resolved IPv6 address, the controller
returns a Path ID in the DNS reply. This Path ID is an opaque
string that maps to the allocated network path and is the key
to enabling the application to use this selected path. It is im-
portant to note that a Path ID uniquely identifies one half of
a conversation, i.e., the packet flow starting from the client
application that issued the conversation request and going to
the other endpoint. An application may re-issue a conversa-
tion request at any time during the lifetime of a conversation.
This enables the application to request a new network path
corresponding to updated requirements.

As such, the SDN Resolver provides a mechanism for the
dynamic registration of server applications, namely server
registration. A server registration is very similar to a conversa-
tion request. Instead of resolving the name of an application,
the server attempts to resolve a name that is pre-configured

1The only exception is the DNS resolver whose IP address is distributed by
DHCPv6 or Router Advertisements. We also assume that entreprise applica-
tions will be written in a high-level programming language that provides a
connect-by name API instead of the connect-by address of the
C socket API.

Figure 1: Workflow for server registration and connection es-
tablishment.

by the operator. This name is not attached to any particu-
lar application. Rather, its resolution signals a registration
request to the controller. If the server has the credentials to
register this name, the request is translated into a DNS update
message [51, 63] that updates the corresponding entry.

When the server receives a connection from a client, half
of the conversation is established. To establish the other half,
the server issues a conversation request to the controller in
order to fetch a Path ID. This is realized upon reception of the
first packet, and before returning any packet to the client. The
server must have some way to identify the other end of the
conversation. Using the classical IP 5-tuple is not sufficient
as the controller does not have protocol-level information
such as source and destination ports. The only simple, unique
identifier of that particular conversation is the Path ID used
by the client. To enable the server to use it as reference, the
client’s Path ID is embedded in the connection request. This
is realized using the Segment Routing Header (SRH), further
discussed in Section 3. Instead of resolving an application
name, the server issues a conversation request for the Path
ID. This request may also include traffic requirements. The
controller allocates a network path for the other direction of
the conversation. A new Path ID is mapped to this network
path and returned to the server.

Figure 1 shows an illustration of the conversation request
and server registration workflows. In exchange (A), the
server issues a server registration request to the controller.
In exchange (B), the client issues a conversation request to-
wards that same server, with a requested bandwidth of 2 Mbps.
The controller replies with the IPv6 address of the server, and
with a Path ID. In exchange (C), the server has received a
connection request from the client. The client’s Path ID is
embedded in the connection request. The server then issues a
conversation request to the controller, stating the original Path
ID and requesting the corresponding reverse Path ID, with a
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1: allow from LAN1 to LAN2
via FIREWALL maxidle 60s

2: allow from LAN1
to STREAMSERVER1
bw 5Mbps delay 10ms

3: allow from SERVER1
to EXTERNAL_BACKUP
bw 100Mbps

(a) Examples of controller rules.

Keyword Argument Type Role
allow ∅ Action Accept the conv. req.
deny ∅ Action Reject the conv. req.
from name Matching Specify source app.

to name Matching Specify destination app.
via list of nodes Property Set loose path
last node Property Set last node of path
bw integer Property Bandwidth to reserve

delay integer Property Maximum one-way delay
lifetime integer Property Max conv. life time
maxidle integer Property Max conv. idle time

(b) List of available keywords in rules syntax.

Figure 2: Illustration of the controller rules through examples and keyword descriptions.

bandwidth requirement of 6 Mbps. The controller replies with
the relevant Path ID and the exchange of packets continues.

The enterprise network can be connected to one or more
upstream providers. As such, client applications may initiate
connections towards external servers. Conversely, external
applications may initiate connections towards internal servers.
We consider three types of conversations with respect to the
application locations.

Internal client communicating with internal server. This
is the main kind of conversation we focus on. When a client
initiates the connection, it sends a conversation request
to the controller. The request states the server application
and optional traffic requirements. The controller allocates
a path in the network for the client-server direction of the
conversation and returns a corresponding Path ID P1 to the
client. This Path ID is embedded in the subsequent connection
request packet sent to the server using Segment Routing
features that are independent of the transport protocol. Upon
reception of the connection request packet, the server issues
a conversation request. This request includes the received
Path ID, P1, and asks for the reverse one. The controller
replies with a Path ID P2, corresponding to the server-client
direction of the conversation. Packets can now be exchanged
and each application can re-issue a conversation request at
any time to update the requirements of their direction of the
conversation.
Internal client communicating with external server. The
controller can only control one direction of the conversation
because the server resides outside the enterprise network.
The connection establishment procedure does not change.
However, the other direction of the conversation, i.e., the
return traffic, will have to follow some default policies set
up at the edge of the network. Such policies might include
a detour via a firewall to ensure the traffic is legit. The
operator defines those default policies in the controller, which
configures the border routers to implement them.
External client communicating with internal server. In
this case, the connection establishment originates from
outside the enterprise network. As the external client uses
its own DNS resolver rather than the enterprise resolver, the

