
Making the Linux TCP stack more extensible with eBPF

Viet-Hoang Tran
ICTEAM, UCLouvain

Olivier Bonaventure
ICTEAM, UCLouvain

Abstract

This work aims to make the Linux TCP stack more extensi-
ble by leveraging Lawrence Brakmo’s TCP-BPF framework.
We implement new eBPF callbacks to support user-defined
TCP options, and present various use cases.

The first one is to implement the TCP User Timeout Op-
tion, which has been standardized in RFC 5482 but not yet
implemented in the Linux kernel.

Since RFC 6994, TCP supports experimental options. We
use eBPF to implement a new experimental option that en-
ables a client to request a server to use a specific conges-
tion control scheme or set the initial congestion window. We
also demonstrate how eBPF code can be used to tune the ac-
knowledgment strategy.

Multipath TCP (MPTCP) is another interesting use case
for eBPF with its scheduler and path manager. We present a
MPTCP path-manager framework prototype which is based
on eBPF and use it to implement the two well-known ndiff-
ports and fullmesh path managers as eBPF programs.

1 Introduction

TCP remains one of the core protocols in today’s Internet.
The designers of TCP did not expect that it would be used
by billions of devices, but they did foresee the importance
of designing an extensible protocol. TCP’s extensibility de-
pends on two important factors: (i) the extensibility of the
protocol and (ii) the extensibility of its implementations.

To be extensible, the TCP protocol includes TCP options
that can be placed in the extended TCP header. However,
deploying a new TCP option takes time. It needs to be
defined, accepted by the IETF and eventually implemented
by the major TCP stacks. Measurements show that Selec-
tive Acknowledgements took more than a decade to be de-
ployed [23] and the Timestamp option is still not enabled by
the Microsoft stacks [28]. More recently, middlebox inter-
ference became an important concern [27].

The second factor is the extensibility of the TCP imple-
mentations. The Linux TCP stack is highly optimised for the
most common use cases, but it has limited ability to adapt
to a changing environment of network conditions, work-
loads or user requirements. Many TCP aspects can be tuned
through a myriad of sysctl parameters: delayed ACK
timeout, ACKing strategy, congestion control scheme, and
so on. However, the sysctl interface only allows changing
system-wide behaviors, not per-connection policies. Some
of these parameters and others are exposed as socket options
that can be set by applications on a per-connection basis. The
socket options themself are not suitable for system-level con-
trol though.

Another interesting use case is Multipath TCP [22], which
is a major extension to TCP and brings up a new dimension
of required control plane. Managing the subflow paths is
such a control logic which should be flexible enough to sup-
port different users and applications.

In short, the main contributions of this paper are as fol-
lows:

1. Section 2 proposes and implement a light eBPF-based
framework that enables users to easily add support for
new TCP options in the Linux TCP stack

2. Section 3 illustrates four use cases that leverage this
framework to adapt the stack to various scenarios or
user requirements.

3. We implement an eBPF-based prototype to support
user-defined MPTCP path managers (Section 4). Using
this facility, the ndiffports and fullmesh path managers
have been implemented as eBPF programs.

Section 5 discusses the insights and future work and Sec-
tion 6 provides links to the artefacts of our work.

2 Extending TCP in the Linux kernel

The standard method to extend TCP is to define a new TCP
option. The IETF has defined a format for experimental TCP

1



options [34]. This format has not yet been widely used, but
we leverage it in this paper to propose and implement several
TCP extensions.

Currently, a TCP extension can be added to the Linux ker-
nel as a set of patches. However, users are forced to recom-
pile their kernels with those patches to support the proposed
extension. This severely limits their deployment. A better
approach is to leverage as much as possible the eBPF vir-
tual machine. For example, an interactive application run-
ning on a smartphone could inject a retransmission technique
that is optimised for short packets while a datacenter server
could inject another congestion control scheme. This injec-
tion could be done directly by the network application or by
a system daemon in userspace.

In 2017, Lawrence Brakmo proposed the TCP-BPF frame-
work [8] which is specifically built for the TCP stack and
provides basic support to extend the TCP stack. We lever-
age TCP-BPF as a starting point for our work. Since TCP-
BPF was designed to work in data center environment, it
requires cgroup version 2 to manage various system re-
sources such as CPU or memory for their containers. For
this reason, it is necessary to attach the BPF program to the
same cgroup-v2 of the user application. However, this is
not a permanent requirement, rather it should be considered
as an implementation caveat which can be changed later.

2.1 Supporting a new TCP option
As an illustration of how it is possible to use eBPF programs
to extend the Linux TCP stack, we first describe the changes
that are required to add support for a new TCP option. Ta-
ble 1 summarizes the new hooks added by our framework
and their meaning.

Let us first analyse the sender side. When sending pack-
ets, the tcp transmit skb() function creates the TCP
header and the required TCP options. TCP options are writ-
ten in two steps: (i) the stack computes the size of all pro-
visioned TCP options and (ii) it writes the TCP options in
tcp options write(). Therefore, to insert a new TCP
option we add two separate hooks into these places (Fig. 1).

The first hook (in tcp transmit skb()) calls a BPF
program to adjust the provisioned size of all TCP op-
tions (tcp options size). It is also verified to not ex-
ceeded 40 bytes - the maximum value. Then, at the end of
tcp options write(), a second hook calls a BPF pro-
gram which passes the new option data to the kernel. The
kernel is then responsible for writing the new option data at
the current option pointer.

To limit the overhead on fast path, these hooks are only ac-
tivated when the BPF program sets the appropriate flag (per
connection in struct tcp sock, as explained below).

There remains one thing that the framework has to take
care of. Since the TCP stack calculates the current MSS
at multiple places, the composed packets may be too large

Add new option: 2 steps

tcp_transmit_skb()

adjust tcp_options_size

tcp_options_write()

write new option

IP Layertcp_write_xmit()

tcp_retransmit()

tcp_send_ack()

TCP Layer

...

