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Preamble

In �fty years, the Internet has drastically altered our everyday lives. In the
early seventies, the ARPANET was the �rst computer network linking huge
mainframes between a few American universities. Nowadays, the Internet
connects billions of devices — sometimes smaller than a bank cart — and
causes a constant revolution of our society. From an economical viewpoint,
computer networks introduced the age of digital industry. Together, e-com-
merce platforms and social networks impact our culture, our economy and
our human interactions.

The last ten years have seen a new trend in the Internet: device mobility.
In the early 2000s, most of the computers were heavy desktops connected
to the Internet by cable. These devices were intended to remain static on a
desk. Now, mobile devices such as smartphones, tablets and connected cars
become the norm. These devices include several wireless network interfaces
such as Wi-Fi and LTE to keep Internet connectivity when the user moves.
This ability to seamlessly switch from one network to another is critical to
support such mobile use cases.

Unfortunately, the dominant TCP transport protocol [rfc793] does not
enable hosts to perform such network handover. It was designed in the sev-
enties to work in the ARPANET network. At that time, early computers were
connected with a single link and communication took place over a single bidi-
rectional path. Because TCP uses IP addresses as identi�ers, a connection is
bound to them and cannot shift to another network resulting in di�erent IP
addresses. For example, a smartphone losing Wi-Fi connectivity must tear
down all the associated TCP connections — hence notifying a network issue
to the user — and then recreates new ones over the always available LTE
network. In addition to generate user’s frustration, it adds complexity to ap-
plications wanting to support such network mobility.

To address this TCP design issue, Multipath TCP [Rai+12; rfc6824] allows
connections to seamlessly take advantage of multiple paths. It was designed
as a TCP extension to work in the same networks as plain TCP. A Multi-
path TCP connection can start using the Wi-Fi network and then continue
on the LTE one without the intervention of the application. This solution
attracted interest from industry with several large-scale deployments [Bon13;
KT; BS16; CSP17; Tes19].

However, the usage of multiple paths brings its own speci�c concerns.
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The �rst one is the selection of the path to use for the next packet to be
sent. Some applications initiate large bulk transfers and want to aggregate
the available network bandwidths. Other applications instead generate light
network load but require the lowest latency. In addition, smartphone users
typically care about the usage of the cellular network — more expensive and
power hungry than the Wi-Fi one — while others just do not pay attention
to that. How can a multipath transport protocol handle all these requests by
design?

This thesis contributes to the exploration of the performance of multi-
path transport protocols under various scenarios and proposes solutions to
let them adapt to the use case they serve. In particular, the main contribu-
tions of this thesis are the following.

� Performing Multipath TCP measurements on smartphone with
real users. Previous works analyzed the performance of Multipath
TCP to assess whether it reaches its bandwidth aggregation goal, es-
pecially in controlled environments. However, little is known about
how Multipath TCP behaves on smartphones in the �eld. To �ll this
gap, we perform two measurement campaigns to observe how the two
main Multipath TCP implementations — the Linux kernel one and the
iOS one — operate in the smartphone environment.

� Adapting Multipath TCP to the smartphone use case. While our
previous measurements show that Multipath TCP works in real net-
works, they also point out some suboptimal strategies related to the
mismatch between the bandwidth aggregation tuning of Multipath TCP
and the requirement of mobile device applications. Especially, interac-
tive applications such as Apple’s Siri need to keep the response latency
as low as possible, even in mobile situations, while meeting the user’s
expectations of using the Wi-Fi network when available. For this, we
consider such request/response network tra�c, adapt Multipath TCP
to this use case and evaluate it with Android 6 smartphones.

� Designing Multipath extensions for the QUIC protocol. Both in-
network middleboxes and TCP design issues a�ect the �exibility of
Multipath TCP. These hinder the deployment of innovations at the
transport layer. To get rid of them, we consider the QUIC proto-
col whose speci�cation is being �nalized within the IETF. Thanks to
its near-fully encrypted and authenticated UDP-based packets and its
clean design, it makes it easy to develop new extensions without expe-
riencing network interference. Based on our experience with Multipath
TCP, we design Multipath extensions for the QUIC protocol and eval-
uate them in a broad range of emulated and real networks.
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� Revisiting protocol extensibilitywith plugins. Protocol extensions
are negotiated during the connection handshake. While this determines
if an extension can be used over a given exchange, it does not solve its
deployment. TCP extensions — including Multipath TCP— typically
su�er from the chicken-and-egg issue where both the client and the
server wait for its peer to support it �rst. QUIC o�ers us an opportu-
nity to reconsider the whole design of transport protocols. Instead of
proposing black-box transport protocol implementations, we propose
a gray-box approach where an implementation exposes an API o�er-
ing protocol operations. This API can be modi�ed or even extended by
protocol plugins exchanged over an encrypted QUIC connection. We
design such a pluginizable protocol and demonstrate that we can pro-
vide a plugin o�ering multipath capabilities adapted to a speci�c use
case.

The remaining of this thesis is organized as follows. We �rst introduce in
Chapter 1 the background related to Multipath TCP. Chapter 2 then describes
our two Multipath TCP measurement campaigns on smartphones. Based on
the lessons learned, we present in Chapter 3 an adapted version of Multipath
TCP tuned for interactive applications on smartphones. This work particu-
larly motivates the need for higher �exibility at the transport layer. For this,
we consider the QUIC protocol described in Chapter 4. First, Chapter 5 pro-
poses and evaluates a Multipath design for an early version of QUIC. We then
reconsider in Chapter 6 how these Multipath extensions can be adapted to the
current version of QUIC and compare its bene�ts to the early design. Next,
Chapter 7 presents Pluginized QUIC, a truly extensible transport protocol al-
lowing bytecode injection inside its implementations, and demonstrates its
generic approach by implementing the Multipath extensions for the QUIC
protocol using only plugins. Finally, we conclude this thesis and discuss fu-
ture research directions in Chapter 8.
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Reliable Multipath
Transfer 1
In order to grasp the remaining of this thesis, we introduce in this Chapter the
relevant networking concepts. Computer networks are composed of layered
protocols. While the classical OSI model de�nes seven layers, we can simplify
it to �ve layers, each of them relying on the lower layer to provide service to
the upper one. First, the physical layer handles the actual electrical/optical
transmission between two hosts using a given medium. Second, the data-link
layer relies on the underlying one to de�ne frames exchanged between two
directly connected hosts. Third, the network layer enables non-directly at-
tached hosts to exchange packets between each other thanks to intermediate
nodes forwarding them. Fourth, the transport layer de�nes end-to-end com-
munications between two hosts and manages their multiplexing. Fifth, the
application layer consists in the actual data exchange between applications
running on hosts.

From a network viewpoint, this layered architecture leads to the packet
structure described in Figure 1.1. From the transport layer’s perspective, the
application data constitutes a payload to carry. To perform its operation, the
transport protocol pre�xes this payload with a speci�c header. Then, the
network protocol receives the transport segment that forms the payload of
the network layer. Again, a header is added before the payload to enable
the network protocol to operate on that packet, and so on with the data-link
header. With such a structure, each layered protocol can process the packet by
looking only at its dedicated header — corresponding to the �rst packet bytes
— without performing any operation on the remaining opaque payload.

This thesis focuses on transport layer protocols. To understand on what
they build, we �rst introduce the IP addressing scheme used by the network

layer (§1.1). Then, we introduce TCP, the most widely used transport protocol

Figure 1.1: The in�uence of the computer network layering on the structure
of in-�ight data.