controller cannot handle this part of the conversation. The
ingress traffic follows default network policies configured at
the border routers (e.g., firewall traversal). The server has the
opportunity to issue a conversation request, retrieving a Path
ID for the server-client direction of the conversation.

Many SDN solutions allow the network operators to con-
figure or program the controller with rules or specific lan-
guages [50, 57]. SRNs also support such operator-defined
policies. We define those policies in a per-rule fashion. Each
rule matches a set of conversation requests and defines the
actions to apply and the properties to implement. Figure 2a
illustrates these rules. Table 2b details the main keywords sup-
ported by our current rules syntax. The rules match conversa-
tion requests based on the source and destination application.
When the controller receives a conversation request with a
Path ID as name (i.e., to request a Path ID for the opposite
direction of a conversation), it simply performs a rule lookup
by inverting the source and destination applications of the
initial half-conversation.

4 THE SDN RESOLVER
The SDN Resolver is the logical controller that manages an
SRN. It must accept, process and maintain conversation re-
quests issued by applications. To realize this, it exposes the
network state and the conversation requests to externally plug-
gable path selection algorithms. Those algorithms then select
a path that matches the requested conversation properties.
This path is transformed into Segment Routing (SR) instruc-
tions by the SDN Resolver and enforced in the network.

We leverage the binding segments [20] to implement the
Path IDs presented in Section 2. Indeed, a binding segment is
the unique identifier of an SR policy, which encodes a path in
the network. Each host is configured to send its packets with
an SRH containing two segments: the first one is a binding
segment (i.e., its Path ID) mapped to an SR policy on the
access router and the second one is the final destination of the
packet (e.g., a server or client application). The packets sent
by the host thus follow the shortest path up to the access router,
using regular IPv6 forwarding. Then, they are encapsulated
within an outer IPv6 header and the SRH computed by the
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controller. Hence, the conversation state, implemented with
SR policies, is only maintained by edge routers. The core
routers only need to be configured with stateless segments
that can then be used by the controller to enforce specific
paths in the network. These segments can be shared by any
number of SR policies. Such a stateless core has the advantage
of reducing memory requirements and avoiding conversation
state synchronization between routers.

4.1 Path segmentation
Network paths implementing application policies are enforced
using Segment Routing. Once an appropriate path is selected,
it must be transformed into a list of segments. To realize
this, we leverage in our prototype the MinSegECMP path
segmentation algorithm proposed in [2]. We implement the
segmented path construction function buildSegpath. From
a graph G, a source node s, a destination node t , and a set
of policies P, this algorithm computes (i ) the full path from
the source to the destination that matches the policies (path
computation), and (ii ) the minimal list of segments that imple-
ments the previously computed path (path segmentation). The
path computation is realized through a generic selectPath
function. This function must be extended by any external
algorithm that provides path selection features. Then, path
segmentation is achieved using MinSegECMP. This algo-
rithm computes the minimal ECMP-free segmentation of a
path.

4.2 SRN Control plane
The control plane of an SRN consists of several components.
At the core is the logically centralized controller (the SDN
Resolver). It does not communicate directly with applications.
Instead, the exchanges between the applications and the con-
troller are mediated by a DNS proxy. The proxy receives
DNS requests from applications. It performs the actual DNS
resolution, using the enterprise’s resolver, and forwards the
conversation requests to the controller. The controller pro-
cesses the request, then instructs the access router to insert
the resulting SR policy into its Forwarding Information Base
(FIB). The controller explicitly waits for the SR policy to
be inserted. This synchronization is necessary to ensure that
the router does not receive legitimate packets with a binding
segment that is not yet recognized in the FIB. Afterwards, the
controller returns the generated binding segment (i.e., Path
ID) to the DNS proxy. Ultimately, the proxy crafts the cor-
responding DNS reply, using the resolved address and the
binding segment. This reply is transferred to the application.
Assuming that the controller, proxy, and resolver are in the
same network vicinity, this setup allows to group most of the
transactions within a low-delay network radius.

