Implementation and Preliminary Evaluation of
IDIPS: technical notes

Damien Saucez, Benoit Donnet, Olivier Bonaventure

October 1, 2007

1 Introduction

The idea behind IDIPS is to provide ordered paths according to pre-defined
criteria. IDIPS is composed of three entities: the client, the destination and
the IDIPS server itself. The client is the entity sending request for QoS and
path information towards a destination. The IDIPS server aims at providing
the requested information to the client. IDIPS is operated by an ISP or an AS.

A client sends a list of all the possible source and destination addresses to
the IDIPS server. In addition, the client gives its criteria for evaluating paths.
When an IDIPS server receives such a request, it creates a set of conceivable
(source, destination) pairs, where each source and destination belongs to the
initial list provided by the client. The IDIPS server then orders the pairs ac-
cording to the client’s criteria so that the first pair in the list is the best choice
while the last one is the least preferred. The IDIPS server responds to the client
by sending back this ordered list. Note that the addresses list provided by the
client might be composed of prefixes, not necessarily of complete addresses.

The IDIPS protocol is defined in [1].

This technical paper aims at evaluating our current implementation of the
IDIPS server. First, Sec. 2.1 presents the main concepts of the implementation.
After, Sec. 2.2 gives some details about the implementation choices. Next,
Sec. 3.2 describes the performances testbed and Sec. 3.2 comments the results for
this testbed. Finally, Sec. 4 concludes and presents the future implementation’s
milestones.

2 Implementation

In this section we present our current implementation of the IDIPS server.
First, we present the basic concepts used in the implementation. After, we
present some technical choices and motivate them.

2.1 Concepts

Our implementation is based on two main concepts: the knowledge base
(KB) and the cost function (CF).

The knowledge base can be seen as a database collecting information about
the prefixes. When the server needs information about a prefix, it makes a looks
in the KB and immediately obtains the results. No measurement or analysis
must be done at that time. The KB must be implemented with a technique that
offers efficient look-up for prefixes. Indeed, when processing an IDIPS_REQUEST,
the lookup time for prefixes must be reduced at its minimum to minimize server’s
response-time from the client point-of-view. Every prefix in the KB as some at-
tributes associated to it. The attributes are normalized numerical values that
represents a specific metric. Normalized metric values follows the same prin-
ciple as Local Prefs in BGP. The complexity of the metric is hidden behind a
numerical value. This numerical value must summary a set of possible various
information such that the classification of the prefix for this cost function only
consists in sorting prefixes by numerical value of the cost. Because the value of
the metrics can vary all the time, a dedicated process is charged to maintain
the knowledge base when the information about a prefix is modified. A solu-
tion which estimates the metric on client’s demand would not be effective as
it would increase the response-time of the server. For example, if the metric is
the AS_PATH length, an aspahtlength attribute with the normalized length of
the AS_PATH is added to prefixes. This is an obvious example, but we could
imagine more complex metric.

The cost functions are divided in two pieces. First, a routine is added in the
knowledge base maintenance process. This routine is called to recompute the
numerical value associated with the metric in the KB. Second, a fast routine is
added in the decision-process. This part of the cost function gets a source and
a destination prefix as input and returns the cost of the couple. The cost of the
couple is a special combination of the metric associated with the source and the
same metric associated with the destination. The combination of the two value
must be has simple as possible (e.g., a sum) to reduce the response-time of the
server. The complexity of the cost function is in the first routine.

When the server receives an IDIPS_REQUEST message, it extracts the
source prefixes proposed by the client and the destination prefixes and create all
the possible couples. It then computes the cost for each couple and construct an
ordered list of couples. The list is ordered by cost. The couple with the lowest
cost is the more attractive.

To combine multiple cost functions, a weight is associated to each CF. The
global cost of a pair is the weighted sum of its costs. The pair with the lowest
cost is the most attractive. When a cost function is not applicable to at least one
function, this cost function must be removed from every prefix in the selection
process. For example, if the cost function CF2 is not applicable to couple B but
applicable to couples A and C. If the server must return the 3 couples A, B and
C. The cost function CF2 cannot be used to order the couples.

2.2 Technical choices

The KB is a Patricia tree of IP prefixes in our implementation. Every entry
in the KB contains the AS_PATH length and the Local Pref of the prefix.

To update information about prefixes, a process listen a UNIX message
queue. The messages sent in the queue contains the prefix, the AS_PATH length
and the localpref. When the process receives a message, it update the informa-
tion for the prefix in the Patricia tree (the knowledge base). If the prefix is not
in the KB, it is added with these value as metric.