1
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S2

Figure 1.2: An example of IP network containing a client (C), two servers (S1
and S2) and six routers (R1 - R6).

(§1.2). Finally, we describe how TCP was extended to support the simultane-
ous usage of multiple paths (§1.3).

1.1 Addressing Hosts within IP Networks

Nowadays, Internet Protocol (IP) networks connect billions of devices. They
provide addressing schemes such that intermediate routers can forward pack-
ets on a best-e�ort manner from a source node to a destination one. Figure 1.2
provides an example of such an IP network. Two addressing schemes are cur-
rently used: IP version 4 (IPv4) [rfc791] and IP version 6 (IPv6) [rfc2460].

IPv4, designed in the early eighties, supports 32-bit IP addresses. Their
human-readable representation follows the format 0.1.2 .3 where 0, 1, 2, 3 ∈
[0, 255]. In the provided example, C has two IPv4 addresses — 192.168.1.1 and
9.8.7.6 — each assigned to a di�erent interface, while S1 has one bounded to
its network interface — 1.2.3.4. IPv4 theoretically provides 232 — about 4 bil-
lions — di�erent addresses, which was a comfortable number forty years ago.
Yet, there is now no more unallocated addresses in the IPv4 space [ICA11]. To
address more than 232 devices with IPv4, a �rst solution is to rely on Network
Address Translators (NATs) [rfc3022] to temporarily map an IPv4 address
to another one. A typical example is a Wi-Fi access point providing wireless
connectivity to a set of devices sharing a pool of private addresses, e.g., from
192.168.1.1 to 192.168.1.254. All these devices share the same globally reach-
able IPv4 address from the servers’ viewpoint. While allowing network op-
erators to adapt IPv4 to the growing Internet without modifying hosts, NATs
have two main drawbacks. First, they break the end-to-end principle of the
Internet [rfc1958], as the source IP address given by the host behind the NAT
is not the one observed by the server. Second, NATs complicate the network
management, as a given IP address does not refer to the same host over time.

Another solution to tackle this IPv4 address exhaustion problem is to use
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IPv6. This version extends the address length to 128 bits, enabling the the-
oretical support of 2128 devices — about 3.4 × 1038. Their human represen-
tation is composed of eight groups of four hexadecimal digits separated by
colons. Picking up our example network in Figure 1.2, C has the IPv6 address
2001:0db8:0019:0016:0000:0000:0000:0001. This form often contains a lot of
leading zeros which can be omitted, and consecutive groups of four zeros
can be replaced by the double colon notation (::). Hence, we often write the
previous IPv6 address as 2001:db8:19:16::1.

Hosts can exchange packets if they both have an IP address of the same
version. For instance, if C wants to transmit a packet on the link to R4 to
reach S1, it can send a packet with source IPv4 address 9.8.7.6 and destina-
tion one 1.2.3.4. The packet will arrive at R4. It will look at its routing table
to �gure out on which network interface it can reach S1 and then forward
the packet to the next router. This process repeats on each router until the
packet eventually reaches S1, which then delivers the packet’s payload to
the transport layer. The entries contained in the routers’ forwarding table
are handled by routing protocols such as Open Shortest Path First [rfc2328],
Integrated System to Integrated System [rfc1195] and Border Gateway Pro-
tocol [rfc4271], although their description is outside the scope of this back-
ground. Similarly, if C wishes to communicate with S2, it can generate pack-
ets with source IPv6 2001:db8:19:16::1 and destination one 2001:db8:5678::1.

Notice that packets can be exchanged only between two IP addresses of
the same version, either IPv4 or IPv6. In our example, since C only have
an IPv4 address on the link to R4 and S2 is only reachable using IPv6, C
cannot send packets to that destination on the lower link. Still, some network
operators deployed NAT64 devices [rfc6146] enabling IPv6-only clients to
reach IPv4-only servers.

When a device has simultaneously access to several networks, we call it
multi-homed. In our example, C is multi-homed as it can send packets via
either R1 or R4. In the opposite situation, a device like S2 is single-homed as
it has only one network access point. The case of S1 is debatable. We will
consider it to be single-homed, although previous works [Dha+12] show that
the underlying networks serving either IPv4 or IPv6 are not always the same.

1.2 Enabling Reliable Data Exchange with TCP

IP networks do not guarantee perfect delivery. In particular, packets may be
lost, corrupted or delivered to the destination in a di�erent order than sent by
the source. To cope with these imperfections, end-hosts typically rely on the
Transmission Control Protocol (TCP) [rfc793]. TCP guarantees reliable, in-
order bidirectional byte-stream data delivery. Figure 1.3 describes its header.
A TCP connection is identi�ed by the 4-tuple (IP src, IP dst, portsrc, postdst).
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port

Sequence Number

Acknowledgment Number

Data

O�set
Reserved C E U A P R S F Window

Checksum Urgent Pointer

TCP Options

(Length = 4 × (Data O�set − 5))

Figure 1.3: The TCP header [rfc793].

Client Server

SYN(seq num = 1000)

SYN/ACK(seq num = 4000, ack num = 1001)

Connection

Established ACK(seq num = 1001, ack num = 4001)

Connection

Established

DATA...

DATA...

Figure 1.4: Establishing a TCP connection.
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A TCP connection is established as shown in Figure 1.4. A client initiates a
connection by sending a Syn packet, i.e., with the S bit set. This packet also
contains a randomly chosen sequence number for the client to server data
�ow — 1000 in our example. Upon reception of this initial Syn, the server
replies with a Syn/Ack packet, i.e., both S and A bits are set. It acknowledges
the Syn packet by setting its acknowledgment number to the initial sequence
number chosen by the client plus one — 1001 in Figure 1.4. This acknowledg-
ment number indicates the next byte the packet’s sender expects to receive
next. In addition, the server also selects a random initial sequence number for
the server to client data �ow — 4000 in our case. Once the client receives the
Syn/Ack packet, it replies with an Ack packet — A bit set — acknowledging
it. At this point, the client considers the TCP connection to be established,
and can start sending data to the remote host. At the other side, the server
must wait for the Ack packet acknowledging its Syn/Ack one before start-
ing sending data over the connection. This connection establishment process
is often called the TCP three-way handshake, in reference to the number of
packets required to establish the exchange.

TCP ensures reliable, in-order byte-stream data delivery thanks to its se-
quence and acknowledgment numbers. A receiver delivers data to its upper
application only if the sequence number of the incoming data packet matches
the expected acknowledgment one. When it receives a data packet, an host
replies with an Ack packet with the possibly updated acknowledgment num-
ber. However, due to the unreliable nature of the underlying IP networks,
packets might be either corrupted, lost or delayed. If a packet faces bit �ips
during its transmission, the receiver will notice it thanks to the Checksum

�eld and discard the packet, making this equivalent to a loss. In these cases,
the receiver will receive data packets which have higher sequence numbers
than the one expected. The data contained in these packets cannot be de-
livered to the application yet, as TCP ensures in-order delivery. Instead, the
receiver maintains a bu�er where it keeps all these out-of-order packets. With
such system, once the expected sequence number packet arrives, the host can
deliver it with all the previously received ones without requiring the retrans-
mission of all packets. An end-host advertises the size of the receive bu�er to
its peer using the Window �eld.

A sender can detect the loss of TCP packets by two ways. The �rst one
relies on the reception of several duplicate Ack packets, i.e., Ack with the
same acknowledgment number. As an example, consider a situation where
a host sends �ve data packets, and the second one never reaches the peer.
The receiver replies to the �rst data packet with an Ack indicating that it is
ready for the second data packet. Then, it receives the third, the fourth and
the �fth ones, which are not expected. The receiver stores them in its receive
bu�er and replies to each of the packets with Ack ones still advertising that
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Type Length Value...