The last component of an SRN is the Network State Dae-
mon (NSD) which gathers the network state as exposed by
OSPF-TE and forwards it to the controller. The rate of net-
work state updates depends on the OSPF refresh timer de-
fined by the operator. The value should be a trade-off between
control traffic overhead and up-to-date metrics. A high-level
illustration of an SRN architecture is shown in Figure 3.

4.2.1 Interfaces. The controller’s northbound interface
(i.e., facing the applications) leverages the DNS protocol. We
extend DNS with a new type of Resource Record called BSID.
This record carries a binding segment implementing a Path
ID encoded as an IPv6 address. We also use EDNS0 [61] to
carry metadata in DNS messages. We define three new option
codes to carry the requested bandwidth, requested latency and
application identifier. The flexibility of EDNS0 enables to
easily define new options in the future.

In our prototype, the communications between the con-
troller and its components (i.e., southbound interface) are
realized through the OVSDB protocol [46]. Originally de-
signed for Open vSwitch, OVSDB is a generic, JSON-RPC
based protocol, supporting transactional queries on NoSQL-
like databases. However, any per-flow configuration protocol
can be used. One can make a different choice to match the pro-
tocols available on his access routers (e.g., BGP-LS [24, 48]
or XMPP [52]).

We define five database tables for SDN Resolver. We call
this set of tables the Segment Routing Database (SRDB).
ConvReq stores the conversation requests generated by the
applications and translated by the DNS proxy. It contains the
source and destination of the request, the resolved destination
address, traffic requirements, and a status. The status is set
to PENDING when the entry is inserted by the DNS proxy.
If the request is accepted by the controller and the conversa-
tion is created, the controller changes the status to ALLOWED.
Otherwise, the status is set to a value that reflects the reason
why the conversation was not created (e.g., administrative
deny, impossible to satisfy the traffic requirements, etc.). This
table is written and read by both the DNS proxy and the con-
troller. ConvState stores the state for half-conversations.
Each entry contains the source and destination applications,
traffic requirements, Path ID and mapped segments, expira-
tion timers, etc. It is written by the controller and read and
written by the routing daemon. The write access of the routing
daemon is required to enable the removal of expired conver-
sations (e.g., due to idle timeout). ServReg stores the server
registration requests. It contains the name and address of
the requesting servers, and a status field that has the same
semantics as for the ConvReq table. It is written and read
by both the DNS proxy and the controller. LinkState and
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Path ID

Figure 3: Illustration of the components of a SRN. The figure
shows the exchanges involved in a conversation request.

NodeState store topology data gathered through OSPF-
TE, such as announced prefixes, link utilization, etc. They are
written by the NSD and read by the controller.

4.2.2 Operations. To ensure the correct operation of the
network according to the principles described in Section 2,
our controller includes at least two processes: conversation
requests and server registrations (see Figure 1). We also sup-
port a third operation: reactions to network events. Those
processes operate as follows.

Conversation request. The controller matches each conver-
sation request against the rules defined by the operator. The
last matching rule wins. When a rule matches, the controller
applies the rule’s main decision: accept or deny. In the latter
case, an error is returned to the application and the process
stops. In the former case, the controller combines the policies
defined in the rule and the path constraints provided by the
conversation request into a final set of policies. Once the final
set of policies is defined, it is translated into a list of segments.
Then, the controller generates a binding segment and creates a
route that implements the SR policy. This route matches pack-
ets for that particular binding segment and encapsulates them
with the previously computed list of segments. This route is
immediately inserted using the chosen per-flow configuration
protocol (e.g., OVSDB, BGP-LS, XMPP,. . . ) into the access
router of the initial requesting application. Note that if the
application is susceptible to use more than one access router
(e.g., with VRRP [44]), then the route would be inserted in all
concerned routers. Finally, the binding segment is returned
to the application. The controller keeps the resulting state in
memory until expiration. For resiliency purposes, the con-
troller may leverage a dedicated algorithm for backup path
computation. Those backup paths should be configured as
such in the access router and associated to the same binding
segment.