One more thing: update current MSS

... BPF VM

Figure 1: Insert TCP options to outgoing packetsParse new option

IP Layer TCP layer

pass new option

TCP-BPF program 
processes new option

...tcp_parse_options() 

tcp_v4_rcv() 

tcp_v6_rcv() 

ip_rcv()

BPF VM

Figure 2: Pass unknown TCP options of incoming packets to
BPF program

and could be fragmented on the wire. We need to up-
date the tcp current mss() function to take the length
of to-be-added option into the consideration. This is per-
formed by a hook with the same op type as the above
hook (which adjusts tcp options size) that is added to
tcp current mss() and is thus completely transparent
to the BPF programs.

On the receiver side, the extension is simpler. Linux
TCP parses the options of incoming TCP packets in
tcp parse options(), in which all unknown options
are ignored. At the end of this function, we added a hook to
pass these unknown options to the BPF program, as shown
in Fig. 2. This hook, once activated, will pass the option data
along with option kind and length to the BPF program. The
hook could also pass multiple new options of the same TCP
packet to one or multiple BPF programs. The BPF program
reads the option and applies a relevant change to the TCP
socket, e.g. by setting socket values via bpf sock ops or
bpf setsockopt().

2.2 How to select the desired packets for in-
serting new option?

The first question is how to select the relevant connections.
A user daemon can specify the cgroup that the targeted
connections are associated with, before loading the BPF pro-
gram. At runtime, the BPF program can check the 4-tuple to
only take care of the interesting connections. These opera-
tions have already been supported by the vanilla kernel so no
kernel change is required.

The second question is how to insert new TCP options in
the desired packets only. To mark when the program wants to

2



Hook In kernel function Passed arguments Meaning
BPF TCP OPTIONS SIZE CALC tcp transmit skb Length of all TCP options Call BPF program to adjust

tcp current mss the length of all TCP options
BPF TCP OPTIONS WRITE tcp options write - Call BPF program to insert new TCP option
BPF TCP PARSE OPTIONS tcp parse options Option kind, len, and value Pass unknown TCP option to BPF program

Table 1: New BPF hooks added by TCP option framework

actually insert new options, we need to add a new flag. TCP-
BPF already has a flag array (bpf sock ops cb flags)
in the tcp sock struct, for enabling and disabling the hooks
at different phases of a TCP connection. We extend this flag
array with our flag to minimize the amount of changed code.
The BPF program can set the flag at one hook (e.g. when the
connection is fully established) to enable option writing onto
all following skbs of the same TCP connection, and unset
the flag at another hook (e.g.: when RTO fires) to disable
option writing from this point.

2.3 Implementation status

By building on top of TCP-BPF, we can implement our
framework with modest changes to the kernel (75 LoCs).
TCP option insertion support requires around 60 LoCs, while
the TCP parsing support requires only 15 LoCs since it is
much simpler as explained above. Table 2 lists the size of
our framework and each use case with regards to the number
of lines of code (LoC) changed in the kernel.

We added a minor kernel change to support getting and
setting internal TCP user timeout values directly by TCP-
BPF programs, while the current kernel has already sup-
ported setting and getting Congestion Control algorithm or
Initial Window. The implementation to support configurable
TCP Delayed ACK, which is essentially based on an RFC
patch [24], is reasonably larger.

Kernel changes BPF program

TCP Option framework 75 -
Use case: TCP User Timeout 16 76
Use case: Congestion Control 0 92
Use case: Initial Window 0 76
Use case: Delayed ACK 94 77

Table 2: Lines of code (LoC) of the framework
and each use case

2.4 Performance Overhead

Linux TCP is a high-performance stack. Any proposed ex-
tension should take the performance impact into considera-
tion. To evaluate the performance impact of our BPF exten-
sions, we run the iPerf3 [18] test between two dedicate ma-
chines over a 10 Gbps link. Each machine is equipped with

an Intel Xeon X3440 2.53GHz CPU and 16 GB RAM. Our
framework is implemented in Linux kernel version 4.17-rc5.
We use different TCP-BPF programs that are called to ma-
nipulate each transmitted packet. We consider four different
experiments.

1. Baseline, no BPF program is loaded

2. A BPF program inserts a new TCP option on the sender

3. A BPF program on the sender (to insert a new option)
and one on the receiver (to parse this new option)

4. A BPF program on the sender that inserts a new option
while the receiver parses this option and then calls both
bpf setsockopt() and bpf getsockopt()

Each measurement lasts 40 seconds and each scenario
is repeated 20 times. Figure 3 shows the benchmark re-
sults reported by iPerf3 for each situation. The average
throughput is reduced from 9.41 Gbps in the baseline case
to 9.38 Gbps in all three BPF-enabled scenarios, mostly be-
cause our newly inserted TCP option has increased the TCP
header size. Meanwhile, there is no statistically meaning-
ful difference of round-trip-time among all cases (all around
410 microseconds) therefore we do not present them here.
The CPU utilisation overhead is the most noticeable one
which is about 10% in the worst case, as shown in Fig. 3b
and Fig. 3c.

To push the TCP stack to the limit, we conducted another
extreme benchmark with the iPerf3 client and server on the
same host machine. This test tries to send as much data as
possible to saturate the TCP stack. This benchmark is an
extreme but unrealistic scenario. As shown in Fig. 4, the av-
erage throughput obtained with baseline tests is 30.1 Gbps
(about 2.5 Mpps) and the average RTT is 27.1 usecs. Us-
ing a BPF program that inserts a new TCP option introduces
a throughput reduction of about 12.7% and a delay incre-
ment of 14.8% (4 usecs). Using a BPF program that parses
a new TCP option reduces further the throughput by 3.8%
and increases the delay by 4.5%. Calling operations such as
bpf getsockopt or bpf getsockopt does not have a
noticeable impact.

These results suggest that most of the overhead of the
framework comes from the call-backs to the BPF program,
not from the execution of the BPF program itself.