Figure 1.5: Format of a TCP option, excluding End-of-options (Type 0) and
No-op (Type 1).

it expects the reception of the second data packet. If all these Acks reach the
data sender, it can infer that the second packet was lost and perform a fast
retransmission of this particular packet to quickly recover the data transfer.
However, this approach is not su�cient to cope with all loss patterns. Con-
sider again our example, but this time the �fth data packet never reaches the
receiver. In such situation, the server will not observe duplicate Ack packets.
To cope with such situation, the sender launches a timer when a packet is
sent. If the packet is not acknowledged before the timer �res, a Retransmis-
sion Timeout (RTO) occurs and the sender retransmits the lost packet. Such
retransmission strategies ensure the reliability of TCP transfers.

TCP connections share the common Internet infrastructure, and at some
point several of them might compete for the same physical link. If their net-
work usages exceed the actual capacity, connections will create congestion
by �lling router bu�ers. This network pressure increases the experienced
latency and induces packet losses, involving a decrease of the quality of all
exchanges through this bottleneck link. To prevent Internet collapse, TCP
includes congestion control schemes limiting the transmission rate with a
congestion window. Many algorithms have been proposed [BP95; rfc2582].
The current default one in Linux is CUBIC [HRX08].

A TCP connection can be terminated either gracefully or abruptly. In the
�rst case, hosts perform a three-way connection release with Fin (packet with
the F bit set), Fin/Ack and Ack packets, similarly to the three-way connection
handshake. This method ensures that all data sent over the connection are
eventually delivered before the exchange e�ectively closes. However, there
are cases where a host wants to directly tear down a connection. To do so, the
end point sends to its peer a Rst packet — the R �ag is set. Notice that this
abrupt closing does not ensure the reliable delivery of in-�ight, unacknowl-
edged data.

1.2.1 Extending TCP with Options

Extensibility is a key requirement for protocols to adapt to the evolution of
the Internet. To support extensions, TCP includes the TCP Options �eld in
its header, as illustrated in Figure 1.3. Except the End-of-options (Type 0)
and No-op (Type 1) options each being one byte long, TCP options follow
the Type-Length-Value convention as shown in Figure 1.5. The Length �eld
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indicates the size of the whole option — at least 2 — and Value is a (Length−2)-
byte long �eld whose format depends on the Type �eld. Notice that the option
space is limited to 40 bytes due to the 4-bit encoding of the Data O�set �eld.

The usage of an extension over a speci�c connection is negotiated during
its three-way handshake. The client includes in the Syn packet all the op-
tions it wants to use. For its part, the server replies in the Syn/Ack packet
with all the client-provided options it wants to support, i.e., both hosts need to
agree to adopt a given extension. Typical Linux hosts include in Syn packets
the Maximum Segment Size (Type 2, 4 bytes), the Selective Acknowledgment
(SACK) Permitted (Type 4, 2 bytes), the Timestamp (Type 8, 10 bytes) and
Window Scale (Type 3, 3 bytes) options. The current length of the TCP Op-

tions �eld in Syn packets is thus 20 bytes (19 bytes plus one padding byte),
leaving 20 bytes for future extensions. In the TCP packets that carry data, we
mainly see the Timestamp option occupying 12 bytes (10 plus two padding
ones). This leaves 28 bytes for options in non-Syn packets, which can be
either used by the SACK option or other extensions.

1.2.2 Coping with Middleboxes

Figure 1.2 presents a simple network with end-hosts generating packets and
routers forwarding them. Unfortunately, today’s networks are much more
complex, containing devices which act neither as end-hosts nor as routers.
Computers connected to Wi-Fi networks are often behind a NAT changing
both IPs and ports of a packet. Enterprise networks often contain load bal-
ancers to spread the tra�c across servers while relying on �rewalls and in-
trusion detection systems to drop suspicious tra�c [She+12]. The cellular
network is known to contain both NATs and �rewalls [Wan+11]. We refer to
these middle devices as middleboxes. They form an important part of today’s
networks, being sometimes more numerous than plain routers [She+12].

Previous works [Hon+11; Det+13] show that all the �elds of a packet,
including its payload, can be altered by middleboxes. Such network interfer-
ence hindered the deployment of some TCP options. For instance, the SACK
option was �rst de�ned in 1996 [rfc2018], although it took about ten years
before being usable on the Internet [Fuk11]. Since some middleboxes rewrite
the TCP sequence numbers [Hon+11], they also need to adapt the ones in the
SACK options. However, not all these middleboxes were directly behaving
well with the SACK option, and there was a transition period where it was
not usable. Hence, we need to take these middleboxes into account when
designing TCP extensions if we want them to be deployed on the Internet.
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1.3 Using Multiple Network Paths with Multipath TCP

Designed in the early eighties, TCP enables a data exchange between hosts
over a speci�c 4-tuple (IP src, IP dst, portsrc, postdst) acting as its connection
identi�er. This implicitly induces that the exchange can only take place over
a single network path. Let us return to our example in Figure 1.2. C wants to
connect to 1.2.3.4, pointing to S1. It can start then a connection using the path
to R1 with 192.168.1.1. At some point, C may want to leverage the path to R4
with 9.8.7.6 to let the exchange bene�t from the available network resources,
e.g., to aggregate bandwidth or to increase network resiliency. However, TCP
does not allow such resource pooling, as this path would lead to another 4-
tuple di�erent from the one of the original connection.

Multipath TCP [rfc6824] aims at solving this issue at the transport layer.
Its design goals [Rai+12] are the following.

� Multipath TCP should be able to use several network paths for a single
connection;

� Multipath TCP should work in all networks where TCP works;

� Multipath TCP should be able to use the network at least as well as
regular TCP, but without starving TCP;

� Multipath TCP should be implementable in operating systems without
using large memory and processing.

To achieve these goals, Multipath TCP uses the architecture depicted in Fig-
ure 1.6. Multipath TCP is designed as a TCP extension relying on TCP options.
Applications interact with TCP using the Socket API. The usage of multiple
paths does not change anything from the applications’ viewpoint, enabling
them to use Multipath TCP without requiring any code change. With regular
TCP, the Socket API makes the link between the application and its under-
lying TCP connection. When using Multipath TCP, the Socket API instead
communicates with an additional meta-connection — the Multipath TCP con-
nection. This intermediate agent enables the application to keep a single link
with the Multipath TCP connection, independently of the actual numbers of
TCP paths being used. We often refer to these TCP connections forming the
Multipath TCP paths as the TCP subflows of the Multipath TCP connection.
The whole management of these TCP subflows is hidden from the application.

From a concrete viewpoint, Multipath TCP relies on TCP options. As we
will see next, Multipath TCP requires several control messages for its op-
erations. They all follow the pattern illustrated in Figure 1.7. Notice that
this format respects the TCP Type-Length-Value one shown in Figure 1.5.
The advantage of this speci�c pattern — using the Subtype �eld to identify a
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Transport Layer

Network Layer

Application Layer

Figure 1.6: High-level architecture ofMultipath TCP, here with a connection
having three sub�ows.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Type = 30 Length Subtype Value...

Figure 1.7: Format of a Multipath TCP option.

Multipath TCP option — is to reserve only one Type value (30) for the whole
Multipath extension, leaving more space for future ones.

