
Models and Algorithms for Network Optimization
with Segment Routing

François Aubry

February 2020

Université catholique de Louvain (UCLouvain)

Institute of Information and Communication Technologies

Electronics and Applied Mathematics (ICTEAM)

Louvain School of Engineering

Louvain la Neuve, Belgium

Thesis Commitee:

Yves Deville, UCLouvain, Belgium (supervisor)

Olivier Bonaventure, UCLouvain, Belgium (supervisor)

Charles Pecheur, UCLouvain, Belgium (chairperson)

Pierre Schaus, UCLouvain, Belgium

Bernard Fortz, ULB, Belgium

Stefan Schmid, University of Vienna, Austria

J’ai l’impression que ce qui compte dans la vie, c’est jeter de la poussière
d’électron libre comme un papillon qui tourne, qui tourne même au prix de
se brûler sur la lanterne, ce qui compte, c’est le rêve. Comme Einstein qui
rêve qu’il chevauche un rayon de lumière, comme Vieux Temps qui enferme le
tragique de la beauté dans quelques minutes de violon, comme celui qui sourit
à sa voisine de palier, comme toi et moi au jeu des bouches de fer: tout ça,
c’est la même chose, c’est la tentative insensée de la vie qui cherche à exploser
au moins pour quelques instants. Et regarde toutes ces femmes dans le monde
qui, sans désemparer, maintiennent la cohérence et permettent aux enfants de
rêver. Mais même en mourant, on peut écouter de la musique, on peut encore
rêver....

Géry Aubry

Abstract

Optimizing the way traffic is routed over networks has been of interest since
we first started using computer networks to communicate and exchange infor-
mation. Network technologies are constantly evolving and so do the underlying
problems that need to be solved.

This thesis focus on studying the recently proposed segment routing tech-
nology. In a traditional IP network, packets are routed using shorted paths
according to weights that are configured on the network links. Segment rout-
ing offers a new way of routing traffic by allowing packets to do some detours
on their way. Between these detours, traditional shortest path routing is used,
making this technology have almost no usage overhead.

We aim at providing a mathematical formalization of segment routing and
showcase several of its use cases. We believe that such a formalization is going
to help advance the research of the algorithmic aspects of segment routing by
providing a solid mathematical foundation and notations which can serve as a
starting point for others to research this topic.

We leverage segment routing to solve traffic engineering problems, perform
network monitoring and provide traffic duplication services that are robust to
link failures.

3

4

Acknowledgements

So many things to say... Doing this thesis lead to some of the best moments
and memories of my life so far. This is not surprising when we consider that it
accounts for about 19% of it.

I have had the chance to share my office with amazing people. Over these
years we shared a lot of things and I strongly believe that those will be the most
important takeaways from having done a PhD.

Michael, even though you hated me on the first few weeks (months?) because
I allegedly refused a beer from you when we were students, I am glad that we
moved passed that to become such good friends. I own you a lot. Not only did
I learn to like beer (which is very useful when you live in Belgium), but you
definitely made all these years memorable. From the travels to the simple things
such as just sitting on the balcony saying random things, all those moments come
together as the best years of my life. I hope Roxanne does not beat me after
reading this! You are the best.

Trung, you were already the office boss when we arrived. I remember our
first trip to Paris for the Column Generation school. I think this is when the
three of us actually became close. We had printed this 9x9 GO board that we
would bring everywhere to play. I think we probably annoyed a lot of restaurant
and bar owners along the way. I regret only being too scared of flying to attend
your wedding, it was stupid. Fortunately now I am over it and we could already
meet twice in Vietnam! Can’t wait to see you in May!

Thanh, you completed our office in the best possible way! I was so happy
to have you come back to do your PhD with us. Living with you, Nhung,
Brinnie and Ratheil was very nice for me. I will always remember our Smash
Bros tournaments. I hope that one day we can meet in Vietnam rather than
Belgium!

Ratheil (a.k.a Bowser), we first started talking at the ICTEAM day. I will
always remember the subject of that conversation (M). I think that since that
day we became good friends. We shared an apartment for a few years and,
believe me when I tell you that the 6 months that you were away every year
really were the worst months of the year. You were there for a lot of the
important and hard things that life threw at me (or that I threw at myself?). I
am very grateful to you. You are strongly missed in Belgium, you should come
back more often! Also, I can’t wait to see you in Benin!

John... things have never been the same since you arrived. You brought so
much life and joy to the group. The time when you and Ratheil were in the
office next door were really the funniest times to work at INGI. You taught me a
lot of good ways to see life and face problems. I really appreciate you and hope
that we can remain as close friends as we are regardless of distances. Thanks

5

6

for that trip in the US, it was awesome! I am still waiting to see you in Täıwan!

Nathan, don’t let Delphine read this or it might make her cancel your wed-
ding! Our love is boundless! I wish I could be as wise as you and bury my young
self. However I don’t know yet how to do that. I promise that I will continue
trying if you promise that you will consider buying new pants. It will be good
for both of us.

Raziel, my dear friend. It is crazy to think that we spent so much time in the
department before talking for the first time. I love how you are always ready to
party and have fun. Thank you for all those beers that we shared. I hope that
one day you will bring me to Mexico!

Gaël, I think we share a lot of interests, if you know what I mean (T)! It was
good to have someone to talk about these things. It is funny that out of all the
traveling and cool things that I did in these years, the things I remember the
most are simply the times when some of us stayed late at the office and just
talk about everything.

Olivier, I would write Goletti but then you will be mad at me. After knowing
you I think that the 3rd floor is the right place for you. Welcome! I would have
liked to have started knowing you better earlier though. Hopefully I can still
have access to the office for the next few months!

Bruno, you are the one friend I could keep from Portugal when I moved to
Belgium. You made studying mathematics feel like a stand-up comedy show. I
would give everything to spend one more week in that life. It was fun while it
lasted. Fortunately, now our paths crossed again and it is work that feels like a
stand-up comedy show. Thank you for all the laughter.

I would like to thank my mother, father and brother for putting up with me
for so long. I know it was not always easy.

Dad, I miss you too much. Loosing you was by far the hardest challenge
during this thesis. You still live in me, even if only as brain waves whenever I
remember you.

Mom, you are probably the one who did the most of all for me. You are the
one who made everything else possible. All the good times happened because
you were there facilitating it. There are no words that I could say that would
accurately represent how thankful I am.

Antoine, you are eight years older than me but that did not prevent you from
always being there with me while growing up. I don’t think a lot of kinds have
had the luck I had to have an older brother like you. You’ve made me treasure
my childhood to the point were I am often nostalgic about it even nowadays.

I would like to thank my supervisors Yves Deville and Olivier Bonaventure
without whom this work would simply not exist. When I started this thesis I
was working on a subject that did not speak to me. Olivier saved me by finding
the subject that I would eventually fall in love with. I will be forever grateful
for that. Both of them put in countless hours to help me do the best that I
could. Thank you. Thank you.

I want to also thank my thesis committee for their insightful questions and
comments on my thesis. You really made me happy for having written it.

7

To all the students with whom I had the chance to interact with: Thank
you. Specially all of you that I had the privilege to coach. I probably learned
more from you all than you did from me. It was a blast and I am sad that it is
over. I hope that you all had as much fun as I did.

I won’t cite all names because there are so many names that I will probably
forget some.

Lastly but not least, I want to thank my girlfriend, Yeyeh. You are the one
that puts up with me every day. As I said, it is not easy but yet, here you are.
I hope it will remain as such. You’re simply the best. Everyday you make my
dreams a possibility.

8

Contents

1 Introduction 11
1.1 Why segment routing . 14
1.2 SR applications and contributions 16
1.3 Publications . 16
1.4 Structure and style . 17
1.5 Experimental setting . 18

2 Network and routing model 19
2.1 Graph theory . 19
2.2 Shortest paths . 22

3 Topology dataset analysis 27
3.1 Topology sizes . 27
3.2 ECMP and non shortest path links 27
3.3 Degrees and density . 29
3.4 Connectivity . 31

4 Segment routing 33
4.1 Segment routing formalization . 33
4.2 Acyclic sr-paths . 40
4.3 Minimal segmentations . 43
4.4 SR reachability . 52

5 Optimal sr-paths 61
5.1 Minimum weight sr-path . 61

5.1.1 General algorithm . 62
5.1.2 Achieving minimum latency with SR 64

5.2 Maximum weight sr-paths . 69
5.3 Maximum capacity sr-paths . 70
5.4 Conclusion . 76

6 Traffic engineering with SR 77
6.1 Traffic engineering formalization 78
6.2 A brief introduction to LP and MIP 79
6.3 Traffic engineering with segment routing 83

6.3.1 Existing MIP models and algorithms for SRTE 84
6.4 The idea behind Column Generation 87
6.5 CG for the path model . 91

9

10 CONTENTS

6.6 Minimizing the worst link utilization λ 95
6.7 CG experimental results . 97

6.7.1 Near-optimum evaluation 98
6.7.2 Any-time behavior . 100
6.7.3 Adjacency segment benefits 104

7 Network monitoring with segment routing 107
7.1 Minimum segment cost covers . 109
7.2 Column generation cycle cover algorithm 115

7.2.1 Column generation . 117
7.2.2 Greedy algorithm . 119

7.3 Pinpointing single-link failures 121
7.4 Dual topology monitoring . 127

7.4.1 Computing ECMP-free and complete IGP weights 128
7.4.2 Prime-based complete IGP 131
7.4.3 Randomized complete IGP 134
7.4.4 Cycle covers with ECMP-free and complete IGP 135

8 Disjoint paths with SR 139
8.1 Disjoint paths and network flows 140
8.2 Disjoint sr-paths . 142

8.2.1 Maximum set of disjoint sr-paths 144
8.2.2 Minimizing the total latency 147

8.3 Min-max edge-disjoint sr-paths 149
8.3.1 MIP formulation . 150
8.3.2 Dedicated algorithm . 150

8.4 Robustly disjoint sr-paths . 154
8.4.1 Adapting SR-2EDP to RDPs 157
8.4.2 Adapting the dedicated algorithm to RDPs 158
8.4.3 The case of single-link failures 158
8.4.4 Evaluation of RDPs . 160

9 Conclusion 169

Chapter 1

Introduction

Optimizing the way traffic is routed over networks has been of interest since we
first started using computer networks to communicate and exchange information
[48,53]. Network technologies are constantly evolving and so do the underlying
problems that need to be solved. This thesis focus on studying the recently
proposed segment routing technology. In a traditional IP network packets are
routed using shorted paths according to weights that are configured on the
network links. Segment routing offers a new way of routing traffic by allowing
packets to do some detours on their way. Between these detours, traditional
shortest path routing is used, making this technology have almost no usage
overhead.

We aim at providing a mathematical formalization of segment routing and
showcase several of its use cases. We believe that such a formalization is going
to help advance the research of the algorithmic aspects of segment routing by
providing a solid mathematical foundation and notations which can serve as a
starting point for others to research this topic. The presented use cases validate
the practical interest of the deployment of segment routing on existing networks.

Traditional networks use shortest path routing to forward the packets be-
tween the routers in the network. Without going into details of shortest path
routing, each link in the network has a weight configured on it and shortest
paths are computed with respect to these weights. We refer to these weights
as interior gateway protocol weights (IGP weights). These paths are used to
create a routing table on each router that maps the destination of the packet to
an outgoing link interface. In this way, when a packet to dst reaches a router,
that router will inspect its routing table to find out the link interface towards
which it needs to forward that packet. By doing so, the packet will reach dst by
traversing the shortest path relative to these IGP weights. Figure 1.1 provides
a high level illustration of shortest path routing of the Abilene network. When
forwarding packets from router a to i, the shortest path, shown in green, will
be traversed. The table on top of router d shows an abstraction of its routing
table. When d receives a packet with destination i, it inspects its routing table
and sees that the next hop in the IGP shortest path to i is e so it forwards
it there. All of this is an abstraction of what really goes on in a real network
because it hides a lot of technical aspects like, for instance, the fact that the
information stored is the IP address. However, for this thesis, this view is ac-
curate enough as we focus on mathematical optimization problems related to

11

12 CHAPTER 1. INTRODUCTION

computer networks rather than compute networks per se.

a

b

c

d

e

f

i

h

g

k

j

4
2

46

34

31

35

43
2
7

21

11
2
7

30

61

5
2

42

dest next hop
...

...
c b

i e

j e
...

...

Figure 1.1: Illustration of shortest path routing on the Abilene network.

During recent years, networking vendors and network operators have de-
signed [24,26], implemented [23] and deployed [16,56] a new routing architecture
called Segment Routing (SR). Segment Routing is a modern variant of source
routing which can be used in either MPLS or IPv6 networks. In a nutshell,
Segment Routing allows the source of a packet or the ingress node in a network
to easily specify the path that packets need to follow inside the network. This
path is specified as a series of labels, called segments, (MPLS labels or IPv6
addresses in a special IPv6 header extension) that are added to each packet.
These segment are stored as a stack and are popped out as the packets reaches
the routers or links they represent. Some implementations do not explicitly
remove the segments but rather keep a point to the next segment.

More concretely, a segment routing path is composed of one or more seg-
ments. There are two types of segments: (i) node and (ii) adjacency segments.
Node segments represent routers. When a node segment is at the top of the
stack, the packet is routed towards the corresponding router using standard
shortest path routing. Figure 1.2 shows an example over the Abilene network
of what happens when packets are sent from a to i using segment routing with
one intermediate node segment representing node g. First, a will inspect the
segment stack and see a node segment representing router g. It will pop this
segment and forward the packet using shortest path routing to g. Then, node g

will inspect the packet header and see that the next segment is router i. It will
pop this segment and forward the packet using shortest path routing to i. At
this point the segment stack is empty so the packet as arrived to its destination.

13

a

b

c

d

e

f

i

h

g

k

j

4
2

46

34

31

35

43

2
7

21

11

2
7

35

61

5
2

42

g i

i

Figure 1.2: Illustration of SR from a to i with a node segment on g.

Adjacency segments represent links. When an adjacency segment is at the
top of the stack, the packet is routed towards the origin of the edge correspond-
ing to the link using standard shortest path routing. Then, it is forwarded over
that specific link to the router corresponding to the destination of that edge.

Figure 1.3 illustrates an example of what happens when packets are sent
from a to i using segment routing with an adjacency segment representing edge
(g, j). First, a will inspect the segment stack and see an adjacency segment
representing edge (g, j). It will forward the packet using shortest path routing
to g. Then, node g will inspect the packet header and see that there is an
adjacency segment of which he is the origin. It pops the adjacency segment
from the segment stack and sends it over edge (g, j). From there, j will inspect
the segment stack and see that in needs to forward that packet towards i.

a

b

c

d

e

f

i

h

g

k

j

4
2

46

34

31

35

43

2
7

21

11

2
7

35

61

5
2

42

(g, j) i

(g, j) i

i

Figure 1.3: Illustration of SR from a to i with an adjacency segment on (g, j).

14 CHAPTER 1. INTRODUCTION

1.1 Why segment routing

Segments routing offers a lot of flexibility for routing packets by allowing to
exploit non shortest path as illustrated in Figures 1.2 and 1.3. It does so by
leveraging traditional IP routing so it is easily implementable on current net-
works without needing to change the way networks operate or their infrastruc-
ture. Moreover, there is no need for routers to maintain more state than their,
already existing, routing tables. The only overhead is on the packet header
which now needs to contain the segment stack.

SR is not the first technique to have been developed that makes it possible
to route over non shortest paths. Another technique is to use Multiprotocol
Label Switching (MPLS) [34]. In a high level, MPLS works by configuring label
forwarding tables on the routers. Conceptually, these tables are similar to the
routing tables except that they are not built with respect to the IGP weights.
Instead, they map pairs of (label, incoming interface) into other pairs (label,
outgoing interface). Figure 1.4 shows an example of how a MPLS configuration
can allow us to route packets from a to c over the non-shortest path (a, d, b, c).
In this example, this is achieved by configuring the labeling table of d to map
packets coming from the interface corresponding to link (a, d) with label 5 to
label 8 and link (d, b). Second, we configure the labeling table of b to map
packets coming from link (d, b) with label 8 to be routed over (b, c) with the
same label.

a

b

c

d

e

f

i

h

g

k

j

4
2

46

34

31

35

43

2
7

21

11

2
7

35

61

5
2

42

5 data

8 data

lbl in in inter lbl out out inter
...

...
...

...
5 (a, d) 8 (d, b)
...

...
...

...

lbl in in inter lbl out out inter
...

...
...

...
8 (d, b) 8 (b, c)
...

...
...

...

8 data

Figure 1.4: Illustration of MPLS.

1.1. WHY SEGMENT ROUTING 15

One drawback of MPLS when compared to segment routing is that the
routers need to maintain an extra state, namely, the labeling tables. This makes
it harder for solutions based on MPLS to scale has these labeling tables can be-
come huge if a lot of different paths are configured [22,40]. MPLS also has some
operational limitations [59] and makes a sub-optimal usage of resources [52].

In contrast, as we mentioned above, with segment routing only the ingress
node needs to maintain a state and all the path information is inserted in the
packed header as segment. However, one drawback of SR is that, due to hard-
ware limitations, some commercial routers only support a very limited amount
of segments [61]. An average low end router can support up to 5 segments
whereas high end router can go up to about 10 segments.

Other more recent techniques exist that overcome these limitations as, for
instance, Fibbing [63]. Fibbing is an new architecture proposed in 2014 that en-
ables central control over distributed routing. By doing so, similarly to segment
routing, it combines the advantages of software defined networks (flexibility,
expressiveness, and manageability) and traditional approaches (robustness, and
scalability).

The way Fibbing works is that it introduces fake nodes and links into an
underlying link-state routing protocol. The fake routers and links are then
taken into account by routers when computing their forwarding tables. Figure
1.5 illustrates how to implement the non shortest path (a, d, b, c) with fibbing.
To do so, we can introduce a fake node x connected to a and d. This fake node
advertises that it can reach c directly, with a weight of 1. Therefore, from the
point of view of a, the next hop on the shortest path to c is not b but rather
x. We ensure that the table are configured in a way such that when a sends
packets towards fake node x, link (a, d) is used. In this way, a will send the
packets to d and then from there routing will be done normally using shortest
path (d, b, c).

a

b

c

d

e

f

i

h

g

k

j

x

1

4
2

46

34

31

35

43

2
7

21

11
2
7

30

61

5
2

42

1

Figure 1.5: Illustration of fibbing on the Abilene network.

There is no particular reason for having chosen segment routing over fibbing
other than the fact that we already had started this thesis when we first learned
about fibbing. It would be interesting to make a comparative study between
the two technologies and better understand their limitations and when is one
more suitable than the other.

16 CHAPTER 1. INTRODUCTION

1.2 SR applications and contributions

In what follows, we give an overview of the uses cases of segment routing that
we study in this thesis.

Traffic engineering

One of most successful and widely studied application of SR is traffic engineering
(TE). In a nutshell, TE is the problem of routing a set of demands in the most
efficient way (avoiding congestion) on a given network. A demand corresponds
to a volume of traffic to be routed between two endpoints. Researchers have
been exploiting the flexibility of SR to route over a wide range of paths to better
balance the link utilisation when routing a large set of demands [11, 32, 41, 42].
We proposed a solution using column generation to find near optimal solutions
for the TE problem [49]. A detailed explanation of our solution is given in
Chapter 6.

Network monitoring

In Chapter 7 we explain how we leverage segment routing to develop a network
monitoring technique to detect single link failures in a network from a single
vantage point [7]. Our technique consists of computing a set of cycles that cover
every single link of the network and to continuously send probes over those cycles
in order to detect when a link goes down. SR is crucial to our technique as it
offers the necessary routing flexibility to ensure that we can route the probes
over those cycles.

Traffic duplication over disjoint paths

Another application of segment routing that we explored is traffic duplication
over disjoint paths. To achieve more efficient communications for low volume
traffic, we propose a solution that consists of duplicating this traffic over several
disjoint paths [6]. Again, the ability of segment routing to forward traffic over
non shortest paths is crucial to forward traffic over disjoint paths.

We also show that we can exploit some properties of segment routing paths
to provide disjoint paths that a robust to link failures [8]. Chapter 8 provides
an in depth explanation of how this was achieved.

1.3 Publications

A lot of the work presented on this thesis goes well beyond the publications
listed below. While writing this thesis we explored each of the problems that
we worked on in more depth finding new interesting and yet unpublished results.

• François Aubry, David Lebrun, Yves Deville, Olivier Bonaventure. Traffic
duplication through segmentable disjoint paths published in IFIP Network-
ing Conference 2015 [6].

• François Aubry, David Lebrun, Stefano Vissicchio, Minh Thanh Khong,
Yves Deville, Olivier Bonaventure. SCMon: Leveraging segment routing
to improve network monitoring published in IEEE INFOCOM 2016 [7].

1.4. STRUCTURE AND STYLE 17

• François Aubry, Stefano Vissicchio, Olivier Bonaventure, Yves Deville.
Robustly disjoint paths with segment routing published in the Interna-
tional Conference on emerging Networking EXperiments and Technologies
(CoNEXT) 2018 [8].

• Mathieu Jadin, François Aubry, Pierre Schaus, Olivier Bonaventure.
CG4SR: Near Optimal Traffic Engineering for Segment Routing with Col-
umn Generation published in IEEE INFOCOM 2019 [49].

1.4 Structure and style

We did our best effort for this work to be as self contained as possible while at
the time trying to remain focused on what is novel. From a theoretical point of
view this means that we define every concept that is used basing ourselves only
on very general mathematical concepts such as sets, ordered pairs, sequences and
so on. From a practical point of view, we provide a full Java implementation of
every algorithm developed in this thesis which is available in the git repository:

https://github.com/yunoac/thesis

We also provide a pseudocode formalization of the main algorithms that we
propose.

Most of the data that we use is also publicly available as well as the scripts
to perform the experiments described in this thesis. The only artifacts that are
not available are private ISP topologies that we are not allowed to disclose.

We hope that these choices will make it easier for others to build upon our
work and develop new theoretical results and practical applications of segment
routing.

The remainder of this thesis is organized as follows. In Chapter 2 we provide
the necessary background in graph theory which forms the basic building blocks
of everything else in this thesis. We start by giving a graph representation of
computer networks which slight differs from the traditional graph definitions.
Our model will more easily enable us to model common features of networks
such as, for instance, parallel links. Then, we provided a short explanation of the
shortest path theory. Since segment routing paths are essentially concatenations
of shortest paths, understanding the properties of shortest paths is crucial for
understanding segment routing.

In Chapter 3 we provide a description of the dataset that was used on the
experimental evaluation of our algorithm. We also analyze some of the proper-
ties related to the structure of these networks like, for instance, how dense they
are or the path diversity between pairs of routers.

Then, in Chapter 4 we provide, to be best of our knowledge, the first the-
oretical study of segment routing that fully covers both node and adjacency
segments. Here we prove some fundamental theorems which are key to each of
the applications of segment routing that we developed in this thesis. We also
provide an analysis of segment routing on the topologies of our dataset.

Chapter 5 explores the problem of computing optimal segment routing paths
with respect to several different metrics. We will show how to compute segment
routing paths of minimum latency which is useful if one wants to use SR to
route traffic between two points over a path of minimum latency. As we will see

18 CHAPTER 1. INTRODUCTION

later, this problem also arises in one form or another as a subproblem of each
and every one of the applications that we studied. We also provide an algorithm
for computing segment routing paths with maximum bandwidth.

Next, in Chapter 6 we propose a solution for the traffic engineering problem
with segment routing based on column generation. We compare our approach
with existing ones and show that our solutions are near optimal and provide a
better lower bound that traditional techniques based on the multi-commodity
flow problem.

In Chapter 7 we present a solution for detecting link failures in a network.
Our solution is granular to the point that it can detect link failures within link
bundles. We will also show that using the tools developed in Chapter 4, we
can provide exact bounds on the minimum number of segments required in any
cycle cover of a network.

Finally, we study the problem of computing sets of disjoint paths with SR in
Chapter 8. We show that traffic duplication can be used to reduce the latency of
network communications. We also exploit properties of segment routing paths
to prove pairs of disjoint paths that are robust to any link failure.

1.5 Experimental setting

Apart from the result in chapter 6, all experimental were ran on a DELL Lat-
itude E5450 computer with a Intel Core i5-4310U at 2.00GHz and 8 GB of
RAM.

The results from chapter 6 were obtained by running on a computer with
32 CPUs at 2.60GHz, 128GB of RAM. Our solution does not actually need
128GB of RAM but it is able to take advantage of the 32CPUs thanks to the
multithreading.

All code is written in Java 1.8 JVM. The mixed integer programming solved
that we use is Gurobi v8.0.

Chapter 2

Network and routing model

Introduction

A natural way to provide a mathematical model of a computer network is to
represent it with a graph. Graphs consist of a collection of objects called nodes
and a relation between these objects called edges. In the case of computer net-
works, the nodes correspond to the routers and the edges to the links. Graphs
provide an abstraction that captures the connectivity relationships and topo-
logical structure of its objects. It abstracts from properties like, say, physical
position of the routers.

Such a structure can be augmented with functions on the edges in order to
be able to provide a less abstract model and represent some properties of these
connections such as the distance between two routers connected by a network
link or the bandwidth of the links connecting them.

In this chapter we describe our computer network model and prove the core
properties about shortest paths. These properties act as the building blocks for
understanding segment routing.

2.1 Graph theory

Definition 2.1. A directed graph G is a pair (V,E) where V is a finite set and
E ⊆ V×V. The set V is called nodes of G and E is called the set of edges of G.
Whenever G might not be clear from the context, we will write V(G) and E(G)
to represented its set of nodes and edges, respectively.

Definition 2.2. A weighted directed graph if a triple (V,E,w) where (V,E)
is a directed graph and w : E → R is a function representing edge weights. In
some situations we need to model several different weights on the edges. In this
case the weighted graph is represented by a tuple (V,E,w1, . . . ,wk) with each
wi : E→ R.

As mentioned above, graphs offer a good abstraction for representing a com-
puter network because the main features that we need to care about when de-
signing most optimization algorithms for networking problems consist of which
routers are interconnected and the characteristics these connections. Typically

19

20 CHAPTER 2. NETWORK AND ROUTING MODEL

each link is characterized by three numbers: the IGP weight, the capacity (band-
width) and the latency.

In this work we propose a slightly different model of networks. We add an
index on each edge so that we can represent parallel links without having to use
multi-sets. These indexes also make it easier, both in theory and in practice, to
work with subgraphs and logical operations on these.

Definition 2.3. A network is a tuple G = (V,E, igp, cap, lat) where V = {0, . . . ,n−
1} for some n ∈ N and E ⊆ V × V × N such that

|{i | (u, v, i) ∈ E}| = |E|.

The weight functions are such that igp : E→ N+ represents the IGP weights
configured on the links cap : E→ N represents the links capacities and lat : E→
R+ represents the link latencies.

We refer to the set of nodes of G as V(G) and the set of edges as E(G). We
denote the number of nodes as |V(G)|, the number of edges as |E(G)| and define
|G| = |V(G)|+ |E(G)|.

When the index is not relevant in a given context, we will simplify the
notation an omit it. For example, if we want to refer to an arbitrary edge in
a network between nodes u and v we will simply write (u, v) ∈ E(G) instead
of (u, v, i) ∈ E(G). Sometimes it will be useful to be able to refer to all edges
between two given nodes. For this, we defined the following.

Definition 2.4. Let G be a network and u, v ∈ V(G). We denote the set of
edges between u and v by

E(G,u, v) = {(u, v, i) | (u, v, i) ∈ E(G)}.

Whenever G is clear from the contest we will omit it from the notation.

What follows is another useful notation that allows to easily refer to the
end-point of a given edge in the network.

Definition 2.5. Let G be a network and e = (u, v, i) ∈ E(G). We say that e is
an edge from u to v and denote e1 = u, e2 = v and idx(e) = i.

Next we define the concept of a path in the network. Traditionally, a path
is represented by a sequence of nodes that are traversed. So (a, b, c, d) would
represent a path from a to d that visits b and c in that order. However, since
we can have parallel links in a network, specifying the nodes that are visited
does not fully describe the path. Instead we represent a path by the sequence
of edges that are visited.

Definition 2.6. A path p in a network G is a sequence (e1, . . . , el) such that
for each i = 1, . . . , l, ei ∈ E(G) and if i < l then e2i = e

1
i+1.

We define

igp(p) =
l∑
i=1

igp(ei)

and similarly for cap(p) and lat(p).
We say that p is a path from u to v if e11 = u and e2l = v.

2.1. GRAPH THEORY 21

a b

A network with a sin-
gle link between a

and b

a b

A network with a
bidirectional link be-
tween a and b. This
means that it has two
edges: (a, b, 1) and
(b, a, 2)

a b

A network with two
bidirectional links
between a and b.
This means that
it has four edges:
(a, b, 1), (b, a, 2),
(a, b, 3) and (b, a, 4)

Figure 2.1: In and out neighbors of a node.

If p is a path ending at v, that is, if e2l = v, then we define p ⊕ (v,u) =
(e1, . . . , el, (v,u)) If v is a node and p is a path starting at v we define (v)⊕p =
p. If p ends at v we define p⊕ (v) = p. This notation will be convenient later
on.

The set of edges of p is E(p) = {e1, . . . , el} and the set of nodes of p is
V(p) = {e11, e21, . . . , e1l , e

2
l }.

We say that path p has node sequence (e11, e21, . . . , e1l , e
2
l). A path is said to

be simple if its node sequence does not contain non-adjacent repeated elements.
A cycle is a path such that e11 = e2l .

For most networks, whenever there is a link connecting a router u to another
router v, there usually also is a link connecting router v to router u. To capture
these networks we define the concept of symmetric network.

Definition 2.7. A network G is said to be symmetric if for every link (u, v, i)
there exists another link (v,u, i ′) with a bijective correspondence rev between
links (u, v, i) with u < v and links (u, v, i) with u > v.

In general we do not assume that the IGP weights are the same in both
directions, that is, we can have some e ∈ E(G) in a symmetric network such
that igp(e) = igp(rev(e)). However, in some contexts we will need this as-
sumption. Whenever this is the case, that is, whenever for each e ∈ E(G),
igp(e) = igp(rev(e)) we say that igp is symmetric.

Before we proceed, we want to make a comment about the conventions used
to represent networks in the figures used in this thesis. In most examples (if not
all), we assume that the network is symmetric with unit IGP weights. When
this is the case, we draw a single line between u and v representing both these
edges. If several parallel links exists, then several such lines will be drawn.
Figure 2.1 illustrates this.

To represent a specific link or a path in the network, we draw colored directed
edges on top the lines representing the link.

By default, numbers above links represent IGP weights. As we said, in most
examples we use unit IGP weights on every link, meaning that shortest paths
are measured in terms of the number of links on the path. In this case we omit
the weight to lighten the figures. Whenever this is not the case, the numbers on

22 CHAPTER 2. NETWORK AND ROUTING MODEL

a

b

c d

e

f

δ−(c) δ+(c)

N−(c)

N+(c)

Figure 2.2: In and out neighbors of a node.

top of the links represent the IGP weight. If we want to represent some other
link metric, it will be explicitly stated in the example what the numbers repre-
sent. This closes the parenthesis about graphical representations of networks in
this work.

The following definitions make it easy to refer to the neighbors of a given
node. We define the set of edges going into and out of a node as well as the sets
of neighbors consisting of their endpoints.

Definition 2.8. Let G be a network and v ∈ V(G). We define

i) δ+(G, v) = {(v,u, i) | (v,u, i) ∈ E(G)}

ii) δ−(G, v) = {(u, v, i) | (u, v, i) ∈ E(G)}

iii) N+(G, v) = {u | (v,u, i) ∈ E(G)}

iv) N−(G, v) = {u | (u, v, i) ∈ E(G)}

When the underlying graph G is clear from context, we omit it to lighten
the notation. Figure 2.2 illustrates this definition.

We conclude this section with a definition of subnetwork.

Definition 2.9. Let G,H be two networks. If V(G) = V(H) and E(H) ⊆ E(G)
we say that H is a subnetwork of G and write H ⊆ G. The weights igp, lat and
cap are defined on H by restricting them to E(H).

Traditionally subgraphs are definesd in a way that also restricts the set of
nodes in the result. More precisely, the set of nodes is often restricted to the
set of nodes that are the endpoints of some edge in the subgraph. We find it
more convenient to keep the same set of nodes as this is more in line with how
the algorithms proposed in this thesis are implemented.

2.2 Shortest paths

As mentioned in the introduction, segment routing leverages shortest path rout-
ing in order to forward packets over the network. For this reason, understanding

2.2. SHORTEST PATHS 23

shortest paths is central to understanding segment routing. In this section we
provide an overview of the most important properties shortest paths and of the
existing algorithms used to compute such paths.

Unless stated otherwise, whenever we refer to a shortest path in a given
network G, we mean a shortest path with respect to the igp weight function.

Definition 2.10. Let G be a network and s, t ∈ V(G). A shortest path between
s and t is a path p from s to t such that igp(p) is minimum.

Shortest paths are not necessarily unique. When several shortest paths exist
between two nodes we say that there is Equal-cost multi-path (ECMP) between
those nodes. In order to characterize the set of network links where packets
might pass when forwarded from a given network router, we need to be able to
refer to the subgraph containing all shortest paths starting from a given node
in the network. This concept is formalized with the following definition.

Definition 2.11. Let G be a network and r ∈ V(G). We define the shortest
path subnetwork rooted at r as SP(G, r) = (V,E ′) where e ∈ E ′ if there exists
v ∈ V(G) and a shortest path p from r to v such that e ∈ E(p). Whenever G is
clear from the context, we omit it from the notation and simply write SP(r).

Definition 2.12. Let G be a network. We say that G is acyclic if it contains
no cycles.

It is not hard to see that the set of all shortest path starting from a given
node is acyclic.

Lemma 2.1. Let G be a network and r ∈ V(G). Then SP(r) is an acyclic
subnetwork of G.

Proof. Suppose that there exists a cycle c = (e1, . . . , el) on SP(r). Then, by
definition there exist shortest paths p1, . . . ,pl such that pi is a shortest path
starting at r containing ei. For each i, write ei = (ui, vi), wi = igp(p1)− igp(ei)
and ji such that

ji =

{
i+ 1 if i+ 1 < l

1 if i = l

Before we proceed with the general case, let’s see the proof in an example
with three nodes. So suppose that c = (e1, e2, e3) = ((a,b), (b, c), (c,d)) as
shown in Figure 2.3. By definition, w1 + igp((a,b)) is the cost of a shortest
path from r to b. Since w2 is also the cost of a path from r to b we have that
w1 + igp((a,b)) 6 w2. Since igp((a,b)) > 0 we conclude that w1 < w2. In the
same way we can see that w2 < w3 and w3 < w1 leading to the contradiction
that w1 < w1.

24 CHAPTER 2. NETWORK AND ROUTING MODEL

r

a

b

ce
1

e
2

e3w1

w2

w3

Figure 2.3: Proof intuition on a cycle with 3 edges. Wiggly arrows represent
shortest path.

In the general case, we have that wi + igp(ei) 6 wj because wi + igp(ei) is
by definition the cost of the shortest path from r to vi and wj is the cost of a
path from r to vi. Since for each i, igp(wi) > 0 we conclude that wi < wj. As
this is true for all i we have w1 < w2 < . . . < wl < w1 which is impossible.
Therefore such a cycle cannot exist.

Definition 2.13. Given a network G we denote the shortest path distance (min-
imum IGP cost) between two nodes by d(G,u, v) or simply d(u, v) if G is clear
from the context.

Note that with the above definition, p is a shortest path from u to v if and
only if igp(p) = d(u, v).

One important property of shortest paths that we will use often when proving
properties of segment routing is that a sub-path of a shortest path is also a
shortest path.

Proposition 2.2. Let G be a network and p = (e1, . . . , el) a shortest path on
G. Then for each i, j ∈ {1, . . . , l} with i 6 j, (ei, . . . , ej) is a shortest path.

Proof. Let G be a network and p = (e1, . . . , el) a shortest path on G and
i, j ∈ {1, . . . , l} with i 6 j. Let v = e1i and u = e2j . Suppose that (ei, . . . , ej)
is not a shortest path. There there exists another shorter path q = (f1, . . . , fr)
from u to v. Consider p ′ = (e1, . . . , ei−1, f1, . . . , fr, ej+1, . . . , el). Since q is a
path from u to v and since u = f1i = e1i = e2i−1 and v = f2r = e2j = e1j+1 , we
have that p ′ is also a path from u to v. This path is shorter than p since

igp(p ′) =
i−1∑
k=1

igp(ek) +
r∑
k=1

igp(fk) +
l∑

k=j+1

igp(ei) [definition of igp(p ′)]

=

i−1∑
k=1

igp(ek) + igp(q) +
l∑

k=j+1

igp(ei) [definition of igp(q)]

<

i−1∑
k=1

igp(ek) +

j∑
k=i

igp(ek) +
l∑

k=j+1

igp(ei) [q is shorter than (ei, . . . ,ej)]

=

l∑
k=1

igp(ek) = igp(p) [definition of igp(p)]

2.2. SHORTEST PATHS 25

This contradicts the fact that p is a shortest path.

The shortest path subgraphs are easily characterized by the values of d(u, v)
as shown in the following proposition.

Proposition 2.3. Let G be a network v,u ∈ V(G) and e ∈ E(G). Then

i) There exists a shortest path containing e if and only if d(e1, e2) = igp(e).

ii) Edge e belongs to a shortest path from v to e2 if and only if d(v, e2) =
d(v, e1) + igp(e).

iii) There exists a shortest path from v to u containing edge e if and only if
d(v, e1) + igp(e) + d(e2,u) = d(v,u).

Proof. Let G be a network v,u ∈ V(G) and e ∈ E(G).

i) (⇒) Suppose that there exists a shortest path p = (e1, . . . , el) containing
edge e. Then e = ei for some i and by Proposition 2.2 the sub-path (ei) of
p is a shortest path. Thus d(e1, e2) = igp(e).

(⇐) If d(e1, e2) = igp(e) then by definition p = (e) is a shortest path.

ii) (⇒) Suppose that e belongs to a shortest path p = (e1, . . . , el) from v to
y. Since p is a shortest path we must have el = e or otherwise, since IGP
weights are positive, p would contain a positive cycle. Therefore

d(v, e2) =

l∑
i=1

igp(ei) =
l−1∑
i=1

igp(ei) + igp(e)

By Proposition 2.2, (e1, . . . , el−1) is a shortest path between v and e1 and
thus

l−1∑
i=1

igp(ei) = d(v, e
1)

showing that d(v, e2) = d(v, e1) + igp(e).

(⇐) Suppose that d(v, e2) = d(v, e1) + igp(e) and let p = (e1, . . . , el)
be a shortest path from v to e1. Then p ⊕ e = (e1, . . . , el, e) has cost
igp(p) = d(v, e1) + igp(e) = d(v, e2) showing that p ⊕ e is a shortest path
between e1 and e2.

iii) (⇒) Suppose that there exists a shortest path p = (e1, . . . , el) from v to u
containing edge e. Assume that e = ei for some i ∈ {1, . . . , l}. Then

d(v,u) = igp(p) [p is shortest path from v to u]

= igp((e1, . . . , ei−1)) + igp(ei) + igp((ei+1, . . . , el)) [def of igp(p)]

= igp((e1, . . . , ei−1)) + igp(e) + igp((ei+1, . . . , el)) [ei = e]

= d(v, e1) + igp(e) + d(e2,u) [sub-paths are shortest paths]

(⇐) Suppose that d(v, e1)+ igp(e)+d(e2,u) = d(v,u). Let p be a shortest
path from v to e2 and q be a shortest path from e2 to u. Then p⊕ e⊕ q
is a path from v to u containing edge e of cost d(v, e1) + igp(e) + d(e2,u).
Since d(v, e1) + igp(e) + d(e2,u) = d(v,u) it follows that p ⊕ e ⊕ q is a
shortest path from v to u.

26 CHAPTER 2. NETWORK AND ROUTING MODEL

Next, we are going to prove some properties about shortest paths on sym-
metric networks.

Definition 2.14. Let G be a symmetric network and X ⊆ (E(G)). We define

rev(X) = {rev(e) | e ∈ X}.

Definition 2.15. Let G be a symmetric network and p = (e1, . . . , el) a path on
G. We define

rev(p) = (rev(el), . . . , rev(e1)).

Lemma 2.4. Let G be a symmetric network u, v ∈ V(G) and p = (e1, . . . , el)
be a path on G from u to v. If igp is symmetric then rev(p) is a path from v to
u with igp(p) = igp(rev(p)).

Proof. Let i ∈ {l, . . . , 2}. Since p is a path, we have e2i−1 = e1i . Thus rev(ei)
2 =

e1i = e2i−1 = rev(ei−1)
1 so that rev(p) is a path. It starts at rev(el)

1 = e2l = v
and ends at rev(e1)

2 = e11 = u. Finally, by definition, we have that igp(ei) =
igp(rev(ei)) for each i so igp(p) = igp(rev(p)).

Definition 2.16. Let G be a symmetric network and H ⊆ G. We define
rev(H) = (V, rev(E(H))).

Lemma 2.5. Let G be a symmetric network, u, v ∈ V(G) and p a shortest path
from u to v. If igp is symmetric then rev(p) is a shortest path from v to u.

Proof. We already from Lemma 2.4 that rev(p) is a path from v to u with
igp(p) = igp(rev(p)). Suppose that it is not a shortest path. Then there exists
a path q from v to u such that igp(q) < igp(rev(p)). Therefore,

igp(rev(q)) = igp(q) < igp(rev(p)) = igp(p)

contradicting the fact that p is a shortest path from u to v since rev(q) is also
a path from u to v.

Corollary 2.6. Let G be a symmetric network and u, v ∈ V(G). If igp is
symmetric then SP(u, v) = rev(SP(v,u)).

Proof. By definition, V(SP(u, v)) = V(rev(SP(v,u))). Hence we need to show
that E(SP(u, v)) = E(rev(SP(v,u))). Let e ∈ E(SP(u, v)). By definition of
SP(u, v), there exists a shortest path p from u to v. By Lemma 2.5 rev(p) is
a shortest path from v to u that contains e. Hence E(rev(p)) ⊆ SP(v,u). By
definition of rev(p), there must be e ′ ∈ rev(p) such that e = rev(e ′). Therefore,
since e ′ ∈ SP(v,u), e = rev(e ′) ∈ rev(SP(v,u)). We conclude that E(SP(u, v)) ⊆
E(rev(SP(v,u))). The proof that E(SP(u, v)) ⊇ E(rev(SP(v,u))) is analogous.