Server registration. When the controller receives a server
registration request, it uses the DNS update mechanism [51,
63]. If there is no pre-existing DNS record for the server name,
then a new record is created with a given TTL. If the server is
already part of an existing record, then its TTL is refreshed.
Otherwise, the server is added to the list of entries associated
with this name. The server receives a DNS reply with an
associated TTL. The server must refresh its registration before
the expiration of the TTL.
Network event. We consider as a network event any link or
node failure that affects active conversations. We also consider
sudden increases in link utilization or delay that would break
conversation requirements. The controller does not have the
same reaction time for these events. A link failure is quickly
propagated by OSPF [23]. A node failure is detected when all
its neighbors have reported the loss of the adjacency, which
can take some time. The link bandwidth utilization and de-
lays are updated by using adaptive timers and thresholds by
OSPF-TE implementations [53]. When the controller detects
a network event, it scans its conversation state database and
builds a list of affected conversations. In case of link or node
failure, all conversations that traverse the failed link or node
are affected. In case of congestion or delay increase, the af-
fected conversations are those whose path no longer matches
the traffic requirements. For each affected conversation, the
controller looks for pre-computed backup paths. If such a
path exists and satisfies the requirements, it is selected as
replacement. Otherwise, the controller recomputes a new path
that suits the conversation policies. The controller updates the
conversation and pushes the new state to the affected routers.
In turn, they change their FIB. Note that the controller can
change a path without even interacting with the application, as
Path IDs provide a level of indirection to the actual segmented
path implemented on the access router. This is the key benefit
of such indirection. We described a very basic algorithm for
online path recomputation. More advanced approaches (e.g.,
recompute non affected paths to reach a more optimal state)
discussed in the literature [15, 49] could also be included in
the controller.

If the controller fails, then many features become unavail-
able. However, active conversations are not affected. New
conversations can be handled by default SR policies, config-
ured on access routers for packets lacking a binding segment.
To avoid switching too quickly to degraded mode, more con-
trollers may be added to the network. Two or more controllers
can act in a master-slave fashion. A detailed discussion of
SDN Resolver fault tolerance may be found in [37].

4.3 Security
From a security viewpoint, an SDN Resolver is exposed to the
same security risks as the enterprise’s internal DNS resolver.
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As such, packets from untrusted sources should not be able to
reach the controller, as it is already protected by the enterprise
firewall.

The introduction of SRv6 in the enterprise network implies
the support of the IPv6 Segment Routing header extension.
As such, it is crucial that SR-enabled IPv6 packets originat-
ing from outside the enterprise network are filtered by the
border routers. Otherwise, an external attacker could gain
unauthorized access to the enterprise network resources. The
mitigation for this threat is simply to configure the border
routers to drop all SR-enabled packets originating from an
external interface [21].

Internal threats come from, e.g., malicious employees or
applications. They want to get more services from the SDN
Resolver than allowed. Two actions can counter such abuses.
First, to prevent misuses of network resources, only autho-
rized equipment should be allowed to emit arbitrary SRHs
on the network. Network administrators can leverage existing
ACLs to prevent unauthorized usage of segments. Access con-
trol schemes such as 802.1x can be deployed to control the
access to the layer-2 network. Furthermore, the interactions
between the clients and the SDN Resolver can be protected
by using techniques such as DNS over TLS [28].

4.4 Supporting legacy devices
To fully leverage the capabilities of our SDN Resolver, appli-
cations need to explicitly interact with the controller. There
are legacy applications that do not understand our DNS exten-
sions and/or cannot install the Path ID. In this case, instead of
using a binding segment, the Path ID can be implemented as
special destination address returned in the DNS reply. Packets
using this particular destination are mapped to an SR policy on
the access router. Before applying the policy, the destination
address would be translated to the real destination address,
using NAT rules dynamically inserted by the controller.

5 PROTOTYPE IMPLEMENTATION
To assess the performance of our proposed architecture, we
developed a fully functional prototype implementation. It runs
on Linux clients, routers, servers and controllers. Overall,
our prototype comprises about 10,000 lines of C code. We
describe the main components of this prototype in this section.

5.1 Kernel modifications
The Linux kernel, since version 4.10, already includes basic
support for SRv6 [38]. However, this release does not explic-
itly support binding segments, which are required for the Path
IDs that are used in our architecture. To use Path IDs, routers
must be able to encapsulate a packet when its active segment
matches a given address. The active segment is defined as the
destination address of the packet.

The recent SRv6 network programming specifications [21]
define several functions on SR-enabled packets that a segment
endpoint must support. One of these functions is the bind-
ing segment. We extended the SRv6 kernel implementation
to support these specifications. Our extension is available in
the mainline Linux kernel for the 4.14 release. 2 It consists
in a new type of lightweight tunnel (named seg6local)
specified by an action type, which defines the function to ap-
ply, and optional parameters. Packets can be steered through
a given function by creating a route for an arbitrary prefix,
associated with an ad-hoc seg6local lightweight tunnel.
Such an architecture enables to easily add new functions to
the existing ones.