3 Evaluation

In Sec. 3.1 we present the testbed we used for our experiments. In Sec. 3.2,
we depict the results of our experiments and gives some explanation of the
results.

3.1 Testbed

Our testbed is composed of two computers connected through a switched
fast Ethernet network. The IDIPS server runs on a FreeBSD 5.5 Pentium 4
2.60GHz with 1GB of memory. The clients pool runs on a Linux 2.6.18 Pen-
tium 4 2.80GHz with 1GB of memory.

The BGP information are transmitted to the IDIPS server with an applica-
tion build over the XORP BGP routes client in the XORP BGP Tools suite.
This application is modified to write a message in the message queue of the
IDIPS server with the prefix and both its AS_PATH length and its Local Pref.

The experiments are performed for RIBs of different size. The RIBs are
those available on Route Views Project web site [2]. We used the following
RIBs:
rib.20011026.1648, rib.20030906.0934, rib.20050906.1031 and rib.20070906.1025.
This choice of RIBs permits to test the service with a number of routes from
107600 in the 2001’s RIB to 244567 in the 2007’s RIB. Passing trough 140402
routes in 2003 and 183579 routes in 2005. Route Views does not propose RIBs
before October 2001.

Route Views RIBs are dumped into the XORP router with SBGP [3]. The
experiments was performed only after the RIBs was completely dumped into
IDIPS server. The KB is constant (i.e., entries connot be modified) during an
experiment.

We consider a set of 100 clients contacting the IDIPS server. The 100 clients
ran on the same computer (e.g., 100 independant processes). Each client period-
ically generates a list of pseudo-uniform random source and destination prefixes
and requests the server for a classification !. The interval time between two
requests of a particular client is given by a Poisson distribution with a mean

IThis distribution of prefixes does not reflect the Internet but offers the advantage of
browsing KB’s entries uniformly.

~

2o

number of destination prefixes

16 45
15
14
13
" 35
1
o 3
9
25
8
7 2
6
5 15
4
3 1
2
1 05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
number of source prefixes

Figure 1: Average processing time as a function of the number of source ad-
dresses and the number of destination addresses in the IDIPS_REQUEST

of one second. The number of source and destination addresses in the requests
follows a uniform random distribution of minimum 0 and maximum 16. Every
client sends 50000 requests for each experiment (1 experiment for each RIB).
An experiment took approximatively 14 hours.

For every experiment, we stored the following three information: (i) the
time for the server to process the query without buffer time (the time to find
the prefix in the tree and to combine metrics). (i¢) the time spend between
the moment where the client sends the IDIPS request and where it receives the
response. (7i¢) the round-trip time from the client pool to the server.

3.2 Results

Fig. 1 shows the evolution of the processing time (color density) in ms as a
function of the number of prefixes in the source list (x axis) and the number
of destination prefixes in the destination list (y axis). This figure shows that
the processing time is symetric when compared with the number of prefixes in
source or destination list. For example, the process time for 3 source and 6
destination prefixes is the same as for 6 source and 3 destination prefixes. Until
otherwise, in the rest of this document we use the term number of destination
prefixes for both source and destination as we only focus on processing time.

Fig. 2 shows the evolution of the processing time (color density) compared
to the number of destination prefixes in the request (x axis) and the number of
couples of prefixes returned by the server (y axis). This figure point out that
the processing time is worse while threating many destination prefixes than few

i
I
S

N

2R
Now
o o

2R
© o B
S & o

N WA OO N ®
S & & © © o ©

number of returned couples in IDIPS_RESPOI

=
o

o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
number of destination prefixes in IDIPS_REQUEST

Figure 2: Distribution of the processing time as a function of destination prefixes
in the IDIPS_REQUEST and returned couples in the IDIPS_RESPONSE.

destination prefixes even if the number of returned couples is the same. This can
be explain by the implementation which look at every destination prefixes in the
list whatever the number of couples are returned. The choice of the maximum
number of destination prefixes in the list and the number of couples returned by
the server can be based on the precessing time. For example, if the service must
have a maximum response-time of 3 ms, the number of destination prefixes in
the list must be 6 or 7. Otherwise, the response time could be more than 3 ms.
Some peaks are present in the figure because of the invalidity of some couples
for the experiments.