Conclusion

In this chapter we have defined the graph definition that we use throughout
this thesis and proved the basic properties of shortest path adapted to our
definitions. These properties will be fundamental in the remainder of this thesis
as we build upon them to develop our segment routing theory and prove our
results.

Chapter 3

Topology dataset analysis

Introduction

In this chapter we provide a brief description of the dataset used in the experi-
mental evaluation of this thesis.

We use four groups of topologies: the RocketFuel topologies [58] which con-
tains 6 topologies, the topologies from the topology Zoo [45] which consists of
520 topologies of and 3 private ISP topologies and a topology of the OVH-
Europe network. The later topology is important because if contains a lot of
link bundles (parallel links) which is a property that is often ignored in the
algorithmic community. A lot of graph algorithms assume that the graphs are
simple and therefore there are not a lot of empirical results over these kinds of
topologies.

These topologies were cleaned so that each of them contains only one strongly
connected component, meaning that there is at least one path between each
pair of nodes in each topology. This is a simple cleaning step that is necessary
because it does not make sense to have a network topology where some nodes
cannot communicate with each other.

3.1 Topology sizes

Tables 3.1, 3.2 and 3.3 show the sizes of the topologies in each of the groups
considered in this thesis. For the zoo group we only show the largest topologies
since on one hand those are the most relevant for our evaluation and the group
contains too many topologies allows for a complete listing.

In table 3.4 we show the minimum and maximum sizes of the topologies
in our dataset and table 3.5 shows the percentage of topologies whose number
nodes lies in different sizes. This shows that we tackle a wide range of topologies
of realistic sizes.

3.2 ECMP and non shortest path links

We mentioned in the introduction that segment routing supports two kinds of
segments: node segments and adjacency segments. We will see that adjacency

27

28 CHAPTER 3. TOPOLOGY DATASET ANALYSIS

Topology name |V(G)| |E(G)|

AS 1221 104 302
AS 1239 315 1944
AS 1755 87 322
AS 3257 161 656
AS 3967 79 294
AS 6461 138 744

Figure 3.1: Topology sizes in the rf group.

Topology name |V(G)| |E(G)|

ISP 1 ≈ 150 ≈ 700
ISP 2 ≈ 220 ≈ 800
ISP 3 ≈ 170 ≈ 440
OVH 57 402

Figure 3.2: Topology sizes in the real group and ovh.

Topology name |V(G)| |E(G)|

ITZ Cogentco 197 490
ITZ Colt 153 382
ITZ Deltacom 113 366
ITZ Dia 138 302
ITZ GtsCe 149 386
ITZ Interoute 110 312
ITZ Ion 125 300
ITZ Tata 145 388
ITZ UsCarrier 158 378

Figure 3.3: Largest topologies in the zoo group.

Min |V(G)| Max |V(G)| Min |E(G)| Max |E(G)|

4 315 8 1955

Figure 3.4: Minimum and maximum topology sizes.

Small Medium Large Huge
[0, 20]]20, 50]]50, 100] > 100

30% 43% 21% 6%

Figure 3.5: Number of topologies by group size.

3.3. DEGREES AND DENSITY 29

Links not in shortest paths Pairs with ECMP

1% 26%

Figure 3.6: Percentage of links not in shortest paths and pairs with ECMP.

segments are more costly and thus we would like to avoid using them whenever
possible. However, will see later that adjacency segments in segment routing
can we necessary to implement paths that belong to ECMP components or that
traverse links that do not belong to any IGP shortest path. For that reason we
analyzed the amount of ECMP components that exist in out dataset as well as
the amount of edges that do not belong to any shortest path. These values will
give an estimation of how important supporting adjacency segments is. Figure
3.6 shows the percentage of links that do not belong to any shortest path as
well as the percentage of pairs of nodes with ECMP between them. We can see
that, as expected, IGP weights are configured so that most links are used for
shortest path routing, we have only 1% of the links falling outside of that. We
expect that mainly backup links will be configured so that they are not used
unless a failure occurs. On the other hand, we see that there is a relatively high
percentage of pairs of nodes with ECMP. This indicates that adjacency segments
will be useful whenever we want to represent specific paths that traverse ECMP
components.

We also analyzed how many equal cost paths exist. Figure 3.6 shows the
CDF of the total number of shortest paths between each pair of nodes over all
topologies. This shows that some nodes are connected with a very high number
of shortest paths but that most nodes have at most 10 shortest paths between
them.

3.3 Degrees and density

We also analyzed the degrees of the nodes in the topologies in our dataset as well
as the edge densities. The degree of a router represents the number of routers
to which it tis connected to. It represents an upper bound on the number of
edge-disjoint paths that can be used to connect a given router to other routers.
Figure 3.8 shows a box plot of these. We can observe that some nodes have a
very high degree but that the tendency is that most nodes have a degree lower
than 10. Nodes of degree 1 are problematic in a network because it means that
there is a single point of failure to reach them. We observe that the largest
topologies are the ones that suffer the least from this problem.

One degree nodes probably exist on these topologies due to the fact that most
of them are were collected using inexact methods thus leading to incomplete
data. A computer network should at least be biconnected (have at least two
disjoint paths between every pair of nodes) to prevent a single link failure from
partitioning it.

The edge density of a network evaluates how close a network is from a
complete graph. It is defined for graphs with no parallel links as

|E(G)|

|V(G)| · (|V(G)|− 1)
.

30 CHAPTER 3. TOPOLOGY DATASET ANALYSIS

100 101 102 103 104

Number of shortest paths

60

65

70

75

80

85

90

95

100

Pe
rc

en
ta

ge
 o

f p
ai

rs

Figure 3.7: CDF over all topologies and all pairs of nodes of the number of
shortest paths between those nodes.

sm
al

l

m
ed

iu
m

la
rg

e

hu
ge

Topologies category

13
5

10
15
20
25
30
35
40
45
50
55
60
65

No
de

 d
eg

re
e

Figure 3.8: Box plot of the degrees over the different size categories of our
topologies.

3.4. CONNECTIVITY 31

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Edge density

0

20

40

60

80

100
Pe

rc
en

ta
ge

 o
f t

op
ol

og
ie

s
Edge density

Figure 3.9: Box plot of the degrees over the different size categories of our
topologies.

A tree is the lowest density connected network that one can have. Any link
failure in a tree will cause the network to become disconnected. High density
network are costly but are more robust to failures. They also provide a higher
path diversity so optimal solution of network optimization problems tend to be
better on dense networks. Figure 3.9 shows a CDF of the densities over all
topologies in our dataset. We used the above formula even though some of our
networks contain parallel links. We can see that some network have a very low
density. About 60% percent of the network topologies have an edge density of
at least 10% and 20% of the networks have an edge density above 20%.

3.4 Connectivity

We saw that some pairs of nodes have a lot of shortest paths between them.
However these paths are of course not disjoint. In this section we analyze how
well the nodes are connected in the network. To measure this, we compute for
each pair of nodes of each topology the minimum number of links that need to
be removed from the network in order to disconnect those nodes. This is known
in graph theory as the minimum cut between the nodes [2]. Figure 3.10 shows
a CDF of these minimum cuts. It is not hard to see that the minimum cut
between two nodes is the same as the maximum number of edge-disjoint paths
between them [2].

We can see that about 40% of the pairs of nodes are connected by a single
path as we had already observed above. This is quite low for a network as it
does not offer a lot of redundancy and link failures can easily disconnect the
nodes. The remaining nodes require the removal of at least 2 links to disconnect

32 CHAPTER 3. TOPOLOGY DATASET ANALYSIS

1 2 3 4 5 6 7 8 10 46
Minimum cut

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f p
ai

rs

Figure 3.10: CDF over all topologies and all pairs of nodes of the number of
shortest paths between those nodes.

them (in other words, they are in the same biconnected component [14]). Also,
nodes are very well connected having up to 46 edge-disjoint paths connecting
them.

Conclusion

From this evaluation we observe that there is probably missing data on some
of the topologies used in this thesis as some of them are weakly connected. We
have also seen that due to a high amout of ECMP (26%) between pairs of nodes,
adjacency segments are likely to be necessary to implement paths in the graph
topology with segment routing.

Chapter 4

Segment routing

Introduction

As mentioned in the introduction, segment routing [25] is a new forwarding
architecture that is being developed within the Internet Engineering Task Force
and network operators. Segment Routing changes the way packets are forwarded
inside a network to enable network operators to have better control on the path
followed by the packets. Traffic can be forced to follow a series of detours which
can either correspond to passing by a specific router or network link.

This chapter is dedicated to formalizing segment routing. We provide, to
the best of our knowledge, the first formalization that comprises both node
and adjacency segments. We define minimal segmentations and provide an
efficient algorithm for computing them. We also provide reachability concepts
which allow to analyze the capability of a given network topology to support
segment routing as well as giving lower bound on the minimum number of
segments needed reach every single link in the network. These concepts will be
fundamental later on when we propose an algorithm for computing cycle covers
of a network.

4.1 Segment routing formalization

The starting point of our segment routing formalization is the concept of seg-
ment routing path, or sr-path for short.

Definition 4.1. Let G be a network. A sr-path ~p on G is a sequence 〈x1, . . . , xl〉
such that each xi ∈ V(G) ∪ E(G).

We represent sr-paths with the vector notation to be able to more easily
distinguish between a path p and a sr-path ~p in the network G. In practice,
the elements of ~p that are nodes model node segments and the elements of ~p
that are edges model adjacency segments. It is important to understand that,
because of ECMP, a sr-path actually can correspond to a set of paths in the
original network.

Consider the sr-path ~p = 〈a, c, e, (f, j), i〉 shown in Figure 4.1. The solid
green edges show the set of edges that belong to shortest paths between con-
secutive segments and the dashed green edge represents the adjacency segment

33

34 CHAPTER 4. SEGMENT ROUTING

a

b

c d

e

g

i

h

f

j
x4

x1
x2

x3

x4

Figure 4.1: Illustration of sr-path ~p = 〈a, c, e, (f, j), i〉.

(f, j). The square boxes represent segments. The box is represented next to a
node for node segments and on top of the link of an adjacency segment. So, in
this case, x1 = a, x2 = c, x3 = e, x4 = (f, j) and x5 = i.

In this example, between nodes c and e there are two shortest paths, namely
((c, d), (d, e)) and ((c, b), (b, e)). In the same way, two shortest paths exist
between nodes e and f because we have two parallel links with the same IGP
weight between them. In each case, any of those two paths could be used
to forward packets over this sr-path. Thus, we see that the sr-path ~p can
correspond to four paths over the original network, namely,

((a, c), (c, d), (d, e), (e, f, i1), (f, j), (j, h), (h, i)),

((a, c), (c, d), (d, e), (e, f, i2), (f, j), (j, h), (h, i)),

((a, c), (c, b), (b, e), (e, f, i1), (f, j), (j, h), (h, i)),

((a, c), (c, b), (b, e), (e, f, i2), (f, j), (j, h), (h, i))

where (e, f, i1) and (e, f, i2) represent the two links between e and f.

In general, when we use a sr-path ~p = 〈x1, . . . , xl〉 to forward traffic, between
segments xi and xi+1 the set of paths over which this traffic might be sent
corresponds to the set of all shortest paths between those segments. In this
thesis we consider two models for forwarding traffic over ECMP:

1. Hash model : Whenever several next-hops exists with respect to the IGP
shortest paths, a hash function is used to select which of them is used.
This hash function is unknown and depends on the traffic that is sent.
From a practical point of view this, more or less, corresponds to assuming
that one of the multiple shortest paths is selected at random.

2. Split model : The traffic is split evenly between all shortest paths. This
means that if, for instance, a router contains two next-hops, it will forward
50% of the traffic towards one of them and the other 50% towards the
other.

4.1. SEGMENT ROUTING FORMALIZATION 35

But these segments, xi and xi+1 might not both correspond to nodes in which
case we need to give a precise definition of what the set of shortest paths between
two segments means. In general, we have four cases which are summarized in
Figure 4.2. If we have two node segments xi = v, xi+1 = u then it is the
subgraph between v and u, SP(v,u). If xi = v and xi+1 = (u1,u2) then it the
subgraph between v and u1, SP(v,u1). If xi = (v1, v2) and xi+1 = u then it
is the shortest path subgraph between v2 and u. Finally, if both are adjacency
segments with xi = (v1, v2) and xi+1 = (u1,u2) then it is SP(v2,u1).

v u

xi = v xi+1 = u

SP(v,u)

Case 1: xi and xi+1 are both node segments

v u1 u2

xi = v xi+1 = (u1,u2)

SP(v,u1)

Case 2: xi is a node segment and xi+1 is an adjacency segment

v1 v2 u

xi = (v1, v2) xi+1 = u

SP(v2,u)

Case 3: xi is an adjacency segment and xi+1 is a node segment

v1 v2 u1 u2

xi = (v1, v2) xi+1 = (u1,u2)

SP(v2,u1)

Case 4: xi and xi+1 are both adjacency segments

Figure 4.2: Shortest paths between consecutive segments.

Having to deal with these four cases would be very cumbersome. When
considering a sr-path ~p we want to have a way to ignore as much as possible
the nature of each of the segments. This will make proving results involving sr-
paths easier and also will ease the readability of proofs. This lead us to define
the following notation so that we can very simply capture all four cases.

36 CHAPTER 4. SEGMENT ROUTING

Definition 4.2. Let G be a network and ~p = 〈x1, . . . , xl〉. If xi ∈ V(G) we
define x1i = x

2
i = xi and if xi = (u1,u2) ∈ E(G) we define x1i = u1 and x2i = u2.

With this notation, we can now simply say that the set of shortest paths
between two consecutive segments xi and xi+1 of a sr-path ~p is the subgraph
SP(x2i , x

1
i+1). This works regardless of what the type of segments xi and xi+1

are. This notation also makes it easy to refer to the starting and ending routers
of a sr-path.

Definition 4.3. Let G be a network and ~p = 〈x1, . . . , xl〉. We say that ~p is
a sr-path from node x11 to x2l . We say that x11 is the first node of ~p and x2l is
the last node of ~p. A sr-path that starts and ends at the same node is called a
sr-cycle.

As we mentioned in the introduction of this chapter, when we use segment
routing as a forwarding mechanism, we need to append to the packet header
the segments that are to be used. Commercial routers have strong limitations
regarding the size of this header. Some routers can support sr-paths with up to
10 segments but on average this number is closer to 5 [61]. This means that it
is important to be able to capture the cost, in terms of segments, of a sr-path.
A node segment needs to contain the IP address of the corresponding router
whereas an adjacency segment needs the IP address of the source node of the
corresponding link as well as the interface identifier of that link. For this reason,
we model the cost of individual segments and sr-paths as follows.

Definition 4.4. Let G be a network and ~p = 〈x1, . . . xl〉 a sr-path on G. We
define the cost of xi as

sr-cost(xi) =

{
1 if xi ∈ V(G)
2 otherwise

We define the segment cost of ~p as

sr-cost(~p) =
l∑
i=1

sr-cost(xi)

Note that this model does not exactly match the reality. In practice, if the
first segment is a node segment, its IP address will never be put into the segment
stack. Also, if the first segment is an adjacency segment only the link interface
would be necessary for the same reason. We chose to ignore this and count each
segment equally because it greatly simplifies the mathematical developments.
Furthermore, we believe that the model is close enough that this will have a
minor impact in practice. In the worst case, we overestimate the real segment
cost of a sr-path by 1.

Definition 4.5. Let G be a network. We denote the set of all sr-paths on G by
~P. Given k ∈ N we define

~Pk(G) = {~p | ~p is a sr-path on G and sr-cost(~p) 6 k} .

Finally, given s, t ∈ V(G) we denote the set of all sr-paths from s to t of segment

cost at most k by ~Pk(s, t).

4.1. SEGMENT ROUTING FORMALIZATION 37

We now define some operations on sr-paths and prove some of theirs prop-
erties.

Definition 4.6. Let G be a network and ~p = 〈x1, . . . , xl〉,~q = 〈y1, . . . ,yr〉 be
two sr-paths on G. We define the sum of ~p and ~q as

~p+ ~q = 〈x1, . . . , xl,y1, . . . ,yr〉

Lemma 4.1. Let G be a network and ~p = 〈x1, . . . , xl〉,~q = 〈y1, . . . ,yr〉 be two
sr-paths on G. Then

sr-cost(~p+ ~q) = sr-cost(~p) + sr-cost(~q)

Proof.

sr-cost(~p+ ~q) = sr-cost(〈x1, . . . , xl,y1, . . . ,yr)

=

l∑
i=1

sr-cost(xi) +
r∑
i=1

sr-cost(yi)

= sr-cost(~p) + sr-cost(~q)

Addition of sr-paths will turn out to be useful to prove bounds on the seg-
ment cost of sr-paths produced by some of our algorithms. However, addition
of sr-paths does not care about the segments contained in each path. It simply
takes all segments from both paths and put them in order into a single sr-path.
For example, it could be the case that xl = y1 so the resulting sr-path would
have a segment repeated twice next to each other. This does not cause any
practical problem but in terms of routing it is redundant. Moreover, it wastes
space in the segment stack. This can be the case even if xl 6= y1 but the last
node of xl and the first node of y1 are the same, that is, if x2l = y

1
1. For instance

let ~p = 〈a, f〉 and ~q = 〈(f, j), i〉. Then ~p+~q = 〈a, f, (f, j), i〉. In terms of rout-
ing, this sr-path traverses the same links as the sr-path 〈a, (f, j), i〉 but it costs
one more because it has a useless node segment on f. With this in mind, we de-
fine a concatenation operation ⊕ on sr-paths which takes this into account and
discards useless segments at the concatenation point in the resulting sr-path.

Definition 4.7. Let G be a network and ~p = 〈x1, . . . , xl〉 be a sr-path from a
to b and ~q = 〈y1, . . . ,yr〉 be a sr-path from b to c, where a,b, c ∈ V(G). We
define the concatenation of ~p and ~q as

~p⊕ ~q =


〈x1, . . . , xl,y2, . . . ,yr〉 if xl = y1 = b ∈ V(G)
〈x1, . . . , xl,y2, . . . ,yr〉 if xl ∈ E(G) and y1 ∈ V(G)
〈x1, . . . , xl−1,y1, . . . ,yr〉 if xl ∈ V(G) and y1 ∈ E(G)
〈x1, . . . , xl,y1, . . . ,yr〉 if xl ∈ E(G) and y1 ∈ E(G)

With sr-path concatenation we avoid consecutive redundant segments by
removing them if necessary beforehand. For the above example with ~p = 〈a, f〉
and ~q = 〈(f, j), i〉 we have ~p⊕ ~q = 〈a, (f, j), i〉. Figure 4.3 illustrates the four
cases of sr-path concatenation from Definition 4.7.

38 CHAPTER 4. SEGMENT ROUTING

b b

xl = b y1 = b

.⊕

�

b
.

Case 1: xl = y1 = b ∈ V

b b ∗

xl = b y1 = (b, ∗)

⊕.

�

∗b
.

Case 2: xl ∈ E(G), y1 ∈ V(G) and x2l = y1 = b

x b b

xl = (∗,b) y1 = b

⊕.

�

x b
.

Case 3: xl ∈ V(G), y1 ∈ E(G) and xl = y
1
1 = b

∗ b b ∗

xl = (∗,b) y1 = (b, ∗)

⊕.

�

∗ b ∗
.

Case 4: xl ∈ E(G), y1 ∈ E(G) and x2l = y
1
1 = b

Figure 4.3: The four cases of sr-path concatenation.

4.1. SEGMENT ROUTING FORMALIZATION 39

In contrast with sr-path addition, the cost of the resulting sr-path after a
concatenation will depend on the types of the segments at the end of the first
path and at the start of the second.

Lemma 4.2. Let G be a network and ~p = 〈x1, . . . , xl〉 be a sr-path from a to b
and ~q = 〈y1, . . . ,yr〉 be a sr-path from b to c, where a,b, c ∈ V(G). Then

sr-cost(~p⊕ ~q) =

{
sr-cost(~p) + sr-cost(~q) if xl ∈ E(G) and y1 ∈ E(G)
sr-cost(~p) + sr-cost(~q) − 1 otherwise

Proof. If xl ∈ E(G) and y1 ∈ E(G) then ~p ⊕ ~q = ~p + ~q so the result comes
from Lemma 4.1. Otherwise, in each case ~p⊕ ~q has the same elements as ~p+ ~q
except that we removed a node segment with cost 1. Thus, by Lemma 4.1, we
have that

sr-cost(~p⊕ ~q) = sr-cost(~p+ ~q) − 1 = sr-cost(~p) + sr-cost(~q) − 1

These operations will be important later on because a lot of algorithms
for solving problems related to segment routing can be expressed as dynamic
programs where the solution sr-path is built upon smaller sr-paths. These prop-
erties tell use how the segment cost of the paths is affected by these operations.

It is often useful to refer to the set of nodes and edges that belong to some
path represented by a sr-path leading to the following definition.

Definition 4.8. Let G be a network and ~p = 〈x1, . . . , xl〉 a sr-path on G. We
define the set of nodes in ~p as

V(~p) =

l⋃
i=1

{x1i , x
2
i } ∪

l⋃
i=2

V(SP(x2i−1, x1i))

We define the set of edges of ~p as

E(~p) = {xi | xi is an adjacency segment} ∪
l⋃
i=2

E(SP(x2i−1, x1i))

Definition 4.9. Let G be a network and ~p be a sr-path on G. We call the
subgraph (V(G),E(~p)) the forwarding subnetwork of ~p and denote it by forw(~p).

To lighten the notation, we often omit the parenthesis and simply write
forw〈x1, . . . , xl〉 rather than forw(〈x1, . . . , xl〉).

The forwarding subnetwork of a sr-path ~p encodes every path on which
packets might travel when forwarded over ~p. However it does not encode how
many times a given link is traversed by the sr-path because each edge that is
traversed by ~p appears exactly once.

Definition 4.10. Let G be a network and ~p = 〈x1, . . . , xl〉 be a sr-path on G.
We say that ~p is deterministic if and only if for each i ∈ {2, . . . , l}, there exists
a unique shortest path between x2i−1 and x1i .

40 CHAPTER 4. SEGMENT ROUTING

Deterministic sr-paths are important when we want to have guarantees about
the set of links that are traversed when one uses SR to forward traffic over a
given sr-path. Because there exists a single shortest path between any two
consecutive endpoints, they never use ECMP. For this reason they map back
to a unique path on the network G. This kind of paths will be important
in Chapter 7 where we design an algorithm that leverages segment routing to
provide network monitoring for detecting single link failures. In this context,
we will need to know exactly which links are covered by each sr-path used for
the monitoring.

Another application of deterministic sr-paths, which we will tackle in the
next section, is the reverse problem, where we start from a path on G and we
want to find a sr-path whose forwarding graph matches that path.

Lemma 4.3. Let G be a network and ~p be a deterministic sr-path from a to
b and ~q be a deterministic sr-path from b to c then ~p ⊕ ~q is a deterministic
sr-path from a to c.

Proof. The fact that ~p⊕ ~q is well defined is simply because we assumed that ~p
is a sr-path from a to b and ~q a sr-path from b to c. It remains to show that
it is deterministic.

Write ~p = 〈x1, . . . , xl〉 and ~q = 〈y1, . . . ,yr〉. Let zi, zi+1 be consecutive
elements of ~p ⊕ ~q. We need to prove that there exists a unique shortest path
between z2i and z1i+1. If both zi, zi+1 belong to ~p or ~q then this is true since
both ~p and ~q are deterministic. Otherwise, there are four cases that we need to
consider.

Case 1: xl = y1 are both node segments. In this case we know that ~p⊕~q =
〈x1, . . . , xl,y2, . . . ,yr〉. Thus, zi = xl = y1 and zi+1 = y2. Hence, since
~q is deterministic, there exists a unique shortest path between z2i = y21 and
z1i+1 = y12.

Case 2: xl,y1 are both adjacency segments and x2l = y11. In this case we
know that ~p⊕ ~q = 〈x1, . . . , xl,y1,y2, . . . ,yr〉. Hence, zi = xl and zi+1 = y1 so
z2i = x2l = y11 = z1i+1 so the unique shortest path between z2i and z1i+1 is the
empty path.

Case 3: xl is an adjacency segment and y1 is a node segment such that
x2l = y1. By definition, ~p ⊕ ~q = 〈x1, . . . , xl,y2, . . . ,yr〉. Thus, zi = xl and
zi+1 = y2. Thus, since ~q is deterministic, there exists a unique shortest path
between z2i = x

2
l = y

2
1 and z1i+1 = y12.

Case 4: xl is a node segment and y1 is an adjacent segment such that
y11 = xl. Therefore ~p ⊕ ~q = 〈x1, . . . , xl−1,y1,y2, . . . ,yr〉. Thus, zi = xl−1 and
zi+1 = y1. Thus, since ~p is deterministic, there exists a unique shortest path
between z2i = x

2
l−1 and z1i+1 = y12 = x1l .

4.2 Acyclic sr-paths

Sr-paths can contain cycles as shown in Figure 4.4. In some situations we can
take advantage of these cycles to obtain better solution. We discuss one such
example when we talk about traffic engineering in Chapter 6. In other situations
we can show that cycles can never lead to an optimal solution. We are now going
to prove that we can always transform a sr-path that contains cycles into a sr-
path that is acyclic, visits a subset of the edges previously visited and does not

4.2. ACYCLIC SR-PATHS 41

have a higher segment cost. In the case of Figure 4.4 we could achieve this by
replacing node segment d by e. The set of edges in forw〈a, b, e, f〉 is a subset of
the set of edges in forw〈a, b, d, f〉 but 〈a, b, e, f〉 is acyclic.

a

b

c d

e

g

i

h

f

j

x1

x2

x3

x4

y1

y2

y3

y4

Figure 4.4: Illustration of a cyclic sr-path ~p = 〈a, b, d, f〉. It contains cycle
((d, e), (e, d)). The sr-path ~q = 〈a, b, e, f〉 also goes from a to f but is acyclic.
It visits a subset of the edges of forw(~p) so it is a sr-subpath of ~q.

Next we give a formal definition of cyclic sr-paths.

Definition 4.11. Let G be a network and ~p a sr-path on G. We say that ~p is
cyclic if forw(~p) is cyclic.

Do not confuse this definition with sr-cycles. A sr-cycle is simply a sr-path
whose first and last nodes are the same. Of course any sr-cycle is cyclic. But
not all cyclic sr-paths are sr-cycles. We start by proving the theorem in the case
where the sr-path contains only node segments.

The following simple lemma shows that if two nodes are connected then we
can always find an acyclic sr-path between them.

Lemma 4.4. Let G be a network and u, v ∈ G. If there exists a path from u to
v on G then there exists an acyclic sr-path from u to v.

Proof. We can simply take a minimal segmentation ~p of p. In this case forw(~p) =
p so it is acyclic.

Definition 4.12. Let G be a network and ~p a sr-path from u to v on G. We
say that ~q is a sr-subpath of ~p if ~q is a sr-path from u to v and forw(~q) is a
subnetwork of forw(~p).

The next theorem shows that for any sr-path, we can always find a sr-subpath
of it that is acyclic and whose segment cost is at most the segment cost of the
original path. This theorem has important practical implications as we will see
in Chapter 8.

Theorem 4.5. Let G be a network with igp(e) > 0 for all e ∈ E(G), u, v ∈ V(G)
with u 6= v and ~p be a sr-path on G from u to v using only node segments. Then
there exists an acyclic sr-path ~q from u to v such that forw(~q) ⊆ forw(~p) and
sr-cost(~q) 6 sr-cost(~p).

42 CHAPTER 4. SEGMENT ROUTING

Proof. Let ~p = 〈x1, . . . , xn〉. The proof is by induction on n. If n = 1 then
forw(~p) has 0 edges and is therefore acyclic. If n = 2 then forw(~p) is equal to
the union of shortest paths from x1 to x2 which form an acyclic graph. Assume
that 〈x1, . . . , xn−1〉 is acyclic but ~p is not. We will show how to construct ~q
satisfying the theorem conditions.

Since ~p is cyclic, we can let i be the smallest index such that there exists a
node v in forw〈xi, xi+1〉 that belongs to a cycle in forw(~p). If several such nodes
exist, assume that v is the one closest to xi (in terms of IGP, if several exist,
choose any).

Let ~q = 〈x1, . . . , xi, v, xn〉. Since v belongs to both forw〈xi, xi+1〉 and
forw〈xn−1, xn〉 we have

forw〈x1, . . . , xi, v〉 ⊆ forw〈x1, . . . , xi, xi+1〉

and
forw〈v, xn〉 ⊆ forw〈xn−1, xn〉

so that

forw(~q) = forw〈x1, . . . , xi, v〉 ∪ forw〈v, xn〉
⊆ forw〈x1, . . . , xi, xi+1〉 ∪ forw〈xn−1, xn〉
⊆ forw〈x1, . . . , xi, xi+1〉 ∪ forw〈xi+2, . . . xn−2〉 ∪ forw〈xn−1, xn〉
= forw(~p).

Similarly, we have

sr-cost(~q) = sr-cost〈x1, . . . , xi, v〉+ sr-cost〈v, xn〉− 1

= sr-cost〈x1, . . . , xi, xi+1〉+ sr-cost〈xn−1, xn〉− 1

< sr-cost〈x1, . . . , xi, xi+1〉+ sr-cost〈xi+2, . . . xn−2〉+ sr-cost〈xn−1, xn〉
= sr-cost(~p).

The sr-path ~q starts at x1 = u and ends at xn = v. If ~q is acyclic then the proof
is complete. Otherwise, let c by a cycle on forw(~q). Since both forw〈x1, . . . , xi, v〉
and forw〈v, xn〉 are acyclic, c cannot be fully contained in either one of them.
This means that there must be a node u ∈ V(c) \ v in forw〈x1, . . . , xi, v〉. By
choice of v, the distance from xi to u and v must be the same and u must
be in the shortest path from xi to v. This is impossible since we assume that
igp(e) > 0 for all e ∈ E(G).

The theorem is also true in the general case where we allow the sr-path ~p to
contain adjacency segments. However the proof is quite tedious as it involves a
lot of cases. Rather than provide a detailed proof, we instead provide the case
analysis and a valid acyclic sr-subpath in each case.

The construction works very similarly as in the proof of Theorem 4.5. Let’s
focus on the general case only. Assume that ~p = 〈x1, . . . , xn〉 is cyclic but
〈x1, . . . , xn−1〉 is acyclic. As in the above proof, let i be the smallest index such
that there exists a node v in forw〈xi, xi+1〉 that belongs to a cycle in forw(~p).
If several such nodes exist, assume that v is the one closest to xi (in terms of
IGP, if several exist, choose any).

With this choice of xi and v we can build ~q by following Table 4.1. The
construction of ~q depends on two things:

4.3. MINIMAL SEGMENTATIONS 43

v = x1i v = x2i v ∈ 〈x2i ,x1i+1〉

v = x1n−1 〈x1, . . . ,xi−1,xn−1,xn〉 〈x1, . . . ,xi,xn−1,xn〉 〈x1, . . . ,xi,xn−1,xn〉
v = x2n−1 〈x1, . . . ,xi−1,v,xn〉 〈x1, . . . ,xi,xn〉 〈x1, . . . ,xi,v,xn〉
v = x1n 〈x1, . . . ,xi−1,xn〉 〈x1, . . . ,xi,xn〉 〈x1, . . . ,xi,v,xn〉
v = x2n 〈x1, . . . ,xi−1,v〉 〈x1, . . . ,xi〉 〈x1, . . . ,xi,v〉

v ∈ 〈xn−1,xn〉 〈x1, . . . ,xi−1,v,xn〉 〈x1, . . . ,xi,xn〉 〈x1, . . . ,xi,v,xn〉

Table 4.1: Construction of an acyclic sr-subpath.

1. Where v is crossed when we move on ~p from xi to xi+1.

2. Where v is crossed when we move on ~p from xn−1 to xn.

For the first, we consider three cases: (1) v is the node x1i , (2) v is the node
x2i or (3) v is neither of those nodes and belongs to a shortest path from x2i to
x1i+1 (we represent this by v ∈ 〈x2i , x1i+1〉 on the table). This is represented the
columns of the table.

For the second, we consider five cases: (1) v is the node x1n−1, (2) v is the
node x2n−1, (3) v is the node x1n, (4) v is the node x2n and finally (5) v is neither
of those nodes and belongs the shortest path between x2n−1 to x1n (we represent
this by v ∈ 〈x2n−1, x1n〉 on the table). These cases are represented by the rows
of the table.

For example, if v = x2i and v ∈ 〈xn−1, x,〉 then ~q = 〈x1, . . . , xi, xn〉 is a
solution.

Note that for construction to be correct we do not need to assume anything
about the kind of segments xi, xi+1, xn−1 and xn are. It may seem that we are
assuming that they are adjacency segments but if they are not the construction
still works. The only thing that might happen is that we may have some re-
peated redundant segments in ~q. However even with these, we can show that
sr-cost(~q) 6 sr-cost(~p).

Putting these ideas together we can prove the following² general theorem.

Theorem 4.6. Let G be a network with igp(e) > 0 for all e ∈ E(G), u, v ∈ V(G)
with u 6= v and ~p be a sr-path on G from u to v. Then there exists an acyclic
sr-path ~q from u to v such that forw(~q) ⊆ forw(~p) and sr-cost(~q) 6 sr-cost(~p).

4.3 Minimal segmentations

In this section we study the problem of efficiently representing paths in the
network with SR. Suppose that you have a path in your network that you want
to use to send traffic between two nodes. Traditional shortest path routing does
not allow you to forward traffic on it unless that path already is a shortest path
with respect to the igp weights configured on the links. SR makes it possible, at
least in theory, to forward traffic on any path in the network since we can always
just add all edges of the path as adjacency segments in the segment routing
stack. In practice however, this solution cannot be implemented because, as we
mentioned above, due to hardware limitations of the routers currently deployed
in the networks, the stack size is often limited to a few segments [61].

44 CHAPTER 4. SEGMENT ROUTING

This motivates the problem of, given a path p in the network, finding a sr-
path ~p that represents p. That is, a sr-path ~p such that if traffic is routed over
it, packets will traverse exactly the edges of p in order. To do that, we need a
formal definition of what does it mean for a sr-path to represent a path in the
network.

Definition 4.13. Let ~p = 〈x1, . . . , xl〉 be a deterministic sr-path. We define

path(~p) = x1 ⊕ SP(x21, x12)⊕ x2 ⊕ . . .⊕ SP(x2l−1, x1l)⊕ xl

Note that since ~p is deterministic, path(~p) corresponds to a path in G since
each SP(x2i−1, x1i) is a single path.

Definition 4.14. Let G be a network and p a path on G. A deterministic sr-
path ~p = 〈x1, . . . , xl〉 is said to be a segmentation of p if and only if p = path(~p).

Note that we restrict ourselves to deterministic sr-paths since the equality in
the above definition would never hold if for some i, SP(x2i , x

1
i+1) was not a path.

Moreover, ⊕ is only defined if both operands are paths. We start by showing
that any path possess a segmentation.

Lemma 4.7. Let G be a network and p a path on G. Then, there exists a
sr-path ~p such that ~p is a segmentation of p. Moreover, any path admits a
segmentation of cost at most 2|E(G)|.

Proof. Let p = (e1, . . . , el) be a path on G and let ~p = 〈e1, . . . , el〉. For each
i = 1, . . . , l− 1 we have that SP(e2i , e

1
i+1) = ∅ since e2i = e

1
i+1. Thus

e1 ⊕ SP(e21, e12)⊕ e2 ⊕ . . .⊕ SP(e2l−1, e1l)⊕ el = e1 ⊕ e2 ⊕ . . .⊕ el = p.

Note that previous models of segment routing considered only node segments
and therefore this result was not true. In such models it is impossible to rep-
resent some network paths in terms of SR. As we saw in Chapter 3, there are
about 1% of the network links that do not belong to a shortest path and 24%
of pairs of nodes with ECMP. We mentioned that those were the conditions
that might lead to the need of using an adjacency segment. We characterize in
Proposition 4.9 exactly which situations lead to the need of using an adjacency
segment.

We call the segmentation used in the proof of Lemma 4.7 the edge segmen-
tation of p. Consider the path ((a, b), (b, c), (c, d), (d, g), (g, i)) shown in green
in Figure 4.5. We already saw in Lemma 4.7 above that

~p = 〈(a, b), (b, c), (c, d), (d, g), (g, i)〉

is a segmentation of p. But this is not the unique segmentation of p. For
example ~q = 〈a, (b, c), g, i〉 is also a segmentation of p. We have

e1 ⊕ SP(e21, e12)⊕ e2 ⊕ . . .⊕ SP(e2l−1, e1l)⊕ el =
(a)⊕ SP(a, b)⊕ (b, c)⊕ SP(c, g)⊕ (g)⊕ SP(g, i)⊕ (i) =

(a)⊕ ((a, b))⊕ ((b, c))⊕ ((c, d), (d, g))⊕ (g)⊕ ((g, i))⊕ (i) =

((a, b), (b, c), (c, d), (d, g), (g, i)).

4.3. MINIMAL SEGMENTATIONS 45

a

b

c d

e

g

i

h

x1
x2

x3

x4 x5

y2

y1

y3

y4

Figure 4.5: Illustration of two different segmentations of the same path p =
((a, b), (b, c), (c, d), (d, g), (g, i)). In green we represent the edge segmentation
〈(a, b), (b, c), (c, d), (d, g), (g, i)〉 and in orange the segmentation 〈a, (b, c), g, i〉.

Lemma 4.8. Let G be a network. Any path in G has a segmentation with
segment cost at most 2 · |E(G)|.

Proof. Given a path p = (e1, . . . , el) in G, we have that ~p = 〈e1, . . . , e2〉 is a
segmentation of p with cost 2 · |E(G)|.

This shows that not all segmentations are equal. Even though they represent
the same path in the network, they do not have the same segment cost. In
practice we would like the one with the minimum cost. This motivates the
following problem.

Problem 1 (Minimum path segmentation)

Given a network G and a path p in G, find a segment ~p of p such that sr-cost(~p)
is minimal.

We propose a greedy polynomial time algorithm solving Problem 1. The
idea behind the algorithm is that we start walking over the input path and
incrementally build the segmentation so that at each step the current sr-path
is a segmentation of the prefix of the path that we traversed so far. At each
node, we check whether replacing the last node of the current segmentation by
that node yields a correct segmentation. If it does, then we replace it move on
to the next node. If it does not, then we need to either append that node to
the segmentation or the adjacency segment corresponding to the last traversed
edge.

To illustrate this, consider the graph on Figure 4.5 and suppose that the
input path is p = ((a, b), (b, c), (c, d), (d, g), (g, i)), shown in blue. The idea is to
start with a sr-path 〈a〉 and follow path p adding segments whenever necessary.
When we arrive at node b we have that SP(a, b) = (a, b) so appending b to
the segmentation make the paths match. Then we go to node c and try to see
whether c can replace the last segment, b. This would give the sr-path 〈a, c〉
which is not ok since SP(a, c) = (a, c) which is not a prefix of path p. Thus, we
cannot replace b so we try to add c getting the path 〈a, b, c〉. Now we are good

46 CHAPTER 4. SEGMENT ROUTING

because the current sr-path represents (a, b, c) which is a prefix of p. Then, we
do the same with d. Replacing c by d gives the sr-path 〈a, b, d〉. This path is not
ok because there are two shortest paths between nodes b and d, namely, (b, c, d)
and (b, e, d) so ~p would not be deterministic. This means that, as before, we
need to add d to the end of the list getting the sr-path 〈a, b, c, d〉. Next we
go to g and this time replacing node d works because the unique shortest path
between c and g is ((c, d), (d, g)) which matches p. So far ~p = 〈a, b, c, g〉 which
represents the prefix ((a, b), (b, c), (c, d), (d, g)) of p. Finally, we process node
i. Replacing g by i gives the sr-path 〈a, b, c, i〉 which does not match path p
because there are two shortest paths between nodes c and i. Thus we need to
append node i instead and the final sr-path is ~p = 〈a, b, c, g, i〉.

a

b

c d

e

g

i

h

x1

x2

x3

x4

x5

Figure 4.6: Minimal path segmentation example.

Observation. In a previous example we saw that 〈a, (b, c), g, i〉 is a segmenta-
tion of p. Our algorithm produced instead the segmentation 〈a, b, c, g, i〉. Both
these segmentations are minimal segmentations of (a, b, c, d, g, i) on the network
shown in Figure 4.6. This shows that minimal segmentations are not unique.

An alternative way to think about our algorithm is to imagine that we start
following path p on the shortest path subnetwork rooted at its origin. We
do so until we either reach an edge e that forces us to move out of the current
shortest path subnetwork or a node with in-degree in the subnetwork larger than
1 (ECMP). In both cases we need to exit the current shortest path subnetwork
either by adding a node segment on e1 and continuing the walk on SP(e1) or
by adding an adjacency segment over e and continuing the walk over SP(e2).

In the remainder of this section, we are going to provide a formal description
of the minimum path segmentation algorithm, give its time complexity and
prove its correctness.

We start by analyzing all the situations where we need adjacency segments.

Proposition 4.9. Let G be a network and p a path on G. Suppose that e =
(u, v) ∈ E(p) is such that either e is not a shortest path between u and v or
there exists a shortest path from u to v that does not contain e. Then any
segmentation of p contains the adjacency segment e. We denote this set of
adjacency segments as adj(G,p).

Proof. Let ~p = 〈x1, . . . , xl〉 be a segmentation of p that does not contain e =
(u, v) in its segmentation. Then it means that there exists i such that e is on the
shortest path between x2i and x1i+1. By hypothesis, there exists a shortest path

4.3. MINIMAL SEGMENTATIONS 47

Algorithm 1 min-seg (G,p = (e1, . . . el))

1: r← p.firstNode()
2: ~p← 〈〉
3: for e = (u, v) ∈ (e1, . . . el) do
4: if e /∈ E(SP(G, r)) or δ−(SP(G, r), v) > 1 then
5: if e /∈ E(SP(G,u)) or δ−(SP(G,u), v) > 1 then
6: ~p.append(e)
7: r← v

8: else
9: ~p.append(u)

10: r← u

11: if |~p| = 0 or ~p.origin() 6= p.origin() then
12: ~p.addFirst(p.origin())
13: if ~p.destination() 6= p.destination() then
14: ~p.addFirst(p.destination())
15: return ~p

that does not contain e from u to v. Replacing e by that path yields another
shortest path between x2i and x1i+1 showing that ~p is not deterministic and thus
not a segmentation.

The next two lemmas give conditions upon which we can remove a node
segment and an adjacency from a segmentation of a path p such that the result
it still a segmentation of p.