5.2 Path ID propagation
In Figure 1, after the client has established the connection, the
server requests a binding segment for the server-client direc-
tion of the conversation. If the controller is able to infer the
full requirements of the conversation from the client request,
then the server-side request is superfluous. This can speed
up the connection establishment process. To realize this, we
implement the following solution.

When the client issues its conversation request, the con-
troller immediately computes a network path for both direc-
tions of the conversation and maps them to two Path IDs (resp.
Pc−s and Ps−c for the client and the server). The controller
then inserts a particular SR policy into the client’s access
router. This SR policy maps Pc−s to the corresponding encap-
sulation, but also instructs the router to overwrite Pc−s with
Ps−c in the SRH before the encapsulation. The server then
receives a packet with its own Path ID present in the SRH, in-
stead of the client’s Path ID. Then, it simply needs to echo the
binding segment. Once the conversation is fully established,
the server is free to request an update of the conversation with
its Path ID, e.g., to reflect changes in traffic requirements. This
technique has obvious security implications. Blindly echoing
a binding segment is a process that must be strictly controlled.
Allowing only authorized network equipment to emit arbitrary
SRHs as explained in Section 4.3 should prevent misuses of
the feature. Additionally, the HMAC feature of SRv6 can be
leveraged to ensure the authenticity and integrity of the SRH.

5.3 Controller implementation
The controller is implemented as a heavily multi-threaded
program. It consists of three main subsystems.

First, the graph subsystem implements all the structures,
operations and algorithms that deal with the network topology
represented as graphs. The graph nodes and edges contain
a generic data pointer that can provide additional informa-
tion (e.g., metric, link latency, bandwidth, etc.). Three helper

2See https://lkml.org/lkml/2017/9/6/11 for the list of commits.

https://lkml.org/lkml/2017/9/6/11
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hashmaps are precomputed to speed up the path computations.
The first one (neighs) maps each node to its neighbors.
The second one (min_edges) maps each pair of neighbors
to the lowest cost edge that connects them. The last one
(dcache) maps each node to its precomputed shortest-path
Directed Acyclic Graph (SP-DAG). The first two hashmaps
speed up the Dijkstra algorithm. The third one speeds up the
MinSegECMP algorithm, which requires switching between
multiple SP-DAGs. To make graphs friendly to multi-threaded
environments, each graph is protected by a read-write lock.
Moreover, each node and edge structure contains a reference
counter. This enables to hold references to them outside criti-
cal sections (i.e., when the per-graph lock is not taken).

Second, the Segment Routing Database (SRDB) subsystem
implements an abstraction layer to interact with the OVSDB
server. It provides an API for two classes of operations: watch-
ing for OVSDB table updates (monitors) and performing
insertions, updates, and deletions on OVSDB tables (trans-
actions). A dedicated thread monitors each table and calls a
user-defined callback function whenever a change happens.
Transactions are performed by a pool of threads, each main-
taining a permanent TCP connection with the OVSDB server.
A shared thread-safe buffer is used to pass the transactions to
the thread pool. Each transaction consists of the data to trans-
mit as well as a one-element thread-safe result buffer. When
the result of the transaction is available, it is pushed into the
buffer by the processing thread. Such a producer-consumer
architecture enables to (i ) scale the number of transaction
threads with the database load and (ii ) support asynchronous
transactions. This subsystem is also used by other components
of the SDN Resolver, such as the DNS proxy.

The third subsystem is the core of the controller. Using
the graph and SRDB subsystems, the core implements the
necessary features to run a Software Resolved Network. It
maintains a global state that consists of three sets of data: (i )
the operator-defined policies, (ii ) the current network state,
and (iii ) the active conversations. The network state consists
of two graphs. A production graph is used to perform the path
computations, and a staging graph is used as a buffer to store
the link-state changes. This global state is processed and up-
dated by three major components. The first component is the
set of monitoring threads, each of them watching an OVSDB
table and calling an associated callback function when nec-
essary. The callbacks for the NodeState and LinkState
tables update the staging graph accordingly. The callback
for the ConvReq table extracts the conversation request and
stores it in a shared thread-safe buffer. This buffer is con-
sumed by the second component, which is a pool of worker
threads. The worker threads handle most of the controller’s
workload. Concurrently, they match the requests against the
operator policies, compute a path between the source and
destination, generate an associated binding segment, create

an internal conversation state and commit the newly created
conversation to the ConvState table. The third component
is the network monitoring thread. At configurable intervals, it
sets the staging graph as the production graph if the network
state changed, it recomputes potentially affected conversa-
tions, and garbage collects expired conversations.