3



Baseline Insert Insert and Parse Insert and Parse
and BPF-Setsockopt

9.0

9.1

9.2

9.3

9.4

9.5

(a) Average Throughput (Gbps)

Baseline Insert Insert and Parse Insert and Parse
and BPF-Setsockopt

20.0

20.5

21.0

21.5

22.0

22.5

(b) Sender’s CPU Usage (%)

Baseline Insert Insert and Parse Insert and Parse
and BPF-Setsockopt

44

46

48

50

(c) Receiver’s CPU Usage (%)

Figure 3: Benchmarking results:
iPerf3 client and server test over 10Gbps link.

Baseline Insert Insert and Parse Insert and Parse
and BPF-Setsockopt

20.0
22.5
25.0
27.5
30.0
32.5
35.0
37.5
40.0

TC
P 

Th
ro

ug
hp

ut
 (G

bp
s)

(a) Average Throughput (Gbps)

Baseline Insert Insert and Parse Insert and Parse
and BPF-Setsockopt

20.0
22.5
25.0
27.5
30.0
32.5
35.0
37.5
40.0

Ro
un

d-
Tr

ip
 T

im
e 

(m
icr

o-
se

co
nd

s)

(b) Average RTT (micro-seconds)

Figure 4: Benchmarking results:
iPerf3 client and server are on the same host, connected via loopback interface.

3 TCP Use Cases

In this section, we illustrate with several different use cases
how it is possible to leverage BPF programs to extend the
Linux TCP stack. We start in Section 3.1 with the TCP User
Timeout [21] that has not been implemented in the Linux
TCP stack. We then propose and implement in Section 3.2
a TCP option that enables a client to suggest the conges-
tion control scheme to be used by a server. We then propose
a TCP option to set the initial congestion window in Sec-
tion 3.3 and finally one to request a specific acknowledge-
ment strategy in Section 3.4.

3.1 Use case: TCP User Timeout Option

The TCP User Timeout option [21] was proposed to allow
a host to inform its peer of the maximum time that data
could remain unacknowledged before forcing the termina-
tion of the associated connection. There are two typical use
cases for this option. First, an application that wants to sur-
vive transient failures would select a very large User Time-
out. Second, a mobile interactive application that is used
on smartphones equipped with Wi-Fi and cellular interfaces
could use a short User Timeout (e.g. one second) to quickly
detect connectivity problems and switch to the other network
interface.

The TCP User Timeout Option (UTO) [21] carries the
suggested timeout value. It is sent unreliably, typically in-

side a TCP ACK. In contrast with most TCP extensions,
the utilisation of this option is not negotiated during the
three-way handshake. It is simply used once the connec-
tion has been established. Linux allows applications to set
the maximum value of the retransmission timers through the
SO RCVTIMEO and SO SNDTIMEO socket options. How-
ever, it does not support the UTO option. In Linux, when the
UTO timer fires, the kernel signals a timeout error to the user
application and changes the connection state to TCP CLOSE.
However, it is the responsibility of applications to terminate
the connection.

On the client side, we implement the TCP User Timeout
Option with a simple BPF program (76 lines of C code) using
the option-writing hooks described in the previous section.
On the server side, when it receives a TCP User Timeout Op-
tion from the peer, the kernel stack passes the option to a BPF
program that parses the option and sets the local socket timer
value by leveraging the bpf setsockopt() helper func-
tion. We also extend bpf getsockopt() helper function
to query the current User Timeout value of the connection.

3.2 Use case: TCP Congestion Control Option

The Linux TCP stack supports a dozen of pluggable conges-
tion control modules [17]. Depending on its configuration,
a Linux host may directly support two to three TCP con-
gestion control schemes, e.g. NewReno [4], CUBIC [25],
or Vegas [9] or BBR [11]. Content Distribution Networks

4



(CDN) often tune their congestion control scheme to better
serve their customers [12]. However, a given CDN supports
a variety of customers and a congestion control scheme that
works well to serve a user connected through an optical fiber
might not work well for a user connected over a slow ADSL
link. Some CDNs tune their TCP stack on a per-prefix basis,
but there are many situations where the client that downloads
information from a server has much better knowledge of the
performance of its access network than the server. For ex-
ample, a smartphone can easily collect statistics about the
amount of reordering and the delay variations that it has ob-
served recently. Based on this information, it could suggest
a specific congestion control scheme to be used by a given
server.

In our implementation, each supported TCP congestion
control scheme is identified by an integer. The mappings
between the TCP congestion control schemes and their iden-
tifiers could be distributed together with the Linux kernel.

Our BPF programs on both the client and the server store
the list of congestion control algorithms in an array map.
This map contains algorithm IDs as the keys and the string
names as the corresponding values. When the server re-
ceives the congestion control option, the BPF program ex-
tracts the identifier and looks it up in the map to retrieve the
name of the requested algorithm. It then changes the con-
gestion control scheme applied to this connection using the
bpf setsockopt() helper function.

To illustrate the utilisation of this congestion control op-
tion, we set up an emulation environment similar1 to Mininet
[30]. We set up separate network namespaces for client and
server, a Linux bridge in-between, and using Traffic Control
(TC) with HTB qdisc to restrict link bandwidth to 8 Mbps
and 40 ms delay per direction. Our emulated client down-
loads the same large file using the curl software. We use
our BPF program to insert in the third ACK packet the TCP
congestion control option to request the utilisation of a spe-
cific congestion control scheme by the server.

We consider NewReno [4], CUBIC [25], Vegas [9] and
BBR [11] in our experiments. These four congestion con-
trol algorithms correctly use the 8 Mbps link, but they differ
in the amount of bufferbloat that they cause. Figure 5 plots
the round-trip-times measured by the server for each conges-
tion control scheme. We repeated the tests multiple times,
but they produced nearly identical graphs. Vegas and BBR,
the delay-based algorithms, have the lowest Round-trip times
(RTT) which are close to the two-way link delays. While
Cubic escaped the slow-start phase early, it does not prevent
RTT from increasing. Among all, NewReno performs worse
in terms of delay.