Lemma 4.10. Let G be a network and p = (e1, . . . , el) a path on G. Let
~p = 〈x1, . . . xl〉 be a segmentation of p such that xi ∈ V(G) for some i. Then
〈x1, . . . , xi−1, xi+1, . . . , xl〉 is a segmentation of p if and only if there is a unique
shortest path between x2i−1 and x1i+1 that passes by node xi.

Proof. (⇒) Assume that ~q = 〈x1, . . . , xi−1, xi+1, . . . , xl〉 is also a segmentation
of p. Then ~q is deterministic so there is a unique shortest path between x2i−1 and
x1i+1. To see that it passes by node xi we observe that by definition path(~p) =
path(~q) so

SP(x2i−1, x1i)⊕ xi ⊕ SP(x2i , x
1
i+1) = SP(x2i−1, x1i+1).

(⇐) Since there is a unique shortest path from x2i−1 and x1i+1 and this path
passes by node x1i = x

2
i we have that

SP(x2i−1, x1i+1) = SP(x2i−1, x1i)⊕ SP(x1i , x
1
i+1) [unique sp passes by x1i]

= SP(x2i−1, x1i)⊕ SP(x2i , x
1
i+1) [x2i = x1i]

= SP(x2i−1, x1i)⊕ xi ⊕ SP(x2i , x
1
i+1) [def of ⊕ and x1i = xi = x

2
i]

Therefore,

p = path(~p)

= x1 ⊕ . . .⊕ xi−1 ⊕ SP(x2i−1, x1i)⊕ xi ⊕ SP(x2i , x
1
i+1)⊕ xi+1 ⊕ . . . xl

= x1 ⊕ . . .⊕ xi−1 ⊕ SP(x2i−1, x1i+1)⊕ xi+1 ⊕ . . . xl

= path〈x1, . . . , xi−1, xi+1, . . . , xl〉

meaning that 〈x1, . . . , xi−1, xi+1, . . . , xl〉 is a segmentation of p.

48 CHAPTER 4. SEGMENT ROUTING

We have the following analogous result for adjacency segments.

Lemma 4.11. Let G be a network and p = (e1, . . . , el) a path on G. Let
~p = 〈x1, . . . xl〉 be a segmentation of p such that xi ∈ E(G) for some i. Then
〈x1, . . . , xi−1, xi+1, . . . , xl〉 is a segmentation of p if and only if there is a unique
shortest path between x2i−1 and x1i+1 that contains edge xi.

Proof. The proof is analogous to the proof of Lemma 4.10.

The next two results characterize the first and last segments of any segment
of a path p. They are quite intuitive and say that a segmentation of a path
p = (e1, . . . , ek) must either start with a node segment e11 or an adjacency
segment over e1 and end with either a node segment e2k or an adjacency segment
over ek.

Lemma 4.12. Given a graph G and a path p = (e1, . . . , ek) on G. Let ~p =
〈x1, . . . , xl〉 be a segmentation of p. Then either x1 = e11 or x1 = e1

Proof. Since ~p is a segmentation of p we have that path(~p) = p. Therefore, by
definition of path(~p), either x1 = e1 or x1 is a node segment and e1 is the first
edge of SP(x21, x12). In the latter case we must have x11 = e11.

Lemma 4.13. Given a graph G and a path p = (e1, . . . , ek) on G. Let ~p =
〈x1, . . . , xl〉 be a segmentation of p. Then either xl = e

2
k or xl = ek

Proof. Since ~p is a segmentation of p we have that path(~p) = p. Therefore, by
definition of path(~p), either xl = ek or xl is a node segment and ek is the last
edge of SP(x2l−1, x2l). In the latter case we must have x2l = e

2
k.

To prove that our minimum segmentation algorithm is correct, we will show
that any minimal segmentation can be transformed in a series of steps to match
the output of our algorithm. The next lemma will be important in one of those
transformation steps. Contrary to Lemma 4.10, it tells us a condition under wich
we can add a segment to an existing segmentation of a path p while preserving
the fact that it is a segmentation of p.

Lemma 4.14. Let G be a network and p a path on G. Let ~p = 〈x1, . . . , xl〉
be a segmentation of p. For any i = 1, . . . , l − 1, if v ∈ V(SP(x2i , x

1
i+1)) then

〈x1, . . . , xi, v, xi+1, . . . , xl〉 is a segmentation of p.

Proof. Since ~p is deterministic and v ∈ V(SP(x2i , x
1
i+1)) it holds that

SP(x2i , x
1
i+1) = SP(x2i , v)⊕ v⊕ SP(v, x1i+1).

Therefore,

p = path(~p)

= x1 ⊕ . . .⊕ xi ⊕ SP(x2i , x
1
i+1)⊕ xi+1 ⊕ . . . xl

= x1 ⊕ . . .⊕ xi ⊕ SP(x2i , v)⊕ v⊕ SP(v, x1i+1)⊕ xi+1 ⊕ . . . xl

= path(〈x1, . . . , xi, v, xi+1, . . . , xl〉).

4.3. MINIMAL SEGMENTATIONS 49

Proposition 4.15. Given a graph G and a path p on G, Algorithm 1 outputs
a segmentation ~p of p.

Proof. Let p = (e1, . . . , el), (v1, v2, . . . , vl+1) be the sequences of nodes visited
by p and ~p = 〈x1, . . . , xr〉. We start by proving by induction on j > 2 that
〈x1, . . . , xj〉 is deterministic and path〈x1, . . . , xj〉 is a prefix of p.

Base case: j = 2.
By construction we have that either x1 = v1 or x1 = e1. This is so because

the only three lines where this element could have been inserted into ~p are lines
9, 6 when e = e1 or line 12 at the end. If it was on one of the lines 9 or 12 then
x1 = v1. Otherwise x1 = e1.

Case 1: x1 = v1. Then the algorithm proceeds by iterating over the elements
e ∈ E(p) and only add the next element when we reach some edge ei = (u, v) =
(vi, vi+1) such that there exist multiple shortest paths between r = v1 and vi+1

or ei does not belong to any shortest path starting at r. At this point we add x2
which is either equal to vi or ei. In either case, since condition on line 4 ensures
the uniqueness of the shortest path between x21 = v1 and x12 = vi it holds that
〈x1, x2〉 is deterministic. To see that it corresponds to a prefix of p, we consider
the two cases for x2. If x2 = vi then

x1 ⊕ SP(x21, x12)⊕ x2 = v1 ⊕ SP(v, vi)⊕ vi = SP(v1, vi) = e1 ⊕ . . .⊕ ei−1

and if x2 = ei then

x1 ⊕ SP(x21, x12)⊕ x2 = SP(v1, vi)⊕ ei = e1 ⊕ . . .⊕ ei−1 ⊕ ei.

Case 2: x1 = e1. In this case everything remains the same except that
r = v2 = x21. Therefore, if x2 = vi then

x1 ⊕ SP(x21, x12)⊕ x2 = e1 ⊕ SP(v2, vi) = e1 ⊕ . . .⊕ ei−1

and if x2 = ei then

x1 ⊕ SP(x21, x12)⊕ x2 = e1 ⊕ SP(v2, vi)⊕ x2 = e1 ⊕ e2 ⊕ . . .⊕ ei−1 ⊕ ei.

In any case, 〈x1, x2〉 is deterministic and path〈x1, x2〉 is a prefix of p. This
completes the proof of the base case.

Induction step: Suppose that for some j > 2 the sr-path 〈x1, . . . , xj〉 is
deterministic and a prefix of p. Using analogous arguments as above, we can
show that if ei is the edge on the for loop in line 3 when xj is added and ek
(j < k) the one when xj+1 is added then 〈xj, xj+1〉 is deterministic with

path〈xj, xj+1〉 =

{
ei ⊕ . . .⊕ ek−1 if xj+1 = vk

ei ⊕ . . .⊕ ek if xj+1 = ek

Therefore 〈x1, . . . , xj, xj+1〉 is deterministic and

path〈x1, . . . , xj, xj+1〉 =

{
e1 ⊕ . . .⊕ ek−1 if xj+1 = vk

e1 ⊕ . . .⊕ ek if xj+1 = ek

50 CHAPTER 4. SEGMENT ROUTING

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10e1 e2 e3 e4 e5 e6 e7 e8 e9

x2i x1i+1
y2
j y1

j+1

unique shortest path

X

xi+1 ∈ ~p with x1i+1 =
v6 means that there
is no unique shortest
path starting at x2i and
using e6

contradiction cannot
be in a unique shortest
path starting at or be-
fore x2i

Figure 4.7: Illustration of what happens if there is no element yj such that
x2i 6p y

2
j 6p x

1
i+1 on the proof of Lemma 4.16.

is a prefix of p. This concludes the proof that for j > 2, 〈x1, . . . , xj〉 is deter-
ministic and path〈x1, . . . , xj〉 is a prefix of p.

It remains to show that at the end of the algorithm ~p covers the whole path.
Let x be the last element of ~p after the for loop ends. If x2 = vl+1 then there
is nothing to prove. Otherwise at line 14 we add one node segment xl = vl+1.
With the same argument as above, we know that SP(x2, xl) is unique and covers
the remaining edges of p since the condition on line 4 was always false for the
remaining edges.

Definition 4.15. Let G be a network and p a path on G visiting the nodes
v1, . . . , vl. Given two nodes v,u ∈ V(p) we write v 6p u if and only if v = vi
and u = vj with i 6 j.

Lemma 4.16. Let G be a network and p a path on G. Let ~p = 〈x1, . . . , xl〉
be the segmentation of p produced by Algorithm 1. Let ~q = 〈y1, . . . ,yr〉 be any
other segmentation of p. Then for any i ∈ {1, . . . , l−1}, there exists j ∈ {1, . . . , r}
such that x2i 6p y

2
j 6p x

1
i+1.

Proof. Let i ∈ {1, . . . , l − 1}. Suppose that no such j exists. Then, since ~q is a
segmentation of p, by Lemmas 4.12 and 4.13 there exists j such that y2j <p x

2
i

and x1i+1 <p y
1
j+1. But then, since ~q is deterministic, there exists a unique

shortest path between y2j and y1j+1. This path will contain the shortest path

between x2i and x1i+1 plus, at least, the next edge of p with source at node x1i+1.
This contradicts the fact that xi+1 is a segment of ~p since condition 4 would
prevent it to be added to ~p. Figure 4.7 illustrates this proof.

Lemma 4.17. Let G be a network and p a path on G. There exists a minimal
segmentation of p such that all its adjacency segments belong to adj(G,p).

Proof. Let G be a network and p a path on G. Let ~p = 〈x1, . . . , xl〉 be a
minimal segmentation of p. Assume that xi is an adjacency not in adj(G,p).

4.3. MINIMAL SEGMENTATIONS 51

Then xi = e ∈ E(p) such that e is the unique shortest path between (e1, e2).
Therefore if we let ~q = 〈x1, . . . , xi−1, e1, e2, xi+1, . . . , xl〉 we have

path(~q) = x1 ⊕ . . . xi−1 ⊕ e1 ⊕ SP(e1, e2)⊕ e2 ⊕ xi+1 ⊕ . . .⊕ xl
= x1 ⊕ . . . xi−1 ⊕ SP(e1, e2)⊕ xi+1 ⊕ . . .⊕ xl
= x1 ⊕ . . . xi−1 ⊕ e⊕ xi+1 ⊕ . . .⊕ xl
= path(~p) = p.

We conclude that ~q is a segmentation of p. Moreover, since sr-cost(~q) =
(sr-cost(~p) − 2) + 2 = sr-cost(~p) ~q is a minimal segmentation of p. By re-
peating this process we can obtain a minimal segmentation of p such that all of
its adjacency segments are in adj(G,p).

Lemma 4.18. Let G be a network and p a path on G. The set of adjacency
segments in a segmentation computed by Algorithm 1 on input p is adj(G,p).

Proof. Let ~p = 〈x1, . . . , xl〉 be segmentation produced by Algorithm 1 on input
p. Suppose that xi = e = (u, v) ∈ E(p) is an adjacency segment. The only place
where adjacency segments are added is on line 6. This happens if and only if
e /∈ E(SP(G,u)) or δ−(SP(G,u), v) > 1. If e /∈ E(SP(G,u)) then it means that
e is not the shortest path between u and v. Otherwise, if δ−(SP(G,u), v) > 1 it
means that e is not the unique shortest path between its endpoints. Therefore
e ∈ adj(G,p).

Theorem 4.19. Given a network G and a path p on G, Algorithm 1 outputs a
minimal segmentation ~p of p.

Proof. Let ~p = 〈x1, . . . , xl〉 be the segmentation produced by Algorithm 1 and
~q = 〈y1, . . . ,yr〉 a minimal segmentation. By Lemmas 4.17 and 4.18 we can
assume that ~p and ~q have the same adjacency segments. In particular, by
Lemma 4.12 we have that x1 = y1. Since ~p and ~q have the same adjacency
segments, if y2 is an adjacency segment then so is x2 and x2 = y2. Otherwise
both are not segments. Lemma 4.16 says that, x21 6p y

2
2 6p x

1
2. Let i be the

largest index such that x21 6p y
2
i 6p x

1
2. Then x2 belongs to the unique shortest

path between y2i and y1i+1. Hence, by Lemma 4.14, 〈y1, . . . ,yi, x2,yi+1, . . .yr〉
is a segmentation of p. Finally, by applying Lemma 4.10 on y2, . . . ,yi we
conclude that 〈y1, x2,yi+1, . . .yr〉 is also a segmentation of p.

With this argument we were able to replace the first segment of ~q not match-
ing ~p with the corresponding segment of ~p. By repeating this process for each
node segment of ~q we are able to transform ~q into ~p while preserving the segment
cost. Therefore ~p is also a minimal segmentation of p.

In this section we provided an algorithm that is able to compute minimal
segmentations efficiently. The time needed to compute the segmentation of a
path depends on how we implement Algorithm 1. If we do not precompute
anything beforehand, we will need to perform at most V(G) shortest path com-
putations. If this is done is O(|E(G)| · log(|V(G)|) with Dijkstra’s algorithm we
get a complexity of O(|V(G)| · |E(G)| · log(|V(G)|). However, if we precompute
the all pairs shortest IGP shortest path matrix with Floyd Warshal’s algorithm
in O(|V(G)|3) we can then segment any path in linear time O(|G|). Both these
implementations are provided in our library.

52 CHAPTER 4. SEGMENT ROUTING

4.4 SR reachability

In this section we focus on trying to understand how costly, in terms of seg-
ments, it is to connect two nodes with a deterministic sr-path. These results
are very useful in order to provide lower bounds on the minimum cost of any
segmentation of a path between two given nodes.

Since segment routing is a new technology, network topologies were not
designed with SR in mind. Therefore it could very well be the case that current
topologies require very long lists of segments to represent specific paths. For
this reason we would like to have tools to analyse a given topology to see how
suitable it is for SR. Consider the topology shown in Figure 4.8. If we follow
shortest paths starting from router e (in green) and restrict ourselves to only
visiting nodes whose shortest path from e is unique, then we will only be able
to reach nodes a, b, d, f, h and i (in gray). Thus we can already say about this
topology that it needs at least sr-paths of cost 3 to reach any given node with a
deterministic sr-path from e. In other words, there exists a simple path starting
at e that needs at least 3 segments to be represented with segment routing.

a

b

c d

e

g

i

h

f

j

Figure 4.8: Shortest path reachability of node e

.

Of course this topology is very small and thus easy to analyse. To analyse
larger topologies, we propose to define the k deterministic reachability of a
node as the set nodes that can be reached from it with a deterministic sr-
path of segment cost at most k. We will then propose efficient algorithms for
computing these values for any given node v and segment cost k.

We start with the definition of shortest path deterministic reachability.

Definition 4.16. Let G be a netwrok and v ∈ V(G). We define the shortest
path deterministic reachability of v as

sp-reach(v) = {u ∈ V(G) | there is a unique shortest path between v and u}

For example, on Figure 4.8 we see that sp-reach(e) = {a, b, d, e, f, h, i}. As
we prove in Theorem 4.20, this definition constitutes the basic building block
that allows to compute the general deterministic reachability of a node.

Definition 4.17. Let G be a network and s ∈ V(G). For any integer k > 1 we

4.4. SR REACHABILITY 53

s

v

u

reach(k− 1,s)

sp-reac
h(v)

Figure 4.9: Illustration of the first part of the recurrence of reach(k, s)

s

v

u1

u2

u2 = ureach(k− 2,s)

sp-reach(
v)

Figure 4.10: Illustration of the second part of the recurrence of reach(k, s)

define

reach(k, s) = set of nodes v ∈ V(G) such that there exists a deterministic

sr-path ~p from s to v of segment cost at most k

The following theorem provides a recurrence relation for reach(k, s) in terms
of smaller values of k and other nodes in the network.

The general intuition for computing the nodes in reach(k, s) is provided in
Figures 4.9 and 4.10. Recall that a node u belongs to reach(k, s) if there is
a deterministic sr-path from s to u of segment cost at most k. Such a path
can have two forms, depending on the type of its last segment. If it is a node
segment, then it is composed by a deterministic sr-path of cost at most k − 1
to some node v and then appended a node segment on u (provided that there
is a unique shortest path between v and u) as shown in Figure 4.9. Otherwise,
it will be made of a deterministic sr-path of cost at most k− 2 to some node v
and then will be appended an adjacency segment over some edge ending in u
as shown in Figure 4.10. The following theorem formalizes this intuition.

Theorem 4.20. Let G be a network, s ∈ V(G) and an integer k > 3. It holds

54 CHAPTER 4. SEGMENT ROUTING

that

reach(1, s) = {s}

reach(2, s) = {v ∈ V(G) | SP(s, v) is a path} ∪ {u | (s,u) ∈ E(G)}

reach(k, s) =
⋃

v∈reach(k−1,s)

sp-reach(v) ∪

⋃
v∈reach(k−2,s)

{u2 | (u1,u2) ∈ E(G)∧ u1 ∈ sp-reach(v)}

Proof. For k = 1 the only sr-path of cost 1 starting from s is 〈s〉. Thus
reach(1, s) = {s}. For k = 2, a sr-path of cost 2 starting at s has either the
form 〈s, v〉 where v ∈ V(G) or 〈e〉 where e ∈ δ+(s). In the first case, since we
need the sr-path to be deterministic, only nodes v ∈ V(G) such that SP(s, v) is
a path yield a deterministic sr-path. In the second case, a path of the form 〈e〉
is always deterministic so each such edge yields a valid path.

Let k > 3.
(⊆) Suppose that u ∈ reach(k, s). Then there exists a deterministic sr-path

~p = 〈x1, . . . , xl〉 from s to u of segment cost at most k.
Case 1: xl = u is a node segment. Then 〈x1, . . . , xl−1〉 is a deterministic sr-

path from s to x2l−1 with segment cost at most k−1. Hence x2l−1 ∈ reach(k−1, s).
By determinism of ~p, there is a unique shortest path between x2l−1 and x1l = xl.
Therefore, u = xl ∈ sp-reach(x2l−1). Thus letting v = x2l−1, we have that
v ∈ reach(k− 1, s) and u ∈ sp-reach(v) so

u ∈
⋃

v∈reach(k−1,s)

sp-reach(v).

Case 2: xl is an adjacency segment. Write xl = (u1,u2). Then 〈x1, . . . , xl−1〉
is a deterministic sr-path from s to x2l−1 with segment cost at most k − 2 and
by determinism, u1 = x1l ∈ sp-reach(x2l−1). Thus letting v = x2l−1, we have that
v ∈ reach(k− 2, s) and u1 ∈ sp-reach(v) proving that

u = u2 ∈
⋃

v∈reach(k−2,s)

{u2 | (u1,u2) ∈ E(G)∧ u1 ∈ sp-reach(v)}

(⊇) Let u ∈
⋃
v∈reach(k−1,s) sp-reach(v). Then there exists v ∈ reach(k− 1, s)

such that u ∈ sp-reach(v). Let ~p = 〈x1, . . . , xl〉 be a deterministic sr-path from
s to v with sr-cost(~p) 6 k− 1. Since u ∈ sp-reach(v), there is a unique shortest
path from v to u so the sr-path 〈x1, . . . , xl,u〉 is a deterministic sr-path from s
to u with segment cost at most k− 1 + 1 = k. Thus u ∈ reach(k, s).

Let u ∈
⋃
v∈reach(k−2,s) {u2 | (u1,u2) ∈ E(G)∧ u1 ∈ sp-reach(v)}. Then there

exists v ∈ reach(k − 2, s) and (u1,u2) ∈ E(G) such that u1 ∈ sp-reach(v) and
u2 = u. Let ~p = 〈x1, . . . , xl〉 be a sr-path from s to v with segment cost at most
k − 2. Then 〈x1, . . . , xl, (u1,u2)〉 is a deterministic sr-path from s to u with
segment cost at most k− 2 + 2 = k from s to u so u ∈ reach(k, v).

Using Theorem 4.20 we can easily write down an algorithm for computing
reach(k, s) for all k, s. Algorithm 2 is designed so that at the end of its execution
it computes reach(k, s) as a matrix for all relevant values of k and s. It will go
on until we reach a value k ′ such that reach(k ′, s) = V(G) for all s ∈ V(G). For

4.4. SR REACHABILITY 55

Algorithm 2 compute-reach (g)

1: reach← Matrix(3, |V(G)|, Set())
2: for v ∈ g.V() do
3: reach(1, v).add(v)
4: spreach← Array(|V(G)|)
5: for v ∈ g.V() do
6: spreach(v)← compute-sp-reach(g, v)
7: reach(2, v).or(spreach(v))
8: for (u1,u2) ∈ δ+(g, s) do
9: reach(2, v).add(u2)

10: k← 3
11: while ∃s ∈ V(g) reach(k− 1, v) 6= V(G) do
12: for s ∈ V(G) do
13: if reach(k− 1, s) = V(G) then
14: reach(k, s) = V(G)
15: else
16: reach.addRow(Set())
17: for v ∈ reach(k− 1, s) do
18: reach(s, k).or(spreach(v))
19: for v ∈ reach(k− 2, s) do
20: for (u1,u2) ∈ E(g) such that u1 ∈ spreach(v) do
21: reach(s,k).add(u2)
22: return nreach

Algorithm 3 compute-sp-reach (g, s)

1: dag← dijkstra-dag(v)
2: visited← Set()
3: Q← Queue()
4: Q.add(s)
5: while |Q| > 0 do
6: cur← Q.poll()
7: for (u1,u2) ∈ δ+(dag, cur) such that u2 /∈ visited and |δ−(dag,u2)| = 1 do
8: Q.add(u2)
9: visited.add(u2)

10: return visited

k > k ′ we know that reach(k, s) = reach(k ′, s) so there is no point in computing
it. Its correctness is provided by Theorem 4.20 since it quite literally implements
the recurrences provided by the theorem. It uses Algorithm 3 to compute the
deterministic shortest path reach defined in Definition 4.16. This algorithms
uses Dijkstra’s algorithm to compute the shortest path DAG rooted at the given
node s and the performs a BFS to compute the set of nodes in this DAG that
are reachable from s via a unique shortest path. On line 7 of Algorithm 3 we
ensure that only nodes with unique shortest paths from s are visited by only
adding new nodes to the queue when their in-degree in the shortest path DAG
is equal to 1, as those nodes are the only ones for which unique shortest paths
exist.

Lemma 4.21. Let G be a network, u, v ∈ V(G) and k a non-negative integer.
If u /∈ reach(k, v) then the minimum segment cost sr-path between v and u has
segment cost at least k+ 1.

56 CHAPTER 4. SEGMENT ROUTING

Proof. By definition, if there exists a sr-path ~p between v and u such that
sr-cost(~p) 6 k then u ∈ reach(k, v). Therefore, if u /∈ reach(k, v), any sr-path
between v and u must have a segment cost larger than k.

Corollary 4.22. Let G be a network, u, v ∈ V(G) and k a non-negative integer.
If u /∈ reach(k, v) then any path on G from v to u requires at least k segments
in its minimal segmentation.

Proof. Immediate from Lemma 4.21.

The two following measures are interesting to evaluate how suitable a topol-
ogy is for segment routing.

Definition 4.18. We denote the maximum k for which there exists v ∈ V(G)
such that reach(k, v) 6= V(G) as kmax(G) and the minimum k such that there
exists v ∈ V(G) such that reach(k, v) = V(G) as kmin(G).

The value of kmax(G) describes the worst case reachability of any node in
the network. By Corollary 4.22, it means that there exists a pair of nodes
u, v such that any path from u to v requires at last kmax(G) segments in its
minimal segmentation. Therefore, in a network where routers do not support
kmax(G) segments, any solution to a problem with a path from u to v cannot be
implemented on that network. Also, kmax(G)+1 indicates the minimum number
of segments that routers need to suppose in order to be able to implement a
multi-cast tree rooted at any node (a spanning tree rooted at that node). On
the other hand, kmin(G) gives the maximum value for which some node v is
able to reach every other node. For a network, this means that there exists a
multi-cast tree rooted at v such that any root to leaf path is segmentable with
at most k segments.

We computed these values for every topology in our dataset. Figure 4.11
shows the percentage of topologies for each value of kmax(G) and kmin(G).

In the figure we observe that for 20% of the instances, kmax(G) = 1. This
means that with two segments, every node can reach every other node with
a deterministic sr-path. In other words, 20% of the topologies do not contain
ECMP which matches our analysis of the topologies in Chapter 3. We also
observe that in the worst case we need up to 12 segments to connect some pairs
of nodes with a determinism sr-path. This value exceeds the capacity of most
commercial routers but very few topologies are in this case. For 90% of the
topologies, with at most 5 segments any pair of routers can be connected with
a deterministic sr-path.

We observe that for 87% of the topologies, there exists some router on the
network which is able to reach each other router with a deterministic sr-path
of segment cost at most 3. We also see that we never need a sr-path path
with segment cost larger than 7 in order to find a root for a multi-cast tree
implementable with segment routing.

These results are quite positive and indicate that path based solutions to
networking optimization problems are likely to be implementable with segment
routing. This result is not a definitive answer as the measure that we would
really like to compute in order to be able to answer these questions is the max-
imum number of segments needed to represent any simple path in the original
network. This would give an upper bound on the number of segments required

4.4. SR REACHABILITY 57

0 1 2 3 4 5 6 7 8 9 10 11 12
value of kmin and kmax

0.0

0.1

0.2

0.3

0.4

0.5
pe

rc
en

ta
ge

 o
f t

op
ol

og
ie

s
kmin and kmax over all topologies

kmin
kmax

Figure 4.11: Percentage of topologies for each given value of kmin(G) and
kmax(G).

for implementing any path based solution with segment routing on each topol-
ogy. Unfortunately computing this value is NP-hard as we shown next.

Problem 2 (Maximum segmentation path)

Given a network G compute the maximum value of sr-cost(min-seg(p)) such that
p is a simple path in G.

In order to prove that Problem 2 is NP-hard we need to defined some related
problems first. The first problem that we consider is the same except that we
only focus on paths between two given nodes.

Problem 3 (Maximum segmentation s-t path)

Given a network G and s, t ∈ V(G) find a simple s-t path p such that

sr-cost(min-seg(p))

is maximum.

Problem 4 (Unit weights longest path between nodes)

Given a graph G and s, t ∈ V(G) compute the longest path from s to t in terms
of the number of links in the path.

58 CHAPTER 4. SEGMENT ROUTING

Theorem 4.23. Problem 4 is NP-hard.

Proof. This is a known result. A proof can be found, for instance, in Corollary
8.11a from [55].

Theorem 4.24. Problem 3 is NP-hard.

Proof. We are going to prove that Problem 3 is NP-hard by showing that if
we could solve it in polynomial time, then we could also solve Problem 4 in
polynomial time.

Let G, s, t be an instance of Problem 4. Build a graph H which is a copy of
G to which we add the following. For each edge (u, v) ∈ E(G), add a node uv
and two edges (u,uv) and (uv, v) both of weight 1. Figure 4.12 illustrates this
transformation.

a

b

c

d

e f

a

b

c

d

e f

ab

ae

bc cd

bd

be

ef

df

Figure 4.12: Example of the transformation. Solid edges have weight 2 whereas
dotted edges have weight 2.

Let p be a path on H from s to t such that sr-cost(min-seg(p)) is max-
imum. We start by proving that p does not cross any of the new nodes,
that is, only crosses nodes in V(G) ∩ V(H). Suppose that p visits the node
sequence (v1, . . . , vl) and let i be the smallest index such that vi /∈ V(G).
Since p is a path from s to t and s, t ∈ V(G) we have that 1 < i < l.
Thus we can write vi = vi−1vi+1 and p = (v1, . . . , vi−1, vi, vi+1, . . . , vl) =
(v1, . . . , vi−1, vi−1vi+1, vi+1 . . . , vl). We need to consider three cases.

Case 1: vi+2 ∈ V(G). In this case path p has the form:

v1
. . .

vi−1
vi−1vi+1 vi+1 vi+2

. . .

By construction, every link of G that is traversed requires an adjacency seg-
ment in its minimal segmentation (because of ECMP). Therefore, the minimal
segmentation of this path is

〈(v1, v2), (v2, v3), . . . , (vi−2, vi−1), xy, (vi+1, vi+2), . . .〉.

On the other hand, if we remove element xy from the path, we obtain a simple
path p ′ with the same minimal segmentation except that xy is replaced by the
adjacency segment (x,y) giving

〈(v1, v2), (v2, v3), . . . , (vi−2, x), (x,y), (y, vi+2), . . .〉.

4.4. SR REACHABILITY 59

This segmentation costs one more than the segmentation of p. Since p ′ is also
a path from s to t, this contradicts the fact that p is a path from s to t that
maximizes sr-cost(min-seg(p)).

Case 2: vi+2 /∈ V(G). In this case, p has the following form:

v1
. . .

vi−1
xy

vi+1
vi+2 . . .

The minimal segmentation of p will be

〈(v1, v2), (v2, v3), . . . , (vi−2, x), xy, vi+2, . . .〉.

As before, if we remove xy from p we obtain a simple path p ′ from s to t with
minimal segmentation equal to

〈(v1, v2), (v2, v3), . . . , (vi−2, x), (x,y), vi+2, . . .〉.

This segmentation costs one more than the minimal segmentation of p so as
above, we conclude that p does not minimize sr-cost(min-seg(p)).

These two cases cover all possibilities so we conclude that the path p on
H that maximizes sr-cost(min-seg(p)) has all of its nodes in V(G). Therefore,
this is also a path in G. Furthermore, because of ECMP, that the minimal
segmentation of p will contain all of its edges as adjacency segments. Hence
sr-cost(min-seg(p)) = 2|E(p)| so it follows that if can find a path on H that
maximizes sr-cost(min-seg(p)) we can find a path on G that maximizes E(p)
which completes the proof.

Corollary 4.25. Problem 2 is NP-hard.

Proof. Let G, s, t be an instance of Problem 3. Let m = E(G). We build a graph
by adding a path (x1, . . . , xm, s) connecting to s whose minimal segmentation
has segment cost 2m and a path (t,y1, . . . ,ym) going out of t whose minimal
segmentation also has segment cost 2m. This is achieved by adding also nodes
x ′1, . . . , x ′m and y ′1, . . . ,y ′m and edges (xi, x

′
i) and (x ′i, xi+1) of cost 1 to ensure

that adjacency segments are required to segment the two paths mentioned above.
Figure 4.13 illustrates this. Dashed edges represent edges of cost 1 and solid
edges represent edge of cost 2.

60 CHAPTER 4. SEGMENT ROUTING

s

t

G

G ′

xm

x ′m

xm−1

x ′m−1

. . .
x1

x ′1

ym

y ′m

ym−1

y ′m−1

. . .
y1

y ′1

Figure 4.13: Example of the transformation.

By lemma 4.8, the maximum cost of a minimal segmentation in G is at most
2m. Therefore, the maximum cost of a minimal segmentation of a path in G ′

must be a path from x1 to y1 since just this part of the path will have segment
cost at least 4m. Since the path from x1 passes by s, to each y1 we need to pass
by t, we will achieve the maximum segment cost by connecting s and t by path
with maximum segmentation cost. Thus the solution to Problem 2 on G ′ is a
path of cost x + 4m where x is the cost of the solution to problem 3 on input
G, s, t. We conclude that if we could solve Problem 2 in polynomial time then
we could also solve Problem 3 in polynomial time. Therefore, by Theorem 4.24,
we conclude that 2 is NP-hard.

Conclusion

In this chapter we provided a first formalization of segment routing that com-
prises both node and adjacency segments. We provided an algorithm for com-
puting minimal segmentations. This algorithms opens the possibility of using
traditional graph algorithm for solving optimization problems over a network
and then using it to segment and implement the solution on a segment routed
network. The advantage of this is that it allows to leverage the long lasting
graph theory and algorithms that have been developed without needing to ex-
tend those results to segment routing. The drawback of course is that this
approach yields no guarantees over the number of segments needed in the end.
Maybe in the future, when the number of segments in the segment stack be-
comes less of a limitation most solutions will eventually switch to this approach.
However for the time being, we still need solutions that take these constraints
into account.

We also developed a reachability theory which constitutes the first steps
towards having tools to analyze how well a network is suited for segment routing.
We will see in Chapter 7 that this reachability theory makes it possible to provide
minimum segment cost cycle covers of a network in polynomial time.

Chapter 5

Optimal sr-paths

Introduction

In this chapter we study several problems related to computing optimal sr-
paths between two givens nodes. We start by defining weight functions for sr-
paths and propose an algorithm for computing sr-paths of minimal weight with
respect to such a weight function and show how we can achieve low latency
in a segment routed network. Next we study the reverse problem of finding
a path of maximum weight. Finally, we show how to compute sr-paths with
maximum capacity. This is useful to be able to route demands on a network
without exceeding link capacities.

We are not the first to consider optimizing paths that need to visit a list
of way points [3, 5]. Our contribution is that we focus specifically on segment
routing.

5.1 Minimum weight sr-path

The problem of computing minimum weight sr-paths appears in some form or
another as a sub-problem in each of the three applications of segment routing
that we study in this thesis. It also has interesting applications in itself such
as computing sr-paths with minimum latency in the network or sr-paths with
maximum bandwidth.

In order to be able to make sense of what we mean by a minimum weight
sr-path, we need to define weight functions for sr-paths which we call sr-metrics.
These will essentially be generalizations of weight function on graphs. To avoid
confusion with minimum segment cost sr-paths, we will always be careful to not
interchange the words weight and cost. So whenever we mention the weight of
a sr-path we mean the value of some sr-metric when evaluated on that sr-path
and whenever we mention its cost we are thinking in terms of segments.

Definition 5.1. Let G be a network. A sr-metric is a function w : (V(G)× V(G))∪
E(G) → R ∪ {∞} such that if there are no paths between u and v on G then
w(u, v) =∞. Given a sr-path ~p = 〈e1, . . . , en〉 we define the weight w(~p) as

w(~p) =

n∑
i=2

w(x2i−1, x1i) +
∑

i:xi∈E(G)

w(xi).

61

62 CHAPTER 5. OPTIMAL SR-PATHS

The way to think about a sr-metric is that w(u, v) for u, v ∈ V(G) defines
what we pay for traversing the shortest paths between u and v and w(e) for
e ∈ E(G) defines the weight of traversing edge e with an adjacency segment.
The problem of finding minimum cost sr-paths with respect to some metric is
defined as follows.

Problem 1 (Minimum weight sr-path)

Input: A network G, a sr-metric w, k ∈ N and two distinct nodes s, t ∈ V(G).
Output: A sr-path ~p ∈ ~Pk(s, t) such that w(~p) is minimal.

5.1.1 General algorithm

We propose in this section an algorithm for computing minimum weight sr-
paths. The idea of this algorithm comes from the Bellman-Ford shortest path
algorithm [14]. The Bellman-Ford algorithm is a dynamic programming (DP)
algorithm for computing shortest paths on graphs with both positive and neg-
ative edge weights from a given source s. At first sight, this might seem totally
different from what we are doing here. However if we look at the original dy-
namic programming formulation, we see that it is actually computing shortest
paths of increasing lengths, in terms of edges. In a nutshell, they define DP
state spaces such that

sol(i, v) = the weight of the shortest path from

s to v using at most i edges.

We are going to define a very similar state space in our solution. The main
difference is that the i parameter will correspond the segment cost of the sr-path
rather the a number of edges. We thus define the following DP state space

sol(i, v) = the minimum weight sr-path from

s to v with segment cost at most i.

The solution minimum weight sr-path problem is by definition sol(k, t). For
i = 0 the only possible sr-path of segment cost 0 from s to any node is 〈s〉.
Thus, we have that sol(0, s) = 0 and sol(0, v) =∞ for v 6= s.

The next step is to express sol(i, ∗) in terms of sol(j, s) with j < i. The idea
for doing this it to analyze the structure of a sr-path of cost i. There are three
possibilities to reach a node v with a sr-path of segment cost at most i. These
three possibilities are illustrated in Figure 5.1. The first way is to simply not
use the extra segment and reach v in the best way using a sr-path of segment
cost at most i − 1. The second possibility is to reach some node u ∈ V using
a sr-path of segment cost at most i − 1 and then use one extra node segment
to reach v incurring an extra cost of w(u, v). Finally, we can use a sr-path of
cost at most i − 2 to any node r and then append to it an adjacency segment
(u, v) where u is a in-neighbor of v. Note that nothing prevents r from being
equal to u. In this case it simply means that we append the adjacency (u, v) to

5.1. MINIMUM WEIGHT SR-PATH 63

s vu

u
r

sol(i− 1, v) w(u, v)

sol(i− 1, v)

w
((
u

, v
))

sol(i−
2, r)

w(r,u)

Figure 5.1: Illustration of the sol recurrence

a path that already ends at node u. The cost increment of doing so is the cost
of traversing the shortest path from r to u plus the cost of the link (u, v).

The next theorem formalizes this intuition.

Theorem 5.1. For i > 1 and x ∈ V(G) it holds that

sol(i, v) = min


sol(i− 1, v)

sol(i− 1,u) +w(u, v) s.t u ∈ V

sol(i− 2, r) +w(r,u) +w((u, v)) s.t r ∈ V

where the third value is only defined for i > 2 (set to ∞) otherwise.

Proof. Let ~p = 〈x1, . . . , xn〉 be a minimum weight sr-path from s to v of segment
cost at most i. If sr-cost(~p) < i then by definition w(~p) = sol(i− 1, v). Suppose
then that sr-cost(~p) = i. We consider two cases.

Case 1: xn ∈ V(G). In this case ~q = 〈x1, . . . , xn−1〉 is a sr-path from s
to some node u = x2n−1 such that w(~q) = i − 1. It must be the case that
w(~q) = sol(i − 1,u) or otherwise we could replace it by a better sr-path and
obtain a sr-path from s to v with lower weight. Therefore, by definition of w,
we have

sol(i, v) = w(~p) = w(~q) +w(u, v) = sol(i− 1,u) +w(u, v).

Case 2: xn ∈ E(G). This case is similar to the previous one. This time
~q = 〈x1, . . . , xn−1〉 is a sr-path from s to some node r = x2n−1 such that w(~q) =
i − 2. Again, it must be the case that w(~q) = sol(i − 2, r). By definition of w,
if we let u = x1n, it holds that

sol(i, x) = w(~p) = w(~q)+w(x2n−1, x1n)+w(xn) = sol(i−1,y)+w(r,u)+w((u, v)).

Since the values of sol(i, ∗) depend only on sol(i − 1, ∗), we can compute
all these values by iterating in increasing order of i. For each i, evaluating one
state of the form (i, v) takes O(|V(G)|+ |V(G)| · |δ−(v)|). Hence, given i, the cost

64 CHAPTER 5. OPTIMAL SR-PATHS

Algorithm 4 minWeightSrPath (g,orig,dest,w,maxSeg)

1: sol← matrix(maxSeg+ 1,g.V(),∞)
2: sol(0,orig) = 0
3: parent← matrix(maxSeg+ 1,g.V(),null)
4: for i = 1, . . . ,maxSeg do
5: for cur ∈ g.V() do
6: sol(i, cur)← sol(i− 1, cur)
7: parent(i, cur)← parent(i− 1, cur)
8: for prev ∈ g.V() \ {cur} do
9: if sol(i− 1,prev) +w(prev, cur) < sol(i, cur) then

10: [we reach cur using node segment]
11: sol(i, cur) = sol(i− 1,prev) +w(prev, cur)
12: parent(i, cur)← prev

13: [the third case is only defined for i > 2]
14: if i > 2 then
15: for e = (orig,dest) ∈ g.inEdges(cur) do
16: for prev ∈ g.V() \ {cur} do
17: if sol(i− 2,prev) +w(prev,orig) +w(e) < sol(i, cur) then
18: [we reach cur using adjacency]
19: sol(i, cur) = sol(i− 2,prev) +w(prev,orig) +w(e)
20: parent(i, cur)← e

21: opt← sol(maxSeg,dest)
22: k← maxSeg

23: while k− 1 > 0 and sol(k− 1,dest) = opt do
24: k← k− 1
25: return SrPath(parent,orig,dest,k,opt)

of evaluating state (i, v) all v ∈ V(G) is O(|V(G)|2 + |V(G)| · |E(G)|) making the
total time complexity be O(k · |V(G)| · |E(G)|). A formalization of this algorithm
is provided as Algorithm 4. Since this algorithm runs in polynomial time, we
have the following result.

Proposition 5.2. Problem 1 can be solved in polynomial time.

5.1.2 Achieving minimum latency with SR

In this section we explore the problem of computing and implementing minimum
latency paths in a network. In a typical network, routing is done using shortest
path routing with respect to the IGP costs configured on the links. These costs
can be, to some extent, arbitrary and need not be related with the link latencies.
This means that it can happen that a suboptimal path is used for forwarding
packets, with respect to the total time it takes the packets to travel from the
origin to its destination.

In Figure 5.2 we illustrate such an example in a real network. The IGP
shortest path between routers a and c is the one shown in the solid blue edges
and has a total latency of 101.4 milliseconds. On the other hand, the path
(a, d, e, c), represented by the green edges, only has a latency of 58.2 millisec-
onds, that is, it is 74% faster. This path can be implemented with segment
routing by adding, for instance, a detour towards router d before forwarding the
traffic to router c.

5.1. MINIMUM WEIGHT SR-PATH 65

a b c

d e

975, 59.8 90, 41.6

5
,

0
.
1

1001, 31.5

6
3
,

2
6
.
6

igp, lat

Figure 5.2: A small subgraph of a real network where the IGP shortest path
between two nodes paths is 74% slower than the optimal path.