The negotiation of the Multipath extension is performed during the TCP
3-way handshake, similar to any other TCP extension (§1.3.1). Once both
peers agree on its usage, they can attach new TCP sub�ows to the Multi-
path TCP connection (§1.3.2). Because hosts might not be aware that their
peer have several addresses — in Figure 1.2 C might not know that S1 has
an IPv6 address — Multipath TCP includes mechanisms to advertise them
(§1.3.3). Next, hosts can spread data over their available paths (§1.3.4). Notice
that these multipath operations involve the use of additional algorithms such
as the packet scheduler and the path manager (§1.3.5). Finally, the Multipath
TCP connection can be terminated, either gracefully or abruptly (§1.3.6).

1.3.1 Creating a Multipath TCP Connection

To negotiate the usage of multiple paths, Multipath TCP relies on the Mp Ca-
pable option (Subtype 0). The Multipath TCP connection establishment is
depicted in Figure 1.8. The client �rst sends a Syn packet with the Mp Capa-
ble option containing a 8-byte key KC. If the server supports Multipath TCP,
it then replies with a Syn/Ack packet carrying the Mp Capable option along
with the server’s key KS. Together, these keys serve as a basis to authenti-
cate connection’s peers when adding new paths. They also allow each peer
to derive a 4-byte token identifying the Multipath TCP exchange. To con�rm
the Multipath TCP connection establishment, the client sends an Ack packet
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Client Server

SYN + Mp Capable (K
C)

SYN/ACK + Mp Capable (KS
)

Connection

Established
ACK + Mp Capable (K

C , K
S)

Connection

Established

DATA...

DATA...

Figure 1.8: Establishing a Multipath TCP connection.

with Mp Capable containing both KC and KS. Echoing both keys enables the
server to keep minimal state until the connection is fully established.

It may happen that the Multipath negotiation fails. The most common
situation is when the contacted server does not support it. In such case, it
replies with a Syn/Ack without the Mp Capable option, and the connection
falls back to regular TCP. Another reason can be middleboxes which remove
the Mp Capable option. Again, the host then continues with regular TCP.
In any case, the Multipath negotiation failure does not prevent connectivity
between hosts.

1.3.2 Adding Paths to an Existing Multipath TCP Connection

Once the establishment completed, additional paths can be added to an ex-
isting Multipath TCP connection. As illustrated in Figure 1.9, Multipath TCP
requires a four-way handshake before allowing the transmission of data on a
new sub�ow. This handshake serves two purposes. First, it creates state on
the endpoints, and possibly on the intermediate middleboxes. Second, both
the client and the server authenticate each other. This authentication is per-
formed by using the keys exchanged during the handshake. First, the client
sends a Syn with the Mp Join option illustrated in Figure 1.10. It contains
both the token identifying the connection at server side (TokenS) and a ran-
dom value (RC). The server then retrieves the connection associated with the
token, generates a random value RS and computes the 20-byte long Hash-
based Message Authentication Code (HMAC) HMACS as follows

HMACS = HMACKC || KS
(RC || RS) (1.1)

where KC and KS are respectively the connection keys of the client and server
that were exchanged during the Multipath TCP connection handshake. The
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DATA...
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Figure 1.9: Establishing an additional Multipath TCP sub�ow.
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Figure 1.10: TheMp Join option in the initial Syn.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Kind = 30 Length = 16 ST = 1 Rsv B Address ID

Sender’s Truncated HMAC

(8 bytes)

Sender’s Random Number

Figure 1.11: TheMp Join option in the Syn/Ack.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Kind = 30 Length = 24 ST = 1 Reserved

Sender’s HMAC (20 bytes)

Figure 1.12: TheMp Join option in the third Ack.

server then replies with a Syn/Ack packet containing the Mp Join option
shown in Figure 1.11. It carries both RS and the 8-byte truncated HMACS.
The need for the truncation comes from the limited TCP option space in the
Syn/Ack packet. Transmitting the full 20-byte HMAC along with other Mp
Join �elds would have required 28 bytes, while only 20 are available. Upon
reception, the client can verify that the provided (truncated) HMACS matches
the value computed using Equation 1.1. If it does, the client then computes
the HMACC as follows

HMACC = HMACKS || KC
(RS || RC) (1.2)

and sends an Ack with the Mp Join option presented in Figure 1.12. This one
contains the full computed HMACC, as there remains more TCP option space
in non-Syn packets than Syn ones. The server next checks that the provided
value matches the one of Equation 1.2. If it is the case, the server replies with
an Ack packet and the data transfer can start from that point.

Given the high diversity of network paths, hosts may want to prioritize
some sub�ows using speci�c networks over other ones. When negotiating the
use of a new path, both the client (Figure 1.10) and the server (Figure 1.11)
can request its peer to treat the sub�ow as a backup one by setting the B bit
in the Mp Join option. A Multipath TCP host starts using backup paths once
all non-backup ones failed.

Notice that at any point, the four-way handshake may fail. It might be
because either one of the peers is not part of the initial connection’s partici-
pants — hence failing the authentication — or the middleboxes remove the Mp
Join option from packets. In these cases, the attempted path cannot be used
by the Multipath TCP connection and the TCP sub�ow is torn down using
a Rst packet. Although Multipath TCP cannot leverage that potential path,
the connectivity of the related connection is not altered. In other words, the
failed path addition does not prevent hosts from continuing to exchange data
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Kind = 30 Length ST = 3 IPVer Address ID

Address (IPv4 is 4 bytes, IPv6 is 16 bytes)

Port (optional)

Figure 1.13: The Add Addr option advertising available addresses.
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Kind = 30 Length = 3 + n ST = 4 Reserved n# Address ID

Figure 1.14: The Remove Addr option advertising lost addresses.

over the other paths of the Multipath TCP connection.

1.3.3 Communicating Additional Addresses to the Peer

While a host is aware of all its local addresses, it might not know the ones of
its peer. At the beginning of a connection, the client knows its addresses and
the peer’s one used to contact it. The server might be interested in sharing its
other addresses to establish additional sub�ows over them. To this end, Multi-
path TCP provides the Add Addr option shown in Figure 1.13. It supports
both IPv4 and IPv6 addresses thanks to its IPVer �eld determining the length
of the Address �eld. Each of these communicated addresses are identi�ed
by an Address ID. This connection-speci�c identi�er enables referencing the
address in other options without rewriting it. For instance, the previously
presented Mp Join option contains the local source Address ID used to create
the new sub�ow. This allows the peer to �gure out if the 2-tuple (IPsrc, portsrc)
was altered in transit by, e.g., a NAT.

Similarly, a host can advertise the loss of an address using the Remove
Addr option depicted in Figure 1.14. Note that since lost addresses were pre-
viously advertised, hosts can refer to them by using their corresponding Ad-

dress ID. While being useful for path management, these options are not crit-
ical for the multipath operations. Therefore, Multipath TCP does not require
their reliable delivery, i.e., both sent Add Addr and Remove Addr options
may never reach the remote host.