In this example, we used the congestion control option
to exchange the identifier of the congestion control scheme

1We do not use Mininet but use directly built-in facilities in Linux
(netns, tc,...) because Mininet uses cgroup v1 while cgroup v2
is currently required by tcp-bpf framework.

0 2 4 6 8 10
Time lapsed (sec)

0

250

500

750

1000

1250

1500

1750

Ro
un

d-
tri

p 
tim

e 
(m

se
c)

reno
cubic
bbr
vegas

Figure 5: Congestion Control Option test: RTT on the
server (8 Mbps bandwidth, 40 ms link delay)

that the peer should use. The same option could also be ex-
tended to provide some parameters of the congestion control
scheme. For example, Google QUIC [29] uses a variant of
CUBIC that is more aggressive than the standard one. This
was motivated by the fact that a QUIC session is equivalent
to several HTTP/1.1 sessions since it supports streams. The
same could apply to HTTP/2 running over TCP.

3.3 Use case: Option to Request Initial Con-
gestion Window

While the congestion control algorithm has a significant im-
pact on the performance of long flows, the Initial congestion
window (IW) decisively affects the flow completion time for
short flows. This clearly applies to web traffic. The standard
IW value has been increased over the years from 2 MSS to
4 MSS [3] and later 10 MSS [16, 19] to keep up with typical
network speeds without harming the robustness of the whole
system. However, a fixed value cannot adapt to various net-
work conditions. On long fat networks, the sender usually
takes a lot of time to reach the congestion avoidance state.
But the same IW value may be too large in highly congested
networks.

Recent large-scale measurements [32,33] show that while
most web servers use the default values of their TCP stacks,
CDN operators usually apply much larger values of IW [33].
This research also suggests that some CDNs customize their
IW configuration based on the network type and/or the con-
tent type.

Brakmo suggested [8] to heuristically select the IW based
on the IP prefix using TCP-BPF, with a simple example [1].
We extend this approach by defining a new TCP option that
lets a client specify its desired IW value. In many deploy-
ments, the receivers have more information about the impact

5



of the IW than the senders by observing packet losses at the
beginning of connections. However, this opens up the pos-
sibility that the malicious peers may use this option to lever-
age DoS attacks. To deal with this class of attack, we use two
mitigations. First, we restrict that this option can be sent only
in the SYN-ACK or third ACK of the three-way handshake,
but not in the first SYN packet. This also helps implementing
the server side more easily since the Linux TCP initializes
the full socket only after the completion of the 3-way hand-
shake. Second, the sender needs to verify the peer is from a
trusted IP prefix before setting the requested IW value. This
client IP verification could be done directly in BPF program.
Our BPF program can also combine client requests with lo-
cal policies, e.g. take the content type into account when
selecting proper IW for the connection. Listing 1 presents
the simplified version of our BPF program used to write IW
option.

struct tcp_option {
__u8 kind;
__u8 len;
__u16 data;

}
SEC("sockops")
int bpf_insert_option(struct bpf_sock_ops *skops)
{

struct tcp_option opt = {
.kind = 66, // option kind
.len = 4, // of this option struct
.data = 20, // # MSS

};
int rv = 0;
int option_buffer;

switch (skops->op) {
case BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB:

// activate option writing flag
rv = bpf_sock_ops_cb_flags_set(skops,

BPF_SOCK_OPS_OPTION_WRITE_FLAG);
break;

case BPF_TCP_OPTIONS_SIZE_CALC:
// adjust total option len, not over 40 Bytes
int option_len = sizeof(opt);
int total_len = skops->args[1];
if (total_len + option_len <= 40)

rv = option_len;
break;

case BPF_TCP_OPTIONS_WRITE:
// put struct option into reply field
memcpy(&option_buffer, &opt, sizeof(int));
rv = option_buffer;
// will not insert option after 1st data packet
if (skops->data_segs_in > 1)

bpf_sock_ops_cb_flags_set(skops, 0);
break;

default:
rv = -1;

}
skops->reply = rv;
return 1;

}

Listing 1: BPF program to write IW option

To demonstrate the impact of tuning the initial congestion
window with web traffic, we use the methodology proposed
by Wang et al. [37] with the epload software [36]. This
enables us to emulate real web contents and gather web page
download times.

We set up a similar testbed to the one of the previous

600 400 200 0 200 400 600
Relative PLT to IW10 (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F 

(D
iff

er
en

ce
)

IW2 vs. IW10
IW4 vs. IW10
IW10 vs. IW10
IW20 vs. IW10
IW40 vs. IW10

Figure 6: Initial Window Option test: Page Load Time
relatively to IW=10 (40 Mbps bandwidth, 40 ms link delay)

use case 3.2. The path between client and server was con-
figured with 40 Mbps of bandwidth and 40 msec of delay
per direction. The server uses nginx to serve the mirrored
web contents of top Alexa 170 websites list. On the client
side, we ran the epload tool that analyses the dependency
graph of web objects, which were recorded with the Chrome
browser console, and replays fetching web resources. Every
test against each website is repeated three times.

Figure 6 shows the relative Page Load Time (PLT) results
of each IW value, which is the difference of the Page Load
Time between the tests with tuned IW value and the tests
with the default IW value (10 MSS) for each website. For
about 70% of websites, the increase of IW yields better Page
Load Time, and a few of sites suffered from a higher value
of IW. With high network capacity in the experiment, we did
not observe much congestion; however, the results should
change if the network resources are more limited. Therefore,
these results do not suggest that increasing IW always pro-
duces better performance, but show how flexible the Linux
TCP stack can be.