Although this example shows that SR can sometimes make it possible to
find much more efficient paths, our experiments show that the average gain is
actually much lower than the 74% shown above and that this is an outlier result.
For every topology in our data set, we computed for every pair of distinct nodes,
the minimum latency path between them and computed the ratio between this
value and the latency of the IGP shortest path. Figure 5.3 shows a box plot of
these ratios. On the x-axis, we either have a single topology or a topology group,
and on the y-axis we have the ratio between the nominal latency (latency of
the IGP shortest path) and minimum latency of any path connecting the same
origin and destination. We aggregated the results for the Zoo topologies because
this data set contains over 200 topologies making it impossible to show all of
them. The last box shows the aggregated results over all topologies. We can
observe that the average gain is only 8%, much lower than our example.

However, it is still interesting to study the problem of finding minimum
latency segment routing paths for two reasons. First, even if the gain is not
as significant as our above example on average, there is still something to be
gained in terms of latency when using SR over IGP shortest path routing as the
overhead of doing so is quite small since SR does not require routers to maintain
state. Second, as we will see later, this problem appears in some form or another
as a subproblem of other problems that we have tackled in this thesis.

Shortest path plus segmentation

The first way to solve this problem with segment routing is to simply use a
shortest path algorithm such as Dijkstra’s algorithm to compute the minimum
latency path between the origin and the destination. Then, in order to imple-
ment that path with segment routing, we can use the minimal segmentation
algorithm proposed in Chapter 4 to segment that path.

The problem with doing this is that we have no control over the number of
segments in the final path. If could be the case that the minimum latency path
actually requires a huge amount of segments to be implemented. Figure 5.4
shows the distribution of the number of segments required in the segmentation
of the minimum latency paths over all pairs of nodes in the topologies from our
data set.

66 CHAPTER 5. OPTIMAL SR-PATHS

AS
12

21

AS
12

39

AS
17

55

AS
32

57

AS
39

67

AS
64

61

re
al
1

re
al
2

re
al
3

zo
o al
l

Topologies

0

20

40

60

80

100

Pe
rc
en

ta
ge

 o
f l
at
en

cy
 g
ai
n

Latency gain with SR

Figure 5.3: Latecy gain in percentage.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Segment cost

0

10

20

30

40

Pe
rc
en

ta
ge

 o
f p

ai
rs
 o
ve

r a
ll
to
po

lo
gi
es

Number of segments required for the min lat path (all)

Figure 5.4: Number of segments required in the minimum latency paths over
all topologies.

5.1. MINIMUM WEIGHT SR-PATH 67

0 1 2 3 4 5 6 7 8 9 10
Segment cost

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Pe

rc
en

ta
ge

 o
f p

ai
rs

 fo
r O

VH
-E

UR

Number of segments required for the min lat path (OVH-EUR)

Figure 5.5: Number of segments required in the minimum latency paths for
OVH-EUR.

These results indicate that on average, there is some correlation between
the IGP shortest paths and the minimum latency paths. For 20% of the pairs
over all topologies, the IGP shortest path matches the minimum latency path.
With about 5 segments we can already route over 96% of the minimum latency
paths. Thus we can say that on average computing the minimum latency path
and then segmenting it will yield a path that requires a small segment stack and
this is likely to be implementable on the network.

However, there are some topologies where this is far from true. Figure 5.5
shows the same results but for a single topology OVH-EUR.

For this topology the situation is quite different as we need more than 5
segments for about 26% of the pairs. The reason why we observe this behavior
in the OVH-EUR topology is because it contains many link bundles (pairs of
nodes with a lot of parallel links between them). This creates a lot of ECMP
making it hard for segment routing to pass by very specific paths.

This motivates the need for a minimum latency path finding algorithm that
takes into account the number of segments from the start rather than simply
computing a minimum latency path and hope that by chance it will not require
a long segment stack.

Minimum latency SR-Path problem

Another way of approaching this problem is to define a suitable sr-metric and
use Algorithm 4 for computing a minimum latency sr-path. In this way we
will have full control over the number of segments in the output. The price to
pay with this is that the latency of the obtained sr-path will not be the global
minimum but only the local minimum over all sr-paths in ~Pk.

To be able to define the problem more formally we need to define what is
the latency of a sr-path. This might seem obvious but in the presence of ECMP,

68 CHAPTER 5. OPTIMAL SR-PATHS

a

b

c

d

e

f

g h i

j

4
1
,

1
9
.
5

25, 5.5 1, 0.1 5, 0.26

1
,

0
.
1

38, 4.8 1, 0.1 30, 13.9 1, 0.1

1
,

0
.
1

igp, lat

Figure 5.6: The shortest path DAG between routers a and j in a real network.

a sr-path will correspond to a subnetwork of the original network rather than a
simple path. In reality, as we mentioned previously, the behavior of the network
may vary making it impossible to know which path amongst all paths defined
by the sr-path will actually be used to forward traffic.

Let us illustrate this in a real example. Figure 5.6 shows the shortest path
subnetwork between routers a and j in a real network. Both paths have the
same IGP cost of 72. The top path has latency 25.36ms and the bottom one has
19.1ms. Whenever we have a sr-path of the form 〈. . . , a, j, . . .〉, we do not know
whether path (a, b, d, f, j) or (a, c, e, g, h, i, j) will be used to forward traffic
between a and j.

If we want to be able to provide guarantees about the latency, we need to
consider the worst case scenario where, whenever there is more than one path,
we assume the slowest one is used. This corresponds to defining the latency of
a sr-path 〈s1, s2〉 as the longest path (w.r.t latencies) of any paths between s1
and s2 on SP(s1, s2). This motivates the following definition.

Definition 5.2. Let s1, s2 be two nodes of a network G and e an edge. The
maximum latency sr-metric is defined as

latM (s1, s2) = maximum latency of a path from s1 to s2 in SP(s1, s2)

and

latM (e) = lat(e).

With this metric, we have latM (a, j) = 25.38. Note that on single edges this
metric is defined as to match that edge’s latency. It is important to notice that
this metric can be computed efficiently. It is well known that the longest path
problem is NP-hard in general [14]. However, in this case we are computing
it on an acyclic network (the shortest path subnetwork) which can be done in
linear time with a simple dynamic programming algorithm [14].

Another metric that is of interest is to consider that the latency of a sr-path
is the average latency over all shortest paths. This corresponds in practice with

5.2. MAXIMUM WEIGHT SR-PATHS 69

1 2 3 4 5 6 7 8 9 10

>
10

Number of ECMP

0

10

20

30

40

50

60
Pe

rc
en

ta
ge

 o
f p

ai
rs

Distribution of the number of ECMP over all topologies

Figure 5.7: Evaluation of the average number of ECMP over all topologies.

a situation where the next hops are selected randomly in case of ECMP. It
somehow reflects the behavior of selecting the next hops with an unknown hash
function when several possible next hops exist.

Definition 5.3. Let s1, s2 be two nodes of a network G and e an edge. The
average latency sr-metric is defined as

latµ(s1, s2) = average latency among all paths from s1 to s2 in SP(s1, s2)

and
latµ(e) = lat(e).

This metric can also be computed efficiently. We can use dynamic program-
ming to compute the number of paths and their total cost in linear time. The
only complication is that this number grows exponentially which can easily be
overcome using arbitrary precision integers.

Figure 5.7 shows the distribution of the number of equal cost shortest path
between all pairs of routers over all topologies. We can see about 60% of the
time there is a single shortest path between the pairs of nodes. The maximum
number of paths found for any pair of nodes was 11150. This value might seem
huge but it is actually quite small when we take into the fact the number of
paths in a DAG can be as large as 2|V |−2 where |V | is the number of routers
in that topology. This means that when computing average measures, we can
probably use normal integers rather than arbitrary precision integers.

5.2 Maximum weight sr-paths

In this section, we briefly discuss the problem of finding maximum weight sr-
paths.

70 CHAPTER 5. OPTIMAL SR-PATHS

Problem 2 (Maximum weight sr-path)

Input: A network G, a sr-metric w, an integer constant k > 1 and two distinct
nodes s, t ∈ V(G).
Output: A sr-path ~p ∈ ~Pk(s, t) such that w(~p) is maximal.

This problem can be solved in the exact same way as the minimum weight
sr-path problem (Problem 1) by replacing the∞ by −∞ on line 1 and replacing
the < by > on lines 9 and 17 of Algorithm 4.

This result might seem unintuitive at first because, as mentioned at the end
of Chapter 4, the longest path problem on graphs is NP-hard. Hence, one might
think by setting k arbitrarily high and by using an appropriate sr-metric the two
problems could become the same. There is however an important nuance. In
this problem we are not preventing the sr-path from repeating segments while
the longest path problem required simple paths. It is not hard to see that
if we drop the simple path constraint then the longest path problem becomes
trivial: if the input graph is acyclic then we compute the answer with dynamic
programming otherwise the answer is ∞ since we can traverse any cycle an
arbitrary amount of times getting longer and longer paths.

The next question one might then ask about this problem is, can this problem
be interesting for some sr-metric w? The answer is yes as we will see in Chapter
7.

5.3 Maximum capacity sr-paths

When routing traffic over a network it can be the case that the network is
highly loaded. This can cause some network links to become congested such
as for instance, shortest path links or the links in the minimum latency path.
Motivated by this, we study the problem of finding a sr-path between two nodes
whose congestion in minimum. Having such an algorithm can be an interesting
building block for dynamically allocating incoming demands while doing a best
effort to prevent congestion. Of course, using such an algorithm locally for each
incoming demand will lead to an overall sub-optimal solution. We will study
the problem of considering all demands at once on Chapter 6.

We start with a very simple definition of demand.

Definition 5.4. A demand in a network G is a triple (s, t,ν) where s, t ∈ V(G)
and ν ∈ N+. Given a demand d we write src(d) = s, dst(d) = t and vol(d) = ν.

Before formally defining the problem that we solve in this section, we need to
understand how traffic on a sr-path affects link loads since sr-paths can actually
correspond to several paths on the original network in case of ECMP. In this
section we assume that the network is using a traffic split mechanism. Recall
that this means that in the presence of ECMP, the routers evenly split the
incoming traffic amongst those equal cost paths. Consider sending one unit of
flow from node a to node d on the graph shown in Figure 5.8. There are two
shortest paths between these nodes: ((a, c), (c, d)) and ((a, b), (b, d)). Therefore,
there will be a 50-50 split of the load over these two paths.

5.3. MAXIMUM CAPACITY SR-PATHS 71

a

b

c

d

e

f

g

h

i

j

k

50
%

50%

50%

50%

x1

x2

Figure 5.8: Traffic split example between ECMP.

We model this by computing, for each source-destination pair s, t ∈ V(G),
and every edge e ∈ E(G), what is the fraction of the traffic passing by e when
using shortest path routing from s to t. In the previous example, this fraction
is 0.5 for edges (a, b), (a, c), (c, d) and (b, d) and 0 on all other edges with s = a

and t = d. First, we need to define the load on the nodes assuming that 1 unit
of traffic is sent from s to t.

Definition 5.5. Let G be a network and s, t ∈ V(G). We define for every
v ∈ V(G)

loadst(v) =


1 if v = s∑
u∈δ−(SP(s,t),v)

load(u)

|δ+(SP(s, t),u)|
otherwise

Note that for each s, t ∈ V(G), SP(s, t) is an acyclic graph so loadst(v) is well
defined (it is not defined in terms of itself). The value of loadst(v) corresponds
to the amount of traffic that would pass by the router corresponding to node v
when routing one unit of traffic from s to t, assuming that in case of ECMP the
traffic is split equally. For example, consider the network shown in Figure 5.9
and assume that s = c and t = i (shown in green). Then SP(s, t) = SP(c, i)
corresponds to the green edges and the value of loadst(v) is shown in the gray
boxes next to each node v ∈ V(G). We see that, for instance, loadst(h) = 1/2.
This means that under equal split, half of the traffic load sent with shortest
path routing from c to i will pass by h. This corresponds to the definition since

loadci(h) =
∑

u∈δ−(SP(c,i),h)

load(u)

|δ+(SP(c, i),u)|

=
1

2
· loadci(f) +

1

1
· loadci(d)

=
1

2
· 1

3
+

1

3
=

1

6
+

1

3
=

1

2

72 CHAPTER 5. OPTIMAL SR-PATHS

a

b

c

d

e

f

g

h

i

j

k

x1

x2
1

1/3

1/3

1/3

1/2

1/2

10

0

0

0

Figure 5.9: Node loads with respect to s = c and t = i.

Using the node loads we can now define the edge loads which, as described
above, give us the fraction of traffic traversed by a link in the network. These
values are necessary to express the link capacity constraints on TE models with
segment routing. This is what we study in the next chapter.

Definition 5.6. Let G be a network and s, t ∈ V(G). We define, for every
e = (u, v) ∈ E(G)

τ(s, t, e) =
loadst(u)

|δ+(SP(s, t),u)|
.

In order to characterize the proportion of traffic traversed by a link with respect
to a sr-path ~p = 〈x1, . . . , xn〉 we define

τ(~p, e) =

n∑
i=2

τ(x2i−1, x1i , e) +
∑
i:xi=e

1.

The first part of the expression of τ(~p, e) evaluates the ratio on e for the
shortest path subgraphs between consecutive segments, while the second part
counts how many times e is used as an adjacency segment on the sr-path ~p.
This summation is valid because when an adjacency segment occurs, the full
unit demand is routed through the edge without split. Note that τ(~p, e) may
be larger than 1 since a same edge can be used several times in case of cycles in
forw(~p). Figure 5.10 shows the edge ratios τ(〈a, c, i, j〉, e) for every e ∈ E(G).
The green arrows correspond to the forwarding graph of 〈a, c, i, j〉.

a

b

c

d

e

f

g

h

i

j

k

1

1/3

1/3

1/3

1/3

1/
6

1/6

1/3

1/2

1/
2

1

0

0 0

0 0

x1

x2

x3

x4

Figure 5.10: Split ratio for sr-path 〈a, c, i, j〉.

5.3. MAXIMUM CAPACITY SR-PATHS 73

Definition 5.7. Let G be a network and ~p a sr-path on G. We say that an

edge e ∈ E(~p) is critical if the fraction cap(e)
τ(~p,e) has minimum value amongst all

edges e ∈ E(~p). We define the capacity of ~p as cap(~p) = mine∈E(~p)
cap(e)
τ(~p,e) .

To understand this definition, imagine that we route a demand d over a
sr-path ~p. The bandwidth that this will consume of each edge e is given by
τ(~p, e) · vol(d). Hence, we will exceed the capacity of edge e if and only if

τ(~p, e) · vol(d) > cap(e)⇔ vol(d) >
cap(e)

τ(~p, e)
.

Hence cap(~p) describes the maximum volume that can be routed over ~p without
exceeding the capacity of any edge in E(~p).

Lemma 5.3. Let G be a network and ~p = 〈x1, . . . , xn〉 a sr-path on G. The
following holds:

i) If xn ∈ V(G) then cap(~p) = min
(
cap〈x1, . . . , xn−1〉, cap〈x2n−1, xn〉

)
ii) If xn ∈ E(G) then cap(~p) = min

(
cap〈x1, . . . , xn−1〉, cap〈x2n−1, x1n〉, cap(xn)

)
Proof. Immediate from the definition of cap(~p) since in the first case we have

E(~p) = E(〈x1, . . . , xn−1〉) ∪ E(〈x2n−1, xn〉)

and in the second one

E(~p) = E(〈x1, . . . , xn−1〉) ∪ E(〈x2n−1, x1n〉) ∪ xn.

With this, we can now define the problem of finding the best sr-path, in
terms of capacity, to route a given demand d.

Problem 3 (Maximum capacity sr-path)

Input: A network G and a demand d on G.

Output: A sr-path from src(d) to dst(d) such that cap(~p) is maximum.

To solve Problem 3 we are going to proceed in a manner very similar to what
we did to compute minimum weights sr-paths. We define a DP state space as
follows.

sol(i, v) = the maximum capacity of a sr-path from

s to v with segment cost at most i.

With a case analysis similar to the one we performed above we can obtain a
recurrence expressing sol(i, v) in terms of sol(i− 1, ∗) and sol(i− 2, ∗) as shown
in the next theorem.

74 CHAPTER 5. OPTIMAL SR-PATHS

Theorem 5.4. For i > 1 and x ∈ V(G) it holds that

sol(i, v) = max


sol(i− 1, v)

max
u∈V(G)

min (sol(i− 1,u), cap〈u, v〉)

max
r∈V(G),e∈δ−(v)

min (sol(i− 2, r), cap〈r,u〉, cap(e))

where the third value is only defined for i > 2 (set to −∞) otherwise.

Proof. Suppose that ~p = 〈x1, . . . xn〉 is an optimal solution to the sub-problem
corresponding to sol(i, v). Thus ~p is a sr-path with sr-cost(~p) 6 i from s to
u with maximum capacity. If sr-cost(~p) < i then ~p is also the solution of the
sub-problem corresponding to sol(i− 1, v) so sol(i, v) = sol(i− 1, v). Otherwise
sr-cost(~p) = i and we consider two cases, depending on whether xn is a node
segment or an adjacency segment.

Case 1: xn ∈ V(G). In this case, by Lemma 5.3 we have that

cap(~p) = min
(
cap〈x1, . . . , xn−1〉, cap〈x2n−1, xn〉

)
Since ~p is optimal, 〈x1, . . . , xn−1〉 has segment cost i − 1 and xn = v it follows
that

min
(
cap〈x1, . . . , xn−1〉, cap〈x2n−1, xn〉

)
= max
u∈V(G)

min (sol(i− 1,u), cap〈u, v〉) .

Case 2: xn ∈ E(G). Then, by Lemma 5.3,

cap(~p) = min
(
cap〈x1, . . . , xn−1〉, cap〈x2n−1, x1n〉, cap(xn)

)
.

As in the first case, since ~p is optimal, 〈x1, . . . , xn−1〉 has segment cost i−2 and
xn ∈ δ−(v) it follows that

cap(~p) = max
r∈V(G),e∈δ−(v)

min (sol(i− 2, r), cap〈r,u〉, cap(e)) .

Since these cover all possibilities we conclude the proof.

We can compute this recurrence as shown in Algorithm 5. Since the re-
currence is based on the values of cap〈u, v〉 where u, v ∈ V(G) we start by
computing those using the definition. The remainder of the algorithm is very
similar to Algorithm 4. The only differences are the following. The initializa-
tion of sol on lines 5 and 6 uses values 0 for impossible solution and ∞ as the
capacity of the empty path. The only other changes are the conditions of lines
13 and 21 that are set to match the recurrence provided by Theorem 5.4 and
the respective assignments to sol that follow these conditions.

This is an important tool when designing online demand allocation. We
can use it to accept or refuse demand by keeping track of the link congestions
and for each incoming demand d computing the maximum capacity sr-path ~p
between src(d) and dst(d). Then if cap(~p) > vol(d) we accept the demand and
route it over ~p. Otherwise we reject it. We did not explore the problem of
online demand routing in this thesis but we believe that this algorithm together
with our column generation algorithm for the offline problem that we propose
in the next chapter are a good starting point for someone wanting to tackle this
problem with segment routing.

5.3. MAXIMUM CAPACITY SR-PATHS 75

Algorithm 5 maxCapSrPath (g, τ,orig,dest,maxSeg)

1: [pre-compute cap〈u, v〉 for all u, v and store them as c(u, v)]
2: for u ∈ V(G) do
3: for v ∈ V(G) do

4: c(u, v)← min
e∈E(SP(u,v))

cap(e)

τ(〈u, v〉, e)
5: sol← matrix(maxSeg+ 1,g.V(), 0)
6: sol(0,orig) =∞
7: parent← matrix(maxSeg+ 1,g.V(),null)
8: for i = 1, . . . ,maxSeg do
9: for cur ∈ g.V() do

10: sol(i, cur)← sol(i− 1, cur)
11: parent(i, cur)← parent(i− 1, cur)
12: for prev ∈ g.V() \ {cur} do
13: if min (sol(i− 1,prev), c(prev, cur)) > sol(i, cur) then
14: [found a better solution by reaching cur using node segment on cur]
15: sol(i, cur) = min (sol(i− 1,prev), c(prev, cur))
16: parent(i, cur)← prev

17: [the third case is only defined for i > 2]
18: if i > 2 then
19: for e = (orig,dest) ∈ g.inEdges(cur) do
20: for prev ∈ g.V() \ {cur} do
21: if min (sol(i− 2,prev), c(prev,orig), cap(e)) > sol(i, cur) then
22: [found better solution by reaching cur using an adjacency on e]
23: sol(i, cur) = min (sol(i− 2,prev), c(prev,orig), cap(e))
24: parent(i, cur)← e

25: opt← sol(maxSeg,dest)
26: k← maxSeg

27: while k− 1 > 0 and sol(k− 1,dest) = opt do
28: k← k− 1
29: return SrPath(parent,orig,dest, k,opt)

We close this chapter by showing, perhaps surprisingly, that the maximum
capacity sr-path is not necessarily acyclic. This is one example where we cannot
use Theorem 4.6 to ignore sr-paths. We will see in Chapter 8 an example where
we can leverage this theorem to ignore all cyclic sr-paths in our formulation
leading to a faster algorithm.

To see that the maximum capacity sr-path can be cyclic, consider the net-
work shown in Figure 5.11 where we want to route one unit demand from node a
to node c. The intuitive solution would be to simply use sr-path 〈a, c〉. However
this will lead to using 100% of the capacity of link (a, c). If however we first go
to node d and only then back to c, the maximum link utilisation will be link
(d, c) which will be used at 50%.

76 CHAPTER 5. OPTIMAL SR-PATHS

a

b

c

d

2

1

2

2

x1 x2

x3

0.
5

0.5 0.
5

0.5

1

Figure 5.11: Example where the maximum capacity sr-path ~p = 〈a, d, c〉 from a

to c is cyclic. The green edges represent forw(~p) and the values on top of them
the amount of traffic demand passing on each given edge.

5.4 Conclusion

In this chapter we proposed a general algorithm for computing minimum weight
sr-paths. We showed that we can leverage this algorithm in order to achieve
lower latency than with shortest path routing in a segment routed network.

We will see in later chapters that computing minimum weight sr-paths is a
common subproblem that occurs designing optimization algorithms for segment
routing. By using similar ideas we also proposed an algorithm for computing
maximum capacity sr-paths. These two examples show that DP programming
is a good fit for solving these kind of problems. We believe that other interesting
similar problems will arise in the future and that following this approach will
probably be a good starting point for having an efficient algorithm for solving
them.

Chapter 6

Traffic engineering with SR

Introduction

In this chapter we propose a column generation algorithm for solving the traffic
engineering (TE) problem on a network using segment routing. The traffic
engineering problem consists of routing a set of demands over the network whilst
minimizing congestion. Routing traffic between a source and a destination along
shortest paths allows for no flexibility regarding the way this traffic is send
which may lead to a suboptimal usage of the network infrastructure. Consider
the four router network show in Figure 6.1. Suppose that we want to route
three demands on this network, all from a to b. Assuming unit IGP weights,
all those demands will traverse the link (a, d). In contrast, we could route one
of them via b and the other via c as shown on the right. This second solution
leads to a much more efficient utilisation of the network. It spreads the traffic
thus leading to less congestion. Assuming equal demand volumes, the solution
on the right improves the congestion of the link (a, b) by 66%. This is a very
small example and even here we can already see the limitations of shortest path
routing for TE.

a

b

c

d
a

b

c

d

Figure 6.1: Small example where shortest path routing is not ideal for TE.

Attempts at solving the TE problem can be categorized into two main cat-
egories. On one hand we could improve the way a set of demands is routed
by computing new IGP weights such that the resulting shortest paths between
the endpoints of each demand minimize the network congestion [29–31]. This

77

78 CHAPTER 6. TRAFFIC ENGINEERING WITH SR

approach is limited by the fact that these weights depend on the demands. Hav-
ing to configure new IGP weights for each set of demands is, to say the least,
impractical. Of course, one can try to find weights that are good on average
and always use those for each demand set.

Another possibility is to use a forwarding mechanism that allows to route
traffic over arbitrary paths. This is the approach that we are going to study in
this chapter by using SR as a forwarding mechanism.

6.1 Traffic engineering formalization

In this section we provide a formal definition of the TE problem considered
in this thesis. This formalization is not yet sr-centric. We define the segment
routing variant in a later section.

The usual definition of the problem assumes that a demand matrix is given
as input rather than a set of demands. The entry i, j of the matrix contains a
positive number representing the volume of the traffic that needs to be routed
between routers i and j. We prefer to use a set of demands at it allows for
more granularity. With a demand set, we can have several demands between
the same pair of routers that are routed in different ways. If for some reason
such granularity is not implementable in practice, one can always group the
demands between the same source-destination pairs into a single demand. This
makes the model with a set of demands more general than the matrix one.

The following definition will be useful to express the load of a link when
routing a demand on a given path p.

Definition 6.1. Let G be a network and p = (e1, . . . , el) a path on G. Given
e ∈ E(G), we denote the number of indexes such that ei = e by C(p, e).

We can now formally define the TE problem. We start with a general defi-
nition that is not SR centric where we assume that any path in the network can
be used to route any given demand.

Problem 1 (TE min-factor problem)

Input: A network G and D a set of n demands {d1, . . . ,dn} on G.
Output: The minimum factor λ > 0 and set of paths on G, p1, . . . ,pn such
that pi is a path from si to ti and for each link e ∈ E(G) it holds

n∑
i=1

C(pi, e) · vol(di) 6 λ · cap(e)

This is far from the only variant of the TE problem. In this version of the
problem we aim at minimizing the maximum congestion of any link. The value
of

n∑
i=1

C(pi, e) · vol(di)

gives the total amount of traffic that will be routed through edge e if one uses
paths p1, . . . ,pn to route demands d1, . . . ,dn, respectively. Note that in the

6.2. A BRIEF INTRODUCTION TO LP AND MIP 79

definition of the problem, we did not require the paths to be simple. Therefore
we need to count how often an edge is used by the path. This might seem
unnecessary at first sight since it is easy to see that there is always a solution
where each path pi is simple. However, we will see that with segment routing
this is not true and so, for consistency, we define the problem directly using
these factors.

A solution with λ = 1 is a solution where the capacity of every edge is not
exceeded. Clearly the lower λ is, the better, as this means that no edge is using
more that a ratio λ of its capacity. One could argue that this objective function
is not the most interesting in practice because it looks only at the worst case
link utilization and fails to provide a global view of the network. Imagine for
instance a solution where each link is used at 50% but one link is used at, say,
90%. This version of the problem will prefer, for example, a solution where every
link is used at 80% since the maximum utilisation is lower. A lot of variants have
been considered in the literature [4]. The reason why we chose this objective
function is because most segment routing solutions so far focus on this variant
of the problem thus making it easier for us to compare our results with theirs.

A common relaxation of the problem is to consider that each demand can
be served by a set of paths rather than a single path. It turns out that this
variant of the problem is much easier to solve. We will see that we can solve it
in polynomial time whereas Problem 1 is NP-hard [20].

Problem 2 (TE-multipath min-factor problem)

Input: A network G and D a set of n demands {d1, . . . ,dn} on G.
Output: The minimum factor λ > 0 and P1, . . . ,Pn such that each Pi is a
non-empty set of pairs (p, f) where p is a path from si to ti and f ∈ [0, 1] and
for each link e ∈ E(G) it holds

n∑
i=1

∑
(p,f)∈Pi

C(p, e) · f · vol(di) 6 λ · cap(e)

This relaxation is often used to provide a lower bound to the optimal value
λ∗ of Problem 1. In the next section we provide a brief overview about linear
programming (LP) which will be the central tool used to solve the problems
presented on the remainder of this thesis. We will also show how to solve
Problem 2 in polynomial time by providing a LP formulation.

6.2 A brief introduction to LP and MIP

In this section we provide a very brief introduction to linear programming and
mixed integer programming. The goal is simply to introduce the necessary
vocabulary in order to simplify the wording of the remaining of this chapter.

A linear programming is a central tool in optimization that allows one to
solve mathematical models whose objective is a linear function and whose con-
straints are representable by linear inequalities. A linear function is a function
f : Rn → R such that

f(x1, . . . , xn) = c1x1 + · · ·+ cnxn

80 CHAPTER 6. TRAFFIC ENGINEERING WITH SR

for some constants c1, . . . , cn ∈ R. A linear inequality is an inequality of the
form

a1x1 + . . . + anxn > b

for a1, . . . ,an,b ∈ R. In general, we have not one but m constraints so we are
given an m× n matrix of coefficients A and m values b1, . . . ,bm. Each row of
coefficients represents one constant. The general form of a linear program is the
following:

min c1x1 + c2x2 + . . . + cnxn
s.t a11x1 + a12x2 + . . . + a1nxn > b1

a21x1 + a22x2 + . . . + a2nxn > b2
...

...
am1x1 + am2x2 + . . . + amnxn > bm

xi ∈ R

Numerous problems can be modeled as linear programs. This, combined
with the fact that linear programs can be solved efficiently, makes LP a very
interesting problem solving tool [1, 15].

Every linear program is associated with another linear program called its
dual LP. The original problem is called the primal. The dual of a LP has one
constraint for each variable of the primal and one variable for each constraint
of the primal. The objective function is reversed so that if the primal is a
minimization problem then the dual is a maximization problem (and vice-versa).
The main result about LP duality is the strong duality theorem [50] which states
that the primal has an optimal solution if and only if the dual also has one and
both of them have the same value. The dual of a LP can be obtained by
following a systematic procedure. In the case of the LP formulated above, the
dual is given by:

max b1y1 + b2y2 + . . . + bmym
s.t a11y1 + a21y2 + . . . + am1ym 6 c1

a12y1 + a22y2 + . . . + am2ym 6 c2
...

...
a1nx1 + a2ny2 + . . . + amnym 6 cn

yi ∈ R

We are going to exploit duality when developing our CG solution. In our
algorithm we will denote a function LP-solve that, given an LP, outputs its
optimal solution x, the optimal solution of the dual y and the optimal objective
value.

In the above formulation we assumed that the domain of the variables was
R. Linear programs remain easy to solve as long as the variable ranges are
continuous ranges. A lot of very important problems can be modeled with
a linear objective function and linear constraints but require integral variable
domains. We refer to these problems as integer programs (IP) or mixed integer
program (MIP) if some of the variables are continuous and some are integral.
The duality theory mentioned above does not extend to integer programming.
The general integer programming problem is NP-hard. This makes it much

6.2. A BRIEF INTRODUCTION TO LP AND MIP 81

more challenging to find optimal solutions to MIP’s in general. In this chapter’s
introduction we mentioned that Problem 1 was hard to solve but Problem 2
was easy. We will see that both problems can be formulated with nearly the
same model. The only difference between them is that the first requires integer
variables whereas the second allows for continuous variables.

A lot of research has been put towards finding efficient algorithms for solving
MIP’s [65]. For the algorithms developed here, we denote a function MIP-
solve that given a MIP (or IP), outputs the optimal solution x and the optimal
objective value.

To give a concrete example of a linear program, we model Problem 2. A
classic way to formulate Problem 2 as a linear program is to express it as a
Multi-commodity flow (MCF) problem [32]. We define variables xed for each
edge e ∈ E(G) and demand d ∈ D such that the value of xed represents the
faction of vol(d) that traverses edge e. The model LP is the following:

MCF-LP(G,D)

min λ

s.t.
∑
d∈D

xed · vol(d) 6 λ · cap(e) ∀e ∈ E(G) (1)

∑
e∈δ−(v)

xed −
∑

e∈δ+(v)

xed = 0 ∀v ∈ V(G) \ {si, ti}, (2)

∀d ∈ D

∑
e∈δ−(s)

xed −
∑

e∈δ+(s)

xed = −1 ∀i ∈ {1, . . . , r}, (3)

∀d = (s, t,ν) ∈ D

∑
e∈δ−(t)

xed −
∑

e∈δ+(t)

xed = 1 ∀i ∈ {1, . . . , r}, (4)

∀d = (s, t,ν) ∈ D

xed ∈ [0, 1]

λ > 0

Constraints (1) ensure that the total demand volume traversing any edge is
at most a fraction λ of its capacity. Constraints (2), (3) and (4) are known as
flow constraints and ensure that each demand d is routed from src(d) to dst(d).
More precisely, the group of constraints (3) makes sure that the whole demand
exits src(d) and the group of constraints (4) ensure that the whole demand
reaches dst(d). The constraints (2) ensure that no demand traffic is lost by
requiring that any fraction of the demand that enters an intermediate router
also exits it.

Given a solution matrix x to MCF-LP we can easily construct a set of paths
for each demand d = (s, t,ν) ∈ D. To do so, we perform a sequence of breadth-
first searches (BFS) from s following only edges e such that xed > 0. Each
time we reach t, we trace back the path p and reduce the value of xed by the
mine∈E(p) xed. We continue to do this until one of the searches fails to reach t.

82 CHAPTER 6. TRAFFIC ENGINEERING WITH SR

a

b

c

d

0.
75

0.25

0.5

0.
25

0
.
5

a

b

c

d

0.
75

0.25

0.5

0.
25

0
.
5

a

b

c

d

0.
25

0.25 0.
5

0
.
2
5

(1) Solution graph (2) First BFS (3) Graph after reweight

a

b

c

d

0.
25

0.25 0.
5

0
.
2
5

a

b

c

d

0.
25

0.
25

0
.
2
5

a

b

c

d

0.
25

0.
25

0
.
2
5

(4) Second BFS (5) Graph after reweight (6) Third BFS

Figure 6.2: Converting the flow to a path set.

At this point we finished computing a set of paths for demand d. Repeating the
process for each demand will yield a set of paths over which we can route the
demands without exceeding the capacity of any edge by a factor greater than λ.

Figure 6.2 illustrates this process on a small example. The graph represents
the values of xed for a specific demand d. Each edge if labeled with the value of
xed (for clarity, we ommit edges with value 0 since they are ignored anyway by
the DFS). Then the blue arrows show possible BFS paths. After each path is
found, the value of the edges is reduced until no more path exists. In this case
we get three paths: ((a, b), (b, d)), ((a, c), (c, d)) and ((a, b), (b, c), (c, d)).

Using this procedure, we can easily transform a solution of MCF-LP in a
solution P1, . . . ,Pr of Problem 2. Algorithm 6 provides a formal description of
this process.

Proposition 6.1. Algorithm 6 runs in polynomial time and computes an opti-
mal solution of Problem 2.

Proof. Optimality comes from the fact that MCF-LP correctly models Problem
2 [20].

We know that linear problems can be solved in polynomial time [1, 15].
Therefore x can be computed in polynomial time on line 1. It remains to show
that our path building process takes polynomial time. Let d ∈ D. Building the
graph Gd on line 4 takes O(|E(G)| · |D|) and each BFS call takes O(|G|). In the
body of the while loop, that is, lines 7 to 12, the most costly line is line 12 which

6.3. TRAFFIC ENGINEERING WITH SEGMENT ROUTING 83

Algorithm 6 TE-multipath (G,D)

1: x,y, λ← LP-SOLVE(MCF-LP(G,D))
2: P← ∅
3: for d ∈ D do
4: Gd ← (V, {e ∈ E(G) | xed > 0})
5: p← BFS(Gd, src(d),dst(d))
6: while p 6= ⊥ do
7: ∆← mine∈E(p) xed
8: P← P ∪ {(p,∆)}
9: for e ∈ E(p) do

10: xed ← xed − ∆
11: Gd ← (V, {e ∈ E(G) | xed > 0})
12: p← BFS(Gd, src(d),dst(d))
13: return λ, P

takes O(|V(G)| · |E(G)|). Therefore we only need to prove that the number of
iterations of the while loop is polynomial. Since ∆ = mine∈E(p) xed, at each
iteration, at least one edge is removed from Gd at line 11. This means that the
number of iterations of the while loop is at most |E(G)|.

By requiring integral variables on model MCF-LP(G,D), that is, by replacing
xed ∈ [0, 1] by xed ∈ {0, 1}, we obtain a model for solving Problem 1. This
illustrates that just by requiring integer variables we can completely change the
difficulty of the problem since it takes us from a polynomial solvable problem
to a NP-hard one in this case.

6.3 Traffic engineering with segment routing

In this section we discuss the variants of Problems 1 and 2 when instead of using
arbitrary paths for routing, we use sr-paths. The SR version of the TE problem
is obtained by replacing paths by sr-paths, C(pi, e) by τ(~pi, e) and adding a
constraint on the segment cost of the sr-paths found. Recall that τ(~pi, e) was
defined on Chapter 5 and represents the proportion of the traffic that traverses
edge e when routing over sr-path ~p.

This last constraint is important to ensure that the paths can be supported
by the routers in the network. This leads to the definition of the following two
problems which, respectively, correspond to Problems 1 and 2.

Problem 3 (Segment routing traffic engineering)

Input: A network G, a set of demands D = {d1, . . . ,dn} on G and k ∈ N.

Output: The minimum factor λ > 0 and set of sr-paths on G, ~p1, . . . ,~pn such
that ~pi is a sr-path from si to ti with sr-cost(~pi) 6 k and for each link e ∈ E(G)
it holds

n∑
i=1

τ(~pi, e) · vol(di) 6 λ · cap(e).

84 CHAPTER 6. TRAFFIC ENGINEERING WITH SR

Problem 4 (Segment routing traffic engineering)

Input: A network G, a set of demands D = {d1, . . . ,dn} on G and k ∈ N.

Output: The minimum factor λ > 0 and set of sr-paths on G, ~P1, . . . , ~Pn such
that ~Pi is a non-empty set of pairs (~p, f) where ~p sr-path from si to ti with
sr-cost(~pi) 6 k, f ∈ [0, 1] and for each link e ∈ E(G) it holds

n∑
i=1

∑
(~p,f)∈~Pi

f · τ(~p, e) · vol(di) 6 λ · cap(e).

The minimum segmentation algorithm provides a way to translate solutions
of Problems 1 and 2 into solutions of Problems 3 and 4, respectively. The advan-
tage of this approach is that it makes it possible to leverage existing algorithms
for solving these widely studied graph problems. The drawback of course is
that since these algorithms are oblivious to segment routing, there is no way of
knowing whether or not the output paths will require too many segments for
routers to be able to support them.

We first evaluate the segment cost mentioned above. We already did this in
the previous chapter when we considered the problem of computing minimum
latency sr-paths. This is a way to evaluate how necessary it is to develop
dedicated algorithms and how often we can get away by simply segmenting
graph centric solutions using the minimum segmentation algorithm proposed in
Chapter 4. Perhaps in the future routers will be able to support a high amount
of segments and whenever this is the case, it will become fruitless to develop
dedicated algorithms.

6.3.1 Existing MIP models and algorithms for SRTE

We now have all the tools needed to describe existing models for the traffic
engineering problem with segment routing. The first approach that was devel-
oped by Bathia et al and considers only sr-paths of the form 〈s, x, t〉 to route
a demand from s to t [11]. That is, it restricts the set of admissible sr-paths
to sr-paths with a single detours towards a given router x on the network. The
main advantage of doing this is that we obtain a very efficient model since for
each demand there is a single decision to make: which intermediate router to
use.

Let P1 = {〈src(d), x, dst(d)〉 | x ∈ V(G)}. We define binary variables xdp
such that xdp = 1 if and only if demand d is routed over sr-path p. Their
model can be formulated as follows.

6.3. TRAFFIC ENGINEERING WITH SEGMENT ROUTING 85

SRTE-1DET(G,D)

min λ

s.t.
∑
p∈P1

xdp = 1 ∀d ∈ D

∑
~p∈P1

∑
d∈D

τ(~p, e) · vol(d) · xdp 6 λ · cap(e) ∀e ∈ E(G)

xdp ∈ {0, 1} ∀p ∈ P1, ∀d ∈ D

The first set of constraints specifies that each demand has to be served by
exactly one path. The second set of constraints ensures that no edge carries
more than λ · cap(e) traffic.

The model that we use for our column generation solution is a generalization
of this one where we replace the set of paths considered, P1 by the set of all
sr-paths with at most a given segment cost, ~Pk(G). Renaud Hartert already
had proposed this generalization in his thesis [39]. The only difference between
his model and ours is that we also consider adjacency segments in our sr-paths
whereas his model only considered node segments. We discuss our model in
more detail in the next section.

In his thesis, Hartert also proposed another model called segment model.
This model is closely related to the IP version of the model that we presented
for the multi-commodity flow MCF-LP. In the integral MCF model, we use
variables xed to indicate whether demand d is routed though edge e. Then
we use classic flow conservation constraints to ensure that if xed = 1 then
we have a path (e1, . . . , el) starting at src(d) and ending at src(d) such that
xe1d = 1, . . . , xeld = 1. In the segment model, instead of edges we consider
the shortest path subgraphs. Concretely, we use variables xduv for d ∈ D,u, v ∈
V(G) defined such that xduv = 1 if and only demand d is routed over the shortest
paths between nodes u and v, that is, the subgraph SP(u, v). Then we use the
same flow conservation constraints to ensure that whenever xduv = 1 then there
exists a sequence of nodes (v1 = s, v2, . . . , vk = t) such that xdv1v2 = xdv2v3 =
. . . = xdvk−1vk

= 1 meaning that we route the demand d by following the shortest
paths from v1 to v2, then from v2 to v3 and so on. In other words, we use sr-path
〈v1, v2, . . . , vk〉 to route d.

86 CHAPTER 6. TRAFFIC ENGINEERING WITH SR

SRTE-SEG(G,D)

min λ s.t.

r∑
d=1

∑
u,v∈V(G):u6=v

xduv · τ(u, v, e) · vol(d) 6 λ · cap(e) ∀e ∈ E(G)

∑
u∈V(G)\{v}

xduv −
∑

u∈V(G)\{v}

xdvu = 0 ∀d = (s, t,ν) ∈ D,

∀v ∈ V(G) \ {s, t}

∑
u∈V(G)\{s}

xdus −
∑

u∈V(G)\{s}

xdus = −1 ∀i ∈ {1, . . . , r},

∀d = (s, t,ν) ∈ D

∑
u∈V(G)\{t}

xdut −
∑

u∈V(G)\{t}

xdut = 1 ∀i ∈ {1, . . . , r},

∀d = (s, t,ν) ∈ D

xduv ∈ {0, 1} ∀e ∈ E(G), ∀d ∈ D

λ > 0

As it is, this model does not make any guarantees on the number of seg-
ments used to route a demand. We can overcome this by adding the following
additional constraint limiting the maximum number of node segments in the
sr-paths to k: ∑

u,v∈V(G):u6=v

xdu,v 6 k ∀d ∈ D.

In all these models, by relaxing the integrability constraints to allow the
variables to take any real value in [0, 1] we automatically get a polynomial time
solvable LP for Problem 4 (over the restricted set of sr-paths that each model
considers).