1.3.4 Exchanging Data over Multiple Paths

As it is built atop TCP, Multipath TCP needs to provide reliable, in-order data
delivery. While this service is guaranteed over each TCP path, this does not
ensure in-order delivery when spreading data over multiple sub�ows. For in-
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Kind = 30 Length ST = 2 (Reserved) F mM a A

Data ACK (only if A set, 8 bytes if a set else 4 bytes)

Data Sequence Number (only if M set, 8 bytes if m set else 4 bytes)

Subflow Sequence Number (only if M set)

Data-Level Length (only if M set) Checksum (only if M set)

Figure 1.15: The Data Sequence Signal (DSS) option.

stance, if the �rst data A is sent on a slow path and the second one B on a fast
sub�ow, the peer will receive B before A. To handle such reordering between
paths, an additional sequence number space is required. The Data Sequence
Signal (DSS), illustrated in Figure 1.15, provides the Multipath TCP Data Se-

quence Number (DSN) and its corresponding Data ACK. It notably enables
Multipath TCP to retransmit a speci�c piece of data over another sub�ow.
Such event is called a reinjection. All Multipath TCP connection packets carry
either the Mp Capable, the Mp Join or the DSS options. Notice that in addi-
tion to the Multipath TCP sequence number spaces, the DSS includes three
other �elds (Subflow Sequence Number, Data-Level Length and Checksum)
enabling Multipath TCP to cope with possible network interference.

1.3.5 Multipath-speci�c Algorithms

Once the Multipath TCP connection is established, the host has several de-
cisions related to multipath to take. They speci�cally cover the creation and
deletion of paths and their usage. The simultaneous use of several paths also
raises concerns about the fairness against regular TCP.

Path Manager. This component determines when and between which ad-
dresses additional sub�ows should be created. The default full-mesh path
manager in the Linux implementation creates a sub�ow between each pair
of compatible addresses as soon as possible. Considering the example in Fig-
ure 1.2, there would be 3 sub�ows between C and S1, 2 using IPv4 and 1 using
IPv6. These path creation decisions are only taken by the client, as middle-
boxes like NATs usually prevent the server from reaching its peer.

Packet Scheduler. This agent determines on which established sub�ow a
given data packet will be sent. The default packet scheduler in the Linux
implementation selects the lowest estimated latency path whose congestion
window enables data sending. The Round-Trip-Time (RTT) of a TCP path
can be estimated by observing the delay between the instant the packet is
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sent and the moment it is acknowledged, and those observations are then
smoothed [Jac95].

Coupled Congestion Control. Classical TCP congestion controls such as
CUBIC aims to share a fair amount of the bottleneck link between compet-
ing connections. If a CUBIC Multipath TCP host establishes a lot of sub�ows
over this bottleneck link, it will starve other TCP ones. Coupled congestion
controls, such as LIA [rfc6356; Rai+12] and OLIA [Kha+12], tackle this un-
fairness issue by controlling the overall aggressiveness of the multipath con-
nection.

1.3.6 Terminating the Connection

Like regular TCP, a Multipath TCP connection can be closed in two ways.
First, the graceful Data Fin method consists in setting the F bit of the DSS
option. Once both hosts have advertised and acknowledged the Data Fin, the
connection is closed. This ensures that all in-�ight data is eventually deliv-
ered. Second, the abrupt method resides in sending a packet carrying the Fast
Close option (Subtype 7). In that case, nothing ensures the reliable delivery
of unacknowledged data.

The de�nition of these additional signals enables Multipath TCP to keep
the scope of the Fin and Rst packets at sub�ow level. For instance, a sub�ow
can be gracefully or abruptly closed without terminating the related connec-
tion itself. This allows Multipath TCP connections to continue their opera-
tions while escaping from possibly bad network paths.





Evaluating Multipath
TCP on Smartphones 2
In the last decade, the Internet has seen the rise of mobile devices such as
smartphones, tablets and connected cars. To handle user mobility, these de-
vices are typically multi-homed. This means that they can be simultaneously
attached to several networks. Considering smartphones, they usually have
both cellular and Wi-Fi connectivity. The multi-homing ability enables mo-
bile devices to switch from one wireless network to another one without any
user intervention.

Currently, TCP is the dominant transport protocol, both on the wired In-
ternet and in wireless networks. However, plain TCP connections are bound
to their 4-tuple (IPsrc, IPdst, portsrc, portdst). This means that a TCP connection
cannot bene�t from the availability of multiple wireless network accesses.
For instance, if a smartphone loses Wi-Fi connectivity, all its previously es-
tablished TCP connections using that network interface will be torn down. In
such mobile situations, the transport protocol does not ensure reliable data
delivery anymore, although Internet connectivity may still be provided over
another available network access.

Multipath TCP [rfc6824; Rai+12] aims at �xing the mismatch between
the capabilities of modern devices and TCP limitations. Once standardized in
2013, Multipath TCP quickly captured the interest of industry to support var-
ious commercial services. In September 2013, Apple realized the �rst large-
scale deployment of Multipath TCP to enhance the user experience of the
Siri voice recognition application [Bon13] and then extended this multipath
capability to all iOS applications in September 2017. In July 2015, Korean Tele-
com (KT) enabled high-end Android devices to use Multipath TCP to aggre-
gate both Wi-Fi and cellular networks [KT]. These smartphones can achieve
download rates of over 1 Gbps. Yet, despite these deployments, little is known
about the actual performance of Multipath TCP on mobile devices.

This Chapter �lls this gap by presenting two di�erent measurement cam-
paigns evaluating how well Multipath TCP performs on smartphones. We
�rst explore the related works about Multipath TCP measurements (§2.1).
Next, we evaluate how Multipath TCP behaves on Android smartphones us-
ing the Multipath TCP implementation in the Linux kernel [MPTCPlk] (§2.2).
We then test Apple’s Multipath TCP implementation used by the iOS de-

17
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vices [BS16] under speci�c scenarios (§2.3). Finally, we summarize the lessons
learned from our experiments (§2.4).

2.1 Related Work

In this Section, we classify the studies of various researchers that have ana-
lyzed the performance of Multipath TCP, and how our work di�ers from the
previous contributions.

Smartphone environment. As shown by Raiciu et al. [Rai+11a], Multi-
path TCP achieves its bandwidth aggregation goal in homogeneous wired en-
vironments such as data centers. However, the measurements of both Falaki
et al. [Fal+10] and Huang et al. [Hua+10] reveal the heterogeneity of wireless
networks used by smartphones. They also show that smartphone applications
generate more downlink than uplink tra�c. Unlike in our measurement cam-
paigns, these smartphone studies focus on the performance of plain TCP.

Multipath TCP in wireless networks. Chen et al. [Che+13] analyze the
performance of Multipath TCP in Wi-Fi and cellular networks by running
bulk transfer applications on laptops. They �nd that Multipath TCP achieves
completion times comparable to TCP over the fastest network. Chen et al.
[CT14] explore the impact of the cellular bu�erbloat when performing bulk
data transfers with Multipath TCP. They also evaluate the impact of applying
the Opportunistic Retransmission and Penalization algorithm [PKB13]. Fer-
lin et al. [FDA14a] con�rm that cellular networks exhibit bu�erbloat which
a�ects the performance of Multipath TCP. Ferlin et al . [FDA14b] propose a
probing technique to detect low performing paths and evaluate it in wireless
networks. Deng et al. [Den+14] compare the performance of single-path TCP
over WiFi and LTE networks with Multipath TCP on multi-homed devices by
using active measurements and replaying HTTP tra�c observed on mobile
applications. They show that Multipath TCP provides bene�ts for long �ows
but not for short ones, for which the selection of the interface for the initial
sub�ow is important from a performance viewpoint. Han et al.[Han+15] an-
alyze the behavior of Multipath TCP to load web pages with both HTTP and
SPDY. They con�rm that large SPDY �ows are better suited for Multipath TCP
than smaller HTTP ones. Di�erent packet schedulers such as BLEST [Fer+16]
and ECF [Lim+17] have been proposed to operate in wireless networks. Still,
all these previous works mostly focus on the bandwidth aggregation feature
of Multipath TCP under bulk transfers and do not explore network handovers.