3.4 Use case: Tuning the acknowledgement
strategy

As a reliable protocol, TCP crucially relies on the ACK
packets to detect losses and control the data transfer. Send-
ing ACKs too frequently may impose too much overhead in
wireless networks or on fat pipes. On heavily loaded servers,
the ACK processing may consume as much as 20% of the
CPU cycles [13]. On the other hand, sending too few ACKs
could probably harm the performance of traditional conges-
tion controls like Reno/Cubic: slow down the increase of
the congestion window during the slow-start phase, trigger
bursty transmissions, overestimate RTT and RTO, or prevent

6



Fast/Early Retransmit recovers from real losses.
For these reasons, the IETF (RFC2525 section 2.13 [31])

recommended a trade-off: do not delay ACKing for more
than 500 ms and immediately send an ACK for every second
packet. Linux follows this recommendation and the mini-
mum and maximum values of the delayed ACK timeout are
hard-coded at 40 ms and 200 ms.

However, such fixed values cannot adapt to connections
having very different delay, bandwidth and loss character-
istics. They may be too large for local connections, but too
small for inter-continental ones. The only customization sup-
ported by Linux is to disable the delayed ACK mechanism
for each route [35]. However, there is no way for a sender to
know the acknowledgement strategy that is used by its peer.

In low-latency environments, the delayed acknowledge-
ment timer causes too many spurious retransmission time-
outs, harming the performance. The measured RTTs are in-
flated by the delayed ACK timeout. The RTO calculation is
based on sRTT, so RTO may also be over-estimated by de-
layed ACKs. There are two separate reasons for this: (1)
the default delayed ACK timeout is set too high, and (2) the
sender has no information about the delayed ACK behavior
on the receiver. For example, in datacenters, the typical RTT
is in the order of a few milliseconds, so the estimated RTO
is likely dominated by the delayed ACK timeout which is 40
ms at minimum in Linux. While Linux tried to exclude de-
layed ACK from RTT sampling, there is no reliable way to
do this.

Meanwhile, modern networking stacks have adapted to
the stretch ACK technique. First, popular networking stacks
support pacing, which helps to avoid the bursty transmission
issue, a side-effect of the interaction between the stretched
ACKing and the classical congestion controls. Second, the
congestion control implementations were adapted to increase
the congestion window properly with stretch ACKs [10, 14].
Furthermore, the Recent ACK (RACK) [15] (subsumed Tail-
Loss Probe (TLP) [20]) mechanism is being standardized
and deployed in Linux and Windows [6]. This allows TCP
senders to quickly detect losses based on a per-packet timer
instead of using duplicated ACKs, reducing the impact of
ACK stretching.

Google proposed a TCP Option [38] to negotiate a cus-
tom delayed ACK timeout during the three-way handshake.
However, as discussed in IETF99 TCPM WG meeting [2],
there are several issues with this proposal: (1) it is an abso-
lute value, which must be defined before the establishment of
the connection, so it cannot adapt to different environments.
Even a well-thought heuristic cannot match all network con-
ditions. (2) A malicious middlebox on the path could in-
ject weird values to drive the hosts into abnormal states. (3)
The negotiation uses the SYN and SYN-ACK packets, which
may have not enough TCP option space.

We define a similar TCP Option, but with different seman-
tics. Our option contains two fields: (i) the delayed ACK

value as a fraction of the minimum RTT and (ii) the amount
of unacknowledged data (in units of MSS) that should trigger
an immediate ACK. To allow the sender to properly adjust
its congestion window during the slow-start, out-of-order
receive or retransmission phases, we still keep the original
Linux acknowledgement strategy during these phases.

eBPF helps us to change the strategy or parameters dy-
namically based on the current situation, for example, a
client on a crowded wireless network or a server that is send-
ing heavily.

4 Supporting User-Defined MPTCP Path
Managers

Multipath TCP [22] is a major extension of TCP. By decou-
pling TCP from IP and enabling resource pooling, it brings
several benefits: allow seamless handover, aggregate band-
width of multiple paths, increase resiliency, reduce latency
and so on [7]. One of the major tasks in an MPTCP imple-
mentation is to set up paths based on current situation and
the user requirements, which is handled by path managers.
The path managers need to decide which path should be cre-
ated or removed, and which addresses should be announced.
The Linux implementation of MPTCP (which is still out-
of-tree at github.com/multipath-tcp/mptcp) sup-
ports different path managers implemented as kernel mod-
ules. However, this task should be controlled by applications
or users who have a wide range of requirements. Therefore,
a netlink-based PM framework has been introduced to sup-
port control plane in user space [26], and has been recently
merged in mptcp-trunk branch [5].

While using netlink is a natural approach that provides a
clean separation between control plane and data plane, it is
not without issues. It has a certain amount of overhead due
to context switches between user and kernel space as well as
due to netlink channel handling. But the most important is-
sue is that the netlink channel is unreliable. Under high load,
netlink messages may be lost. Moreover, this approach re-
quires separated facilities to support various but maybe nec-
essary features: setsockopt or getsockopt (e.g. ac-
cess subflow-level info), TCP state change notification, ap-
ply a custom policy to refuse the establishment of a subflow.
The last one may be difficult to implement.

For these reasons, we have investigated and provisioned
an alternative approach based on eBPF. The motivation for
this approach includes:

• Performance: Once a BPF program is loaded into the
kernel, it is not necessary to switch between user space
and kernel space for every operation like netlink-based
approach. We can also avoid the overhead due to send-
ing and receiving netlink messages

• TCP-BPF has built-in support for TCP state tracking
and TCP socket manipulation

7

github.com/multipath-tcp/mptcp


• Easy to apply custom accepting/refusal policies on the
subflow establishment

However, it is expected that this approach would have its
own limitations. First, eBPF programs are restricted by cur-
rent eBPF limits: no loop supported, each BPF program can-
not have more than 4096 instructions. Second, compared
to the netlink-based approach, the layering separation is less
clean. Third, since BPF programs can be called from differ-
ent contexts, the locking mechanism is probably trickier than
userspace solutions like the netlink one.

We have implemented a prototype of generic path-
manager framework based on eBPF. The next three subsec-
tions present its basic design: how to track events, how to
store addresses and subflows, and how to open a subflow.