Model comparison

Due to its simplicity, optimal solutions of SRTE-1DET can be computed very
efficiently. It it a relaxation of Problem 3 because it significantly restricts the
sets of sr-paths that can be used by considering only paths in P1. The general-
ization of this model consisting of replacing P1 by ~Pk removes this restriction by
considering any possible sr-path whose segment cost is at most k to route any
given demand. The problem of this model is that it contains a number of vari-
ables which is exponential with respect to k since |~Pk| = O(|G|k). This means
that even for small values of k it will not scale. Hartert showed in his thesis
that even for k > 3 the number of variables is too big to allow good solutions
to be found in a reasonable amount of computation time. We will show how we
use column generation to overcome this problem the next section.

The segment model presented above overcomes this problem by implicitly
representing sr-paths with flow conservation constraints. With this, it manages

6.4. THE IDEA BEHIND COLUMN GENERATION 87

to model sr-paths of segment cost up to k using only |V(G)|2 · |D| variables.
One drawback of this solution is that it cannot represent sr-paths containing
adjacency segments. Moreover, it turns out that on the larger topologies this
model quickly becomes too large as well. This is not surprising since with one
demand per pair of nodes the total number of variables is about |V(G)|4.

Other researchers have proposed heuristic techniques for solving Problem 3.
Hartert et al. proposed in DEFO [41,42] a Large Neighborhood Search technique
combined with Constraint Programming. Later, Gay et al. proposed in [32] to
use standard local search to iteratively improve the current solution. These
heuristic approaches are rather efficient but provide no way of knowing how far
from the optimal value they end up. Moreover, all the existing approaches only
consider node segments in their formulation. They are thus not able to fully
exploit the flexibility of segment routing with adjacency segments. Not only
that but we have shown in our experiments that, on instances where only a
few routing configuration lead to good solution, these heuristic approaches have
difficulty of finding them. This is a common drawback of LS since in such cases
it becomes very unlikely for the search to be able to reach these very precise
configurations.

6.4 The idea behind Column Generation

We now describe how we used Column Generation (CG) [17] to overcome the
model size problems faced when using the path model for solving the traffic
engineering problem with SR. CG is usually used to solve linear programs with
a huge number of variables. The idea is to solve the problem for a subset of the
variables and then incrementally insert the missing variables, slowly growing the
model. Each time that we add new variables, we solve the model again to check
for optimality. One could ask what is the point of doing this since at some point
we will have the whole set of variables, so why not just solve the full problem
instead? However, we will carefully select the new variables that we introduce
so that in general this framework will reach an optimal solution to the original
problem without ever needing to consider all variables.

To understand the impact of ignoring a variable and how we can prove
optimality without considering all variables, we work out a small example. This
will allow us to explain the main idea behind CG in a much more intuitive
way by providing an example without overwhelming mathematical notations.
Suppose that we have the following LP that we want to solve.

Primal
min 3x1 + 3x2 + 4x3 + 1x4
s.t 4x1 + 5x2 + 3x3 + 3

2x4 > 6
5x1 + 6x2 + 4x3 + 3x4 > 7

xi > 0

The dual of this problem can be obtained by following a systematic proce-
dure. By doing so, we obtain the following linear program.

88 CHAPTER 6. TRAFFIC ENGINEERING WITH SR

Dual
max 6y1 + 7y2
s.t 4y1 + 5y2 6 3 constraint of x1

5y1 + 6y2 6 4 constraint of x2

3y1 + 4y2 6 3 constraint of x3
3
2y1 + 3y2 6 1 constraint of x4

yi > 0

Each variable xi of the primal corresponds to a constraints of the dual. So,
for instance, x2 corresponds to constraint 5y1 + 6y2 > 4 and x4 corresponds to
the constraint 3

2y1 + 3y2 > 1 as highlighted in the models.

Because of this correspondence, when we ignore a variable on the primal, this
translates in the dual to ignoring the corresponding constraint. For example,
if we consider the restricted primal problem on variables x1 and x3 only (that
we denote by Primal(1, 3)), and we take the dual, the dual will be the same as
above but will only have the first and third constraints.

Primal(1, 3)
min 3x1 + 4x3
s.t 4x1 + 3x3 > 6

5x1 + 4x3 > 7

xi > 0

Dual(1, 3)
max 6y1 + 7y2
s.t 4y1 + 5y2 6 3

3y1 + 4y2 6 3

yi > 0

Suppose that we solve the restricted primal we obtain the optimal solution
x∗ = (1.5, 0). By duality, we also obtain an optimal solution y∗ of the restricted
dual. In this case y∗ = (0.75, 0). From here, we want to be able to decide
whether x∗ is actually optimal for the original primal problem and, if not, what
new variable x2 or x4 should we consider to improve the solution. By strong
duality, we know that x∗ is optimal for Primal if and only if y∗ is optimal for Dual.
Since the only difference between Dual and Dual(1, 3) is that we removed two
constraints from Dual, y∗ contains values for all variables of the dual. Therefore,
to check the optimality of y∗ for Dual, we can plug its values into the missing
constraints to check whether y∗ satisfies them. If y∗ happens to satisfy all of
them, then it must be optimal for the unrestricted dual and by consequence, x∗ is
optimal for the unrestricted original primal. In this example, for the constraint
corresponding to x2 we have

5y1 + 6y2 = 5 · 0.75 + 6 · 0 = 3.75 > 3

and for the constraint corresponding to x4 we have

2y1 + 6y2 = 2 · 0.75 + 6 · 0 = 1.5 > 1.

Both of them are violated so we cannot conclude that y∗ is optimal for Dual.
So we chose one of x2, x4 to be added to the model. For the sake of example,
we choose x2 obtaining (we highlighted in green the newly added column):

6.4. THE IDEA BEHIND COLUMN GENERATION 89

Primal(1, 2, 3)
min 3x1 + 3x2 + 4x3
s.t 4x1 + 5x2 + 3x3 + > 6

5x1 + 6x2 + 4x3 + > 7

xi > 0

Solving this yields a primal solution x∗ = (0, 1.2, 0) and dual solution y∗(0.6, 0).
As before, we check whether this solution is optimal for the original problem
by checking whether it satisfies the remaining constraints. In this case we only
have one constraint left, the one corresponding to x4. By plugging into it the
values of y∗ we get

3

2
y1 + 3y2 =

3

2
· 0.6 + 3 · 0 = 0.9 6 1.

The constraint is satisfied so we conclude that y∗ is optimal for Dual and by
strong duality we conclude that x∗ = (0, 1.2, 0, 0) is optimal for Primal (note
that we added a value of 0 for all ignored variables).

With this process, we were able to solve Primal without ever having to con-
sider x4. Of course this is just a small illustrative example so the gain is not
significant but, on larger models with a huge amount of variables, this can save
huge amounts of computation time. This finished our introductory example
about column generation.

We are now going to abstract from it and describe the general approach.
Lets write the problem we are aiming to solve in the following general form

Primal
min c1x1 + c2x2 + . . . + cnxn
s.t a11x1 + a12x2 + . . . + a1nxn > b1

a21x1 + a22x2 + . . . + a2nxn > b2
...

...
am1x1 + am2x2 + . . . + amnxn > bm

xi > 0

whose dual is easily shown to be

Primal
max b1y1 + b2y2 + . . . + bmyn
s.t a11y1 + a21y2 + . . . + am1ym 6 c1

a12x1 + a22x2 + . . . + am2ym 6 c2
...

...
a1nx1 + a2nx2 + . . . + amnym 6 cn

xi > 0

In general, we need a better way for finding a new variable to introduce.
In the previous example we did it by iterating over all remaining variables and

90 CHAPTER 6. TRAFFIC ENGINEERING WITH SR

checking the corresponding constraint. Since CG is a framework that we want
to use when we have a huge amount of variables, this process is not realistic as it
will involve checking the same amount of constraints. The idea to overcome this
is to express the problem of finding the variable as a another optimization prob-
lem which hopefully translates into something that is solvable by an algorithm
that is faster than a simple brute-force iterations on the missing variables.

The first step to achieve this is to express the condition for a new vari-
able to be a candidate mathematically. Keeping the notation used in the ex-
ample, we see that each variable xi is associated to a column of coefficients
ci,a1i,a2i, . . . ,ami where the first is the objective function coefficient and the
others are the constraints coefficients in the primal. The constraint associated
to xi is the dual is given by

a1i + a2i + . . . + ami =

m∑
j=1

ajiyi 6 ci.

Checking whether it is violated, or in other words, whether xi needs to be
considered in the Primal, consists of checking whether

m∑
j=1

ajiyi > ci ⇔
m∑
j=1

ajiyi − ci > 0.

If we let I be the set of indexes of the variables that we consider at a given
point in the Primal, then the problem of finding a new variable can be expressed
as finding i ∈ {1, . . . ,n} \ I such that

m∑
j=1

ajiyi − ci > 0.

Therefore, if we compute the index i∗ ∈ {1, . . . ,n} \ I for which the value

m∑
j=1

aji∗yi∗ − ci∗

is maximum we know that there exists a new variable that we need to consider
if and only if

m∑
j=1

aji∗yi∗ − ci∗ > 0.

Therefore, we can solve the problem of finding a new variable to add by
solving the problem

max
i∈{1,...,n}\I

m∑
j=1

ajiyi − ci.

At first sight this problem might not seem any easier to solve than iterating over
all i ∈ {1, . . . ,n} \ I and computing the maximum but in practice this problem
ofter has a nice structure and is usually solvable by a better, more efficient,
algorithm than a simple brute force iteration. This problem is often referred to
as the pricing problem.

6.5. CG FOR THE PATH MODEL 91

Select an initial set of vari-
ables I such that Primal(I)
is feasible.

Solve Primal(I) obtaining
the primal and dual solu-
tions x∗,y∗

Compute i∗ ∈ {1, . . . ,n}\I
such that

∑m
j=1 ajiyi − ci

is maximum
Add i∗ to I

x∗ with is the optimal
solution of Primal (with
value 0 on variables out-
side of I)

∑m
j=1 ajiyi − ci > 0

∑m
j=1 ajiyi − ci 6 0

Figure 6.3: The CG framework used in this thesis.

Figure 6.3 provides a schematic vision of the column generation process.
CG generation is a very wide field and what we described here is just a very
small glimpse into it [17]. It is also important to note that what we did here
only applies to continuous linear programs and not to integer programming.
Therefore, we can only use this to compute solutions of LP that contain no
integer variables. In order to obtain optimal integral solution we need to add
another layer to the algorithm and perform, for instance, a branch-and-price
[10]. We did not explore this in this thesis but we believe that it would be
interesting future work to see how fast we can compute optimal solutions using
this approach.

In this thesis we instead use an heuristic algorithm to round the fractional
solution getting an approximated solution rather than an optimal one.

6.5 CG for the path model

We apply the process that we described above to the path model for the TE
problem. As we mentioned before, this model has a huge amount of variables
since we have one variable per sr-path in ~Pk and |~Pk| = O(|G|

k). Recall that the

92 CHAPTER 6. TRAFFIC ENGINEERING WITH SR

path model is obtained by replacing P1 by ~Pk on the formulation of SRTE-1DET.

SRTE-PATH(G,D)

min λ

s.t.
∑
~p∈~Pk

xd~p = 1 ∀d ∈ D

∑
~p∈~Pk

∑
d∈D

τ(~p, e) · vol(d) · xd~p 6 λ · cap(e) ∀e ∈ E(G)

xd~p ∈ {0, 1} ∀~p ∈ ~Pk, ∀d ∈ D

Our experiments showed that working directly on the path model caused
the column generation process described in Figure 6.3 to require adding a lot of
columns before proving optimality. It would get stuck with the same optimal
value for the restricted problem for huge number of iterations. For this reason
we decided to formulate the problem with the same constraints but with the
objective of routing a maximum amount of demands for a given factor λ.

Since xd~p says whether demand d is routed over sr-path ~p, the total amount
of traffic that is routed by a solution xd~p if given∑

~p∈~Pk

∑
d∈D

vol(d) · xd~p.

Routing a maximum demand volume thus amounts at maximizing this value.
Putting it together with the constraints from the path model SRTE-PATH we
obtain the following model.

SRTE-DEM(G,D,P, λ)

max
∑
~p∈~Pk

∑
d∈D

vol(d) · xdp

s.t.
∑
~p∈~Pk

xd~p 6 1 ∀d ∈ D

∑
~p∈~Pk

∑
d∈D

τ(~p, e) · vol(d) · xd~p 6 λ · cap(e) ∀e ∈ E(G)

xd~p ∈ {0, 1} > 0 ∀~p ∈ ~Pk, ∀d ∈ D

In this formulation, λ is a parameter that is given as input. We still want to
minimize it so that we end up with a solution of Problem 3. However, we do not
do this directly with linear programming, we instead perform a binary search
on λ to find the minimum lambda that is able to route all demands. The other
difference relative to the original path model is that on the first set of constraints
we now have an inequality rather than an equality. Both are equivalent. This is
the the case because, since the objective now is to route the maximum amount
of demands, we always end up with a solution that selects one path per demand.
The only reason for using the inequality is that it simplifies a bit the process of
finding the dual.

6.5. CG FOR THE PATH MODEL 93

We apply the process described in our CG introduction to this problem.
Since CG needs a LP and SRTE-DEM is a MIP, we first relax integrality con-
straints by replacing xd~p ∈ {0, 1} by xd~p > 0. Note that, again, the most natural
would have been to say xd~p ∈ [0, 1] but saying xd~p > 0 is equivalent for this
problem because of the first set of constraints. The reason for this choice is
again that is makes the process of computing the dual simpler because it leaves
the formulation in a standard form. We also need to add the current set of
variables as a parameter. Since in our case variables correspond to sr-paths, we
pass as an argument a set of sr-paths P corresponding to the set of variables to
which we restrict the problem. The CG process then slowly grow this set until
we reach an optimal solution. The linear programming relaxation we obtain is
the following.

SRTE-DEM-LP(G,D,P, λ)

max
∑
~p∈~Pk

∑
d∈D

vol(d) · xdp

s.t.
∑
~p∈~Pk

xd~p 6 1 ∀d ∈ D

∑
~p∈~Pk

∑
d∈D

τ(~p, e) · vol(d) · xd~p 6 λ · cap(e) ∀e ∈ E(G)

xd~p > 0 ∀~p ∈ ~Pk, ∀d ∈ D

Since SRTE-DEM-LP is already in standard form it is very easy to obtain
its dual. In general, computing the dual of a linear program can be achieved
by following a systematic procedure. We omit the details here as this is quite a
common process. Doing so we obtain the following formulation for the dual.

SRTE-DEM-DUAL(G,D,P, λ)

min λ ·
∑

e∈E(G)

cap(e) · ye +
∑
d∈D

zd

s.t. zd +
∑
e∈E(G) τ(~p, e) · vol(d) · ye > vol(d) ∀~p ∈ ~Pk

ye, zd > 0 ∀~p ∈ ~Pk, ∀d ∈ D

The next step is to describe the pricing problem. By what we said above,
this corresponds to finding a sr-path ~p ∈ ~Pk and a demand d ∈ D that violate
the dual constraints, that is, such that

zd +
∑

e∈E(G)

τ(~p, e) · vol(d) · ye < vol(d)⇔

∑
e∈E(G)

τ(~p, e) · vol(d) · ye < vol(d) − zd ⇔

∑
e∈E(G)

τ(~p, e) · ye <
vol(d) − zd

vol(d)

94 CHAPTER 6. TRAFFIC ENGINEERING WITH SR

If such ~p and d exist then we will add ~p to the P. If not, then, by what we said
above, we know that the optimal solution for the restricted sr-path set P is also
optimal for the complete sr-path set ~Pk.

Problem 5 (SRTE pricing)

Input: A network G, a demand set D, k > N and values ye > 0 for each
e ∈ E(G).
Output: A sr-path ~p ∈ ~Pk and a demand d ∈ D such that∑

e∈E(G)

τ(~p, e) · ye <
vol(d) − zd

vol(d)

or report that no such path exists.

Theorem 6.2. Problem 5 can be solved in polynomial time.

Proof. Let d ∈ D. Consider the sr-metric c defined for all u, v ∈ V(G) and
e ∈ E(G) as

c(u, v) =
∑

e∈E(G)

τ(u, v, e) · ye

and
c(e) = ye.

Let know that we can compute a sr-path ~p = 〈x1, . . . , xl〉 ∈ ~Pk that minimizes

c(~p) =

l∑
i=2

c(x2i−1, x1i) +
∑

i:xi∈E(G)

c(xi)

in polynomial time using Algorithm 4 from Chapter 5. We have that

c(~p) =

l∑
i=2

c(x2i−1, x1i) +
∑

i:xi∈E(G)

c(xi)

=

l∑
i=2

∑
e∈E(G)

τ(x2i−1, x1i , e) · ye +
∑

i:xi∈E(G)

yxi

=
∑

e∈E(G)

l∑
i=2

τ(x2i−1, x1i , e) · ye +
∑

e∈E(G)

∑
i:xi=e

ye

=
∑

e∈E(G)

(
l∑
i=2

τ(x2i−1, x1i , e) · ye +
∑
i:xi=e

ye

)

=
∑

e∈E(G)

(
l∑
i=2

τ(x2i−1, x1i , e) +
∑
i:xi=e

1

)
· ye

=
∑

e∈E(G)

τ(~p, e) · ye.

6.6. MINIMIZING THE WORST LINK UTILIZATION λ 95

Since ~p has minimum cost, Problem 5 has a solution if and only if

c(~p) =
∑

e∈E(G)

τ(~p, e) · ye <
vol(d) − zd

vol(d)

in which case ~p is a solution. Since Algorithm 4 runs in polynomial time, this
means that we can decide in polynomial time whether for a given demand d ∈ D

there exists a sr-path ~p that violates the dual constraints. Thus by iterating
over all demands we get a polynomial time algorithm overall.

With this theorem we have an example of a problem where finding a new
variable to add can be done in a much more efficient way than iterating over
all remaining variables. Using the schema in Figure 6.3 we can then compute
optimal solutions to the LP relaxation SRTE-DEM-LP of SRTE-DEM.

The solution obtained with this process is optimal for Problem 4 and provides
a lower bound form Problem 3. In itself this is already a good result since those
bounds are important for evaluating the quality of greedy solution. Until now,
the best lower bounds were computed using the MCF. The bounds obtained
with the MCF are of lower quality since they do not take into account segment
routing as show at the end of this chapter.

6.6 Minimizing the worst link utilization λ

We saw in the previous section how to use CG to compute the maximum demand
volume that we can route for a given capacity factor λ. In this section we explain
how to use this as a sub-routine to compute the minimum λ for which we can
route all demands.

Let V =
∑
d∈D vol(d) be the total volume of demands in D. To find the

minimum capacity factor perform a binary search on λ ∈ [0, λM] where λM is
a big enough capacity factor that ensure that all demands can be routed. For
each λ we solve SRTE-DEM(G,D,P, λ). If the solution is V then we continue
the search with λ as the new upper bound. Otherwise we set λ as the new lower
bound and continue. Each time we solve SRTE-DEM(G,D,P, λ) we do not start
from scratch. We continue the CG process with the set of paths P from the
previous iterations.

Initial sr-path set

We need to select an initial feasible sr-path set P. In this case, feasibility is not
an issue as we can select the capacity factor λM so that it is large enough to
make any solution with at least one sr-path per demand feasible. To compute
the initial path set, we use Algorithm 5 to compute the maximum capacity
sr-path for each demand.

Generating new paths

We explained above that we can solve the pricing by iterating over all demands
d ∈ D and computing a minimum cost sr-path for specific weights that depend
on the values y, z of the dual solution. There might be several sr-path demand
pairs ~p,d that violate the dual constraints and each such path corresponds to a

96 CHAPTER 6. TRAFFIC ENGINEERING WITH SR

new candidate variable that might improve the current solution if added. How-
ever, if there are a lot of demands, computing the minimum cost sr-path for each
and every one of them may be time consuming, even being a polynomial time
procedure. Also, adding a lot of new paths makes solving the relaxed problem
slower since it will contain more variables. On the other hand, having more
paths will maybe make the CG converge faster towards the optimal solution.
Hence, we face a trade-off between adding more paths and making each iteration
slower or adding fewer paths and having more iterations overall.

To have more control over this, we add a parameter to our algorithm maxp
that limits the number of sr-paths than can be generated in a single iteration.
At each CG iteration we loop over all the demands and for each of them check
if it has a sr-path to be added. After maxp demands yield a new sr-path we
stop this iteration and solve the new linear program obtained by adding these
paths. The order in which we iterate over the demands should be such that we
start with demands that have a higher chance of yielding a sr-path that violates
the dual constraints, that is, a sr-path ~p such that∑

e∈E(G)

τ(~p, e) · ye <
vol(d) − zd

vol(d)
.

Hence, we sort the demands by decreasing value of vol(d)−zd
vol(d) since the higher

this value is, the more likely we are of finding a sr-path whose weight lower cost.
This is important since it helps avoiding useless time consuming invocations of
the minimum cost sr-path algorithm.

Rounding heuristic

As we explained above, at the end of the column generation process, we have an
optimal solution for the relaxed master problem SRTE-DEM-LP where variables
can have fractional values. In practice, this means that each demand might be
split over several paths, in other words, we have an optimal segment routing
solution for Problem 4. If we seek a solution from Problem 3 we need to ensure
that each demand is assigned to exactly one path. If sub-optimal solutions are
acceptable, then an efficient way to achieve this is to use some kind of heuristic
to assign a path to each demand amongst the paths obtained in the end. We
propose to do this by re-solving SRTE-PATH with integrality constraints using
a MIP solver. As we discuss later, our experiments showed that in this way
we obtain near optimal solutions to Problem 3. This is an heuristic since, with
integer variables, there is no guarantee that the restricted optimal solution is
the optimal for the unrestricted problem.

By putting all these ideas together we can provide the following formal de-
scription of our column generation algorithm for the traffic engineering problem.
Algorithm 7 performs one iteration of the column generation algorithm. It starts
on line 1 by computing the optimal solution of the linear program SRTE-DEM-LP
for the current sr-path set obtaining a primal solution x, the corresponding dual
solution y, z and the maximum value vol that we can be routed on the current
path set for the current capacity factor λ. Afterwards, from line 2 to line 5 it
computes the sr-metric used for the minimum cost sr-path computation. Then
it iterates over all demands and tries to find new paths to add. All those paths
are put together and returned.

6.7. CG EXPERIMENTAL RESULTS 97

Algorithm 7 iterate-CG (G,P,D, λ, maxp)

1: x, (y, z)x, vol← LP-solve(SRTE-DEM-LP(P,D, λ))
2: for x,y ∈ V do
3: c(x,y)←

∑
e∈E(〈x,y〉) τ(x,y, e) · ye

4: for e ∈ E do
5: c(e)← ye
6: P ′ ← ∅
7: for d ∈ D in decreasing order of (vol(d) − zd)/vol(d) do
8: p← mincost-srpath(s(d), t(d), c)
9: if c(p) < (v(d) − δd)/v then

10: P ′ ← P ′ ∪ {p}

11: if |P ′| > maxp then
12: break
13: return P ′

Algorithm 8 binsearch-CG (D, λM,k, ε, maxp)

1: P← {maxCapSrPath(g, τ, s, t,k) | (s, t,d) ∈ D}

2: V←
∑
d∈D vol(d)

3: lb← 0
4: ub← λM
5: while |lb− ub| > ε do
6: λ← (lb+ ub)/2
7: x, (y, z)x, vol← column-generation(P,D, λ,maxp)
8: if vol = V then
9: lb← λ

10: else
11: ub← λ

12: return ILP-solve(SRTE-DEM(P,D))

Algorithm 9 performs column generation iterations by calling Algorithm 7
until no new paths are found thus computing an optimal solution of problem
SRTE-DEM-LP(P,D, λ) for a given capacity factor λ over the full sr-path set ~Pk.
Finally, Algorithm 8 uses the column generation as a sub-routine on a binary
search to find the smallest value of λ such that the optimal solution of problem
SRTE-DEM-LP(P,D, λ) is equal to V. In other words, it uses a binary search
combined with the column generation to find the smallest capacity factor that
allows one to route the whole volume of demands.

6.7 CG experimental results

This section describes the results using the column generation approach de-
scribed in this chapter and denoted CG4SR here after.

We use Repetita [33] to run all the other solvers: DefoCP [41,42], Bhatia [11]
and SRLS [32]. We reuse the demand matrices generated for Repetita [33]. For
each topology, they generated 5 demand matrices through the gravity model
described in [54]. Demands were normalized so that MCF can merely force all
link loads to be below or equal to 90%. The number of demands ranges from
7482 to 98910.

98 CHAPTER 6. TRAFFIC ENGINEERING WITH SR

Algorithm 9 column-generation (P,D, λ, maxp)

1: while P ′ ← iterate(P,D, λ,maxp) 6= ∅ do
2: P← P ∪ P ′
3: return LP-solve(SRTE-DEM(G,D,P, λ))

90 95 100 105
Maximum link load (%)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

MCF
SRTE-LP(P,D,λ) k=2

SRTE-LP(P,D,λ) k=4

SRTE-LP(P,D,λ) k=6

Figure 6.4: Lower bound

6.7.1 Near-optimum evaluation

CG4SR provides a better lower bound for TE over SR than MCF.
Traditionally, the value of an optimal MCF solution is used as a lower bound
for minimum maximum link utilisation that one can achieve for routing a traffic
matrix. However, as mentioned above, this bound is unrealistic as MCF is
oblivious to SR. Figure 6.4 studies the quality of the lower bound provided by
CG4SR compared to MCF. The load predicted by MCF is always of about 90%
because the demand matrices of Repetita [33] were generated artificially to be
at this value. However, CG4SR shows that it is strictly impossible to escape
network congestion for 5 demand matrices. Moreover, the difference between
CG4SR and MCF lower bounds can be as high as 15% in the predicted maximal
load. Increasing the number of segments does not get CG4SR lower bound much
closer to the MCF.

CG4SR provides solutions whose maximum load is at most 4%
more than the optimal solution. We ran CG4SR without enabling adja-
cency segments and without time limit. The experiment was repeated with
limits of 2, 4 and 6 segments to observe the impact of the segment limit on the
quality of the solution. Figure 6.5 shows CDFs of the gap (in percents) between
the CG4SR upper and lower bounds on all the 30 instances (i.e., 5 demand
matrices for each of the 6 topologies) and increasing the limit on the number of
segments. This gap is the maximum distance to the actual optimum. We can

6.7. CG EXPERIMENTAL RESULTS 99

0 2 4 6 8 10
Gap (%)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

CG4SR k=2

CG4SR k=4

CG4SR k=6

Figure 6.5: Gap

see that increasing the limit from 2 to 4 segments impacts the quality of the
solution while increasing the limit from 4 to 6 has little impact. Paths with 4 or
6 segments add more flexibility than paths with 2 segments to SRTE-UTIL-ILP.
We can see that this gap is most of the time below 1% of the load and at worst
4% of the load if 4 segments are allowed.

CG4SR is more efficient than Bhatia and MCF. We compared the
speed of CG4SR to Bhatia, MCF and MCFP. MCFP is an efficient variant of
MCF that is only able to compute the optimal value of MCF, not the actual
routing paths. Figure 6.6 describes how fast the different solvers can find their
best solution. During these runs, the limit on the number of generated paths
at each column generation iteration, maxp in Algorithm 7, is fixed to 10. This
figure shows a CDF of the execution time on the different topologies and de-
mand matrices for CG4SR, Bhatia and MCF. Because Bhatia only allows two
segments, CG4SR is also limited to two segments in this figure. MCF is the
slowest one and it runs out of memory for all the demand matrices of the largest
topology despite the 120GB available. Bhatia only considers paths that can be
expressed with two segments. This significantly reduces the problem size and
Bhatia can always get an answer. CG4SR can run with any number of two
segments because of the lazy generation of the paths. And this is so effective
than we are actually faster than Bhatia with a two-segment limit.

Figure 6.6 also shows that the MCFP variant of MCF can actually compute
the optimal value of the MCF quicker than CG4SR. But, as mentioned above,
MCFP only provides the maximum link utilisation of the MCF formulation but
not a set of paths satisfying it. Hence, in practice, MCFP can only be used to
provide lower bounds which, as we showed in Figure 6.5, are worse than the
ones provided by our algorithm.

CG4SR scales better than MCF and Bhatia. Our model has fewer

100 CHAPTER 6. TRAFFIC ENGINEERING WITH SR

0 200 400 600 800
Completion time (min)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

CG4SR

Bhatia

MCF

MCFP

Figure 6.6: Execution time (CG4SR is limited to two segments)

variables than the MCF and Bhatia formulations. The size of our model is the
number of paths that were generated. The size of MCF considers how much of
each demand can be placed on each edge. Therefore, the number of variables
is the number of edges multiplied by the number of demands. Bhatia considers
for each demand, two segments through a single node of the graph. Its number
of variables is thus the number of nodes multiplied by the number of demands.
We observe that CG4SR is more scalable because it considers at worst 60 times
fewer possibilities than Bhatia and 200 times fewer than MCF. This explains
why CG4SR is faster than Bhatia and MCF. This difference does not change
significantly when varying the limit on the number of segments. As can be seen
in Figure 6.7, the number of generated columns seems to grow linearly with the
number of demands. Given that the restricted path set is initialized with all the
direct paths for every demand, the path-finding process (Algo 7) only creates
a limited number of additional paths to reach optimality. This also explains
why the column generation approach is so efficient in practice, as it only needs
to solve the linear program with a number of variables only slightly above the
number of demands.

6.7.2 Any-time behavior

The previous section shows that we can produce quality solutions with illimited
time budget. This section evaluates the quality of CG4SR solutions over time.
We compare CG4SR to the heuristic approaches DEFO, SRLS and also to
Bhatia.

CG4SR finds good solution even if only allowed to run for a short
amout of time. Figures 6.8, 6.9 and 6.10 show, for each of the cited solvers, a
CDF of the gap to the SRTE-LP solution for the cited solvers after, respectively

6.7. CG EXPERIMENTAL RESULTS 101

0 50000 100000
Number of demands

0

50000

100000

N
u
m

b
e
r

o
f

co
lu

m
n
s

CG4SR

Figure 6.7: Number of generated columns over the size of the demand matrices

1 minute, 5 minutes and 10 minutes. During these runs, the maxp parameter
(see Algorithm 7) of CG4SR, is fixed to 10. The limit of segments is set to
5, except for Bhatia which limits itself to 1. The quality of a solution is the
difference between its current solution and the CG4SR lower bound that was
computed without time limit and the same limit on the number of segments.

We see that we are always faster than Bhatia even with limited time spans.
SRLS and DEFO are heuristic approaches and therefore are able to quickly
find good solutions. Figure 6.8 shows that CG4SR is already comparable to
SRLS and better than DEFO for half of the instances after 1 minute. We see
that DEFO initially finds better solutions but CG4SR catches up for most of
instances by increasing the timeout in Figure 6.9 and Figure 6.10. The largest
instance is not yet solved after 10 minutes and that explains why DEFO is still
better.

CG4SR is more robust than SRTE over different sets of demands.
SRLS produces good results but however this solution is based on local search
and can be stuck in a local optimum. We did not observe it on the demand
matrices generated by the gravity model. The demand volumes are generally
much lower than link capacities. This also means that there are many possible
ways to reach good solutions, even if the best solution is hard to find. The
gravity model is a good match to the Traffic Engineering problem in ISPs but
demand volumes are likely higher in inter-datacenter communication [43]. This
also means that there are fewer good solutions. We generated one additional de-
mand matrix for each RocketFuel topology with a low number of large demands
requiring 95% of the bandwidth available between their source and destination.
Figure 6.11 shows a CDF of the quality of the solution with a time limit of 10
minutes and a limit of six segments as in Figure 6.10. These results confirm
that SRLS can be worse than CG4SR when fewer good solutions are available.

102 CHAPTER 6. TRAFFIC ENGINEERING WITH SR

0 50 100 150 200 250 300
Gap (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

CG4SR

Bhatia

DEFO

SRLS

Figure 6.8: Timeout at 1 minute

0 50 100 150 200 250 300
Gap (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

CG4SR

Bhatia

DEFO

SRLS

Figure 6.9: Timeout at 5 minutes

6.7. CG EXPERIMENTAL RESULTS 103

0 50 100 150 200 250
Gap (%)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

CG4SR

Bhatia

DEFO

SRLS

Figure 6.10: Timeout at 10 minutes

0 200 400 600 800
Gap (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

CG4SR

SRLS

Figure 6.11: Gaps between SRTE−LP(PDλ) and SRLS or CG4SR after 10 min
with a limit of 6 segments

104 CHAPTER 6. TRAFFIC ENGINEERING WITH SR

0 50 100 150 200
Maximum link load (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

CG4SR

CG4SR with adj

Figure 6.12: The CG4SR solutions with or without adjacency segments. The
limit of segments is fixed to 4.

6.7.3 Adjacency segment benefits

Adjacency segments are important in TE and CG4SR is the first
to use them. CG4SR is the first SR traffic engineering model to support
adjacency segments. We evaluate the benefits of adjacency segments on the
inter-datacenter network topology of OVH in Europe (described in [7]). This
topology has more parallel links than RocketFuel topologies and thus, the OVH
topology can really benefit from adjacency segments. We do not have access
to the link weights and capacities of OVH. Therefore, for each link bundle we
set the capacity of half of the links to some value and the other half to half of
that value. This simulates the link upgrades on the network. For pairs of nodes
with a single link between them, we set the capacity to be ten times bigger.
Five demand matrices were generated for the OVH topology with the gravity
model [54].

Figure 6.12 shows CDFs of the gap (in percents) between the CG4SR upper
and lower bounds over the demand matrices of the OVH topology. We do not
limit the execution time and we limit the number of segments to 4. This means
that we allow at most one detour through a specific link because one segment is
needed for the destination and a link detour costs two segments. Even allowing
only one link detour halves the load of the maximally loaded link because it
utilizes better the parallel links of this topology.

Conclusion

In this chapter we propose the first solution to exploit column generation to
solve segment routing problems. We believe that column generation is a good
approach for solving segment routing problem and reinforce this belief in the

6.7. CG EXPERIMENTAL RESULTS 105

next chapter. The structure of sr-paths make it amiable to dynamic program-
ming algorithms so we feel that it will often be the case that the pricing problem
will have a nice DP optimal substructure.

Our solution improves the state of the art lower bound making it possible
to better evaluate the quality of heuristic solutions. We also showed that even
tough we are slower on demands generated according to a gravity model, with
more constrained demands we can actually be much more efficient than local
search.

It still remains an open problem to find an algorithm capable of providing
optimal solution to the TE problem over segment routing within reasonable
amount of time. We are unsure whether wrapping our solution with a branch-
and-price is the right way to go but it is certainly an interesting possibility.

106 CHAPTER 6. TRAFFIC ENGINEERING WITH SR

Chapter 7

Network monitoring with
segment routing

Introduction

Monitoring is a crucial task for network operations. It is needed to ensure
that all resources operate correctly (e.g., no failures) and their configuration
meets operator’s expectations (no congestion, required quality of service, etc.).
Effective monitoring is also fundamental for management tasks like traffic engi-
neering, maintenance and troubleshooting.

Unfortunately, even basic monitoring tasks, like checking for hardware mal-
functions, are practically hard, due to the complexity of current networks.
Prominently, multi-path routing is widely used, both to spread the load on
multiple paths and to aggregate parallel links in bundles. Figure 7.1 shows an
overview of the European backbone of a big cloud provider, OVH. It high-
lights that parallel links are used at the same time between many pairs of
routers. While enabling better performance and robustness, multi-path routing
also poses significant obstacles to monitoring. For instance, assessing the exact
path and performance of each packet becomes complex [2], [20] since such a path
depends on (vendor-specific) hash functions used by routers for load-balancing.

As a consequence, not only naive approaches (e.g., based on ping or tracer-
oute) are not sufficient, but also state-of-the-art monitoring techniques tend to
be ineffective.

On the one hand, protocol-based approaches use control-plane messages to
infer possible failures. For example, link-state routing protocols (like OSPF
or IS-IS) or specialized ones (BFD [14]) rely on heartbeat-like mechanisms to
check bi-directional connectivity among pairs of adjacent nodes. This approach
only ensures detection of failures that affect control plane messages. However,
it cannot be used to detect failures that only affect data-plane traffic like:

i) corruption of an optical link that leads to framing errors and packet losses;

ii) malfunctioning of a router interface that considers the link still up but
discards all the received packets;

iii) failure of only one link among the parallel ones between two routers.

107

108CHAPTER 7. NETWORK MONITORING WITH SEGMENT ROUTING

taken from http://weathermap.ovh.net/europe

Figure 7.1: European backbone of OVH. In contrast to prior techniques, our
algorithm can monitor health and performance of single links in bundles (e.g.,
between LONDON and ROUBAIX).

On the other hand, probe-based techniques rely on sending data-plane mon-
itoring packets, i.e., probes, between fixed vantage points in the network. Van-
tage points typically run standard protocols (e.g., IPSLA [8]) to send probes
and extract measurements from them. Unfortunately, if the probes are sent
over paths used to forward regular traffic, many vantage points may be needed
to obtain high coverage, and links not used by current paths (e.g., backup links)
cannot be checked at all. Otherwise, probes can be sent over tunnels (e.g.,
RSVP-TE [3] ones) to enforce specific paths, but this is not scalable. Indeed,
even for detecting single-link failures and pinpointing their position, the number
of needed tunnels tends to explode, and so does the control-plane overhead (to
signal tunnels) [7].

We propose a new technique that ensures full coverage of all network re-
sources from a single vantage point. It is based on sending data-plane probes
over carefully-chosen cycles. This way, a single box can both send and re-
ceive monitoring probes, avoiding the need for synchronizing and coordinating
multiple vantage points, hence minimizing infrastructural costs. By relying on
data-plane measurements, we support both detection of hardware failures and
resource overloading (e.g., link congestion).

As usual, we start by defining the problems that we tackle in this chapter.
To do that we need the two following definitions. Throughout this chapter we
assume that the network topology is symmetric.

Definition 7.1. Let G be a symmetric network, s ∈ V(G) and k ∈ N. We
denote by Cks the set of deterministic sr-cycles from s to s with segment cost at
most k.

Definition 7.2. Let G be a symmetric network, s ∈ V(G) and k ∈ N. A
k sr-cycle cover of a network G with vantage point s is a subset C ⊆ Cks of

7.1. MINIMUM SEGMENT COST COVERS 109

s

x y

sr-path
from
s

to
x

of cost
at

m
ost
k
1 sr

-p
at

h
fr
om
y

to
s

of

co
st

at
m

os
t
k
−
k 1

SP(x,y)

e

Figure 7.2: First case of edge covering.

deterministic sr-cycles such that for each edge e ∈ E(G) there exists ~c ∈ C such
that e ∈ E(~c).

Below we define the two problems that we tackle in this chapter. Both of
them seek to compute a cycle cover. The first aims at minimizing the maximum
segment cost of any sr-cycle in the cover while the second wants to minimize
the number of cycles for a given segment cost limit.

Problem 1 (Min segment cost cover)

Input: A symmetric network G and s ∈ V(G).
Output: A sr-cycle cover C of G such that the maximum segment cost of any
sr-cycle ~c ∈ C is minimum.

Problem 2 (Min sr-cycle cover)

Input: A symmetric network G, s ∈ V(G) and k ∈ N.

Output: A sr-cycle cover C ⊆ ~Csk of G such that |C| is minimum.

7.1 Minimum segment cost covers

In this section we propose a polynomial time algorithm for solving Problem 1.
We have seen in Chapter 4 reachability results that tells us exactly how costly,
in terms of segments, it is to deterministically reach a given node in the network.
Using these results we can easily establish how costly it is to cover a given edge
with a deterministic sr-cycle.

In order to cover a given edge e with a deterministic sr-cycle from s to s
with segment cost at most k, we have essentially two options:

1. First we go from s to some node x using a deterministic sr-path of cost,
say, k1. Then travel from x to some node y via a unique shortest path
that contains edge e. Finally, we go from y back to s with a deterministic
sr-path of cost k2 = k− k1. This is illustrated in Figure 7.2.

110CHAPTER 7. NETWORK MONITORING WITH SEGMENT ROUTING

s

x yu1 u2

sr-path from
s to x

of cost at most k
1

sr-
path

fro
m
y

to
s of

co
st

at most
k−
k1

−
2

SP(x,u1) SP(u2,y)

e

Figure 7.3: Second case of edge covering.

2. The second way to cover e is to use an adjacency segment over it. To
do so, we first go from s to some node x with a deterministic sr-path
of cost at most, say, k1. This node x must be such that it contains a
unique shortest path to e1. Otherwise the resulting cycle would not be
deterministic. Then we use an adjacency segment on e to traverse it by
following the unique shortest path between x and e1 and then e. Then
we go to some node y via a unique shortest path from e2. Finally, we go
from y back to s with a sr-path of cost at most k2 = k− k1 − 2. The −2
comes from the fact that we spent a segment cost of 2 with the adjacency
segment e. This case is illustrated in Figure 7.3.

Note that in both cases, nothings prevents us to have x = e1 or y = e2.
We do not require these nodes to be distinct as doing so would provide an
incomplete description of all possible cases.

Next we prove formally that those two cases cover all possibilities. The
next theorem directly translate into a polynomial time algorithm for computing
minimum segment cost covers.

Theorem 7.1. Let G be a network s ∈ V(G), e ∈ E(G) and k ∈ N an integer.
There exists a deterministic sr-cycle ~c from s to s of cost at most k such that
e ∈ E(~c) if and only if there exist integers k1,k2 > 1, x ∈ reach(k1, s), y such
that s ∈ reach(k2,y) and one of the two following conditions holds

(1) k1 + k2 = k, y ∈ sp-reach(x) and e ∈ SP(x,y)

(2) k1 + k2 = k− 2, e1 ∈ sp-reach(x) and y ∈ sp-reach(e2)

Proof. Let G be a network s ∈ V(G), e ∈ E(G) and k > 1 an integer.
(⇒) Assume that there exists a deterministic sr-cycle ~c from s to s with

sr-cost(~c) 6 k such that e ∈ E(~c). Write ~c = 〈x1, . . . , xl〉. Since e ∈ E(~c) there
exists i ∈ {1, . . . , l} such that either xi = e or i < l and e ∈ SP(x2i , x

1
i+1).