Device mobility with Multipath TCP. Raiciu et al. [Rai+11b] �rst dis-
cuss how Multipath TCP can be used to support mobile devices either by di-
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rect client/server connections or through a Multipath TCP proxy. They also
provide early measurement results using a laptop. Paasch et al. [Paa+12] then
propose three distinct path management policies to cope with di�erent wire-
less networks. The Full-MPTCP mode creates sub�ows on all pairs of client’s
and server’s addresses. These sub�ows are then simultaneously used to ag-
gregate the bandwidth of the available networks. The Backup mode also es-
tablishes all the sub�ows, but only uses a subgroup. This mode is useful to
prioritize some networks over other ones, e.g., to prevent hosts from using
the cellular interface when Wi-Fi is still available, while keeping fast reaction
if primary networks become unavailable. The Single-Path mode is similar to
the Backup one, except that only one sub�ow is established at any time. These
modes were included in the Linux implementation of Multipath TCP and their
evaluation on a laptop showed that the network handovers are handled dif-
ferently by each mode. Williams et al. [Wil+14] analyze the performance of
Multipath TCP on moving vehicles with bulk transfers. Li et al. [Li+18] mea-
sure the performance of Multipath TCP in high-speed trains by leveraging
the availability of multiple cellular networks. Our works continue in that
vein by considering smartphones instead of laptops and by exploring other
tra�c patterns than the bulk one.

Other related Multipath TCP works. Hesmans et al. [Hes+15] analyze a
one week-long trace collected at the reference server multipath-tcp.org.
Compared to our works, they have no control on the devices contained in
their network trace. Saha et al. [Sah+17] extend one of our previous work to
evaluate the behavior of Multipath TCP under controlled smartphone appli-
cation scenarios. They also explore how Multipath TCP impacts the energy
consumption and CPU usage on such mobile devices.

2.2 Analyzing In-The-Wild Android Users

In this Section, we provide a detailed analysis of a Multipath TCP network
trace generated by smartphones used by real users. We �rst introduce how
we enable smartphones to bene�t from Multipath TCP (§2.2.1). Then, we
provide the basic characteristics of the studied network trace (§2.2.2). Finally,
we take a closer look at the performance of Multipath TCP (§2.2.3).

2.2.1 Enabling Multipath TCP on Android Smartphones

Although Multipath TCP is already used by hundreds of millions of Apple’s
iOS smartphones, Multipath TCP is not yet supported at a large scale on In-
ternet servers. Therefore, making the smartphones Multipath TCP capable is

multipath-tcp.org
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Figure 2.1: The deployed architecture allowing smartphones to use Multi-
path TCP.

not su�cient to generate Multipath TCP tra�c. Indeed, most of the servers
do not recognize the Multipath extension and fallback to plain TCP.

To address this deployment issue, we deployed the infrastructure depicted
in Figure 2.1, which is the same architecture as the one used by Korean Tele-
com [KT]. As Android relies on the Linux kernel, one can integrate the Linux
implementation of Multipath TCP on our smartphones. In our measurement
campaign, the smartphones run Android 4.4 with a modi�ed Linux kernel
that includes Multipath TCP v0.89.5 [DB]. To force smartphone applications
to use Multipath TCP, ShadowSocks1 was installed on each smartphone and
con�gured to use a SOCKS server that supports Multipath TCP (v0.89.5) for all
TCP connections. The smartphones thus use Multipath TCP over their Wi-Fi
and cellular interfaces to reach the SOCKS server. This proxy initiates Multi-
path TCP connections to the �nal destinations, but most of them fallback to
regular TCP as very few servers on the Internet support Multipath TCP. Us-
ing the SOCKS proxy enables us to collect both Wi-Fi and cellular network
tra�c using tcpdump without requiring cooperation from an ISP. From the
server side, all the connections from the smartphones appear as coming from
the SOCKS server. This implies that the external (cellular or Wi-Fi) IP ad-
dress of the smartphone is not visible to the contacted servers. This might
a�ect the operation of some servers that adapt their behavior (e.g., the ini-
tial congestion window) in function of the client IP address. Moreover, our
ShadowSocks client introduces two additional characteristics. First, it sends
DNS requests over TCP. Second, ShadowSocks did not support IPv6 when
we collected our measurements, so our trace only contains IPv4 packets.

As introduced in §1.3.5, the usage of Multipath TCP involves the operation
of several dedicated algorithms. First, the path manager speci�es the strat-
egy used to create and delete sub�ows. In our measurements, smartphones

1Available at http://shadowsocks.org.

http://shadowsocks.org
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employ the full-mesh path manager that initiates one sub�ow over each
pair of interface addresses as soon as the initial sub�ow has been fully es-
tablished or as soon as a new address has been learned. Second, the packet

scheduler [Paa+14] selects, among the active sub�ows having an open con-
gestion window, the sub�ow on which the next packet containing data will
be sent. Both the smartphones and the proxy used the default Multipath
TCP scheduler that prefers the sub�ow with the smallest RTT. This sched-
uler also includes the Opportunistic Retransmission and Penalization (ORP)
mechanism [PKB13] aiming at mitigating head-of-line blocking when facing
receive window limitations. Third, the congestion controller de�nes the con-
gestion window of each Multipath TCP sub�ow. Here, we rely on the standard
Linked Increases Algorithm (LIA) [rfc6356].

Android 4.4 smartphones assume that only one wireless interface is ac-
tive at a time. When such a smartphone switches from cellular to Wi-Fi, it
automatically resets all existing TCP connections by using Android speci�c
functions. To counter this behavior, we installed a special Android applica-
tion2 that enables the simultaneous usage of the Wi-Fi and cellular interfaces.
It also controls the routing tables and updates the policy routes that are re-
quired for Multipath TCP every time the smartphone connects to a wireless
network. Thanks to this application, the modi�ed Nexus 5 can be used by any
user since it does not require any networking knowledge.

The dataset covers the tra�c produced by a dozen of users using Nexus 5
smartphones. These users were either professors, Ph.D. or Master students at
UCLouvain. While some of them used their device to go only on the Internet,
others were still using them as their main phone after our measurement cam-
paign. Measurements were performed in Belgium from March 8th to April
28th 2015. Over this period of 7 weeks, more than 71 millions Multipath TCP
packets were collected for a total of 25.4 GBytes over 390,782 Multipath TCP
connections.

2.2.2 Characterization of the Trace

Before going into a more detailed analysis, we �rst look the main character-
istics of the Multipath TCP connections in our dataset.

Destination port. Usually, the application level protocol can be identi�ed
by looking at the destination port of the captured packets. However, as smart-
phones connect through a SOCKS proxy, all the packets are sent towards the
destination port used by the proxy, which is 443 in our case to prevent mid-
dlebox interference. To �nd the application level protocol, we extract the

2Available at https://github.com/MPTCP-smartphone-thesis/
MultipathControl.

https://github.com/MPTCP-smartphone-thesis/MultipathControl
https://github.com/MPTCP-smartphone-thesis/MultipathControl
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Port # connections % connections Bytes % bytes
53 107,012 27.4 17.4 MB < 0.1
80 103,597 26.5 14,943 MB 58.8
443 104,223 26.7 9,253 MB 36.4
4070 571 0.1 91.7 MB 0.4
5228 10,602 2.7 27.3 MB 0.1
8009 10,765 2.8 0.97 MB < 0.1

Others 54,012 13.8 1,090 MB 4.3

Table 2.1: Statistics about destination port fetched by smartphones.

destination port from the SOCKS command sent by the ShadowSocks client
at the beginning of each connection. As shown in Table 2.1, most of the con-
nections and data bytes are related to Web tra�c (ports 80 and 443). Since
ShadowSocks sends DNS requests over TCP, it is expected to have a large
fraction of the connections using port 53. Among other popular port num-
bers, there are ports such as 4070 — e.g., used by Spotify —, Google Services
(5228) and Google Chromecast (8009).