4.1 Tracking events

In order to give decisions, the path managers must know
which MPTCP-related events happen and the associated
metadata. It is possible to perform these operations us-
ing BPF programs of the kprobe type without introduc-
ing any kernel change. However, we also need to carry
actions on the connection (e.g. create or delete a subflow)
which typically requires TCP-BPF programs of sock ops
type. This means that we need two different BPF pro-
grams to fulfill the task: BPF PROG TYPE KPROBE and
BPF PROG TYPE SOCK OPS. Connecting these two BPF
programs and synchronizing shared data would be complex
(ugly if not difficult).

For this reason, we added new TCP-BPF callbacks to track
important events for the path managers (Table 3). Since these
callbacks are inserted at the same places as the netlink-based
Path Manager solution does [5], we do not present these lo-
cations in the table.

One issue is that the TCP-BPF callbacks only support
at most three arguments accompanying each call. This
limits the amount of MPTCP metadata that could be passed
through these calls. For this reason, we extended the object
context of the TCP-BPF programs (struct bpf sock ops)
to keep track of common metadata per MPTCP ses-
sion (mptcp loc token, mptcp rem token,
mptcp loc key, mptcp rem key, mptcp flags).
This brings more MPTCP metadata to BPF programs and
also simplifies new MPTCP callbacks.

At the moment, to track the subflow-level events we
reused the available TCP-BPF hooks for regular TCP
stack: e.g. BPF SOCK OPS ACTIVE ESTABLISHED CB
BPF SOCK OPS PASSIVE ESTABLISHED CB, or the
more generic one BPF SOCK OPS STATE CB. In the future
to support more advanced path managers, we could either
extend these hooks to pass more MPTCP-specific metadata
or add new dedicated MPTCP-only hooks to keep the API
clean.

4.2 Storing local addresses and remote ad-
dresses

The path managers must know the local addresses, as well as
remote addresses and subflows for established MPTCP ses-
sions. We use BPF maps - the standard BPF way - to store
this information. Local addresses are retrieved and loaded
to BPF map when the BPF program is loaded. This is done
by the same user daemon which loads and attaches BPF pro-
grams, because this daemon has enough privileges and con-
text information.

4.3 Opening a subflow
Since opening subflows is an action that changes the be-
havior of the kernel stack, we followed the eBPF com-
mon practice by implementing it via a new helper function
(mptcp open subflow()). This helper function takes
five arguments as input:

• bpf sock ops (BPF socket context): The function
uses bpf sock ops to retrieve both subflow-level and
mptcp-level information.

• The pointers to source sockaddr and destination
sockaddr of new subflows to be created: Each
sockaddr includes the IP address and the port
number. When any field in the 4-tuple is ab-
sent, mptcp open subflow() uses the existing or
kernel-assigned values when creating the subflow.

• The associated lengths of above sockaddrs, as re-
quired by eBPF when passing memory regions.

There is however one subtle issue here: BPF programs
can be called from different contexts. Usually, we are in
softirq context, therefore this helper function cannot open
subflows directly. Instead, we created a custom global work
queue first. Every time this helper function is called, it
schedules a work into this work queue to delegate the
actual task in the future. Since we cannot add our cus-
tom parameters into the work itself, we need to embed the
work and 4-tuple in a wrapping structure bpf pm priv
to keep track of the subflow request. We store the list of
all subflow requests per MPTCP session, which are im-
plemented as a linked list of structure bpf pm priv and
linked to the relevant mptcp control block (mptcp cb).
Then, when the kernel scheduler wakes up the worker
thread, the work handler actually opens the requested
subflow by calling mptcp init4 subsockets() (or
mptcp init6 subsockets() for IPv6 subflow).

4.4 Use cases
To illustrate the usage of this path manager framework, two
minimal path managers were implemented as BPF programs
(Table 4).

8



Callbacks Events Passed arguments

BPF MPTCP NEW SESSION A new MPTCP Session is created -
BPF MPTCP FULLY ESTABLISHED An MPTCP Session is established flag: is this master sk?
BPF MPTCP CLOSE SESSION An MPTCP Session is closed -

(including fallbacks to regular TCP)
BPF MPTCP ADD RADDR Remote IP address is added IP, port, address ID
BPF MPTCP REM RADDR Remote IP address is removed address ID

Table 3: New TCP-BPF callbacks for Generic PM Framework

4.4.1 ndiffports path manager

ndiffports path manager creates multiple subflows on the
same source and destination IP addresses, only differing in
port numbers. It is designed to exploit the path diversity to
avoid the bottlenecks in ECMP-enabled datacenters. Due
to its simplicity, we implemented ndiffports in only around
20 LoCs, as shown in Listing 2. We start creating subflows
when the MPTCP session is fully established. Notice that for
an MPTCP session, this state can be triggered several times,
not only on the master subflow, but also on the additional
subflows.

SEC("sockops")
int bpf_testcb(struct bpf_sock_ops *skops)
{

int rv = -1;
skops->reply = rv;

if (skops->op == BPF_MPTCP_FULLY_ESTABLISHED) {
/* if this is not master sk, skip it */
if (!skops->args[1])

return 0;

/* when passing (NULL, 0): existing addresses

* will be used to set up new subflow */
/* Call twice to open two subflows */
rv = bpf_open_subflow(skops, NULL, 0, NULL, 0);
rv = bpf_open_subflow(skops, NULL, 0, NULL, 0);

}
skops->reply = rv;
return 1;

}

Listing 2: ndiffports path manager as a BPF program

4.4.2 fullmesh path manager

The second one, fullmesh PM, is more complex since it tries
to establish a full mesh of subflows using all IP addresses
between the two hosts. The local addresses are global and
loaded into an array map (local addr map) by a user
daemon. Meanwhile, add addr map stores the remote ad-
dresses are per connection, with the MPTCP token as the
key. The map value is the structure that contains remote
IP addresses and their correspondent address IDs. The re-
mote address list is updated every time the host receives an
ADD ADDR or REM ADDR from remote peer. On the MPTCP
session closing event, the remote address list of that session
is removed from add addr map.