Case 1: e ∈ SP(x2i , x
1
i+1). Let x = x2i and y = x1i+1. Then ~p = 〈x1, . . . , xi〉

is a deterministic sr-path from s to x of cost, say, k1 and ~q = 〈xi+1, . . . , xl〉 is a
deterministic sr-path from y to s of cost k2 6 k−k1. Therefore, x ∈ reach(k1, s),
s ∈ reach(k2,y). Since ~c is deterministic, there is a unique shortest path from x
to y so y ∈ sp-reach(x). Since by hypothesis e ∈ SP(x,y), condition (1) holds.

Case 2: e = xi. Let x = x2i−1 and y = x1i+1. Then ~p = 〈x1, . . . , xi−1〉 is a
deterministic sr-path from s to x of cost, say k1, and ~q = 〈xi+1, . . . , xl〉 from y to

7.1. MINIMUM SEGMENT COST COVERS 111

s of cost, say k2, such that k1+k2 = sr-cost(~p)+sr-cost(~q) = sr-cost(~c)−2 6 k−2.
Thus x ∈ reach(k1, s) and s ∈ reach(k2,y). Since ~c is deterministic, there is a
unique shortest path from x = x2i−1 and e1 = x1i . For the same reason, there
exists a unique shortest path from e2 = x2i to y = x1i+1. Thus e1 ∈ reach(2, x)
and y ∈ sp-reach(e2) so that condition (2) holds.

Note that in the first case we have k1+k2 6 k and in the second k1+k2 6 k−2
instead of the equalities. This is not a problem because if we have a solution
with k ′1 + k

′
2 < k we also have a solution with longer paths. The same is true

for k ′1 + k
′
2 < k − 2. One way to do so is to add the source s enough times so

that both paths have the desired segment cost.

(⇐) Assume that there exist integers k1,k2 > 1, x ∈ reach(k1, s), y such
that s ∈ reach(k2,y) and either (1) or (2) holds. Since x ∈ reach(k1, s) there
exists a deterministic sr-path ~p = 〈x1, . . . , xl〉 from s to x with sr-cost(~p) 6 k1.
In the same way, since s ∈ reach(k2,y), there exists a deterministic sr-path
~q = 〈y1, . . . ,yr〉 from y to s with sr-cost(~q) 6 k2.

Case 1: Condition (1) holds so that k1 + k2 = k, y ∈ sp-reach(x) and e ∈
SP(x,y). Let ~c = ~p + ~q = 〈x1, . . . , xl,y1, . . . ,yr〉. This sr-path is deterministic
because y11 = y ∈ sp-reach(x) = sp-reach(x2l). For the other indexes, the unicity
of shortest paths comes from the fact that both ~p and ~q are deterministic. Since
~c goes from s to s and has cost k1 + k2 = k, ~c is a sr-cycle of cost at most k
from s to s. It contains e because e ∈ SP(x,y) = SP(x2l ,y

1
1).

Case 2: Condition (2) holds so k1 + k2 = k − 2, e1 ∈ sp-reach(x) and
y ∈ sp-reach(e2). Let ~c = 〈x1, . . . , xl, e,y1, . . . ,yr〉. Since e1 ∈ sp-reach(x) and
y ∈ sp-reach(e2) we have that ~c is deterministic. As before, for the other indexes
determinism comes from the determinism of ~p and ~q. Finally, sr-cost(~c) =
sr-cost(~p) + sr-cost(~q) + sr-cost(e) = k1 + k2 + 2 6 k− 2 + 2 = k. Clearly e ∈ ~c
so the proof is complete.

Theorem 7.1 gives necessary and sufficient conditions for the existence of
a sr-cycle with segment cost at most k covering a given network edge. This
condition is checkable in polynomial time since, if nothing better, we can just
loop over all possible candidates x,y ∈ V(G) and splits of k into k1,k2 (recall
that k 6 2|E(G)|).

This shows that we can solve Problem 1 in polynomial time. For each edge e
we compute the smallest k such that there exists a deterministic sr-cycle covering
e. Then the maximum value over all these k values will be the minimum segment
cost for which a sr-cycle cover is possible.

Algorithm 10 closely follows Theorem 7.1 to build a sr-cycle for a given edge
e, source s and segment cost k. On lines 2 to 7 we try to see whether there
exists x,y,k1 and k2 that satisfy condition (1) from the theorem. If so, we build
a cycle accordingly by putting together a deterministic sr-path from s to x of
segment cost at most k1 and a deterministic sr-path from y to s of segment cost
at most k2. Upon failing to find such a cycle, on lines 9 through 15 we try to
find x,y,k1 and k2 that satisfy condition (2) from the theorem. If we find such
values, we build a cycle composed by a deterministic sr-path from s to x of cost
at most k1, followed by an adjacency segment on e and a deterministic sr-path
from y to s of cost at most k2. If we reach line 16 then Theorem 7.1 guarantees
that there exists no sr-cycle of segment cost at most k that covers e from source
s.

112CHAPTER 7. NETWORK MONITORING WITH SEGMENT ROUTING

Algorithm 10 build-srcycle (G, s,k, e)

1: [look for a cycle that satisfies the first set of conditions from Theorem 7.1]
2: for k1 ∈ {1, . . . ,k− 1} do
3: k2 ← k− k1
4: for x ∈ reach(k1, s) do
5: for y ∈ sp-reach(x) do
6: if s ∈ reach(k2,y) and e ∈ E(SP(x,y)) then
7: return build-det-srpath(G,k1, s, x)⊕ build-det-srpath(G,k2,y, s)
8: [look for a cycle that satisfies the second set of conditions from Theorem 7.1]
9: for k1 ∈ {1, . . . ,k− 2} do

10: k2 ← k− k1 − 2
11: for x ∈ reach(k1, s) do
12: if e1 ∈ sp-reach(x) then
13: for y ∈ sp-reach(e2) do
14: if s ∈ reach(k2,y) then
15: return build-det-srpath(G, k1, s, x)⊕ 〈e〉 ⊕ build-det-srpath(G, k2,y, s)
16: return null

Algorithm 11 cover-exists (G, s,k)

1: for e ∈ E(G) do
2: if cycle-exists(G, s,k, e) = null then
3: return false
4: return true

By pre-computing reach and sp-reach as sets with O(1) membership testing,
this algorithm runs in O(k2 · |V(G)|2 · |G|) since the cost of building a path with
Algorithm 14 is O(k · |G|). In practice thought, it will usually run much faster
since the reachability sets are often quite smaller than V(G) and a lot of loop
iterations are cut-off beforehand by the conditions.

To check whether a cycle cover exists for a given source s and segment cost
k we simply loop over all edges e ∈ E(G) and check whether a cycle exists for
each of them using Algorithm 10. Therefore the runtime of this algorithm is
O(k2 · |V(G)|2 · |G| · |E(G)|). For completeness a formalization of this algorithm
is provided as Algorithm 11.

To find k such that a cover exists from source s, we perform a binary search
of k to find the smallest k such that a cover exists. This process is described in
Algorithm 12. Our initial search interval is [0, 2|E(G)|] because we know from
Lemma 4.7 that any path admits a segmentation of cost at most 2|E(G)|. Once
we find this minimum k, we compute a set of sr-cycles that cover all edges. For
this we iterate over all edges and compute a sr-cycle covering it with Algorithm
10. We keep a set of covered edges to which we add all edges of every new
sr-cycle in the cover. In this way we reduce the total number of cycles in the
final solution. This give a total runtime of O(logE(G) · k2 · |V(G)|2 · |G| · |E(G)|).
If the source is unknown, we can add an extra iteration over all v ∈ V(G) to
find the one minimizing k as shown in Algorithm 13.

This is quite a high time complexity but it is none the less polynomial since
k 6 2|E(G)|. Even tough Algorithm 13 runs in a reasonable amount of time in
practice as shown on Figure 7.4, there is most likely a lot of space for improving
it. We leave finding more efficient algorithms as an open problem on this thesis.

7.1. MINIMUM SEGMENT COST COVERS 113

Algorithm 12 min-seg-cover (G, s)

1: [perfom a binary search to find the smallest k such that a cover exists]
2: lb← 0
3: up← 2|E(G)|
4: while up− lb > 2 do
5: k← lb+up

2

6: if cover-exists (G, s,k) then
7: up← k

8: else
9: lb← k

10: [k = up is the smallest segment cost such that a cover exists, build it]
11: covered← ∅
12: C← ∅
13: for e ∈ E(G) do
14: if e /∈ covered then
15: ~c← build-srcycle (G, s,ub, e)
16: covered← covered ∪ E(~c)
17: C← C ∪ {~c}
18: return C, ub

Algorithm 13 min-seg-cover (G)

1: C∗, s∗, k∗ ← null,null,∞
2: for s ∈ V(G) do
3: C,k← min-seg-cover (G, s)
4: if k < kmin then
5: C∗, s∗,k∗ ← C, s,k
6: return C∗, s∗, k∗

Minimum segmentation sr-cycle cover analysis

Figure 7.4 shows that the maximum time taken over any topology to compute
a minimum sr-cycle cover with an unknown source was about 15 minutes. This
is a reasonable amount of time given that network monitoring covers are often
computed only once and only need to change when the topology changes. A 15
minute setup time for a link failure monitoring service seems perfectly usable in
practice.

Figure 7.5 shows the runtime of 13 with respect to the size of the topology
|G|. We can observe that it indeed performs much better in practice than its
theoretical time complexity.

Next, we analyze the segment cost of the sr-cycle covers produced by the
algorithm. This gives a lower bound on the segment cost of any cycle cover
on the given topologies. This is an important result as it shows whether or
not we can expect to be able to implement such a monitoring scheme on a
segment routed network. As we can see on Figure 7.6, for more than 70% we
can find a cycle cover needing at most a segment cost of 5. This means that
in most topologies such a sr-cycle cover is implementable even on a network
operating low end routers. Almost all topologies require a segment cost of at
most 10 showing that network monitoring with segment routing is realistic for
most topologies with high end routers. We wanted to analyze the relationship
between the size of the topology and the segment cost required for the sr-cycle

114CHAPTER 7. NETWORK MONITORING WITH SEGMENT ROUTING

10−4 10−3 10−2 10−1 100 101 102 103

Runtime in seconds

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f t
op

ol
og

ie
s

Figure 7.4: Runtime CDF of Algorithm 13 over all topologies.

0 500 1000 1500 2000
Topology size |G|

0

100

200

300

400

500

600

700

Ru
nt

im
e

in
 se

co
nd

s

Figure 7.5: Runtime by topology size of Algorithm 13 over all topologies.

7.2. COLUMN GENERATION CYCLE COVER ALGORITHM 115

Algorithm 14 build-det-srpath (G,k, s, t)

1: if k = 1 then
2: return 〈s〉
3: if k = 2 then
4: if t ∈ N+(G, s) then
5: return 〈(s, t)〉 [if multiple edges exist between s and t, any will do]
6: return 〈s, t〉
7: for v ∈ reach(k− 1, s) do
8: if t ∈ sp-reach(v) then
9: return 〈t〉 ⊕ build-det-srpath (G,k− 1, s, v)

10: for v ∈ reach(k− 2, s) do
11: for e ∈ δ−(G, t) do
12: if e1 ∈ sp-reach(v) then
13: return 〈e〉 ⊕ build-det-srpath (G,k− 2, s, v)
14: return null

cover. The is shown in Figure 7.7. We can see that the size does not seem to
be correlated with the minimum segment cost.

7.2 Column generation cycle cover algorithm

We saw in Chapter 6 that column generation seemed to be a good framework to
solve segment routing problems. In this section we propose a column generation
algorithm for computing lower bounds on the number of sr-cycles in a minimum
sr-cycle cover of a network. We also show how to derive from it an heuristic
algorithm for Problem 2.

It is straightforward to express a MIP formulation for Problem 2. We define
binary variables x~c such that x~c = 1 if and only if ~c is used in the cover. These
variables will be defined for every ~c ∈ Cks where k and s are given as input.

In terms of objective function, since we want to minimize the number of
cycles in the cover, we can achieve this by minimizing

∑
~c∈Ck

s
x~c. This is so

because this sum counts how many cycles are used in the solution. For the
constraints it is quite simple as well. We simply need to ensure that for each
edge e ∈ E(G), there is at least one sr-cycle covering it, that is, there is at least
one ~c such that x~c = 1 and e ∈ E(~c). We define the following identify function
to simplify the expression of this constraints.

Definition 7.3. Given a network G we define a function I : P× E(G)→ {0, 1}
such that I(~p, e) = 1 if and only if e ∈ E(~p).

SRCC(G,k, s)

min
∑
~c∈Ck

s

x~c

s.t.
∑
~c∈Ck

s

I(~c, e) · x~c > 1 ∀e ∈ E(G)

x~c ∈ {0, 1} ∀~c ∈ Cks

116CHAPTER 7. NETWORK MONITORING WITH SEGMENT ROUTING

0 1 2 3 4 5 6 7 8 9 10 11 12 13
segment cost

0

5

10

15

20

25

30

35

pe
rc

en
ta

ge
 o

f t
op

ol
og

ie
s

seg cost

Figure 7.6: Percentage of topologies for each segment cost.

0 500 1000 1500 2000
Topology size |G|

4

6

8

10

12

Se
gm

en
t c

os
t

Figure 7.7: Segment cost by topology size over all topologies.

7.2. COLUMN GENERATION CYCLE COVER ALGORITHM 117

7.2.1 Column generation

We follow the same process that we did in Chapter 6 to develop the column
generation algorithm for the minimum sr-cycle cover problem. Recall that CG
is a technique for solving a LP and we have a MIP. The first step is then to
consider the LP-relaxation of SRCC and compute its dual.

SRCC-LP(G,k, s)

min
∑
~c∈Ck

s

x~c

s.t.
∑
~c∈Ck

s

I(~c, e) · x~c > 1 ∀e ∈ E(G) (P1)

x~c > 0 ∀~c ∈ Cks

As before, the most natural relaxation would be to set x~c ∈ [0, 1] but our
objective function guarantees that this is equivalent to x~c > 0. We chose the
second one because it is equivalent and easier to work with. The dual is obtained
by following the same systematic procedure as before. By doing so we get the
following LP.

SRCC-DUAL(G,k, s)

max
∑

e∈E(G)

ye

s.t.
∑

e∈E(G)

I(~c, e) · ye 6 1 ∀~c ∈ Cks (D1)

ye > 0 ∀e ∈ E(G)

The idea to solve SRCC-LP is again to start with a small but feasible subset
of sr-cycles C ⊆ Cks and slowly grow it until we can prove optimality. We
denote the problems restricted to C by adding C as an argument, that is, by
SRCC-LP(G,k, s,C) and SRCC-DUAL(G,k, s,C). To find a new element ~c to
add to C we need to, given an optimal solution y∗ of SRCC-DUAL(G,k, s,C),
find a sr-cycle ~c such that∑

e∈E(G)

I(~c, e) · y∗e =
∑
e∈E(~c)

y∗e > 1.

Solving this directly is NP-hard since it can be shown to be equivalent to the
longest path problem. Instead of trying to solve this pricing problem directly,
we are going to see that by slightly changing the LP formulation we can obtain
a polynomial time solvable pricing problem.

Definition 7.4. Given a network G we define a function K : P × E(G) → N
such that K(~p, e) equals the number of times e is traversed by ~p. Formally, if
~p = 〈x1, . . . , xl〉

K(~p, e) =

l∑
i=2

I(SP(x2i , x
1
i−1), e) +

l∑
i=1:xi=e

1.

118CHAPTER 7. NETWORK MONITORING WITH SEGMENT ROUTING

By replacing I by K in the above formulations we still get a model for Problem
2 since, the new constraints corresponding to (P1) with I replaced by K, will
still be true if and only if every edge is covered by at least one cycle. With this
change the formulations become:

SRCC-LP-K(G,k, s)

min
∑
~c∈Ck

s

x~c

s.t.
∑
~c∈Ck

s

K(~c, e) · x~c > 1 ∀e ∈ E(G)

x~c > 0 ∀~c ∈ Cks

SRCC-DUAL-K(G,k, s)

max
∑

e∈E(G)

ye

s.t.
∑

e∈E(G)

K(~c, e) · ye 6 1 ∀~c ∈ Cks

ye > 0 ∀e ∈ E(G)

The pricing problem now becomes the following one.

Problem 3 (SRCC pricing)

Input: A network G, k ∈ N, a source node s ∈ V(G) and values ye > 0 for
each e ∈ E(G).
Output: A sr-cycle ~c ∈ Cks such that∑

e∈E(G)

K(~c, e) · ye > 1

or report that no such sr-cycle exists.

In order to solve Problem 3, we define a sr-metric w such that

w(u, v) =
∑

e∈SP(u,v)

ye

and
w(e) = ye.

With this metric, it is easy to see can see that

w(~c) =
∑

e∈E(G)

K(~c, e) · ye.

Therefore we can solve the pricing problem by computing a sr-cycle ~c from
s to s of segment cost at most k such that w(~c) is maximum. We have al-
ready shown in Chapter 5 that this problem can be solved in polynomial time.
Therefore, we have the following theorem.

7.2. COLUMN GENERATION CYCLE COVER ALGORITHM 119

0 25 50 75 100 125 150 175 200
Runtime of the cycle cover CG algorithm (in minutes)

0

20

40

60

80

100

Pe
rc
en

ta
ge

 o
f t
op

ol
og

ie
s

Figure 7.8: CDF of the runtime of the column generation cycle cover algorithm.

Theorem 7.2. Problem 3 can be solved in polynomial time.

To start the column generation algorithm we need a feasible solution. In
order to obtain one, we run Algorithm 13 which also gives us suitable source
node s and lower bound on the segment cost k. If the target segment cost is
lower than k then we immediately know that a feasible solution does not exist.
If it does, we use the cycles produced by the minimum segment cost cycle cover
algorithm as an initial feasible solution for the column generation algorithm.

We evaluated the runtime of the column generation algorithm over all topolo-
gies. Figure 7.8 shows a CDF of these runtimes. The slowest topology took
about 3 hours so solve. Most topologies are solved in a very short amount of
time and 98% of the topologies are solved in under 25 minutes. These values are
very reasonable given that the probing cycle only needs to be computed when
the topology changes.

In the next section we will evaluate the lower bound provided by the column
generation algorithm.

7.2.2 Greedy algorithm

We designed above a column generation algorithm for solving the LP relaxation
of Problem 2. In this relaxation, an edge can be covered fractionally by two
sr-cycles or more. In this section we propose a greedy algorithm for converting
these fractional solutions to proper solutions of Problem 2.

Let C be the final set of sr-cycles. Our algorithm simply consists of selecting
elements of C while keeping track of the edges that are already covered until
all of them are. At each step, the sr-cycle that we selected is the sr-cycle that

120CHAPTER 7. NETWORK MONITORING WITH SEGMENT ROUTING

Algorithm 15 greedy-cc (G,C)

1: covered← ∅
2: cover← ∅
3: while |U| < |E(G)| do
4: ~c← ~c ∈ C such that |E(~c) ∪ covered| is maximum
5: cover← cover ∪ {~c}
6: covered← covered ∪ E(~c)
7: return cover

covers the maximum remaining uncovered edges.
It is a well know result that this yields a logarithmic factor approximation.

We prove this in the next theorem for completeness.

Theorem 7.3. The set of cycles, cover, produced by Algorithm 15 is such that

optC 6 |cover| 6 log |E(G)| · optC

where optC is the size of a minimum over using only cycles from C.

Proof. Clearly, optC 6 |cover|. Let m = |E(G)|. Since the optimal solution
relative to C uses optC sr-cycles, there must be at least one of them that covers
at least a fraction 1/optC of the edges. If they were all below this ratio, they
could not cover all edges. Since we select the sr-cycle that covers the most
uncovered edges, the first sr-cycle will cover at least 1/optC edges. Hence, after
the first iteration, there are at most m(1 − 1/optC) edges left to cover. In the
same way, there must be a set that covers at least 1/optC of these m(1 − 1/
optC) edges. Since we select the sr-cycle covering the most edges, after the
second iteration there are at most m(1 − /optC)

2 edges left. By repeating this
argument, we see that after k iterations there are at most m(1−1/optC)

k edges
left. Therefore, after k = optC logm iterations, there are

m(1 − 1/optC)
optC logm = m(1/e)logm = m · 1

elogm
=
m

m
= 1

edges left. Hence |cover| 6 logm · optC.

Ideally we would want to be able to prove that

opt 6 |cover| 6 log |E(G)| · opt

where opt is the optimal solution over all sr-cycles Cks but unfortunately this
is not true in general. However, since the fractional solution obtained with the
column generation is a lower bound on opt we can still evaluate how far this
gets us from the opt in practice. Figure 7.9 shows the sizes of the minimum
segment cost covers, the LP lower bound and the sizes of the greedy covers.

We can see that the greedy solution is actually quite close to the lower bound
and therefore it must also be close to opt. To provide a better view of how close
they are we computed a CDF of relative distance

greedy− lb

lb

which is shown in Figure 7.10. As a reference, with this metric, a value of 1
means that the greedy solution uses twice the number of sr-cycle compared to

7.3. PINPOINTING SINGLE-LINK FAILURES 121

0 500 1000 1500 2000
Topology size |G|

0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f c
yc

le
s

lp bound
min seg cost cover size
greedy cover size

Figure 7.9: Lower bound, min seg cover size and greedy cover size shown by
topologies size.

the lower bound. We can see from the CDF that for 90% of the instances we
have an increase of at most 50% on the number of sr-cycles. Recall that this
lower bound is not the actual number of sr-cycles in the optimal solution but
only an estimate. This means that our solution is actually even closer to the
optimal solution.

The most important aspect is that by combining the minimum segment cost
sr-cycle covers with the column generation and the greedy algorithm we are
able to greatly reduce the number of sr-cycles in the minimum segment cost
cover. Therefore, our solution is able to find sr-cycle covers that not only use
the minimum amount of segments required for any sr-cycle cover but also are
quite close to the minimum theoretical number of sr-cycles.

7.3 Pinpointing single-link failures

In this section we explain how to use a sr-cycle cover to detect single-link failures.

As mentioned in the introduction of this chapter, the idea is to have node s
regularly send monitoring probes over the sr-cycles of in a sr-cycle cover C ⊆ ~Csk.
Since we are using sr-cycles, if the network is operating without failures, each
probe must eventually come back to the vantage point s. If at least one such
probe does not come back, we know that at least one of the edges in the cycle
associated with it has a failure. We refer to the sr-cycles in the cycle cover C as
probing cycles.

Let ~c be a cycle with a failure, that is, whose probe did not return. Be-
cause we use deterministic cycles, if we map ~c back to G, we get a cycle

122CHAPTER 7. NETWORK MONITORING WITH SEGMENT ROUTING

0.0 0.2 0.4 0.6 0.8 1.0
Gap between greedy solution and lower bound

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f t
op

ol
og

ie
s

Figure 7.10: CDF of the gap between the greedy solution and the LP lower
bound.

c = (e1, e2, . . . , el). Recall that in this chapter we assume that the network
G is symmetric so that for each edge e there is a reverse edge rev(e) and
that igp is symmetric if igp(e) = rev(igp(e)). The idea to detect the fail-
ure is to perform a binary search to find the largest i such that the cycle
ci = (e1, . . . , ei, rev(ei), . . . , rev(e1)) contains no failure. For each i we send
another probe over ci and check whether it comes back. If it does, then we
know that the index we seek is greater than or equal to i. If it does not then
the index must be strictly smaller than i. The single-link failure assumption
is important for this process to work. Because the probe did not cycle back,
we know that one of e1, . . . , el is faulty. Therefore, since we assume single-link
failure, we know that each reverse edge is not faulty. Hence, when we send a
binary search probe on ci, if it does not come back, we know that the problem
is in one of e1, . . . , ei. We refer to these sr-cycles as identification cycles.

Figure 7.11 illustrates this on an example with l = 8 and the failure is on
edge e5. We start the search with i = 4. The green dotted path illustrates that
the probe successfully returned to v1. Thus we know that edges e1, e2 and e3
are up. The search will select i = 6 and this time the probe did not return.
We conclude that the error is either in e4 or e5. Finally, we send a probe on c5
which returns. We finally conclude that the problem is on link e5.

To illustrate why the single link-failure assumption is important, let’s see
happens with this process when multiple failures occur. Imagine the same ex-
ample as in Figure 7.11 but assume that edge rev(e3) is also down. In this case
the first binary search probe will fail to return and the search will stop at i = 3
and the algorithm will say that the problem is on edge e3. However e3 is up and
it is rev(e3) that prevents the probe to return. This shows that with multiple

7.3. PINPOINTING SINGLE-LINK FAILURES 123

v1

v2

v3

v4

v5

v6

v7

v8
e
1

e
2e3

e
4

e
5

e
6 e7

e
8

X

rev(e
1)

rev(e
2)rev

(e3
)

re
v(
e
4
)

rev(e
5)

rev(e
6) rev

(e7
) re

v(
e
8
)

v1

v2

v3

v4

v5

v6

v7

v8

e
1

e
2e3

e
4

e
5

e
6 e7

e
8

X

rev(e
1)

rev(e
2)rev

(e3
)

re
v(
e
4
)

rev(e
5)

rev(e
6) rev

(e7
) re

v(
e
8
)

First step of binary search. Success. Second step of binary search. Failure.

Edges e1,e2,e3 are up. One of e4,e5 is down.

v1

v2

v3

v4

v5

v6

v7

v8

e
1

e
2e3

e
4

e
5

e
6 e7

e
8

X

rev(e
1)

rev(e
2)rev

(e3
)

re
v(
e
4
)

rev(e
5)

rev(e
6) rev

(e7
) re

v(
e
8
)

v1

v2

v3

v4

v5

v6

v7

v8

e
1

e
2e3

e
4

e
5
X

e
6 e7

e
8

rev(e
1)

rev(e
2)rev

(e3
)

re
v(
e
4
)

rev(e
5)

rev(e
6) rev

(e7
) re

v(
e
8
)

Third step of binary search. Success. End of the search.

Edges e4 is up. Failure detected in e5.

Figure 7.11: Binary search to identify the failure (single-link failure assumption).

124CHAPTER 7. NETWORK MONITORING WITH SEGMENT ROUTING

failures, we cannot know exactly which link is down. However, we still can say
that either e3 is down or rev(e3) is down. Figure 7.12 illustrates this.

This means that in presence of multiple link failures, we cannot tell exactly
which link is down but we can still find a set of two links {e, rev(e)} such that
we are sure that at least one of them is down.

Computing identification cycles

At each step of the binary search, given i we need to find a way to route a probe
over the cycle ci = (e1, . . . , ei−1, ei, rev(ei), rev(ei−1), . . . , rev(e1)). One way do
so is to compute a minimum segmentation of ci and use that segmentation.

There is an alternative solution that avoids having to compute segmentations
and uses the segments in ~c = 〈x1, . . . , xl〉 instead to segment the identification
cycles. We will do so by finding an index i such that ei is between xj and
xj+1 and then reverse the elements x1, . . . , xj to obtain a segmentation of ci =
(e1, . . . , ei−1, ei, rev(ei), rev(ei−1), . . . , rev(e1)).

Definition 7.5. Let G be a symmetric network and ~p be a sr-path on G.
We define rev(~p) = 〈rev(xl) . . . , rev(x1)〉 where rev(xi) = xi if xi ∈ V(G) and
rev(xi) = rev(e) if xi = e ∈ E(G).

Note that we have rev(xi)
1 = x2i and rev(xi)

2 = x1i .

Lemma 7.4. Let G be a symmetric network. Let ~p be a deterministic sr-path
with path(~p) = (e1, . . . , en). If igp is symmetric then rev(~p) is a deterministic
sr-path with path(rev(~p)) = (rev(en), . . . , rev(e1)) = rev(path(~p)).

Proof. We first prove that rev(~p) is deterministic. Let i ∈ {l, . . . , 2}. We need
to prove that there is a unique shortest path from rev(xi)

2 = x1i to rev(xi−1)
1 =

x2i−1. Since ~p is deterministic, we know that there is a unique shortest path
from x2i−1 to x1i . By Corollary 2.6 we know then that there is also a unique
shortest path from x1i to x2i−1.

Since path(~p) = (e1, . . . , en), we have that for each i there exist 1 6 ki1 6
ki2 6 n such that SP(x2i , x

1
i+1) = (eki

1
, . . . , eki

2
). Therefore, by Corollary 2.6,

SP(rev(xi+1)
2, rev(xi)

1) = SP(x1i+1, x2i) = (rev(eki
2
), . . . , rev(eki

1
)). Since for ad-

jacency segments xi = e we have rev(xi) = rev(e) we conclude that path(rev(~p)) =
(rev(en), . . . , rev(e1)).

To build a segmentation of ci from ~c we find an index j such that either
ei = xj or ei ∈ SP(x2j−1, x1j). This index always exists since ~c is a deterministic
sr-cycle that traverses edge ei. Depending on which case occurs, we can build
the sr-cycle ~ci covering ci as follows:

Case 1: ei = xj. In this case, we can use

~ci = 〈x1, . . . , xj〉 ⊕ rev(〈x1, . . . , xj〉)
= 〈x1, . . . , xj〉 ⊕ 〈rev(xj), . . . , rev(x1)〉
= 〈x1, . . . , xj, rev(xj), . . . , rev(x1)〉

To see that ~ci is a segmentation of ci we obeserve that since path(〈x1, . . . , xj〉)
is equal to (e1, . . . , ei), by Lemma 7.4, it holds that

path(〈x1, . . . , xj〉) = (rev(ei), . . . , rev(e1))

7.3. PINPOINTING SINGLE-LINK FAILURES 125

v1

v2

v3

v4

v5

v6

v7

v8

e
1

e
2e3

e
4

e
5

e
6 e7

e
8

X

rev(e
1)

rev(e
2)rev

(e3
)

re
v(
e
4
)

rev(e
5)

X

rev(e
6) rev

(e7
) re

v(
e
8
)

v1

v2

v3

v4

v5

v6

v7

v8

e
1

e
2e3

e
4

e
5

e
6 e7

e
8

X

rev(e
1)

rev(e
2)rev

(e3
)

re
v(
e
4
)

rev(e
5)

rev(e
6) rev

(e7
) re

v(
e
8
)

X

First step of binary search. Failure. Second step of binary search. Success.

One of e1,e2,e3, rev(e3), rev(e2), rev(e1) is down. Edges e1, rev(e1) are up.

v1

v2

v3

v4

v5

v6

v7

v8

e
1

e
2e3

e
4

e
5

e
6 e7

e
8

X

rev(e
1)

rev(e
2)rev

(e3
)

re
v(
e
4
)

rev(e
5)

rev(e
6) rev

(e7
) re

v(
e
8
)

X

v1

v2

v3

v4

v5

v6

v7

v8

e
1

e
2e3

e
4

e
5
X

e
6 e7

e
8

rev(e
1)

rev(e
2)rev

(e3
)

re
v(
e
4
)

rev(e
5)

X

rev(e
6) rev

(e7
) re

v(
e
8
)

Third step of binary search. Success. End of the search.

Edges e2, rev(e2) are up. Failure in e3 or rev(e3).

Figure 7.12: Binary search to identify the failure. No single-link failure assump-
tion.

126CHAPTER 7. NETWORK MONITORING WITH SEGMENT ROUTING

and so

path(~ci) = path(〈x1, . . . , xj〉)⊕ path(rev〈x1, . . . , xj〉)
= (e1, . . . , ei)⊕ (rev(ei), . . . , rev(e1))

= (e1, . . . , ei, rev(ei), . . . , rev(e1)) = ci

Case 2: xj ∈ SP(x2j−1, x1j). In this case, we can use the sr-path

~ci = 〈x1, . . . xi−1〉 ⊕ e2j ⊕ rev(〈x1, . . . , xi−1〉)

Since ~c is a segmentation of c, there must exist some index k < i such that

path(〈x1, . . . , xj−1〉) = (e1, . . . , ek)

and
path(〈xj−1, . . . , xl〉) = (ek+1, . . . , ei, . . . , en).

With this notation, SP(x2j−1, e2i) = (ek+1, . . . , ei) so

path(~ci) = path(〈x1, . . . , xj−1〉)⊕ SP(x2j−1, e2i) ⊕
rev(SP(x2j−1, e2i))⊕ path(rev(〈x1, . . . , xi−1〉))

= (e1, . . . , ek)⊕ (ek+1, . . . , ei) ⊕
rev((ek+1, . . . , ei))⊕ rev(path(〈x1, . . . , xi−1〉))

= (e1, . . . , ek)⊕ (ek+1, . . . , ei) ⊕
(rev(ei), . . . , rev(ek+1))⊕ rev(e1, . . . , ek)

= (e1, . . . , ek)⊕ (ek+1, . . . , ei) ⊕
(rev(ei), . . . , rev(ek+1))⊕ (rev(ek), . . . , rev(e1))

= (e1, . . . ei) ⊕ (rev(ei), . . . , rev(e1))

= (e1, . . . , ei, rev(ei), . . . , rev(e1)) = ci

In both cases, we see that ~ci is a segmentation of cycle ci. One drawback of
this approach is that the probing cycle used during the binary search can have
up to a double segment cost of the probing cycles in the cycle cover. This is
something that we will have to consider when selecting the maximum segment
cost of the cycles in the cycle cover. On a network with high-end routers we can
use sr-paths with up to about 10 segments in their segment stack. This means
that we should compute probing cycles with up to 5 segments if we want to be
sure that the search cycles are supported.

Algorithm 16 formalizes this process. We executed Algorithm 13 on all
topologies of our dataset and then for each sr-cycle we computed the maximum
segment cost over all identification cycles that could be used in Algorithm 16.
Figure 7.13 shows the distribution of these costs. We mentioned in the introduc-
tion that high end routers tend to support up to about 10 segments. This figure
shows that for about 20% of the topologies identification of sr-cycles sometimes
require more than 10 segments. In order to overcome this problem, in the next
section we discuss an alternative monitoring scheme which uses a different set
of IGP weights for the probing and identification sr-cycles. These new weights
are designed with the intent of reducing the maximum segment cost required to
identify network failures.

7.4. DUAL TOPOLOGY MONITORING 127

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
maximum identification sr-cylce segment cost

0

5

10

15

20

25

30

35
pe

rc
en

ta
ge

 o
f t
op

ol
og

ie
s

original IGP

Figure 7.13: Distribution of the maximum segment cost of the probing sr-cycles.

7.4 Dual topology monitoring

As we showed before, the minimum number of segments required to cover a
topology can be quite high. One idea to reduce it is to have a separate set
of IGP weights. The ones already configured on the network used to forward
traffic and new ones that are used only for sending the monitoring probes.

One idea to compute those weights would be to first compute a minimum
cycle cover of the network using some standard existing algorithm [21] (note
that here we are talking about cycles, not sr-cycles). Then we could compute a
set of weights such that the maximum number of segments required to segment
any of those cycles is as small as possible. We did not solve this problem and
therefore leave it as an open problem (with a slightly more general formulation).

Problem 4 (Optimal segmentation IGP)

Given a graph G and a set P of paths on G compute a IGP weight function
igp : E(G) → N such that if we compute a minimal segmentation of every path
p ∈ P whose maximum segment cost amongst those sr-paths is minimal.

We believe that solving this problem could be very useful in any setting
where having a dual weight topology is infeasible in practice. This would be yet
another way to leverage existing graph theory to solve the problem and then
translate those graph theoretic solutions into segment routing solutions with
low segment cost.

Another possibility, which we explore in this thesis, is to compute a set of
igp weights such that there is a unique shortest path between any pair of nodes
and every edge belongs to a unique shortest path. The intuition of why this

128CHAPTER 7. NETWORK MONITORING WITH SEGMENT ROUTING

Algorithm 16 find-faulty-edge (g,~c = 〈x1, . . . , xl〉)
1: c = (e1, . . . , en)← path(~c)
2: L← 0,R← n

3: while R− L > 2 do
4: i← L+R

2

5: if g.isSymmetric() then
6: j← min

{
j ∈ {1, . . . , l} | ei = xj ∨

(
j < l∧ ei ∈ SP(x2j , x

1
j+1)

)}
7: if ei = xj then
8: ~ci ← 〈x1, . . . , xj, rev(xj), . . . , rev(x1)〉
9: else

10: ~ci ← 〈x1, . . . , xj−1, e2i , rev(xj−1), . . . , rev(x1)〉
11: else
12: ~ci ← min-segmentation((e1, . . . , ei, rev(ei), . . . , rev(e1))
13: status← send-probe(~ci)
14: if status = received then
15: L←M

16: else
17: R←M

18: if single-link failures then
19: return eL
20: return {eL, rev(eL)}

will make segmentations less costly is that the conditions for needing to add a
new segment in the minimum segmentation algorithm is exactly the existence
of multiple shortest paths or an edge that does not belong to any shortest path.
Note that our two conditions cannot both coexist in a network with parallel
links. With two links between u and v, we cannot have at the same time
that both those links belong to some shortest path and a unique shortest path
between u and v. We therefore relax the definition as follows.

Definition 7.6. Let G be a graph. A set of IGP weights igp : E(G)→ N is said
to be complete if and only if for all u, v ∈ V(G) at least one edge of E(G,u, v)
belong to a shortest path.

Definition 7.7. Let G be a graph. A set of IGP weights igp : E(G)→ N is said
to be ECMP-free if and only if for all u, v ∈ V(G) there is a unique shortest
path between u and v.

7.4.1 Computing ECMP-free and complete IGP weights

Definition 7.8. Let G be a graph. A set of IGP weights igp : E(G)→ N is said
to be total if and only all simple paths on G have a different weight.

Computing a total weighting of a graph G is trivial. We can simply set
igp(e) = 2idx(e) for all e ∈ E(G). Since idx(e) assigns a unique index between 0
and |E(G)|− 1 to the edges of G, this IGP function will assign a different power
of two to each edge of G. Therefore, any two distinct simple paths must have
a different IGP weight since those weights will correspond to sums of distinct
powers of 2.

The following lemma shows, unsurprisingly, that one way to build ECMP-
free weights is to compute total weights.

7.4. DUAL TOPOLOGY MONITORING 129

Lemma 7.5. Let G be a graph. If igp : E(G)→ N is total then it is ECMP-free.

Proof. Trivial from the definition. Any shortest path is simple and thus any
two shortest paths must have a different IGP weight since igp is total.

The following result shows that we can transform any total IGP weighting
igp into a complete one by adding a large enough constant. This constant can by
any value above the maximum between the diameter of the graph with respect
to igp and the maximum weight of any edge. Being larger than the diameter
ensures that shortest paths remain unique and being larger than the maximum
weight ensures that every edge belong to a shortest path. The diameter of a
network is the greatest distance (in terms of number of edges) between any pair
of vertices.

Lemma 7.6. Let G be a network. Let

M > max

(
diam(G, igp), max

e∈E(G)
igp(e)

)
.

Then, if igp : E(G) → N is total then igp+ : E(G) → N defined by igp+(e) =
igp(e) +M is complete.

Proof. Let p1 = (e1, . . . , en) and p2 = (f1, . . . , fm) be two paths on G.
We start by proving that igp+(p1) 6= igp+(p2). By definition igp+(p1) =

igp(p1)+n·M and igp+(p2) = igp(p2)+m·M. By hypothesis, igp(p1) 6= igp(p2)
Assume without loss of generality that igp(p1) > igp(p2). If n = m then

igp+(p1) = igp(p1) + n ·M > igp(p2) + n ·M = igp(p2) +m ·M = igp+(p2).

By definition of M, we have M > diam(G, igp) > igp(p1), igp(p2) > 0. Thus, if
n > m then,

igp+(p1) = igp(p1) + n ·M > n ·M > (m+ 1) ·M
=M+m ·M > igp(p2) +m ·M = igp+(p2)

Similarly, if n < m then

igp+(p2) = igp(p2) +m ·M > m ·M > (n+ 1) ·M
=M+ n ·M > igp(p1) + n ·M = igp+(p1).

Thus, in any case, igp+(p1) 6= igp+(p2). We conclude that igp+ is total and
therefore also ECMP-free.

Let u, v ∈ V(G). We now show that at least one edge e ∈ E(G,u, v) belongs
to a shortest path with respect to igp+. Let e ∈ E(G,u, v) be such that igp(e) is
minimum. Since igp is total, this edge is unique. By Proposition 2.3, e belongs
to a shortest path if and only if e is a shortest path between u and v. Suppose
that e is not a shortest path for igp+. Then there exists a path p = (e1, . . . , en)
from u to v such that igp+(p) < igp(e). Since e is the unique edge between u
and v of minimum cost, n > 2. By definition of M, we have M > igp(e) so

igp+(p) = igp(p) + n ·M > igp(p) + 2 ·M > 2 ·M > 2 · igp(e) > igp(e).

This contradicts the fact that e is not a shortest path for igp+. Therefore igp+

is complete.

130CHAPTER 7. NETWORK MONITORING WITH SEGMENT ROUTING

Corollary 7.7. Let G be a graph and igp : E(G)→ N defined such that

igp(e) = 2idx(e) + 2|E(G)|.

Then igp is ECMP-free and complete.

Proof. We have already observed that e 7→ 2idx(e) is total and thus ECMP-free
by Lemma 7.5. Completeness then follows from Lemma 7.6 by observing that

2|E(G)| =

 ∑
e∈E(G)

2idx(e)

+ 1 > max

(
diam(G, igp), max

e∈E(G)
igp(e)

)
.

The problem with these IGP weights is that they are exponential with respect
to the number of edges in the graph. In practice IGP weights are represented
with a 16-bit integer and thus is maximum value is 216−1 = 65535. This makes
them useless in practice since they can only be implemented on a network with
at most 15 edges.

This motivates the following problem.

Problem 5 (Minimum weight complete weighting)

Input: A network G.
Output: A complete and ECMP-free weighting igp : E(G) → N such that
max
e∈E(G)

igp(e) is minimum.

Any approach for solving Problem 5 that is based on Lemma 7.6 is domed
to fail. To see why this is true consider Kn, the complete graph on n nodes. It
is not hard to see that Kn contains an exponential number of simple paths.

Any permutation of n elements corresponds to a simple path on Kn of length
n − 1 and there are n! permutations of n elements. Since a total weight must
assign a different weight to every simple path, this shows that a total weight
on the complete graph Kn will be such that at least one simple path of length
n− 1 has a weight of at least n!. Therefore this path must contain one edge of
weight n!

n−1 since otherwise the total weight of the path would be lower than n!.
This shows that total weightings require exponential weights on any graph

with an exponential number of paths. Most graphs have an exponential number
of simple paths with respect to its size. Hence, using Lemma 7.6 is bound to
provide weights that are very high. In contrast, it is not hard to see that e 7→ 1 is
an ECMP-free and complete weighting of Kn. This shows that such exponential
bounds do not apply for the weight that we are looking for, only for total ones.

If we only care about the practical applicability of the weights, we can relax
Problem 5 into the following one.