5.4 Application API
To facilitate the deployment of SR-aware applications, we
implement a user API that abstracts the utilization of the DNS
extensions and the interactions with the kernel. To support our
DNS extensions, we modify the c-ares DNS library [9].
We implement a custom library, libsrdns, that provides an
API to handle SR-enabled sockets. For example, the library
exposes the sr_socket() function that takes as input the
socket type (e.g., TCP or UDP), the destination name and
port, the local application name, and optional bandwidth and
latency parameters. Using this input, the function (i ) resolves
the destination name and fetches any associated binding seg-
ment, (ii ) creates a socket with the corresponding type and
(iii ) attaches an SRH with the binding segment to the socket.

6 EVALUATION
In this section, we evaluate our SDN Resolver through two
angles. First, we use microbenchmarks to measure several
aspects of its performance. Then, we evaluate how the SDN
Resolver behaves when all its components are integrated in
an emulated network. Those evaluations are performed on a
four years old laptop using a Core i7-3740QM running at 2.7
GHz with 8 GB of RAM.

6.1 Microbenchmarks
6.1.1 Conversation requests. The fundamental opera-

tions that the controller needs to support is handling conversa-
tion requests and generating the corresponding conversation
state. We measure how the controller handles conversation
requests under a high load. We proceed as follows. First, we
initialize an empty OVSDB database with the SRDB schema.
We populate the NodeState and LinkState tables using
the Abilene topology [29], composed of 11 nodes and 15
links. This topology can represent the core of a middle-sized
enterprise network. With a benchmarking tool that leverages
our SRDB subsystem, we generate batches of conversation
requests, at a configurable uniform rate, and without path
constraints. The source and destination of each request are
selected at random. We measure the delay between the inser-
tion of the request in the ConvReq table and the insertion
of the conversation state in the ConvState table The re-
quest completion time is defined as the time elapsed between
those two events. As such, it measures (i ) the insertion of
the conversation request in OVSDB, (ii ) the reception of the
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Figure 4: Request completion times under different conditions.

ConvReq entry by the controller’s monitor, (iii ) the process-
ing of the request and the generation of the conversation state,
(iv ) its insertion in OVSDB, and (v ) the reception of the
ConvState entry by the benchmarking tool’s monitor.

To estimate the load that an SDN Resolver would need to
sustain, we looked at the main DNS resolver of our university
campus. This campus gathers about 5,000 employees and
28,000 students. Three DNS resolvers serve the campus and
the load is well balanced between them. Their statistics show
that the DNS resolvers load never exceeds 1,000 requests per
second. We consider this as a baseline for our benchmarks.

In a first batch of measurements, we evaluate how the
controller performs over various request rates, using a single
worker. The results are shown in Figure 4a. At 2,000 requests
per second, the requests are consistently processed within less
than one millisecond. At 4,000 reqs/s, the completion time
noticeably increases for more than half of the requests but
stays below 10 milliseconds. At 10,000 reqs/s, the controller is
unable to cope with the load and the completion time increases
by three orders of magnitude.

In a second batch of measurements, we measure the hori-
zontal scaling of the controller with additional workers. We
load this controller with 10,000 reqs/s. The results are shown
in Figure 4b. As previously shown, a single worker is un-
able to cope with this load and the completion time quickly
reaches about one second. Doubling the number of workers
(i.e., 2 workers) consistently improves the completion time.
About 40% of the requests are completed within less than a
millisecond. The remaining 60% require between 10 and 25
milliseconds. By doubling again the number of workers (i.e.,
4 workers), about 70% of the requests complete within less
than a millisecond. The remaining 30% take between 10 and
25 milliseconds.

In Figure 4c, we show the evolution of the request com-
pletion time for various rates using 4 workers. At 2,000 and
4,000 reqs/s, the request completion time remains below one

millisecond. As previously shown, 70% of the requests at
10,000 reqs/s are also completed within a millisecond.

Existing OpenFlow controllers such as Beacon and NOX
have been shown to return responses at a higher rate [16, 54,
59]. However, our SDN Resolver will receive several orders of
magnitude less requests than a standard OpenFlow controller.
Indeed, only conversation requests (i.e., DNS requests) are
handled by our SDN Resolver. In contrast with an OpenFlow
controller, an SDN Resolver does not need to act on a per flow
basis. Furthermore, DNS caching is known to perform very
well [32] and directly applies to an SDN Resolver.