Lines of code

Generic PM Framework (in kernel) ~300
ndiffports PM (BPF program) ~20
fullmesh PM (BPF program) ~200

Table 4: The implementation size of Generic PM
Framework and two path managers

4.5 Next steps

At the moment, several features have not been implemented
in this first prototype:

• Handle events of local IP address changed. Need to
send events to each BPF program in each cgroup-v2.
However, for TCP-BPF program type, we need to pass
the appropriate sock struct which contains the cgroup
information. An ugly solution is to create and store a
dummy socket per cgroup when we start loading path-
manager BPF program, then use these dummy sockets
to trigger BPF programs.

• Subflows removal support. This feature should be im-
plemented as a helper function, in a similar way to
mptcp open subflow(). In fact, for the common
case when receiving a REMOVE ADDR option, cur-
rent Linux MPTCP implementation has already closed
automatically the impacted subflows in kernel. There-
fore, this feature is only needed in other cases: e.g.
to close additional subflows under memory pressure or
when cellular traffic quota is reached. This may re-
quire to store the list of active subflows (e.g. in a
sockmap) or to query the subflow list on-demand (e.g.
by MPTCP INFO socket option).

• Only IPv4 is supported so far. Dual-stack support
may be similar to the implementation of bpf bind(),
which should not be too difficult.

• Multiple path managers support. This may be neces-
sary, for example, when MPTCP proxies may want to
use different PMs for upstream and downstream traffic.

9



In comparison, current netlink-based solution supports
different PMs, one per network namespace.

5 Discussion

TCP was designed to be extensible by using TCP options.
However, the last decades have shown that it remains very
difficult to extend TCP by defining such a new option. While
the IETF has reserved a set of option types for experimental
options, TCP implementations such as the Linux TCP stack
are monolithic and difficult to extend. In this paper, we have
leveraged the eBPF virtual machine in the Linux kernel to
demonstrate that it becomes possible to incrementally extend
the Linux TCP stack. Our work has shown that, with little
changes to the kernel code, it is possible to leverage eBPF
programs to quickly implement a range of new TCP features.
The main drawback of this method is the limitation of TCP
option space, which cannot be larger than 40 bytes. On the
other hand, it is the first step to make the Linux TCP stack
truly extensible.

The results described in this paper open different direc-
tions for future work. A first direction is improving the eBPF
support in the Linux kernel. Our implementation is based on
the TCP-BPF framework which currently relies on cgroup
version 2. It could be interesting to remove this restriction.

A second direction is to actually use eBPF to extend TCP
in real deployments. On the public Internet, adding new
TCP options remains difficult given the prevalence of mid-
dleboxes [27]. However, TCP is also widely used inside
enterprise networks, datacenters and in controlled environ-
ments where there is no middlebox interference. It is also
used between proxies such as Hybrid Access Networks [7]
or between edge servers and core servers of CDNs. Further-
more, there is anecdotal evidence that large content providers
use a tuned version of the Linux TCP stack that has diverged
from the mainline Linux kernel over the years. This implies
that either they frequently need to backport new features of
the Linux kernel or do not use these improvements in their
stack. Using eBPF would enable them to both completely
tune their Linux TCP stack and still benefit from the com-
munity improvements.

A third and more interesting direction in the long term
would be to make the Linux TCP stack completely modular.
It currently contains a wide range of heuristics and optimisa-
tions such as congestion control, retransmission techniques,
loss detection heuristics, automatic buffer tuning. All these
heuristics could be implemented as eBPF programs to enable
applications to replace or tune them based on their require-
ments.

6 Software Artefacts

The implementation of our TCP option extension frame-
work, the MPTCP path manager framework, differ-
ent use cases and the experiment scripts are avail-
able at https://github.com/hoang-tranviet/
tcp-options-bpf. Our customized Epload is avail-
able at https://github.com/hoang-tranviet/
Epload. Our analysis and plot scripts is avail-
able at https://github.com/hoang-tranviet/
tcp-options-bpf-analysis. Experiment results
and related resources can be found at https://www.
info.ucl.ac.be/˜tranviet/.

Acknowledgements

This work was supported by the ARC-SDN project and the
WALInnov MQUIC project. We thank Olivier Tilmans for
explaining to us the eBPF infrastructure and giving useful
suggestions, and thank Matthieu Baerts for reviewing the
MPTCP path manager work.

References

[1] [net-next,v6,13/16] bpf: Sample bpf program to set ini-
tial cwnd. https://patchwork.ozlabs.org/patch/783031/.

[2] IETF Minutes IETF99.
https://datatracker.ietf.org/doc/minutes-99-tcpm/,
2017.

[3] ALLMAN, M., FLOYD, S., AND PARTRIDGE, C. RFC
3390: Increasing TCPs initial window. Internet Eng.
Task Force (IETF)-Request for Comments (2002).

[4] ALLMAN, M., PAXSON, V., AND BLANTON, E. TCP
Congestion Control. RFC 5681 (Draft Standard), Sept.
2009.

[5] BAERTS, M., AND DETAL, G. [PATCH mptcp trunk
v8 0/5] mptcp: new generic Netlink-based PM.
https://sympa-2.sipr.ucl.ac.be/sympa/arc/mptcp-
dev/2019-01/msg00084.html/, Jan. 2019.

[6] BALASUBRAMANIAN, P. IETF96: Transports ad-
vancements in the Windows network stack. IETF.

[7] BONAVENTURE, O., AND SEO, S. Multipath TCP de-
ployments. IETF Journal 12, 2 (2016), 24–27.

[8] BRAKMO, L. TCP-BPF: Programmatically tuning
TCP behavior through BPF. NetDev 2.2 (2017).

[9] BRAKMO, L. S., AND PETERSON, L. L. Tcp vegas:
End to end congestion avoidance on a global internet.
IEEE Journal on selected Areas in communications 13,
8 (1995), 1465–1480.