Problem 6 (Implementable complete weighting)

Input: A network G.
Output: A complete and ECMP-free weighting igp : E(G) → N such that
max
e∈E(G)

igp(e) 6 216 − 1.

7.4. DUAL TOPOLOGY MONITORING 131

7.4.2 Prime-based complete IGP

We propose a partial solution to Problem 6. Our solution is able to find a
solution for 97.7% of the instances in our dataset. Letm = |E(G)| be the number
of edges in the graph and Pm = {π0, . . . ,πm−1} a set of m prime numbers such
that πi 6 πi+1. It is well known that two sets of distinct prime numbers have
a different product. Our idea is based on the fact that log(x · y) = log(x) ·
log(y). If we could set any real valued IGP weights, one solution would be to
use e 7→ log(πidx(e)) because the unicity of products between prime numbers
would translate into unique sums and thus unique path weights. To simplify
the notations, we write πe instead of πidx(e). In this way, by what we observe
above, two distinct paths would necessarily have distinct IGP costs.

Since we need integers we will use truncated logarithms instead. These
logarithms are defined as

ln
s
(x) = b10s · ln(x)c.

For instance, ln
4
(5) = b104 · 1.60943c = 16094. The idea is, starting from

s = 1, to grow s until the IGP weights defined by e 7→ ln
s
(πe) are ECMP-

free. A priori, nothing guarantees that doing so will eventually achieve it but
we will prove shortly that it does. Since we also want the IGP weights to also
be complete, we use a slight different set of IGP weights igps : E(G) → N
defined as igps(e) = ln

s
(πe)+ ln

s
(πm). The intuition behind the addition of the

largest ln
s
(πm) term for achieving completeness is similar to the addition of the

constant M from Lemma 7.6. We now prove that by growing s, igps eventually
becomes ECMP-free and complete.

Proposition 7.8. Let A and B be two distinct subsets of Pm, P =
∏
x∈Px

x
and q ∈ Pm. If s > log10 (2m · qmP), then

∑
x∈A

(
ln
s
(x) + ln

s
(q)
)
6=
∑
x∈B

(
ln
s
(x) + ln

s
(q)
)

.

Proof. Given any s and X ⊆ Pm, we have

10s · ln

(∏
x∈X

x

)
>
∑
x∈X

ln
s
(x) > 10s · ln

(∏
x∈X

x

)
− |X| (7.1)

Let q ∈ Pm. Write a =
∏
x∈A x and b =

∏
x∈B x. Assume without loss of

generality that q|A|a > q|B|b (they are not equal because they contain distinct
prime numbers). Then by (7.1)

∑
x∈A

ln
s
(x) + ln

s
(q) >

∑
x∈A

10s ln(xq) − 2 >

10s ln(q|A|a) − 2|A|

132CHAPTER 7. NETWORK MONITORING WITH SEGMENT ROUTING

and
∑
x∈B ln

s
(x) + ln

s
(q) 6 10s ln(q|B|b). Therefore∑

x∈A
ln
s
(x) + ln

s
(q) −

∑
x∈B

ln
s
(x) + ln

s
(q) >

10s ln(q|A|a) − 2|A|− 10s ln(q|B|b) >

10s ln
(
q|A|a/q|B|b

)
− 2|A| >

10s ln
(
q|A|a/(q|A|a− 1)

)
− 2|A| >

10s/(q|A|a) − 2|A| > 10s/(qmP) − 2m

Which is positive as long as s > log10 (2m · qmP).

Corollary 7.9. If s > log10 (2m · qmP) then igps is ECMP-free.

Proof. Let p1,p2 be two paths on G and q = πm. By Proposition 7.8,

igps(p1) =
∑

e∈E(p1)

(
ln
s
(e) + ln

s
(πm)

)
6=
∑

e∈E(p2)

(
ln
s
(e) + ln

s
(πm)

)
= igps(p2).

Therefore igps is total and thus, by Lemma 7.6, this means that it will also be
ECMP-free.

Proposition 7.10. The weights igps are complete for any s > 1.

Proof. Let u, v ∈ V(G). Assume that the shortest path p from u to v is not a
single edge. Let e be any edge between u and v. Then,

w(p) = |E(p)| · lns(πm) +
∑
e∈E(P)

ln
s
(πe) > |E(p)| · lns(πm) >

2 · lns(πm) > ln
s
(πe) + ln

s
(πm) = w(e)

Therefore p cannot be a shortest path proving that igps is complete.

These results provide a theoretical guarantee that the above mentioned pro-
cess will eventually converge towards ECMP-free and complete weights. How-
ever, even for small graphs the value of log10 (2m · qmP) is large and thus, if
s > log10 (2m · qmP), then 10s will be really huge. But this a theoretical bound
on how long we need to wait to reach a total function. But we do not care
about totality, we only want ECMP-freeness (completeness is true for any s).
Therefore, our algorithm will iterate over s and, at each step, check whether
ECMP-freeness holds with the hope that this will occur a long time before to-
tality occurs. Our experiments show that this is indeed the case. Figure 7.14
shows the distribution of the value of s over all topologies from out dataset. We
can see that this value is indeed much smaller than the theoretical bound.

We analyzed the percentage of topologies for which this process results in
weights that go above the maximum configurable value 216 − 1. It turns out
that for this happens only for 2.3% of the topologies as show in the CDF in
Figure 7.15. The threshold value is shown with a dotted line.

Algorithm 17 provides a pseudo-code implementation of this algorithm de-
scribed above. The first step of the algorithm is to compute a set of m = |E(G)|
prime numbers. We can find these by iterating over the integers 2, 3, 5, 7, 9, . . .

7.4. DUAL TOPOLOGY MONITORING 133

0 1 2 3 4 5 6
value of s

0

5

10

15

20

25

30

pe
rc

en
ta

ge
 o

f t
op

ol
og

ie
s

s

Figure 7.14: Distribution, over all topologies, of the exponent s required for igps

to be ECMP-free and complete.

0 250000 500000 750000 1000000 1250000 1500000 1750000
Maximum IGP weight

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f t
op

ol
og

ie
s

Figure 7.15: CDF of maximum weight obtained over all topologies.

134CHAPTER 7. NETWORK MONITORING WITH SEGMENT ROUTING

Algorithm 17 primeIGP (G)

1: [compute the first |E(G)| primes]
2: m← |E(G)|
3: P← {2}
4: p← 3
5: while |P| < m do
6: if isPrime(p) then
7: P← P ∪ {p}

8: p← p+ 2
9: [initialize weights]

10: f← 1
11: for e ∈ E(G) do
12: w(e)← bf · log(pe)c+ bf · log(pm)c
13: [iterate until weights converge]
14: while not ECMP-free(w) or not complete(w) do
15: f← 10 · f
16: for e ∈ E(G) do
17: w(e)← bf · log(pe)c+ bf · log(pm)c
18: return w

Algorithm 18 randomIGP (G,M)

1: w← random-w(G,M)
2: while not ECMP-free(w) or not complete(w) do
3: w← random-w(G,M)
4: return w

and using any primality test algorithm to check which ones are prime numbers.
The Prime number theorem [14] tells us that the m-th prime number is close
to m · ln(m) so we find them in a small number of steps. This is not the most
efficient way to achieve this but since m is relatively small it is fast enough for
our purposes.

7.4.3 Randomized complete IGP

In practice, there seems to be a much simpler solution for generating relatively
small ECMP-free and complete IGP weights. We performed some experiments
that showed that random weighs tend to be ECMP-free as long as the maximum
value is not too small. Therefore, a solution for generating ECMP-free weights
that are also complete is to randomly generate weights for each edge and then
adding the maximum generated weight to each edge to guarantee completeness.
Algorithms 18 and 19 formalize this process. Note that without the step of
adding the maximum weight, our experiments showed that the algorithm has a
low probability of success. This is normal because otherwise there is no control
over the weight of a single edge and so it can easily happen that it is assigned
a high value making it impossible for it to belong to a shortest path.

In practice we tried it over all topologies with M = 100 for each of them
we found a solution on average in at most 2 iterations (over 100 runs). For
this reason, in practice we strongly recommend using this simple algorithm.
However we were unable to prove any bound on the probability of success of
this algorithm. Hence we cannot say whether it will work well beyond our

7.4. DUAL TOPOLOGY MONITORING 135

Algorithm 19 random-w (G,M)

1: for e ∈ E(G) do
2: w(e)← random(1, . . . ,M)
3: for e ∈ E(G) do
4: w ′(e)← w(e) + maxe∈E(G)w(e)
5: return w ′

dataset. We leave the following problem as another interesting open problem.

Lemma 7.11. For any network G and M ∈ N the weight function produced by
Algorithm 19 is complete.

Proof. Let w be the random weights produced by the algorithm after the first
loop and w ′ the final weights. Let M = maxe∈E(G)w(e). Let u, v ∈ V(G) and
p be a path from u to v with at least two edges. Then

w ′(p) = w(p) + |E(p)| ·M > 2 ·M > w(e) +M = w ′(e)

for any edge e ∈ E(G). Therefore the shortest path between u and v must be a
single edge e ∈ E(G,u, v).

Problem 7 (Randomized weighting)

Input: A network G and a integer constant M ∈ N.
Output: The probability that random-w (G,M) outputs an ECMP-free IGP
weight function.

7.4.4 Cycle covers with ECMP-free and complete IGP

In this section we evaluate the benefits of using ECMP-free and complete IGP
weights. We start by evaluating the minimum number of segments required in
a minimum segment cost sr-cycle cover. Recall that Algorithm 13 computes a
sr-cycle cover such that the maximum number of segments in any sr-cycle is
as small as possible. In Figure 7.6 we already evaluated the segment cost of
the solutions obtained by this algorithm over the original IGP weights. Figure
7.17 shows the distribution of the segment costs with and without special IGP
weights. We observe that ECMP-free and complete weights obtain the desired
effect of greatly reducing the segment cost of minimum cost sr-cycle covers. For
100% of the topologies we need sr-cycles with segment cost at most 4 whereas
before about 55% of the topologies required sr-cycles with segment cost 5 or
more.

Next we analyze the benefits of using special IGP weights with respect to the
segment cost of the identification sr-cycles. Recall that our network monitoring
solution uses probing sr-cycles to periodically check whether every link is still
up and one identification sr-cycles to pinpoint a failure when a monitoring probe
fails to return to the vantage point. Figure 7.17 shows how much do we gain in
terms of segment cost by having ECMP-free and complete IGP weights. We can
see that using these weights makes it possible to implement such a monitoring
scheme on a lot more networks since the maximum number of segments required
becomes 9 rather than the original high value of 19.

136CHAPTER 7. NETWORK MONITORING WITH SEGMENT ROUTING

0 1 2 3 4 5 6 7 8 9 10 11 12 13
segment cost

0

20

40

60

80
pe

rc
en

ta
ge

 o
f t

op
ol

og
ie

s

original IGP
ECMP-free and complete IGP

Figure 7.16: Distribution of the maximum segment cost of the probing sr-cycles
with and without ECMP-free and complete weights.

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
maximum identification sr-cylce segment cost

0

10

20

30

40

50

60

70

pe
rc

en
ta

ge
 o

f t
op

ol
og

ie
s

original IGP
ECMP-free and complete IGP

Figure 7.17: Distribution of the maximum segment cost of the identification
sr-cycles with and without ECMP-free and complete weights.

7.4. DUAL TOPOLOGY MONITORING 137

Conclusion

In this chapter we proposed a solution for identifying single-link failures in a
network. We showed that even if multiple failures occur, our algorithm can still
identify a pair of edges e, rev(e) such that one of them is faulty with certainty.

Our experiments show that our algorithm runs in a reasonable amount of
time considering that these cycles need to be installed only once in the network.

Our solution works on the original topology and prides the theoretical mini-
mum number of segments required to implement any cycle cover using segment
routing. This was achieved by using our reachability theory developed in Chap-
ter 4. We also showed that if this segment cost is too high, we can reduce it
by working with a dual topology maxing the whole network monitoring process
cost at most 9 segments in the worst case, over all topologies from out dataset.

This was a second example where column generation provides good results
when applied to solve an segment routing optimization problem.

138CHAPTER 7. NETWORK MONITORING WITH SEGMENT ROUTING

Chapter 8

Disjoint paths with SR

Introduction

For an Internet Service Provider (ISP), providing disjoint paths to its customers
might be one of those advanced connectivity services that generate more rev-
enues. This is what emerged from our discussion with a national ISP that we call
“reference ISP”. When we met them, this ISP’s operators themselves steered
the discussion towards possibilities to provide disjoint paths between sites to
which a customer is connected. They were motivated by requests from banks
and financial customers.

We have quickly realized that the disjoint-path connectivity service has a
much bigger market than our reference ISP. An illustration is provided by the
NANOG email discussion about a major outage of the Bell network on August
4th, 2017 [51]. The email thread started with Bell’s customers complaining that
both Internet and mobile connectivity were completely absent in East Canada,
affecting banking, ATM, land lines and even 911 services. When a single fibre
cut was indicated as the cause of the outage, someone expressed doubts that ISPs
really provide geographically diverse circuits, irrespectively of what they promise
and sell. The following emails discussed the impossibility to work around this
limitation by relying on two providers, as their networks may share the same
physical infrastructure (fibres, conduit, etc.), without the ISPs even knowing it
– as they do not share information between each other.

The discussion we had with the reference ISP’s operators was indeed fo-
cused on providing disjoint paths within a single ISP, their own. A possible
solution [64] to achieve this goal is to deploy two parallel networks, say a red
and a blue copy of the same topology, and configure the intra-domain routing
protocol (IGP) so that any packet is forwarded in only one of the two net-
works – i.e., packets that enter the red copy are only forwarded in the red copy.
The few links between the two networks are only used if one of the two copies
is partitioned. This architecture provides disjoint paths by design, but it is
very expensive since the entire network is doubled. The reference ISP’s opera-
tors were therefore reluctant to deploy it. Of course, they were also aware that
MPLS tunnels can be created over arbitrary paths with RSVP-TE [9], including
disjoint ones, on an existing infrastructure. However, they were in the process
of moving away from MPLS, in order to avoid its operational limitations [59],

139

140 CHAPTER 8. DISJOINT PATHS WITH SR

its sub-optimal usage of resources [52] and its scalability challenges with respect
to the routers’ state [22,40].

Looking at other ISPs, our operators were instead considering Segment Rout-
ing (SR). Motivated by this, we dedicate this chapter to the study of the prob-
lem of computing and implementing disjoint paths over a network with segment
routing. We also provide a solution for leveraging some properties of sr-paths
to show how we can provide disjoint paths that are robust to link failures.

8.1 Disjoint paths and network flows

The problem of computing disjoint paths in a graph is one of those ubiquitous
problem that has driven a lot of research over the years. Numerous algorithms
exist for solving it, most of them being some variant of the more general maxi-
mum flow problem [2,60].

The maximum flow problem is the problem of finding the maximum amount
of information that can be sent between two given nodes in a network. It is
closely related to the multi-commodity flow problem that we studied in Chapter
6. Instead of being given a set of demands, we are given a source s ∈ V(G) and
a destination t ∈ V(G) and we are asked what is the maximum amount of traffic
that can be routed between those two nodes without exceeding the capacity of
any edge. Another way to see it is to imagine that we have an infinite amount of
unit demands between s and t and we are asked what is the maximum number
of such demands that can simultaneously be routed of the network without
exceeding any link capacity.

The maximum flow problem admits an IP formulation that is very similar
to the formulation that we gave for the MCF. If we let xe define the amount of
demands routed over edge e it can be shown that the following LP models the
problem [2].

MAX-FLOW(G, s, t)

max
∑

e∈δ+(s)

xe

s.t.
∑

e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = 0 ∀v ∈ V(G) \ {s, t}

xe 6 cap(e) ∀e ∈ E(G)

xe ∈ N

It is possible to show that the linear programming relaxation of this problem
obtained by replacing xe ∈ N by xe > 0 is equivalent as long as the capacities
are integral [2]. This makes the maximum flow problem one of those rare cases
where the integrality constraints do not increase the difficulty of the problem.
Numerous polynomial time algorithms have been developed for solving the max-
imum flow problem [2,18,19,36]. If we set unit capacities on the edges and think
about the maximum flow problem as one answering the question of what is the
maximum amount of unit demands that we can route from s to t, we see that
we actually end up with the maximum number of disjoint path between s and
t. This is the case since each of the routed demands must follow a path that

8.1. DISJOINT PATHS AND NETWORK FLOWS 141

shares no edges with any of the other demand paths or otherwise some edge
would carry at least two units of traffic, thus exceeding its capacity.

In other words, this means that we can model the problem of computing the
maximum number of edge-disjoint paths between s and t by replacing cap(e) by
1 in the MAX-FLOW model. By doing so, we obtain the following model which
can also be solved efficiently.

MAX-EDP(G, s, t)

max
∑

e∈δ+(s)

xe

s.t.
∑

e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = 0 ∀v ∈ V(G) \ {s, t}

xe 6 1 ∀e ∈ E(G)

xe ∈ N

This model focuses solely one providing a maximum amount of paths. It does
not care about the quality of those paths, for instance, in terms of latency. It
turns out that if we wish to minimize total latency of the path set we can still do
it in polynomial time. This problem is known, in general, as the minimum cost
maximum flow problem [2]. We can easily adapt the above model to obtain a set
of n disjoint paths (if they exist) whose total latency is as small as possible by
requiring the total flow out of s to be n and minimizing the sum of the latencies
of the edges with a non-zero flow as shown in the following model.

MIN-LAT-EDP(G, s, t)

min
∑

e∈E(G)

lat(e) · xe

s.t.
∑

e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = 0 ∀v ∈ V(G) \ {s, t}

∑
e∈δ+(s)

xe = n

xe 6 1 ∀e ∈ E(G)

xe ∈ N

If we want n to be as large as possible we can simply first compute the
optimal solution of MAX-EDP(G, s, t) and set n to that value. Surprisingly, this
problem can also be solved in polynomial time [2].

The above formulation does not make it possible to enforce the paths to
connect specific source nodes to specific destinations. More formally, if we want
to connect nodes s1, . . . , sn to t1, . . . , tn with edge disjoint paths from si to ti
then other solutions are required. Using network flow formulations we can force
the path originating at s1 to end at one of t1, . . . , tn but not t1 specifically.

Several algorithms have been proposed to solve this variant of the problem
[44]. It has also been shown that finding a pair of paths in this setting whose
total length is minimized can be done in polynomial time [12,57].

142 CHAPTER 8. DISJOINT PATHS WITH SR

Unfortunately, slight variations of this problem that are of interest for com-
puter networks quickly become NP-hard. For instance, if we want to minimize
the maximum latency over all the paths rather than the latency sum, the prob-
lem is NP-hard even if n = 2 [46,47].

8.2 Disjoint sr-paths

In the previous section we talked about the general problem of finding sets of
disjoint paths over a network. However, the paths found by these algorithms
can be arbitrary and thus hard to implement with segment routing as we will
show shortly.

In this section we redefine the problem in terms of segment routing and adapt
the MIP models from the previous section accordingly. We start by defining
what disjoint sr-path are and the problem of finding a maximum cardinality set
of sr-paths.

Definition 8.1. Let G be a network and ~p,~q be two sr-paths on G. We say
that ~p and ~q are disjoint if E(~p) ∩ E(~q) = ∅.

Problem 1 (Maximum edge-disjoint sr-paths problem)

Input: A network G, two nodes s, t ∈ V(G) and k ∈ N.

Output: A set of sr-paths {~p1, . . . ,~pn} ⊆ ~Pk(s, t) such that for each i 6= j, ~pi
and ~pj are disjoint and n is maximum.

Recall that in case of ECMP between two consecutive segments of ~p, the set
E(~p) contains the edges belonging to all those ECMP paths. In other words,
we are requiring all those shortest paths corresponding to ~p and ~q to be edge-
disjoint. This is necessary because we can never be sure where exactly the traffic
will flow when using a sr-path. In this way, we ensure that no matter how traffic
is routed over ECMPs, no edge will carry packets from two distinct sr-paths ~pi
and ~pj. Figure 8.1 illustrates this with source node a and destination node h.
The two sr-paths displayed on it are not disjoint because there might both use
edge (e, h) in the event of the green one using path ((a, c), (c, d), (d, e), (e, h))
and the blue one using ((a, b), (b, e), (e, h)). This can be prevented by, for
instance, forcing the blue path to pass thought node f as shown in Figure 8.2.

If we ignore the segmentation cost constraints from Problem 1, the simplest
algorithm to compute a set of edge-disjoint sr-paths is to leverage the minimum
segmentation algorithm proposed in Chapter 4 to segment the set of paths
produced by the minimum cost flow algorithm. As usual with this kind of
approach, this solution has the drawback of granting no control over the segment
cost of the output. For this reason, we start by analyzing the distribution
of the costs over all topologies. For each topology in our dataset and each
pair of distinct nodes, we used a minimum cost maximum flow algorithm to
compute the maximum number of disjoint paths between those nodes whose
total latency is as small as possible. Then, we segment each of those paths and
compute the maximum number of segments required to implement those paths
on the network. Figure 8.3 shows the distribution of the segment costs. We
observe that for more than 20% of the pairs we need 6 or more segments. This

8.2. DISJOINT SR-PATHS 143

a

b

c d

e

g

i

h

f

j

x1

x2

x3

y1

y2

y3

Figure 8.1: The sr-paths 〈a, d, h〉 and 〈a, b, h〉 are not edge-disjoint because their
edge sets intersect over (e, h).

a

b

c d

e

g

i

h

f

j

x1

x2

x3

x4

y1

y2

y3

Figure 8.2: The sr-paths 〈a, d, h〉 and 〈a, b, f, h〉 are edge-disjoint.

144 CHAPTER 8. DISJOINT PATHS WITH SR

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223
segment cost

0

5

10

15

20

pe
rc

en
ta

ge
 o

f t
op

ol
og

ie
s

seg cost

Figure 8.3: Distribution of the maximum segment of maximum cardinality sets
of disjoint paths with total minimum latency.

motivated us to propose solutions that are able to limit the number of segments
in the output.

8.2.1 Maximum set of disjoint sr-paths

We propose two MIP models for adapting the graph model MAX-EDP(G, s, t)
to Problem 1. We start by defining an indicator function telling use whether an
edge belongs to the shortest paths between two given nodes. That is, let I to
denote a function V(G)2 × E(G) → {0, 1} defined such that I(u, v, e) = 1 if and
only if e ∈ E(SP(u, v)).

Our first model is an adaptation of the traffic engineering segment model
SRTE-SEG(G,D) proposed in Chapter 6. Our demand set contains unit de-
mands between s and t. Each such demand corresponds to a sr-path that is
edge-disjoint from the others. We can select the number of demands to be equal
to the out-degree of s, since this is an upper bound on the number of disjoint
paths from s to any other node. Our objective will by to route a maximum
amount of demands in a way such that no two demands are routed over the
same edge. We use variables xduv saying whether SP(u, v) is used by the sr-path
corresponding to demand d. We replace the capacity constraints by disjointness
constraints which consists of requiring that for each edge, at most one demand
is routed over it. The rest of the model is the same as SRTE-SEG(G,D) which
uses flow constraints to ensure that paths go from s to t.

8.2. DISJOINT SR-PATHS 145

SR-EDP-SEG(G, s, t)

max
∑

u∈V(G)

r∑
d=1

xdsu s.t.

r∑
d=1

∑
u∈V(G)

∑
v∈V(G)

xduv · I(u, v, e) 6 1 ∀e ∈ E(G)

∑
u∈V(G)\{v}

xduv −
∑

u∈V(G)\{v}

xdvu = 0 ∀d,

∀v ∈ V(G) \ {s, t}

r∑
d=1

∑
u∈V(G)

xdus + x
d
tu = 0 ∀d ∈ {1, . . . , |δ+(s)|}

∑
u∈V(G)

∑
v∈V(G)

xduu 6 k ∀d ∈ {1, . . . , |δ+(s)|},

xduv ∈ {0, 1} ∀e ∈ E(G),
∀d ∈ {1, . . . , |δ+(s)|}

Next, we propose another model whose original idea originated from dis-
cussions with Bernard Fortz [38] and are inspired on layered graph representa-
tions [13]. After we will compare both models. Note that both these models
only support node segments in the sr-paths.

A sr-path with only node segments is a sequence 〈y1, . . . ,yl〉 such that each
y1, . . . ,yl ∈ V(G). The idea behind Fortz model is to define binary variables
xiuv such that xiuv = 1 if and only if u and v appear as consecutive segments
yi = u and yi+1 = v of a sr-path used in the solution. These variables are
defined for i = 1, . . . ,k− 1 where k is the maximum segment cost that we want
to allow the paths to have. Consider for instance that we have a solution where
x1sa = x2ab = x3bt = 1. This will correspond to using the sr-path 〈s,a,b, t〉 as
shown in Figure 8.4. So, basically, the index i is saying the position at which
we use each segment. Note that a more intuitive model would be to drop the
i index and use variables xuv to mean that we use the shortest paths between
u and v to route traffic. By adding flow conservation constraints similar to the
ones used in model MAX-FLOW(G, s, t) we can make sure that these variables
actually come together to constitute sr-paths. However, this gives no way of
restricting the segment cost of those paths.

146 CHAPTER 8. DISJOINT PATHS WITH SR

i = 1 i = 2 i = 3 i = 4

s

a

b
t

c

d
e

t

x
1
sa
=

1

x2
ab = 1 x3bt =

1

x 1
sc =

1

x2cd
= 1 x3

de = 1

x
4
et
=

1
〈s, c,d, e, t〉

〈s,a,b, t〉

Figure 8.4: Two examples of how the variables xiuv define sr-paths.

SR-EDP-FORTZ(G, s, t)

max
∑

u∈V(G)

x1su

s.t.

k∑
i=1

∑
u∈V(G)

∑
v∈V(G)

I(u, v, e) · xiuv 6 1 ∀e ∈ E(G) (1)

∑
v∈V(G)

xi−1
vu −

∑
v∈V(G)

xiuv = 0 ∀u ∈ V(G) \ {s, t}, (2)

i = 2, . . . ,k

k∑
i=1

∑
v∈V(G)

xivs + x
i
tv = 0 (3)

∑
v∈V(G)\{s}

x1vu +
∑

v∈V(G)\{t}

xkuv = 0 ∀u ∈ V(G) (4)

xe ∈ N

Constraints (1) ensure that each edge is used only once making sure that the
final paths are indeed edge-disjoint. Recall that setting xi−1

uv to 1 means that
node u is used as a node segment at position i−1 in some sr-path in the solution.
Thus, if u 6= t we need to make sure that there is also some node v ′ coming
after u in this sr-path as illustrated in Figure 8.5. This is what constraints (2)
ensure, that is, that for each u such that xi−1

vu for some v, there is also some
element v ′ such that xiuv′ ensuring that the path does not end at a node u 6= t.
These constraints are similar to the classical conservation constraints that are
commonly used in these kinds of models to ensure connectivity.

Constraints (3) simply make sure that s appears only as the first element
of the sr-paths and that t occurs only as the last one. Finally, constraints (4)
prevent other nodes to be the starting and end-points of paths by ensuring that
x1uv can only be set if u = s and that xkuv can only be set if v = t.

Figure shows a CDF of the runtime needed to compute optimal solutions of

8.2. DISJOINT SR-PATHS 147

i− 1 i

v u v ′

xi−1
uv = 1 xiuv′ = 1

Figure 8.5: If xi−1
uv = 1 .

SR-EDP-SEG(G, s, t) and SR-EDP-FORTZ(G, s, t) using Gurobi. In both cases
the maximum number of segments was set to 5. We generated 100 random
source-destination pairs and solved both models over these pairs for all instances
in our dataset. We can see (in orange) that the segment model is slower than the
model proposed by Fortz (in blue). We see that the maximum runtime of the
Fortz model is about 3 minutes whereas the maximum runtime of the segment
model is about 10 minutes. In both cases this shows that using a MIP solver for
computing sets of disjoint sr-paths is feasible in practice in a reasonable amount
of time. In order to try to understand whether our sample of 100 pairs is large
enough, we computed a box-plot of the run times on the topologies from groups
real and rf of the Fortz model. We selected these because they are the largest
ones and we cannot show all results in the box plot. Figure 8.7 shows these.
Except for topology 1239, the runtime does not have a high variance so we can
expect that the average runtime is close to the one computed.

We also analyzed how restrictive the segmentation constraints with respect
to the existence of disjoint paths. For this we computed the difference between
the maximum number of disjoint paths between the sources and the destina-
tions with the maximum number of disjoint sr-paths of segment cost at most
5. Whenever this difference is 0 we know that requiring the path to be im-
plementable with a segment cost of at most 5 posed no restrictions in finding
solutions. Table 8.8 shows these results. We can see that for 95% of the pairs the
segmentation constraints were not restrictive. This indicates that with about 5
segments we can implement sets of sr-paths that are as large as the theoretical
maximum supported on the graph topology.

8.2.2 Minimizing the total latency

For both models it is straightforward to modify the models to minimize the total
latency of the sr-paths. In both cases we need to first compute the maximum
number of disjoint sr-paths that exist between the source and destination, say
P. Then, we need to replace the objective function by a minimization function
that adds all latencies together. We also need an additional constraint requiring
the total number of paths in the solution to be equal to P. Concretely, in
the segment model, SR-EDP-SEG(G, s, t), we can obtain this by replacing the

148 CHAPTER 8. DISJOINT PATHS WITH SR

10−3 10−2 10−1 100 101 102 103

Runtime in seconds

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f t
op

ol
og

ie
s

Fortz
Segment

Figure 8.6: CDF over all topologies of the runtime for solving
SR-EDP-SEG(G, s, t) and SR-EDP-FORTZ(G, s, t) over 100 randomly selected
source-destination pairs.

39
67

12
21

12
39

32
57

64
61

17
55

re
al

2

re
al

1

re
al

3

Topologies

0

25

50

75

100

125

150

175

Nu
m

be
r o

f s
eg

m
en

t i
n

m
in

im
um

 la
te

nc
y

pa
th

Number of segments required for the minimum latency path

Figure 8.7: CDF over all topologies of the runtime for solving
SR-EDP-FORTZ(G, s, t) over 100 randomly selected source-destination pairs.

8.3. MIN-MAX EDGE-DISJOINT SR-PATHS 149

difference 0 1 2 3 > 4

percentage of s-t 95% 4% 0.4% 0.1% 0.5%

Figure 8.8: Percentage of pairs for each value of the difference between the
maximum number of disjoint paths and maximum number of disjoint sr-paths
with segment cost at most 5.

objective function by

minimize

r∑
d=1

∑
u∈V(G)

∑
v∈V(G)

lat(u, v) · xduv

and adding a constraint ∑
u∈V(G)

r∑
d=1

xdsu = P.

For the Fortz model, SR-EDP-FORTZ(G, s, t), the change is analogous. The
objective function becomes

minimize

k∑
i=1

∑
u∈V(G)

∑
v∈V(G)

lat(u, v) · xiuv

and we add a constraint requesting P paths starting at the source s:∑
u∈V(G)

x1su = P.

8.3 Min-max edge-disjoint sr-paths

We now focus on the problem of computing pairs of disjoint paths with a min-
max objective function. More specifically, we aim at connecting via disjoint sr-
paths a source node s1 to a destination t1 and a source node s2 to a destination
t2 such that the maximum latency among those two paths is as small as possible.

Problem 2 (Min-max edge-disjoint sr-paths)

Input: A network G and s1, s2, t1, t2 ∈ V(G) such that s1 6= t1 and s2 6= t2 and
k ∈ N.

Output: Two disjoint sr-paths ~p1 ∈ ~Pk(s1, t1),~p2 ∈ ~Pk(s2, t2) such that

max(lat(~p1), lat(~p2))

is minimal.

As we mentioned in the previous section, this problem is NP-hard [46, 47].

150 CHAPTER 8. DISJOINT PATHS WITH SR

8.3.1 MIP formulation

We saw above that Fortz model performed better than the segment model for
computing maximal sets of disjoint paths. However it is hard to enforce a source
to destination assignment with this model. The reason is that different paths
are not modeled explicitly. For this reason, we use the segment model for solving
Problem 2. With the segment model each path is encoded in the index d of the
variables xduv. This makes it easy to for the path starting at s1 to end at t1 and
the path starting at s2 to end at t2. The adapted model is the following.

SR-2EDP(G, s1, s2, t1, t2)

min λ s.t.

2∑
d=1

∑
u∈V(G)

∑
v∈V(G)

xduv · I(u, v, e) 6 1 ∀e ∈ E(G)

∑
u∈V(G)\{v}

xduv −
∑

u∈V(G)\{v}

xdvu = 0 ∀d ∈ {1, 2}, ∀v ∈ V(G) \ {sd, td}∑
u∈V(G)

∑
v∈V(G)

lat(u, v) · xdu,v 6 λ ∀d ∈ {1, 2}

∑
u∈V(G)\{sd}

xdsdu = 1 ∀d ∈ {1, 2}

∑
u∈V(G)\{td}

xdutd = 1 ∀d ∈ {1, 2}

2∑
d=1

∑
u∈V(G)

xdusd + xdtdu = 0 ∀d ∈ {1, 2}

∑
u∈V(G)

∑
v∈V(G)

xduu 6 k ∀d ∈ {1, 2}

xduv ∈ {0, 1} ∀e ∈ E(G), ∀d ∈ {1, 2}

λ > 0

8.3.2 Dedicated algorithm

We also proposed a dedicated algorithm for solving this problem. This was
actually our original idea that was published in CoNEXT 18 [8]. However we will
see that it is actually less efficient and flexible than the MIP formulation. Recall
that in our definition of network, we mentioned that each edge is indexed with
a unique number between 0 and |E(G)| − 1. This is useful for defining parallel
edges. These indexes are also important in the context of disjoint paths. From
an implementation point of view, we will represent the set of edges corresponding
to a sr-path ~p, E(~p), as a bitset b such that bi = 1 if and only if edge with
idx(e) = i belongs to E(~p).

Bitsets are a very simple and efficient way to represent subsets of {0, . . . ,n−1}
for some fixed, not too large value of n. Conceptually they are similar to an

8.3. MIN-MAX EDGE-DISJOINT SR-PATHS 151

. . .
0 1 2 3 4

128 131 255

59 60 61 62 63

0 63 64 127 128 255 256 383 384 511

long 1 long 2 long 3 long 4 long 5

Figure 8.9: Representation of a bitset with n = 512.

array of booleans of size n. However, a bitset is represented instead (on a 64-bit
machine) with an array of long. Each element of the array represents a group
of 64 boolean values with its bits. So the bits of the first element in the array
will represent elements 0 to 63, the second 64 to 127 and so forth. Figure 8.9
illustrates a bitset for n = 512. In this example, element 131 is represented by
the forth bit of the third long.

The advantage of this representation over a boolean array representation is
that each set operation on a long can be performed in O(1). So for example, to
compute the intersection between two bitsets we simply need to loop over the
array and perform a bitwise and between corresponding elements. Therefore we
only need to perform n/64 operations rather n. Even though in big-Oh notation
this sill yields the same complexity, O(n), the runtime in practice is 64 times
faster which is a gigantic speedup. Using a bitset representation for the set of
edges of a sr-path we can then perform set operations over these very efficiently.

In particular, this representation makes it possible to very efficiently check
whether or not two sr-paths are disjoint. We exploit this to design an algorithm
for solving 2. Given a sr-path ~p1 we can find the minimum latency sr-path ~p2
that is disjoint from it in polynomial time by using the minimum latency sr-path
algorithm from Chapter 5. We simply need to adapt it so that it avoids E(~p1).
To do so, we need to know the set of edges in all sr-paths of the form 〈x,y〉
where x,y ∈ V(G). We show how to do this in the next.

Pre-computing the forwarding graphs

Lemma 8.1. Let G be a network and x,y ∈ V(G). Then

E(SP(x,y)) =
⋃

e∈δ−(SP(x),y)

E(SP(x, e1)) ∪ {e}. (8.1)

Proof. (⊆) Let e ∈ E(SP(x,y)). Let p = (e1, . . . , en) be a shortest path from
x to y passing by e. Then e = ei for some i. Note that (e1, . . . , en−1) is a
shortest path from x to e2n−1 = e1n and, since e2n = y, en ∈ δ−(SP(x),y). Thus,
if i = n then e clearly belongs to the right-hand side of (8.1). Otherwise, if
i < n then e belongs to the shortest path (e1, . . . , en−1) from x to e2n−1 = e1n.
Since en ∈ δ−(SP(x),y)) we again conclude that e belongs to the rhs of (8.1).

(⊇) Let e be a edge belonging to the rhs of (8.1). There exists an edge
f in δ−(SP(x),y)) such that either e = f or e ∈ E(SP(x, f1)). If e = f then

152 CHAPTER 8. DISJOINT PATHS WITH SR

Algorithm 20 precompute-forwEdges (g)

1: for u, v ∈ V(G) do
2: fwe(u, v)← Bitset()
3: for u ∈ V(G) do
4: SP(u)← dikstra-dag(g,u)
5: order← toposort(SP(u))
6: for v ∈ order do
7: for e ∈ δ−(SP(u), v) do
8: fwe(u, v)← fwe(u, e1) ∪ {e}

9: return fwe

e = f ∈ δ−(SP(x),y)) = δ−(SP(x,y)) so it belongs to SP(x,y). Otherwise, e
belongs to a shortest path from x to the origin of f. Since f ∈ δ−(SP(x),y) we
have that d(x,y) = d(x, f1) + igp(f). Since e belongs to a shortest path p from
x to f1, we have d(x, e1) + igp(e) + d(e2, f1) = d(x, f1) = igp(p). Then

d(x,y) = d(x, f1) + igp(f)

= d(x, e1) + igp(e) + d(e2, f1) + igp(f)

= d(x, e1) + igp(e) + d(e2, f2)

= d(x, e1) + igp(e) + d(e2,y)

so that e ∈ SP(x,y).

Using Lemma 8.1 we can leverage the speed of bitsets to efficiently compute
E(SP(v,u)) for all u, v ∈ V(G). Note that we could always compute them
using the definition, that is, computing SP(u) for all u and then for each v
using a breath-first search to extract the subset of edges of SP(u) that belong
to SP(u, v). Using equation (8.1), we can compute E(SP(u, v)) by performing
|δ−(SP(u), v)| bitset operations. As we mentioned above, in theory this is not
faster but it practice it runs faster even due to the usage of bitsets. However, in
the next section we will see that applying the same idea to precompute another
kind of data that we will need leads to huge gains in runtime. Algorithm 20
shows how we can easily compute this recurrence. For each u we compute the
shortest path subnetwork rooted at u and then compute a topological order
v1, v2, . . . , vn to compute E(SP(u, vi) in an order such that when computing
E(SP(u, vi)) we already computed E(SP(u, e1)) for all e ∈ δ−(SP(u), vi).

Having pre-computed E(SP(u, v)) we can easily adapt Algorithm 4 to make
sure that the path that is computed avoids all edges in E(~p1). Recall that,
according to Chapter 5, the recurrence for the minimum latency path from s2
to v with segment cost at most i will be

sol(i, v) = min


sol(i− 1, v)

sol(i− 1,u) + lat(u, v) s.t u ∈ V

sol(i− 2, r) + lat(r, e1) + lat(e) s.t u ∈ V, e ∈ δ−(v)

as illustrated by Figure 8.10. In order to guarantee disjointness, we just need
to ensure that for each case all pieces are disjoint from ~p1. This means ensuring

8.3. MIN-MAX EDGE-DISJOINT SR-PATHS 153

s2 vu

u
r

sol(i− 1, v) lat(u, v)

sol(i− 1, v)

la
t(
e)

sol(i−
2, r)

lat(u, e1)

Figure 8.10: Illustration of the sol recurrence

that
E(SP(u, v)) ∩ E(~p1) = ∅

in the second case and that(
E(SP(u, e1)) ∪ {e}

)
∩ E(~p1) = ∅

in the third case. In term of algorithms, this corresponds to adding these condi-
tions to lines 9 and 17 from Algorithm 4, respectively. Note that these changes
will have a minor impact over the overall performance of the algorithm since we
use bitsets to compute these intersections and E(SP(u, v)) is given as input for
all u, v ∈ V(G).

In order to find a pair of paths, we perform a depth-first search on ~p1 and use
the above algorithm to maintain the minimum latency sr-path ~p2 that is disjoint
from the current partial path ~p1. At each step of the search, we try to extend ~p1
with either a node segment or an adjacency segment. We perform the following
steps to avoid exploring useless extensions of ~p1. Let ~p1 = 〈x1, . . . , xn〉 be the
partial path at given search node, ~p2 the minimum latency sr-path disjoint from
the partial path ~p1, l∗ the latency of the best solution found so far and x be a
node or adjacency segment:

• Let v = x2n be the node where ~p1 ends. In the best case, the latency of
the completed sr-path ~p1 will be its current latency plus the latency of the
minimum latency path between v and t1 in G. Let’s denote that latency
by L(v, t1). Therefore, if max(lat(~p1) +L(v, t1), lat(~p2)) > l∗ we can stop
the search since we will never reach a better solution.

• By Theorem 4.6, there is a solution to Problem 2 where both ~p1 and ~p2
are acyclic. Hence, we can ignore x if ~p1⊕x is cyclic. Checking this can be
done efficiently thanks to our bitset representation and forwarding graph
edge set pre-computation.

• If ~p1 ⊕ x does not intersect ~p2 then ~p2 remains the minimum latency sr-
path that is disjoint from ~p1 ⊕ x so there is not need to re-compute it.
Otherwise, we use the algorithm that we described above to compute a

154 CHAPTER 8. DISJOINT PATHS WITH SR

Algorithm 21 disjoint-srpaths (g, s1, s2, t1, t2)

1: ~p2 ← min-lat-disjoint-srpath(s2, t2,k)
2: l∗ ←∞
3: for x ∈ V(G) ∪ E(g) do
4: disjoint-srpaths-dfs (〈x〉,~p2)
5: if l∗ =∞ then
6: return null
7: return ~p∗1,~p∗2

new minimum latency sr-path ~p2. If this path does not exist, then it is
fruitless to try x as an extension of ~p1.

• If there does not exist a pair of disjoint paths on G, one from x2 to t1 and
another from s2 to t2 then we will never reach a solution by extending ~p1
with x. However, we have seen that checking whether such disjoint paths
exists is NP-complete. We use a relaxation of this condition by allowing
the path from x2 to go to t2 or the path from s2 to go to t1 which is
equivalent to checking whether the maximum flow between {x2, s2} and
{t1, t2} is at least 2.

By putting all these ideas together we can formally express Algorithm 21
and 22 for solving Problem 2.