Those benchmarks are significant for two reasons. First,
they show that the controller is able to cope with the typical
load of a DNS resolver in a large enterprise network. Further-
more, it efficiently scales with respect to the available CPU.
The benchmarks also show that the reference implementation
of the OVSDB protocol can sustain such a load. This result is
important as it shows that, while OVSDB was not originally
designed as a signalling protocol, it can still be used as such
without major performance issues, as proposed in [14].

6.1.2 Reaction to link failures. Link failures are in-
evitable in a network. When a link fails, the SDN Resolver po-
tentially needs to recompute all the paths that were using the
failed link. This recomputation is not required to preserve
the connectivity since IGP convergence and SR-based fast
reroute techniques cover this part of the recovery. We evaluate
how quickly the controller handles the recomputation of con-
versations in case of link failures. Using the Abilene topology,
we generated various numbers of conversation states with
random sources and destinations, without path constraints.
Then, we simulated random link flaps by updating entries
in the LinkState table. When such an event happens, the
controller sweeps the conversation states to decide which one
must be recomputed. Without path constraints, the controller
simply recomputes a new shortest path for conversations that
were using the faulty link. We observe that there is a constant
delay of approximately 5 milliseconds. This corresponds to
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the controller’s recomputation timer, which enables to absorb
bursts of link state changes. In average, the time spent to
process each conversation is approximately 0.6 microseconds.
With a database of 100,000 active conversations, the average
full sweep is completed within 65 milliseconds. Due to space
limitations, we do not provide a figure for these results but it
can be found [37].

After the sweep, the controller recomputes the affected
conversations. It takes about 0.2 milliseconds to recompute
a single conversation. Considering 100,000 active conversa-
tions, in the extremely unlikely case where all the conversa-
tions are affected by a link failure, it would take 20 seconds to
sequentially recompute all of them. This time can be reduced
by distributing the recomputations over multiple threads.

6.2 Emulated network
To evaluate our SRN architecture in an end-to-end setting, we
instantiated a virtual network in a Mininet-like environment.
The topology is shown in Figure 5a. Each node is assigned an
IPv6 prefix and contains pre-computed shortest-path routes
towards all other nodes. The Controller node contains
the main components of an SDN Resolver, i.e., the controller,
DNS proxy, and OVSDB server. It also hosts a regular DNS
server. The DNS server maps the server.test.sr do-
main name to the main IPv6 address of the server node. Nodes
A and F are access routers and each of them contains a routing
daemon.

In a first experiment, we generate conversation requests for
server.test.sr from the client. We measure the time
needed to complete the request, as seen by the client. Then,
we compare this delay against the time needed to complete a
regular DNS request. In a first batch of measurements, we use
the network topology as shown in Figure 5a. The round-trip
time between the client and the controller is 6 milliseconds.
In a second batch of measurements, we increase the delay
of each link between the client and the controller to 5 mil-
liseconds. As a result, the round-trip time between the client
and the controller increases to 30 milliseconds. The results
are shown in Figure 5b. We observe that the conversation
request completion time consists of one RTT between the
client and the controller (i.e., the DNS conversation), and one
RTT between the access router and the controller (i.e., the
route installation), plus, on average, a constant overhead of 5
milliseconds. This overhead can be explained by the fluctua-
tions of the virtualized environment. Note that 30ms for the
RTT between the controller and the client is not realistic in
an enterprise network but this is useful to identify the causes
of the delay.

In a second experiment, we observe the effects of link fail-
ures on active conversations. To realize this, we use the net-
work topology as shown in Figure 5a. First, we request a con-
versation between the client and the server, with a minimum-
latency path constraint. The controller then configures router
A with a binding segment B1 mapping to the computed list of
segments. In the initial network state, this list contains only
the segment for node F. Indeed, the minimum latency path is
also the shortest IGP path. Similarly, router F is configured
with another binding segment B2 mapping to a list of seg-
ments that consists of node A. The client node is configured
to use the binding segment B1 for all packets sent to the server
node, and the server node is configured to use the binding
segment B2 for all packets sent to the client node. Then, from
the client node, we run ICMPv6 echo-request measurements
every 10 milliseconds. This precision was the best we could
obtain with the ping6 tool in our virtualized environment.
Then, we repeatedly shut down the (A − B) link, wait for the
controller reaction, then switch the link up again.