Duration of the connections. 65% of the observed connections last less
than 10 seconds. In particular, 4.3% are failed connections, i.e., the �rst Syn
was received and answered by the proxy, but the third Ack was lost (or a Rst
occurred). 20.8% of the connections last more than 100 seconds. Six of them
last for more than one entire day (up to nearly two days).

Bytes carried by connections. Most (86.9%) of the connections carry less
than 10 KBytes. In particular, 3.1% of the connections carry between 9 and
11 bytes. Actually, those are empty connections, since the SOCKS command
are 7 bytes long, two bytes are consumed by the Syns and the use of the
remaining two bytes depend on how the connections were closed (Rst or Fin).
The longest connection in terms of bytes transported around 450 MBytes and
was spread over �ve sub�ows.

2.2.3 Analysis

In the following, the analysis will focus on relevant subsets of the trace such as
connections with at least two sub�ows, connections using at least two sub-
�ows or connections experiencing handover. Table 2.2 gives the character-
istics of these subsets. They help to analyze how Multipath TCP sub�ows
are created (§2.2.3.1), study the heterogeneity of the available networks in
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Name Description # connections Bytes S→P Bytes P→S
T0 Full trace 390 782 652 MB 24 771 MB
T1 ≥ 2 established sub�ows 126 040 238 MB 13 496 MB
T2 ≥ 2 used sub�ows 32 889 152 MB 11 856 MB
T3 With handover 8 461 36.7 MB 4 626 MB

Table 2.2: The di�erent (sub)traces analyzed in this section. S→P: from
smartphones to proxy. P→S: from proxy to smartphones.

Number of sub�ows 1 2 3 4 5 >5
Percentage of connections 67.75% 29.96% 1.07% 0.48% 0.26% 0.48%

Table 2.3: Number of sub�ows per Multipath TCP connection.

terms of round-trip-times (§2.2.3.2), estimate the packet reordering of Multi-
path TCP (§2.2.3.3), study how sub�ows are used (§2.2.3.4), quantify the rein-
jection overhead (§2.2.3.5) and identify connections experiencing handovers
(§2.2.3.6).

2.2.3.1 Creation of the Sub�ows

With Multipath TCP, a smartphone can send data over di�erent paths. The
number of sub�ows that a smartphone creates depends on the number of
active interfaces that it has and on the availability of the wireless networks.

Table 2.3 reports the number of (not necessarily concurrent) sub�ows that
are observed in T0. Most of the connections only have one sub�ow. On an-
other side, 2.29% of the connections have more than two sub�ows. Having
more sub�ows than the number of network interfaces is a sign of mobility
over di�erent Wi-Fi and/or cellular access points since IPv6 was not used. A
connection establishing 42 di�erent sub�ows was observed.

Another interesting point is the delay between the establishment of the
connection (i.e., the �rst sub�ow) and the establishment of the other sub-
�ows. As it relies on the full-mesh path manager, the smartphone tries
to create sub�ows shortly after the creation of the Multipath TCP connection
and as soon as a new interface gets an IP address. Late joins can mainly be ex-
pected when a smartphone moves from one network access point to another.
To quantify this e�ect, Figure 2.2 plots the cumulative distribution function
(CDF) of the delays between the creation of each Multipath TCP connection
and all its additional sub�ows that are linked to. 65% of all the additional sub-
�ows are established within 200 ms. This percentage increases to 73% if this
limit is set to one second. If the analysis is restricted to the �rst additional
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Figure 2.2: Delay between the creation of the Multipath TCP connection and
the establishment of a sub�ow.

sub�ow, these percentages are respectively 76% and 86%. Joins can occur
much after the connection is established. Indeed, 17% of the additional sub-
�ows were established one minute after the establishment of the connection,
and 2.1% of them were added one hour later. The maximal observed delay
is 134,563 seconds (more than 37 hours) and this connection was related to
the Google Services. Those late joins suggest network handovers, and late
second sub�ow establishments can be explained by smartphones having only
one network interface available, e.g., switching from a Wi-Fi access point to
another one while having cellular connectivity turned o�.

2.2.3.2 Sub�ow Round-Trip-Times

From now on, we focus on the subtrace T1 that includes all the connections
with at least two sub�ows. A sub�ow is established using a three-way hand-
shake. Thanks to this exchange, the communicating hosts agree on the se-
quence numbers and TCP options and also measure the initial value of the
round-trip-time for the sub�ow. For the Linux implementation of Multipath
TCP, the round-trip-time (RTT) measurement is an important performance
metric because the default packet scheduler prefers the sub�ows having
the lowest RTTs.

To evaluate the RTT heterogeneity of the Multipath TCP connections, the
analysis uses tstat [MCC03] to compute the average RTT over all the sub-
�ows that a connection contains. Then, it extracts for each connection the



2.2. Analyzing In-The-Wild Android Users 25

10−1 100 101 102 103 104 105

Δ Mean RTT [ms]

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

Worst - Best

103 104
0.95

1.00

Figure 2.3: Di�erence of average RTT seen by the proxy between the worst
and the best sub�ows with at least 3 RTT samples.

minimum and the maximum of these average rRTTs. To have consistent val-
ues, it only takes into account the sub�ows having at least 3 RTT estimation
samples. Figure 2.3 plots the CDF of the di�erence in the average RTT be-
tween the sub�ows having the largest and the smallest RTTs over all connec-
tions in T1. Only 19.2% of the connections are composed of sub�ows whose
round-trip-times are within 10 ms or less whereas 77.5% have RTTs within
100 ms or less. 4% of the connections experience sub�ows having 1 second or
more of di�erence in their average RTT. With such network heterogeneity, if
a packet is sent on a low-bandwidth and high-delay sub�ow B0 and following
packets are sent on another high-bandwidth low-delay one B1, the sender may
encounter head-of-line blocking.

2.2.3.3 Multipath TCP Acknowledgements

As explained in §1.3, Multipath TCP uses two acknowledgment levels: the
regular TCP Acks at the sub�ow level and the cumulative Multipath TCP
Acks at the connection level. It is possible to have some data acknowledged
at the TCP level but not at the Multipath TCP one, typically if previous data
was sent on another sub�ow but not yet acknowledged. Figure 2.4 plots in
gray-dotted curve the CDF of the number of bytes sent by the proxy that
are acknowledged by non-duplicate TCP Acks. This plot is a weighted CDF
where the contribution of each Ack is weighted by the number of bytes that
it acknowledges. TCP Acks of 1428 bytes or less cover 50.7% of all acknowl-
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Figure 2.4: Size of the Multipath TCP and TCP Acks received by the proxy.

edged bytes and considering Acks of 20 KB or less the percentage is 91.1%.
The same analysis is now performed by looking at the DSS option that car-

ries the Multipath TCP Data ACK s with mptcptrace [HB14]. The orange
curve in Figure 2.4 shows the weighted cumulative distribution of the number
of bytes acknowledged per Data ACK. Compared with the regular TCP Acks,
the Multipath TCPAcks cover more bytes. Indeed, 51.4% of all bytes acknowl-
edged by Multipath TCP are covered with Data ACKs of 2856 bytes or less,
and this percentage increases to 70.8% considering Data ACKs of 20 KB or
less.