10

https://github.com/hoang-tranviet/tcp-options-bpf
https://github.com/hoang-tranviet/tcp-options-bpf
https://github.com/hoang-tranviet/Epload
https://github.com/hoang-tranviet/Epload
https://github.com/hoang-tranviet/tcp-options-bpf-analysis
https://github.com/hoang-tranviet/tcp-options-bpf-analysis
https://www.info.ucl.ac.be/~tranviet/
https://www.info.ucl.ac.be/~tranviet/


[10] CARDWELL, N. Linux Kernel: Merge branch: fix
stretch ACK bugs in TCP CUBIC and Reno, 2015.

[11] CARDWELL, N., ET AL. Bbr: congestion-based con-
gestion control. Communications of the ACM 60, 2
(2017), 58–66.

[12] CARLSSON, E., AND LABS, E. K. S. Smoother
Streaming with BBR, 8 2018.

[13] CHAN, M., AND CHERITON, D. R. Improving Server
Application Performance via Pure TCP ACK Receive
Optimization. In USENIX Annual Technical Confer-
ence (2013), pp. 359–364.

[14] CHENG, Y. Linux Kernel: commit 9f9843a751d0. tcp:
properly handle stretch acks in slow start, 2013.

[15] CHENG, Y., CARDWELL, N., DUKKIPATI, N., AND
JHA, P. Rack: a time-based fast loss detection algo-
rithm for tcp. draft-ietf-tcpm-rack-04.

[16] CHU, J., ET AL. RFC 6928: Increasing TCP’s initial
window. Tech. rep., 2013.

[17] CORBET, J. Pluggable congestion avoidance modules.
Linux Weekly News (2005).

[18] DUGAN, J., ELLIOTT, S., MAH, B. A., POSKANZER,
J., AND PRABHU, K. iperf3, tool for active measure-
ments of the maximum achievable bandwidth on ip net-
works. URL: https://github.com/esnet/iperf .

[19] DUKKIPATI, N., ET AL. An argument for increasing
TCP’s initial congestion window. Computer Commu-
nication Review 40, 3 (2010), 26–33.

[20] DUKKIPATI, N., ET AL. Tail loss probe (TLP): An al-
gorithm for fast recovery of tail losses. draft-dukkipati-
tcpm-tcploss-probe-01. txt (2013).

[21] EGGERT, L., AND GONT, F. TCP User Timeout Op-
tion. RFC 5482 (Proposed Standard), Mar. 2009.

[22] FORD, A., RAICIU, C., HANDLEY, M., AND
BONAVENTURE, O. TCP Extensions for Multipath
Operation with Multiple Addresses. RFC 6824, Jan.
2013.

[23] FUKUDA, K. An analysis of longitudinal TCP passive
measurements. In TMA Workshop (2011), Springer,
pp. 29–36.

[24] GREEAR, B., AND BALUTA, D. Linux Kernel: [RFC]
TCP: Support configurable delayed-ack parameters.,
2012.

[25] HA, S., RHEE, I., AND XU, L. Cubic: a new tcp-
friendly high-speed tcp variant. ACM SIGOPS operat-
ing systems review 42, 5 (2008), 64–74.

[26] HESMANS, B., ET AL. SMAPP: Towards smart Mul-
tipath TCP-enabled applications. In Proceedings of the
11th ACM CONEXT (2015), ACM, p. 28.

[27] HONDA, M., ET AL. Is it still possible to extend TCP?
In Proceedings of the 2011 ACM SIGCOMM (2011),
ACM, pp. 181–194.

[28] HONDA, M., ET AL. Rekindling network protocol in-
novation with user-level stacks. ACM SIGCOMM Com-
puter Communication Review 44, 2 (2014), 52–58.

[29] LANGLEY, A., ET AL. The QUIC transport protocol:
Design and Internet-scale deployment. In Proceedings
of the ACM SIGCOMM (2017), ACM, pp. 183–196.

[30] LANTZ, B., HELLER, B., AND MCKEOWN, N. A
network in a laptop: rapid prototyping for software-
defined networks. In Proceedings of the 9th ACM SIG-
COMM Workshop on Hot Topics in Networks (2010),
ACM, p. 19.

[31] PAXSON, V., ALLMAN, M., DAWSON, S., FENNER,
W., GRINER, J., HEAVENS, I., LAHEY, K., SEMKE,
J., AND VOLZ, B. Known TCP Implementation Prob-
lems. RFC 2525 (Informational), Mar. 1999.

[32] RÜTH, J., BORMANN, C., AND HOHLFELD, O.
Large-scale scanning of TCP’s initial window. In Pro-
ceedings of the IMC 2017 (London, United Kingdom,
2017), ACM Press, pp. 304–310.

[33] RÜTH, J., AND HOHLFELD, O. Demystifying TCP
Initial Window Configurations of Content Distribution
Networks. In 2018 TMA Conference (2018), IEEE,
pp. 1–8.

[34] TOUCH, J. Shared Use of Experimental TCP Options.
RFC 6994 (Proposed Standard), Aug. 2013.

[35] WANG, A. C. Linux Kernel: tcp: introduce a per-route
knob for quick ack, 2013.

[36] WANG, X. S. Epload.
http://wprof.cs.washington.edu/spdy/tool/, 12 2018.

[37] WANG, X. S., ET AL. How speedy is SPDY? In 11th
USENIX NSDI (Seattle, WA, 2014), USENIX Associ-
ation, pp. 387–399.

[38] WEI WANG, NEAL CARDWELL, Y. C., AND DU-
MAZET, E. IETF draft: TCP Low Latency Option,
2017.

11


	Introduction
	Extending TCP in the Linux kernel
	Supporting a new TCP option
	How to select the desired packets for inserting new option?
	Implementation status
	Performance Overhead

	TCP Use Cases
	Use case: TCP User Timeout Option
	Use case: TCP Congestion Control Option
	Use case: Option to Request Initial Congestion Window
	Use case: Tuning the acknowledgement strategy

	Supporting User-Defined MPTCP Path Managers
	Tracking events
	Storing local addresses and remote addresses
	Opening a subflow
	Use cases
	ndiffports path manager
	fullmesh path manager

	Next steps

	Discussion
	Software Artefacts