Figure 5c shows one cycle of this experiment. Between
t = 0 and t = 80 ms, the path is the best possible one, i.e.,
(A − B − F) with a round-trip time of roughly 8 ms. At t = 80
ms, link (A − B) is shut down. It takes about 30 milliseconds
for the routes to change and the new path to be visible. The
path converges to the now-shortest path, i.e., (A − C − E − F).
However, this path is also the longest-delay path with a round-
trip time of about 18 ms. The controller is notified of the link
failure and recomputes the affected paths. At t = 170 ms, the
recomputed path is visible. During that time interval, (i ) the
controller was notified of the link failure, (ii ) recomputed
the new paths, (iii ) updated the ConvState table with the
updated list of segments, (iv ) the routing daemons on nodes A
and F were notified of the update, and (v ) they updated their
routing table to reflect the new list of segments. The new lists
of segments are now resp. ⟨D, F⟩ and ⟨D, A⟩ for nodes A and F,
which correspond to the current minimum latency path. The
measured round-trip time is about 12 milliseconds. At t = 420
ms, the link (A − B) is brought back up and the new IGP routes
converge at t = 450 ms. Note that the path does not change
after the convergence. Indeed, the current lists of segments
force the packets to transit through node D. However, the link
state change triggers path recomputations and the controller’s
updates are visible at t = 480 ms. The packets then resume
their original shortest and minimum latency path.

7 RELATED WORK
Software Defined Networks have been a hot topic in the
research community since the publication of [43]. Several
survey papers have analyzed this vast literature in details
[17, 35, 65]. In this section, we compare Software Resolved
Networks (SRN) with several of the key related work. We
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Figure 5: Emulated network experiments.

structure the comparison according to the bottom-up approach
adopted in section IV of [35].

The dataplane layer of SRNs differs from many proposed
SDN solutions. SRNs operate in IPv6 networks. To fully
benefit from SRNs, the ingress routers need to support the
binding segments that are part of SRv6 [21, 47]. Given that all
IPv6 routers can forward packets with an SRH, it is possible
to incrementally deploy SRNs starting with some upgraded
hosts and ingress routers.

A second difference between SRNs and OpenFlow-based
SDNs is the southbound interface. SDNs rely on the Open-
Flow protocol to configure flow tables on the switches. Future
deployments could leverage more programmable switches
[6]. In SRNs, the controller interacts with the routers through
OVSDB tables. Note that while traditional SDN networks
require the installation of flow tables on all network devices,
in SRNs the controller only interacts with the edge routers.
The controller does not need to interact with the other routers
which improves the scalability of SRNs. SRNs leverage Seg-
ment Routing to select and enforce network paths. Several
SDN solutions also encode paths inside packets. Hari et al.
propose in [25] to encode network paths inside the layer-2
MAC addresses of the packets on the first switch of the path.
Jeyakumar et al. propose in [31] to leverage the 20-bit flow
label field in the IPv6 header and the 6-bit DS field in the
IPv4 header to dynamically parametrize middleboxes.

Another important difference is that the endhosts partici-
pate actively in SRNs with their DNS requests. This implies
that our SDN resolvers can use policies based on DNS names
and not only addresses and ports. Other SDN solutions such
as PANE [18] use a related approach. PANE proposes an API
enabling the applications to interact with the controller. This
API is implemented with a new protocol, while SRNs extend
the DNS protocol. Beyond SDN and enterprise networks, re-
searchers have proposed several architectures where content
is retrieved directly with names [30, 34].

8 CONCLUSION
In this paper, we proposed Software Resolved Networks,
an SDN-like architecture for enterprise networks. Like
OpenFlow-based SDN solutions, SRNs enable the network
operators to specify policies that control the network paths
that are used by applications. For this, Software Resolved
Networks build upon the IPv6 Segment Routing architecture
(SRv6) and the DNS protocol. Applications use the DNS as
a signalling protocol to request the creation of end-to-end
network paths. Those paths are computed by a controller that
interacts with the DNS resolver and returns the selected path
to the requesting application as a segmented SRv6 path.

There are two important differences between SRNs and tra-
ditional SDNs. First, SRNs enable the applications to directly
interact with the controller to specify path requirements like
delay or bandwidth. Second, SRNs do not require per-flow
state in all network nodes. The controller installs state on the
access routers but not on the core routers. This improves the
scalability of SRNs.

We implement a complete Software Resolved Network on
Linux hosts, routers and servers. Our performance evalua-
tion demonstrates that our prototype meets the performance
expectations of enterprise networks.

Software Artifacts
All the code for our prototype implementation of SDN Re-
solver are publicly available from http://segment-routing.org/
index.php/SRN. We also provide measurement tools enabling
other researchers to reproduce our results.
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