Algorithm comparison

We compared both algorithms in terms of runtime. For this, we generated 100
tuples (s1, s2, t1, t2) and computed disjoint sr-path using the MIP algorithm and
the dedicated algorithm for k = 3 and k = 4. Figure 8.11 shows the performance
profile of the algorithms for k = 3. A performance profile shows the CDF of the
ratio of the runtime of each algorithm and the minimum runtime amongst the
two. We can observe that the MIP model is faster for 64% of the tuples. The
MIP model is at most 20 times slower whereas the dedicated algorithm can be
up to 53 times slower. This indicates that MIP model is more efficient than the
dedicated algorithm. This gets even more evident as we grow k. For k = 4, as
shown in Figure 8.12, the MIP model performs much better than the dedicated
algorithm. It is faster for 80% of the tuples and when it is not, it is barely
slower.

8.4 Robustly disjoint sr-paths

In this section we propose a technique to leverage segment routing to provide a
failure tolerant disjoint path service.

This is not the only work that aims at leveraging segment routing for provide
failure tolerance. Foerster et al. propose a single path connectivity solution that
is robust to a set of possible link failures. Their idea is based on injecting new
precomputed segments to deviate from failed links. When a path traversing a
failed link needs to be used, new segments representing the alternative path are
used to deviate the flow from that link [27,28].

8.4. ROBUSTLY DISJOINT SR-PATHS 155

1 5 10 15 20 25 30 35 40 45 50 55
Ratio between algorithm runtime and minimum runtime (k=3)

0

20

40

60

80

100

Pe
rc
en
ta
ge
 o
f t
op
ol
og
ie
s

mip
dedicated

Figure 8.11: Performance profile between the MIP model and the dedicated
algorithm for k = 3.

1 100 500 900
Ratio between algorithm runtime and minimum runtime (k=4)

0

20

40

60

80

100

Pe
rc
en
ta
ge
 o
f t
op
ol
og
ie
s

mip
dedicated

Figure 8.12: Performance profile between the MIP model and the dedicated
algorithm for k = 4.

156 CHAPTER 8. DISJOINT PATHS WITH SR

In our work the idea is to connect two sites via a pair of disjoint sr-paths
like we did in the previous section and ensure these sites remain connected by
two disjoint paths even in case of a link failures. Segment routing is interesting
in such a setting because, since it is based on shortest path routing, after a set
of network links goes down, these sr-paths will automatically converge towards
new paths on G as the routers update theirs routing tables.

The idea is thus to take this into account when building the sr-paths and
make sure that the set of paths on G that correspond the sr-paths are disjoint
after IGP re-convergence for any given failure. If we manage to compute such
paths, then we have the guarantee that our solution remains disjoint even in
case something goes wrong.

Concretely, we will assume that a set of failure that we want to support is
given as input and we will seek pairs of paths that are tolerant to any failure in
the given set.

Definition 8.2. Let G be a network. A failure set is a set F = {f1, . . . , fm} such
that for all i, fi ⊆ E(G) and ∅ ∈ F.

Requiring that the empty set belongs to the failure sets poses no practical
restriction and is there just to make the following definitions more elegant.

If we want to support single link failures we can set F = {{e} | e ∈ E(G)}∪{∅} =
FE(G). If we know specific shared risk link groups [35,62] we can also add them
to F so that our paths become failure tolerant to them. Note that there are
limits to the amount of failures that one can add to F. If we add too many
failure sets then we have a high chance of over constraining the problem and
making it have no admissible solution.

We model a failure of a set of edges f ∈ F as removing those edges from
the network. Therefore it can happen that the network becomes disconnected
after a failure occurs. This can lead to the fact that the sr-paths might become
undefined if they either require to route traffic between disconnected parts of the
network or they use an adjacency segment over an element of f. In particular,
this means that we cannot use adjacency segments over any link belonging to an
edge in F since such a failure would make the path unusable. As a consequence,
if F = FE(G) then we cannot use adjacency segments at all. This leads to the
following definition.

Definition 8.3. Let G be a network, ~p = 〈x1, . . . , xn〉 a sr-path on G and F a
failure set. We say that ~p is well defined with respect to F if ~p does not contain
any adjacency segment belonging to a set f ∈ F and for each i = 2, . . . ,n and
f ∈ F, G \ f contains at least one path from x2i−1 to x1i .

Figure 8.13 illustrates this definition. Suppose that the failure set F contains
a failure set f whose elements consist of all edges touching node i (in both
directions). Then any path using node i as a segment will not be well defined
with respect to F. For instance, ~p = 〈a, g, i, h〉 will fail to forward packets from
g to i if failure f occurs. This example also illustrates another important aspect
of robustly disjoint paths. Imagine that we want to consider node failures and
also have disjoint sr-paths that are tolerant to node failures. We can model a
node failure with a failure set f consisting of all edges incident to that node (in
both directions). However, this will imply that that node becomes a forbidden
node segment for any sr-path in the solution. A corollary of this is that it is

8.4. ROBUSTLY DISJOINT SR-PATHS 157

a

b

c d

e

g

i

h

f

j

x1 x2

x3

x4

Figure 8.13: The sr-path 〈a, g, i, h〉 is not well defined if edges (g, i), (i, g),
(i, h), (h, i) are in F.

impossible to have robustly disjoint paths that are tolerant to the failure of any
node since this would prevent any sr-path to contain segments altogether.

We can now define the robustly disjoint paths (RDPs).

Definition 8.4. Let G be a network, ~p1, ~p2 be two sr-paths and F a failure set.
We say that ~p1 and ~p2 are robustly disjoint if they are disjoint and well defined
on G \ f for every f ∈ F.

You can see that this definition also ensures that robuslty disjoint paths are
disjoint to begin with since we assume that ∅ ∈ F.

Problem 3 (Robustly disjoint sr-path problem)

Input: A network G, a failure set F, s1, s2, t1, t2 ∈ V(G) and k ∈ N.

Output: Two robustly disjoint sr-paths ~p1 ∈ ~Pk(s1, t1), ~p2 ∈ ~Pk(s2, t2) with
respect to F.

Since Problem 2 is NP-hard, this problem must also be since we get the same
problem by setting F = {∅}.

It is not hard to adapt the disjoint sr-path MIP model proposed in the
previous section to the case of robustly disjoint paths as well as our dedicated
algorithm as we will show in the remainder of this section.

8.4.1 Adapting SR-2EDP to RDPs

Adapting model SR-2EDP(G, s1, s2, t1, t2) to support robustly disjoint paths
is very simple. The only thing that we need to change are the disjointness
constraints so that they take the failures into account.

Recall that we ensure disjointness by requiting that if e ∈ E(SP(u, v)) then
at most one of x1uv, x

2
uv is set to 1. To ensure that the sr-paths are robuslty

disjoint we need to ensure that if

e ∈
⋃
f∈F

E(SP(G \ f,u, v))

158 CHAPTER 8. DISJOINT PATHS WITH SR

then at most one of x1uv, x
2
uv is equal to 1.

For this we define a new indicating function IF such that IF(u, v, e) = 1 if
and only if e belongs to the shortest paths between u and v on G \ f for some
f ∈ F. The robuslty disjoint path model are obtained by replacing I by IF.

The cost of this adaptation is of course that pre-computing these IF functions
takes more time, specially if F is very large. However, this is only needed to
be done once. We can build the model once and only adapt it for the specific
sources and destinations before each computation. Using the MIP model is also
more flexible and can easily be extended to compute more than two paths.

8.4.2 Adapting the dedicated algorithm to RDPs

Algorithms 21 and 22 are also easily adaptable to the case of robuslty dis-
joint paths but this results in a very inefficient algorithm. The problem is that
checking whether the paths are disjoint after any failure requires |F| bit set
comparisons meaning that each step of the algorithm is |F| times slower. For
completeness we will describe the needed modifications on the algorithms.

To ensure that the sr-paths computed by the algorithm are well defined, we
need to prevent the algorithm from using consecutive node segments u, v such
that there is no path from u to v in G\f. Also, we need to forbid any adjacency
segment over an edge belonging to some f ∈ F. Both these steps can be achieved
by pre-computing the pairs of nodes that cannot appear as consecutive segments
and preventing to use adjacency segments on the set {e ∈ f | f ∈ F}. Contrary
to the next modification, this only slows down the preprocessing step of the
algorithm, not the algorithm itself.

What really slows down the algorithm is that we need to also ensure disjoint-
ness after any failure f ∈ F occurs. To avoid having to make |F| shortest path
computations we can pre-compute SP(G \ f,u, v) for all f ∈ F and u, v ∈ V(G).
Now instead of checking for intersection between E(~p1) and E(~p2) we need to
check for intersection for every f ∈ F. This is the reason why the algorithm is
not usable in practice for generic failures unless F is quite small. Note that this
is not the case for the MIP adaptation above, we need more time to build the
model because of the indicating function IF takes longer to compute but that is
not really a problem since it needs to be done only once for any given topology.
We will see however in the next sections that if F = FE (single-link failures) then
we can still obtain a fast algorithm.

8.4.3 The case of single-link failures

Recall from the above discussion that the bottleneck in adapting Algorithms 21
and 22 to the case of robustly disjoint paths is checking whether the paths are
disjoint for every failure. We are going to see how we can check this efficiently
when the set of failures is the set of edges thus showing that computing robustly
disjoint paths that are tolerant to single-link failures can be done efficiently in
practice.

The idea is that we will aggregate all the edges in SP(G \ f,u, v) for all
f ∈ F into a single set that we call failure set. And then we show that checking
for intersection between the failures sets is enough to ensure robustness when
F = FE.

8.4. ROBUSTLY DISJOINT SR-PATHS 159

Definition 8.5. Let G be a network and ~p = 〈x1, . . . , xn〉 a sr-path on G. We
define the failure set of ~p as

fail(~p) =
⋃
f∈FG

E(G \ f,~p)

The next result is a very simple lemma that states that a failure on an edge
that is not used by a sr-path does not affect it. This is quite an obvious result
but it is important for the theorem that follows.

Lemma 8.2. Let G be a network and ~p a sr-path on G. If e ∈ E(G)\E(~p) then
E(G \ e,~p) = E(G,~p).

Proof. Let e ∈ E(G) \ E(~p) and write ~p = 〈x1, . . . , xn〉. Since e /∈ E(~p) we have
that for each i ∈ {2, . . . ,n}, SP(G, x2i−1, x1i) = SP(G\e, x2i−1, x1i). Also, e cannot
be an adjacency segment of ~p or else it would belong to E(~p). Therefore,

E(G \ e,~p) =

(
n⋃
i=2

E(SP(G \ e, x2i−1, x1i))

)
∪

⋃
i:xi∈E(G)\e

xi

=

(
n⋃
i=2

E(SP(G, x2i−1, x1i))

)
∪

⋃
i:xi∈E(G)

xi

= E(G,~p).

The following theorem shows how we can efficiently check disjointness con-
ditions for every failure in the case of single-link failures.

Theorem 8.3. Let G be a network and ~p1,~p2 be two sr-paths on G. Then
~p1,~p2 are robustly disjoint with respect to FE if and only if they are well defined,
fail(~p1) ∩ E(~p2) = ∅ and E(~p1) ∩ fail(~p2) = ∅.

Proof. (⇒) Suppose that ~p1,~p2 are robustly disjoint. Thus for each f ∈ FE we
have E(G \ f,~p1) ∩ E(G \ f,~p2) = ∅. Since ∅ ∈ FE we have in particular that
~p1 and ~p2 are disjoint on G. Suppose that fail(~p1) ∩ E(~p2) 6= ∅. Then there
exists e ∈ E(G,~p1) such that E(G \ e,~p1) ∩ E(G,~p2) 6= ∅. Since the paths are
disjoint, it cannot be the case that e ∈ E(G,~p2). Therefore, by Lemma 8.2 we
have that E(G \ e,~p2) = E(G,~p2). This means that E(G \ e,~p1)∩E(G \ e,~p2) =
E(G \ e,~p1)∩ E(G,~p2) 6= ∅ contradicting the fact that the sr-paths are robustly
disjoint. The case where E(~p1) ∩ fail(~p2) 6= ∅ is analogous.

(⇐) Suppose that ~p1,~p2 are well defined and that fail(~p1) ∩ E(~p2) = ∅ and
E(~p1) ∩ fail(~p2) = ∅. Assume that the paths are not robustly disjoint for FE.
Since they are well defined, this means that either E(~p1) ∩ E(~p2) 6= ∅ or there
exists e ∈ E(G) such that E(G \ e,~p1) ∩ E(G \ e,~p2). Since ∅ ∈ FG we have
that E(~p1) ⊆ fail(~p1) and thus E(~p1) ∩ E(~p2) ⊆ fail(~p1) ∩ E(~p2) = ∅. Then,
let e be such that E(G \ e,~p1) ∩ E(G \ e,~p2) 6= ∅. Since E(~p1) ∩ E(~p2) = ∅, e
cannot belong to both E(~p1) and E(~p2). If it does not belong to E(~p1) then by
Lemma 8.2 we have E(G \ E,~p1) = E(~p1) so ∅ 6= E(G \ e,~p1) ∩ E(G \ e,~p2) =
E(~p1) ∩ E(G \ e,~p2) ⊆ E(~p1) ∩ fail(~p2) = ∅ which is a contradiction. The other
case is analogous and also leads to a contradiction. It follows that the paths are
robustly disjoint.

160 CHAPTER 8. DISJOINT PATHS WITH SR

Using Theorem 8.3 we can transfer the time it takes for checking whether
paths remain disjoint to a pre-computation step where we compute the failure
sets defined above for each two nodes u, v ∈ V(G). Using these we can incre-
mentally build the failure sets as we build ~p1 by noting that if ~p1 = 〈x1, . . . , xn〉
then

fail(~p) =

(
n⋃
i=2

fail(〈x2i−1, x1i 〉)

)
∪

⋃
i:xi∈E(G)

xi.

Therefore, whenever we extend ~p1 = 〈x1, . . . , xn〉 with a segment x, we
simply need to make the union of the current failure set with the precomputed
failure set fail〈x2n, x〉 and xi if xi is an adjacency segment. Again, because of
the use of bitset, this is a lightweight operation.

These only need to be pre-computed once for each given topology. We pro-
pose an efficient algorithm that is able to compute them in under a minute even
on the largest topologies. Thus it is reasonable to recompute them whenever
the topology changes as these do not happen every minute.

Pre-computing the failure sets

As we showed above, the failure sets for single-link failures are composed of the
failure sets of the sr-path 〈x,y〉. We are now going to describe how we can
compute these efficiently. If we followed the definition we would loop over all
pairs x,y ∈ V(G) and edges e ∈ E(G) and for each edge we would compute the
shortest path subnetwork from x to y on G \ e. However this is very costly.
Instead, we can take advantage of Lemma 8.1. For each fixed x and e ∈ E(G)
we will compute the shortest path subnetwork rooted at x. Then we compute a
topological order of it and use Equation (8.1) to compute E(SP(G \ e, x,y)).

We also add two ideas to accelerate the algorithm. The first is based on
Lemma 8.2. It simply consists of ignoring sets e /∈ E(SP(x,y)) since these will
not add any new edges to fail〈x,y〉. The second idea is that we can ignore edges
that belong to an ECMP component between x and y since removing them will
also not contribute to any new shortest paths because there will always be at
least one of the previous shortest paths that remains after the removal of e. A
formalization of this is provided as Algorithm 23.

8.4.4 Evaluation of RDPs

Evaluating effective robustness of RDP

Using the above concepts we can compute pairs of sr-paths that are robustly
disjoint to single-link failures. This is what our theoretical results guarantee.
However, it could very well be the case that our paths are actually robust
to a lot more failures. We performed an experiment to evaluate this. For
s = 1, . . . , 6, we generated 100 sets of s simultaneous link failures. We consider
two kinds of failures sets: selecting random links from the whole topology and
selecting random links that are used by the sr-paths. These second failure sets
are generated so that each of them affects the paths. So for instance, on a
failure set with s = 3 we select the first link to be one of the links used by our
pair of sr-paths. Then compute the paths resulting from that failure and select
the second link randomly among the resulting links. For the third link we do
the same. This ensures that we are not biasing our results by the fact that

8.4. ROBUSTLY DISJOINT SR-PATHS 161

1 2 3 4 5 6
Number of simultaneous failures

0

20

40

60

80

100

F
ra

c
ti

o
n
 o

f
e
x
p
e
ri

m
e
n
ts both disconnected

one disconnected

not disjoint

disjoint

1 2 3 4 5 6
Number of simultaneous failures

0

20

40

60

80

100

F
ra

c
ti

o
n
 o

f
e
x
p
e
ri

m
e
n
ts both disconnected

one disconnected

not disjoint

disjoint

Figure 8.14: Random failures and path link failures over the worst case topool-
ogy.

with high probability selecting a random link will not even affect the paths. In
general, the n-th failure is selected from the paths resulting from the previous
n − 1 failures. For each failure set we evaluate the end state of the paths and
consider the following four states:

i) disjoint : the paths remain disjoint after the failures;

ii) not disjoint : both paths remain defined but not disjoint;

iii) one disconnected : one path becomes disconnected;

iv) both disconnected : both paths became disconnected.

Figures 8.14 and 8.15 show the results on the topologies in our dataset for
which we respectively get the best and worst results in terms of robustness
to additional failures (all the other topologies are included between those ex-
tremes). For the best case, shown in Figure 8.14 paths remain disjoint with no
configuration change in almost all the simulations, including those with 6 simul-
taneous link failures, and source-destination tuples are disconnected very rarely
(0.01% of the time for 6 link failures). For the wost case, shown in Figure 8.15,
results remain very good for random failures, but are significantly worse for the
worst-case failures. Still, connectivity is often kept between source-destination
tuples, e.g., for more than 80% (about 70%, respectively) of the experiments in
the presence of 5 (6, respectively) successive on-path failures.

We wondered whether we could evaluate the robustness of a pair of sr-
paths algorithmically rather than having to perform such an experiment. The
following theorem shows that it is NP-hard to compute the minimum number of
failures that a pair of sr-paths can withstand until they cease to be disjoint.

Problem 4 (Minimum cardinality failure)

Input: A network G and two sr-paths ~p1 and ~p2.
Output: The cardinality of a minimal set of links f ⊆ E(G) such that ~p1 and
~p2 are not disjoint on G \ f.

Theorem 8.4. Problem 4 is NP-hard.

162 CHAPTER 8. DISJOINT PATHS WITH SR

1 2 3 4 5 6
Number of simultaneous failures

0

20

40

60

80

100

F
ra

c
ti

o
n
 o

f
e
x
p
e
ri

m
e
n
ts both disconnected

one disconnected

not disjoint

disjoint

1 2 3 4 5 6
Number of simultaneous failures

0

20

40

60

80

100

F
ra

c
ti

o
n
 o

f
e
x
p
e
ri

m
e
n
ts both disconnected

one disconnected

not disjoint

disjoint

Figure 8.15: Random failures and path link failures over the best case topology.

The following proof resulted from discussions with a student of mine, Simon
Tihon, while I was coaching him for algorithmic programming contents.

Proof. To prove that this problem is NP-hard it is enough to prove that the
problem is NP-hard for sr-paths of the form ~p1 = 〈s1, t1〉 and ~p2 = 〈s2, t2〉. This
amounts to, given four nodes s1, s2, t1 and t2, find the minimum numbers of
edges that we need to remove so that the shortest paths from s1 to t1 intersect
the shortest paths from s2 to t2.

It is known that the problem of finding the minimum number of edges that
need to be removed so that the shortest path between two given nodes becomes
strictly larger than a given value d is NP-hard [37]. Let G, s, t,d be an instance
of this problem and assume that we can solve our problem is polynomial time.
We can assume that the shortest path between s and t has cost lower than or
equal to d or otherwise the problem is trivial. e build an instance of Problem
4 by setting s2 = s, t2 = t and adding two nodes s1, t1. We connect s1 to s2
with an link of weight d and t1 to t2 with a link of weight 0. Nodes s1 and t1
are connected with K+ 1 parallel edges of weight 0 where K is the value of the
minimum cut between s and t on G. Figure 8.16 illustrates this construction.

s1 s2

t1 t2

000 0 . . .
K+ 1 edges

d

0

G

Figure 8.16: Construction used in the problem reduction.

The shortest paths between s1 and t1 consists of the parallel links between
them whereas the shortest paths between s2 = s and t2 = t lie on G since we

8.4. ROBUSTLY DISJOINT SR-PATHS 163

assumed that the shortest path from s to t has a cost lower than d. Note that
the path visiting nodes (s2, s1, t1, t2) has cost d. Therefore, the shortest path
from s2 to t2 will intersect the shortest paths from s1 to t1 if and only if the
shortest path from s1 to t1 on G costs more than d. Clearly, the minimum
number of edges that we need to remove so that the cost of the shortest path
from s to t becomes at least d is at most K since K is the value of a minimum
cut (and thus a solution). Thus after removing this set the path are still well
defined since we have K+ 1 parallel edges.

Evaluating existence and quality of RDPs

In this section we will use the word detour to refer to an intermediate node that
is in the segment stack. More concretely, for a sr-path of the form

〈x1, x2, . . . , xn−1, xn〉,

the detours are the nodes x2, . . . , xn−1. Clearly a sr-path with r detours has
segment cost r+ 2.

We focus on reasonably well-connected source-destination tuples. For each
topology, we randomly select 100 tuples (s1, s2, t1, t2) of two sources s1, s2 and
two destinations t1, t2, such that s1 and s2 have a path to t1 and t2 even when
any edge is removed. Since we try to compute robustly disjoint paths from s1
to t1 and from s2 to t2, it would indeed make little sense to consider source-
destination pairs that are disconnected by a single failure – it is obvious that a
service provider cannot offer a robust connectivity service between routers that
are poorly connected. We repeat each experiment allowing between 1 and 3
detours (k = 3, 4, 5). We stop at 3.

Table 8.17 shows the percentage of these tuples for which robustly disjoint
paths exist. Sometimes, only selecting the right IGP paths is sufficient for a
given tuple. However, since IGP costs are shared across all paths, they rarely
can be used for more than one source-destination tuple, preventing operators to
configure robustly disjoint paths for multiple customers or between different sites
of the same customer. Adding one detour by specifying an intermediate node
with SR allows paths for different tuples to be independent from each other,
solving the above issue. It also drastically increases the percentage of tuples
with at least one pair of robustly disjoint paths to 71across all the topologies,
and to 97two. Allowing more detours provides only slightly more flexibility in
our experiments.

Our algorithms are designed to find sr-paths that are both robustly disjoint
and have minimal worst-path delay. As table 8.18 shows, the robustly disjoint
paths computed by our algorithms have a worst-path delay which is always
better than the worst latency across the original IGP shortest paths. We are up
to 15% more efficient, on average. Once again, more detours enable to decrease
the latency of the computed paths across all the topologies, but just negligibly
in most cases.

To assess the benefits of robustly disjoint paths in a real-life scenario, we
also analyse a 1-week trace of all the link-state IGP packets exchanged by a
router in Real ISP2. Based on this trace, we identified that a total of 5% of
the links failed during this period. Some links experienced flapping, confirming
observations of previous studies [28, 45]. For example, one of the links failed
more than 30 times during the analysed week. We select 100 source-destination

164 CHAPTER 8. DISJOINT PATHS WITH SR

Number of detours
Topology 0 det 1 det 2 det 3 det

Real ISP 1 83% 100% 100% 100%
Real ISP 2 89% 100% 100% 100%
Real ISP 3 73% 100% 100% 100%

AS 1221 82% 98% 100% 100%
AS 1239 90% 100% 100% 100%
AS 1755 52% 98% 100% 100%
AS 3257 76% 100% 100% 100%
AS 3967 71% 99% 100% 100%
AS 6461 75% 100% 100% 100%

ITZ Cogentco 78% 97% 100% 100%
ITZ Colt 58% 71% 73% 73%
ITZ Deltacom 74% 99% 99% 100%
ITZ Dia 54% 77% 79% 79%
ITZ GtsCe 78% 98% 100% 100%
ITZ Interoute 81% 99% 100% 100%
ITZ Ion 64% 100% 100% 100%
ITZ Tata 86% 100% 100% 100%
ITZ UsCarrier 72% 83% 85% 85%

Figure 8.17: Percentage of tuples for which RDPs exist.

Number of detours
Topology 1 det 2 det 3 det

Real ISP 1 0.97 0.97 0.97
Real ISP 2 0.98 0.98 0.98
Real ISP 3 0.97 0.96 0.96

AS 1221 0.99 0.99 0.99
AS 1239 0.97 0.97 0.97
AS 1755 0.90 0.89 0.88
AS 3257 0.91 0.89 0.88
AS 3967 0.97 0.97 0.97
AS 6461 0.97 0.97 0.97

ITZ Cogentco 0.85 0.84 0.84
ITZ Colt 0.88 0.87 0.86
ITZ Deltacom 0.91 0.90 0.90
ITZ Dia 0.96 0.98 0.98
ITZ GtsCe 0.78 0.77 0.75
ITZ Interoute 0.93 0.91 0.90
ITZ Ion 0.95 0.94 0.94
ITZ Tata 0.90 0.89 0.89
ITZ UsCarrier 0.92 0.92 0.92

Figure 8.18: Average ratio between the RPD latency and the nominal latency.

8.4. ROBUSTLY DISJOINT SR-PATHS 165

pairs in this network, and compute the corresponding robustly disjoint paths for
F = E (all single-link failures). We then replayed all the failures that happened
during the entire week. The source-destination pairs always have disjoint paths
in our simulation, at any moment during the week, even when multiple edges
failed simultaneously. This experiment provides a strong indication that the
paths computed by our algorithms are robust to real failures, for a long time,
in an operational network, without the need for any configuration adjustment.

166 CHAPTER 8. DISJOINT PATHS WITH SR

Algorithm 22 disjoint-srpaths-dfs (~p1,~p2)

1: if max(lat(~p1) + L(~p1.dest(), t1) > l∗ then
2: return
3: [we reached here so if the path is complete, it is a better solution]
4: if ~p1.dest() = t1 then
5: l∗ ← max(lat(~p1), lat(~p2))
6: ~p∗1,~p∗2 ← ~p1,~p2
7: return
8: [try extend ~p1 with a node segment]
9: if sr-cost(~p1) + 1 > k then

10: return
11: for u ∈ V(G) do
12: [check whether we can cut with min cost flow]
13: P, l← min-cost-flow(g, {u, s2}, {t1, t2})
14: if |P| < 2 or l > l∗ then
15: return
16: [check whether adding u will keep ~p1 acyclic]
17: if E(SP(~p1.dest(),u)) ∩ E(~p1) = ∅ then
18: return
19: ~p1.addLast(u)
20: if E(~p1) ∩ E(~p2) = ∅ then
21: disjoint-srpaths-dfs (~p1,~p2)
22: else
23: ~p ′2 ← min-lat-disjoint-srpath(~p1, s2, t2,k)
24: if ~p ′2 6= null then
25: disjoint-srpaths-dfs (~p1,~p ′2)
26: ~p1.removeLast()
27: [try extend ~p1 with an adjacency segment]
28: if sr-cost(~p1) + 2 > k then
29: return
30: for e ∈ E(g) do
31: [check whether we can cut with min cost flow]
32: P, l← min-cost-flow(g, {e2, s2}, {t1, t2})
33: if |P| < 2 or l > l∗ then
34: return
35: if (E(SP(~p1.dest(), e1)) ∪ {e}) ∩ E(~p1) 6= ∅ then
36: return
37: [check whether adding e will keep ~p1 acyclic]
38: ~p1.addLast(e)
39: if E(~p1) ∩ E(~p2) = ∅ then
40: disjoint-srpaths-dfs (~p1,~p2)
41: else
42: ~p ′2 ← min-lat-disjoint-srpath(~p1, s2, t2,k)
43: if ~p ′2 6= null then
44: disjoint-srpaths-dfs (~p1,~p ′2)

8.4. ROBUSTLY DISJOINT SR-PATHS 167

Algorithm 23 precompute-failEdges (G, SP, fwe)

1: for u, v ∈ V(G) do
2: fail(u, v)← fwe(u, v)
3: for u ∈ V(G) do
4: [optim 1: only consider edges in SP(u) as the others have no effect]
5: for f ∈ E(SP(u)) do
6: [optim 2: check degree to consider only edges not in ECMP components]
7: if δ−(SP(u), f2) 6 1 then
8: SP(f,u)← dikstra-dag(G \ f,u)
9: order← toposort(SP(u))

10: for v ∈ order do
11: for e ∈ δ−(SP(u), v) do
12: fail(u, v)← fail(u, e1) ∪ {e}

13: return fail

168 CHAPTER 8. DISJOINT PATHS WITH SR

Chapter 9

Conclusion

In this thesis we proposed a mathematical formalization of segment routing. So
far, segment routing had been used to solve some networking problems such
as traffic engineering but the further that these results would go in terms of
formalization was showing how to model segment routing in terms of linear
constraints.

We go a step further and show interesting results about the structure of
these segment routing paths. We showed that these results have practical ap-
plications by exploiting them to solve several algorithmic problems related to
segment routing.

The most important results were:

• Minimal segmentations can be computed in polynomial time. This result
opens the door to solving segment routing problems by ignoring segment
routing constraints and solving the problem as a graph problem and only
segmenting the resulting paths in the end. This is, of course, not always
applicable in practice as solving problem in this way yields results that are
sub-optimal in terms of the number of segments used in the final solution.
Nevertheless, as the routers’ capacity to support segments increases, we
believe that this will become the standard approach.

• We can always connect two connected routers with a acyclic sr-path. This
result can be leveraged to prune cyclic solutions on problems where we
can prove that a cyclic sr-path will always be sub-optimal.

• In some applications, such as network monitoring, we need to know exactly
which network links are used to forward traffic. We defined a notion of
determinism for sr-paths that expresses this requirement. We provided
bound on the minimum segment cost to connect two nodes of any given
network with deterministic sr-paths.

• Computing a cycle cover of a graph that uses a minimal amount of seg-
ments to represent the cycles can be achieve in polynomial time.

• Computing minimum cost sr-paths can be done in polynomial time. The
algorithm can be leveraged to compute minimum latency sr-paths and
maximum capacity sr-paths.

169

170 CHAPTER 9. CONCLUSION

Apart from this more theoretical aspect, we have also showed how to exploit
segment routing on several real world applications.

• We showed that we can leverage segmenting for network monitoring of
single link failures. We proposed an algorithm that yields a solution with
minimal segment cost. We also extended that solution using column gen-
eration in order to try to reduce the number probes that are necessary for
monitoring.

• We propose an alternative solution for the traffic engineering problem
with segment routing based on column generation. Our solution provided
near optimal solutions that run faster than previous linear programming
models. It also provides a lower bound so we can evaluate how good the
solution is.

• Robust and low latency connections are important for applications that
require low latency. We showed how we can compute and implement
disjoint paths using segment routing. We also improved on this solution
by exploiting properties of segment routing paths for providing failure
tolerance guarantees to our solution.

While writing this thesis we also left some open problems which show that
there is still a lot to be done when is comes to segment routing. Our results show
that the deployment of segment routing can lead to improved communications
with low overhead.

• We showed that we can compute a sr-cycle cover of a network in polyno-
mial time but our complexity is still quite high. How fast can we solve
this problem?

• Suppose that we know a set of paths that we want to implement on a
network. How to select IGP weights so that the maximum cost of the
minimal segmentation of those paths is as small as possible?

• How can we find IGP weights that are ECMP-free and complete and no
weight is above a given constant? Could these weights we a solution to
the previous problem?

• We also proposed several column generation models but we did not solve
them to optimality by doing, for instance, a branch-and-price. How effi-
ciently can this be achieved?

In this thesis, we did not explore solutions where the segments are added dy-
namically to the sr-pats. These solutions have more routes needing to maintain
state but have the potential to reduce the size of segment stacks thus making
them more widely applicable. We believe that this constitutes an interesting
next step for someone wanting to extend on our work.

Bibliography

[1] I. Adler, M. G. C. Resende, G. Veiga, and N. Karmarkar. An implementa-
tion of karmarkar’s algorithm for linear programming. Mathematical Pro-
gramming, 44(1):297–335, May 1989.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1993.

[3] S. Akhoondian Amiri, K.-T. Foerster, and S. Schmid. Walking through
waypoints. In M. A. Bender, M. Farach-Colton, and M. A. Mosteiro, ed-
itors, LATIN 2018: Theoretical Informatics, pages 37–51, Cham, 2018.
Springer International Publishing.

[4] A. Altın, B. Fortz, M. Thorup, and H. Ümit. Intra-domain traffic engineer-
ing with shortest path routing protocols. 4OR, 7(4):301, Dec 2009.

[5] S. A. Amiri, K.-T. Foerster, R. Jacob, and S. Schmid. Charting the al-
gorithmic complexity of waypoint routing. SIGCOMM Comput. Commun.
Rev., 48(1):42–48, Apr. 2018.

[6] F. Aubry, D. Lebrun, Y. Deville, and O. Bonaventure. Traffic duplication
through segmentable disjoint paths. In 2015 IFIP Networking Conference
(IFIP Networking), pages 1–9, May 2015.

[7] F. Aubry, D. Lebrun, S. Vissicchio, M. T. Khong, Y. Deville, and
O. Bonaventure. Scmon: Leveraging segment routing to improve network
monitoring. In IEEE INFOCOM 2016 - The 35th Annual IEEE Interna-
tional Conference on Computer Communications, pages 1–9, April 2016.

[8] F. Aubry, S. Vissicchio, O. Bonaventure, and Y. Deville. Robustly disjoint
paths with segment routing. In Proceedings of the 14th International Con-
ference on Emerging Networking EXperiments and Technologies, CoNEXT
’18, pages 204–216, New York, NY, USA, 2018. ACM.

[9] D. O. Awduche, L. Berger, D.-H. Gan, D. T. Li, D. V. Srinivasan, and
G. Swallow. RSVP-TE: Extensions to RSVP for LSP Tunnels. RFC 3209,
2001.

[10] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and
P. H. Vance. Branch-and-price: Column generation for solving huge integer
programs. Operations Research, 46(3):316–329, 1998.

171

172 BIBLIOGRAPHY

[11] R. Bhatia, F. Hao, M. Kodialam, and T. V. Lakshman. Optimized network
traffic engineering using segment routing. In IEEE INFOCOM 2015, April
2015.

[12] A. Björklund and T. Husfeldt. Shortest two disjoint paths in polynomial
time. In J. Esparza, P. Fraigniaud, T. Husfeldt, and E. Koutsoupias, edi-
tors, Automata, Languages, and Programming, pages 211–222, Berlin, Hei-
delberg, 2014. Springer Berlin Heidelberg.

[13] Q. Botton, B. Fortz, L. Gouveia, and M. Poss. Benders decomposition
for the hop-constrained survivable network design problem. INFORMS
Journal on Computing, 25(1):13–26, 2013.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[15] G. B. DANTZIG. Linear Programming and Extensions. Princeton Univer-
sity Press, 1991.

[16] J. Davidson. Simplifying Networks through Segment Routing.
https://blogs.cisco.com/news/simplifying-networks-through-segment-
routing.

[17] G. Desaulniers, J. Desrosiers, and M. M. Solomon. Column generation,
volume 5. Springer Science & Business Media, 2006.

[18] Y. Dinitz. Algorithm for solution of a problem of maximum flow in networks
with power estimation. Soviet Math. Dokl., 11:1277–1280, 01 1970.

[19] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. J. ACM, 19(2):248–264, Apr. 1972.

[20] S. Even, A. Itai, and A. Shamir. On the complexity of time table and multi-
commodity flow problems. In 16th Annual Symposium on Foundations of
Computer Science (sfcs 1975), pages 184–193, Oct 1975.

[21] G. Fan. Integer flows and cycle covers. Journal of Combinatorial Theory,
Series B, 54(1):113 – 122, 1992.

[22] A. Farrel, O. Komolafe, and S. Yasukawa. An analysis of scaling issues in
mpls-te core networks. IETF RFC5439, 2009.

[23] C. Filsfils, F. Clad, et al. IPv6 Segment Routing. In SIGCOMM’17 demo,
August 2017.

[24] C. Filsfils et al. Segment Routing Architecture. RFC 8402, RFC Editor,
July 2018.

[25] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois.
The segment routing architecture. In 2015 IEEE Global Communications
Conference (GLOBECOM), pages 1–6, Dec 2015.

[26] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois. The
segment routing architecture. In GLOBECOM, 2015 IEEE. IEEE, 2015.

BIBLIOGRAPHY 173

[27] K. Foerster, M. Parham, M. Chiesa, and S. Schmid. Ti-mfa: Keep calm
and reroute segments fast. In IEEE INFOCOM 2018 - IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), pages
415–420, April 2018.

[28] K.-T. Foerster, M. Parham, S. Schmid, and T. Wen. Local fast segment
rerouting on hypercubes. 12 2018.

[29] B. Fortz, J. Rexford, and M. Thorup. Traffic engineering with traditional ip
routing protocols. IEEE Communications Magazine, 40(10):118–124, Oct
2002.

[30] B. Fortz and M. Thorup. Internet traffic engineering by optimizing ospf
weights. In Proceedings IEEE INFOCOM 2000. Conference on Com-
puter Communications. Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies (Cat. No.00CH37064), volume 2,
pages 519–528 vol.2, March 2000.

[31] B. Fortz and M. Thorup. Increasing internet capacity using local search.
Computational Optimization and Applications, 29(1):13–48, 2004.

[32] S. Gay, R. Hartert, and S. Vissicchio. Expect the unexpected: Sub-second
optimization for segment routing. In IEEE INFOCOM 2017, 2017.

[33] S. Gay, P. Schaus, and S. Vissicchio. REPETITA: Repeatable Experi-
ments for Performance Evaluation of Traffic-Engineering Algorithms. arXiv
preprint arXiv:1710.08665, 2017.

[34] L. D. Ghein. MPLS Fundamentals. Cisco Press, 1st edition, 2006.

[35] M. Ghobadi and R. Mahajan. Optical Layer Failures in a Large Backbone.
In IMC, 2016.

[36] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow
problem. J. ACM, 35(4):921–940, Oct. 1988.

[37] P. A. Golovach and D. M. Thilikos. Paths of bounded length and their cuts:
Parameterized complexity and algorithms. Discrete Optimization, 8:72–86,
2011.

[38] L. Gouveia, M. Leitner, and M. Ruthmair. Layered graph approaches for
combinatorial optimization problems. Computers & Operations Research,
102:22 – 38, 2019.

[39] R. Hartert. Fast and scalable optimization for segment routing, 2018.

[40] R. Hartert et al. A Declarative and Expressive Approach to Control For-
warding Paths in Carrier-Grade Networks. In SIGCOMM, 2015.

[41] R. Hartert, P. Schaus, S. Vissicchio, and O. Bonaventure. Solving segment
routing problems with hybrid constraint programming techniques. In CP
2015. Springer, 2015.

174 BIBLIOGRAPHY

[42] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils,
T. Telkamp, and P. Francois. A Declarative and Expressive Approach to
Control Forwarding Paths in Carrier-Grade Networks. SIGCOMM CCR,
45(4), Aug. 2015.

[43] S. Jain et al. B4: Experience with a globally-deployed software defined
WAN. In ACM SIGCOMM CCR, volume 43. ACM, 2013.

[44] K.-i. Kawarabayashi. The disjoint paths problem: Algorithm and structure.
In N. Katoh and A. Kumar, editors, WALCOM: Algorithms and Compu-
tation, pages 2–7, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[45] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The In-
ternet Topology Zoo. IEEE Journal on Selected Areas in Communications,
29(9):1765 –1775, october 2011.

[46] C. Li et al. The complexity of finding two disjoint paths with min-max
objective function. Discrete Appl. Math., 26(1):105 – 115, 1990.

[47] C. Li et al. The complexity of finding two disjoint paths with min-max
objective function. Discrete Appl. Math., 26(1):105 – 115, 1990.

[48] P. Mariño. Optimization of Computer Networks: Modeling and Algorithms:
A Hands-On Approach. Wiley, 2016.

[49] P. S. O. B. Mathieu Jadin, François Aubry. CG4SR: Near Optimal Traffic
Engineering for Segment Routing with Column Generation. In INFOCOM,
2019.

[50] J. Matouek and B. Gärtner. Understanding and Using Linear Programming
(Universitext). Springer-Verlag, Berlin, Heidelberg, 2006.

[51] NANOG mailing list. Bell outage. https://mailman.nanog.org/pipermail/nanog/2017-
August/091828.html, 2017.

[52] A. Pathak, M. Zhang, Y. C. Hu, R. Mahajan, and D. Maltz. Latency
Inflation with MPLS-based Traffic Engineering. In IMC, 2011.

[53] M. Pioro and D. Medhi. Routing, Flow, and Capacity Design in Commu-
nication and Computer Networks. ISSN. Elsevier Science, 2004.

[54] M. Roughan. Simplifying the synthesis of Internet traffic matrices. ACM
SIGCOMM CCR, 35(5), 2005.

[55] A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency.
Springer, 2003.

[56] T. Schuller, N. Aschenbruck, M. Chimani, M. Horneffer, and S. Schnitter.
Traffic engineering using segment routing and considering requirements of
a carrier IP network. In Networking, 2017.

[57] P. Seymour. Disjoint paths in graphs. Discrete Mathematics, 29(3):293 –
309, 1980.

[58] N. Spring et al. Measuring ISP topologies with Rocketfuel. ACM SIG-
COMM CCR, 32(4), 2002.

BIBLIOGRAPHY 175

[59] R. Steenbergen. MPLS Autobandwidth. RIPE 64 presentation, 2012.

[60] J. W. Suurballe and R. E. Tarjan. A quick method for finding shortest
pairs of disjoint paths. Networks, 14(2):325–336, 1984.

[61] J. Tantsura. The critical role of maximum sid depth (msd) hardware lim-
itations in segment routing ecosystem and how to work around those. In
NANOG71, October 2017. https://pc.nanog.org/static/published/

meetings//NANOG71/daily/day_5.html#talk_1424.

[62] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage. California fault
lines: understanding the causes and impact of network failures. In ACM
SIGCOMM Computer Communication Review, volume 40, pages 315–326.
ACM, 2010.

[63] S. Vissicchio, L. Vanbever, and J. Rexford. Sweet little lies: Fake topologies
for flexible routing. In Proceedings of the 13th ACM Workshop on Hot
Topics in Networks, HotNets-XIII, pages 3:1–3:7, New York, NY, USA,
2014. ACM.

[64] R. White and D. Donohue. Art of Network Architecture, The: Business-
Driven Design. Cisco Press, 2014.

[65] L. Wolsey. Integer Programming. Wiley Series in Discrete Mathematics
and Optimization. Wiley, 1998.