This behaviour reflects the implementation that follows the next structure:

// process
foreach prefixe in sources
foreach prefixe in destinations
get prefixes information
process couple
end
end

This implementation is sub-optimal as it does not pre-process the prefixes
information. A better solution would to retrieve information about the prefixes
before the couple creation and, if possible, avoid processing bad couples as
presented in the following algorithm

// pre-process

[w]

_7r+:;;:‘*ﬁ_7‘
——a

=
aitz*‘b*

.- e«
B bD
o0
oo
-1
\E
L

processing time (ms)
[L R R) |

40 60 80 100 120 140
pairs returned

P
bl

Figure 3: Evolution of the processing time with the number of returned pairs

foreach prefixe in sources
get prefixe information
end
foreach prefixe in destinations
get prefixe information
end
// process
foreach valid prefixe in sources
foreach valid prefixe in destinations
process couple based on pre-process
end
end

Unfortunately, it is hard to determine the validity of a prefixe without creat-
ing the couple where the prefixe will be used, i.e., a prefixe could be valid only
in conjunction with a specific other prefix while creating a couple. In the next
future, a solution must be found to this problem.

For the 2001’s RIB, 31% of the requests was rejected (for a total of 5M),
28% for 2003, 23% for 2005 and 17% for 2007. This means that for between 17%
and 28% of the request where invalid. A request is considered as invalid if no
couple can be formed with the prefixes proposed in the source and destination
lists.

We evaluate both the server processing time (the time required by the server
to extract the source prefixes and the destination prefixes and create the ordered
list of valid couples) and the response-time from the client’s point of view.
Because the service can run on very different type of networks, the round-trip
time is not taken into account for this response-time. For the 2007’s RIB, the
average processing time at the server side was 716.44 us. The average response-
time at the client-side was 754.3 us with a round-trip time of 710us. On average,
the end-to-end buffer time (i.e., sum of the time spent in both client and server
buffers) was is 37.86 us.

Fig. 3.2 shows the evolution of the server processing time (in ms, vertical
axis) with the number of returned pairs (horizontal axis). The possible pairs
are ordered acording to the AS_PATH length metric. Neither clients nor server

maintain caches and the time in buffers is considered as a part of the processing
time.

From Fig. 3.2, we see that the IDIPS server processing time oscillates be-
tween 0.1 ms (when a single pair is returned) and 4.16 ms (when 100 pairs are
returned). We further observe that the size of the returned list never reaches 256
(maximum is 140 for the 2007 curve), i.e., the maximum that can be returned
in our tests (all the pairs formed by the 16 sources and 16 destinations). This
behaviour comes from the fact that IDIPS server can remove invalid pairs from
the returned list. In our experiements, the pairs removed were pairs in which
one or the two prefixes (addresses) in the pair have no entry in the knowledge
base, i.e., no path exists in the BGP RIB to reach the prefixes. In our tests, we
obviously notice that invalid paths are more frequent for small RIBs (e.g., 2001
RIB) than for bigger RIBs (e.g., 2005 RIB).

It is worth to notice that a list of 100 couples has no real interest. Indeed,
if the client must use the 100tH entry in the list, it means that the previous 99
couples are invalid, which should never occurs. We would recommend to limit
the number of returned pairs to 16. In such a situation, the processing time is
1.28 ms on average. Therefore, from a client point of view, the cost associated
to IDIPS is negligible, i.e., it is no more expensive than a DNS request.

4 Conclusion

In this technical note, we have briefly presented the IDIPS service, a service
that proposes to order paths according to a quality of service metric at a low
cost for both the servers and the clients. After, we have describe the main points
of our current server’s implementation. Basically, the server is devided into two
entities. The first collects information about prefixes and convert them into
an effective internal representation. The second combines these information to
determine the quality of a given path. Based on the results of the combination,
different paths can be ordered by quality.

The protocol is defined such that clients give a list of possible source prefixes
and a possible list of destination prefixes. The server then constructs the possible
couples and computes their quality. Finaly, the server sends back a list of ordered
couples where the first entry is the most attractive one and the last is the worst.

Our testbed shows that the quantity of information stored by the server
(e.g., the RIB) does not dramatically influence the time-performances. On the
contraty, the size of both the lists sent by the clients have impacts on the
performances.

This note shows that the implementation can be improved to reduce the
response time of the server. In addition, a limit must be set to the size of the
lists sent by clients and by servers.

We are currently working in adding effective active measurements metrics to
our implementation. In addition, we are looking at a more effective implemen-
tation of the cost function aggregator.

References

[1] D. Saucez, B. Donnet, and O. Bonaventure, “IDIPS protocol,” Université
catholique de Louvain,” Draft, September 2007, see http://inl.info.ucl.ac.be/
projects/naros.

[2] University of Oregon, “Route views, University of Oregon Route Views project,”
see http://www.antc.uoregon.edu/route-views/.

[3] “The MRT project,” see http://mrt.sourceforge.net/.