The di�erence between the regular TCPAcks and the Data ACKs is caused
by the reordering that occurs when data is sent over di�erent sub�ows. Since
the Data ACKs are cumulative they can only be updated once all the previ-
ous data have been received on all sub�ows. If sub�ows with very di�erent
RTTs are used, reordering will occur and data will possibly �ll the receiver’s
window during a long period. This can also change the way applications read
data which would be more by large bursts instead of frequent small reads.

2.2.3.4 Utilization of the Sub�ows

The next question is how data is spread among the sub�ows. Does Multipath
TCP alternates packets between the di�erent sub�ows or does it send them
in bursts? Again, to be relevant, we consider the subtrace T1.

To quantify the spread of data, we introduce the notion of sub�ow block.
Intuitively, a sub�ow block is a sequence of packets from a connection sent
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over a given sub�ow without any packet transmitted over another sub�ow.
Consider a connection where a host sends # data packets. Number them as
0, ..., # −1 with 0 the �rst data packet sent and # −1 the last one. Let 58 denote
the sub�ow on which packet 8 was sent. The =Cℎ sub�ow block 1= is de�ned
as

1= = {max(1=−1) + 1} ∪ {8 | 8 − 1 ∈ 1= and 58 = 58−1}

with 10 = {−1} and 5−1 =⊥. For example, if the proxy sends two data pack-
ets on B0, then three on B1, retransmits the second packet on B0 and sends the
last two packets on B1, we will have 11 = {0, 1}, 12 = {2, 3, 4}, 13 = {5} and
14 = {6, 7}. A connection balancing the tra�c on several sub�ows will pro-
duce lot of small sub�ow blocks whereas a connection sending all its data
over a single sub�ow will have only one sub�ow block containing all the
connection’s data. Figure 2.5 shows the number of sub�ow blocks that each
connection contains. Each curve includes connections carrying their labeled
amount of total bytes from proxy to smartphones. For most of the large con-
nections, Multipath TCP balances well the packets over di�erent sub�ows. In
particular, 26.8% of connections carrying more than 1 MB have more than 100
sub�ow blocks. As expected, the shorter the connection is, more the sub�ow
blocks tend to contain most of the connection packets. For short connections
carrying less than 10 KBytes, 72.4% of them contain only one sub�ow block,
and therefore they only use one sub�ow. This number raises concerns about
unused sub�ows. If connections having at least two sub�ows are considered,
over their 276,133 sub�ows, 41.2% of them are unused in both directions. It
is worth noting that nearly all of these unused sub�ows are actually addi-
tional sub�ows, leading to 75.6% of the additional sub�ows being unused.
This is clearly an overhead, since creating sub�ows that are not used con-
sumes bytes and energy on smartphones [Pen+14] since the interface over
which these sub�ows are established is kept active.

There are three reasons that explain these unused sub�ows. Firstly, a
sub�ow can become active after all the data has been exchanged. This hap-
pens frequently since 62.9% of the connections carry less than 2000 bytes of
data. In practice, for 21% of the unused additional sub�ows the proxy received
their third Ack after that it had �nished sending data. Secondly, as suggested
previously, the di�erence in round-trip-times between the two available sub-
�ows can be so large that the sub�ow with the highest RTT is never selected
by the packet scheduler. If the server does not transmit too much data, the
congestion window on the lowest-RTT sub�ow remains open and the second
sub�ow is not used. Nonetheless, 36.2% of the unused additional sub�ows
have a better RTT for the newly-established sub�ow than the other available
one. Yet, 59.9% of these sub�ows belong to connections carrying less than
1000 bytes (90.1% less than 10 KBytes). Thirdly, a sub�ow can be established
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Figure 2.5: Size of the sub�ow blocks from proxy to smartphones on T1.

as a backup sub�ow [rfc6824]. Indeed, a user can set the cellular sub�ow as
a backup one, e.g., for cost purposes. 2.1% of the unused additional sub�ows
in T1 were backup sub�ows.

2.2.3.5 Reinjections and Retransmissions

In addition to unused sub�ows, another Multipath TCP speci�c overhead is
the reinjections. A reinjection [Rai+12] is the transmission of the same data
over two or more sub�ows. Since by de�nition, reinjections can only occur
on connections that use at least two sub�ows, this analysis considers the sub-
trace T2. A reinjection can be detected by looking at the Multipath TCP Data
Sequence Number (DSN). If a packet A with DSN G is sent �rst on sub�ow 1
and later another packet B with the same DSN G is sent on sub�ow 2, then
B is a reinjection of A. We extended mptcptrace [HB14] to detect them. A
reinjection can occur for several reasons: (i) handover, (ii) excessive losses
over one sub�ow or (iii) the utilization of the Opportunistic Retransmission
and Penalization (ORP) algorithm [PKB13; Rai+12]. This phenomenon has
been shown to limit the performance of Multipath TCP in some wireless net-
works [Lim+14b]. Typically, Multipath TCP reinjections are closely coupled
with regular TCP retransmissions. Figure 2.6 shows the CDF of the reinjec-
tions and retransmissions sent by our proxy. The quantity of retransmitted
and reinjected bytes are normalized with the number of unique bytes sent by
the proxy over each connection. 51.5% of the connections using at least two
sub�ows experience retransmissions on one of their sub�ows whereas rein-
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Figure 2.6: Fraction of bytes that are reinjected/retransmitted by the proxy
on T2.

jections occur on 29.2% of them. This percentage of retransmissions tends
to match previous analysis of TCP on smartphones [Fal+10; Hua+10]. 67.2%
of T2 connections have less than 1% of their unique bytes retransmitted, and
83.7% less than 10%. 81.1% of the connections have less than 1% of their unique
bytes reinjected, and 91% less than 10%. Observing more retransmissions than
reinjections is expected since retransmissions can trigger reinjections. In the
studied trace, the impact of reinjections remains limited since over more than
11.8 GBytes of unique data sent by proxy, there are only 86.8 MB of retrans-
missions and 65 MB of reinjections. On some small connections, we observe
more retransmitted and reinjected bytes than the unique bytes. This is be-
cause all the data sent over the connection was retransmitted several times.
In Figure 2.6 the half-thousand of connections having a fraction of retrans-
mitted bytes over unique bytes greater or equal to 1 carried fewer than 10 KB
of unique data, and 83.3% of them fewer than 1 KB. Concerning the reinjec-
tions, the few hundred of such connections carried less than 14 KB, 63.4% of
them carried less than 1 KB and 76.1% of them less than 1428 bytes.

2.2.3.6 Handovers

One of the main bene�ts of Multipath TCP is that it supports seamless han-
dovers which enable mobility scenarios [rfc6824; Paa+12]. A handover is
here de�ned as a recovery of a failed sub�ow by another one. A naive so-
lution is to rely on Remove Addrs to detect handover. However, this TCP



30 Chapter 2. Evaluating Multipath TCP on Smartphones

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Total Unique Bytes

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

Additional subflows

Figure 2.7: Fraction of total data bytes on non-initial sub�ows sent by the
proxy on T3.

option is sent unreliably. Indeed, 22.1% of the connections experiencing han-
dover do not exchange the Remove Addr option.

Instead, we propose an alternative methodology that relies on the TCP
segments exchanged. Let !�8 be the time of the last (non-Rst) Ack sent by the
smartphone seen on sub�ow 8 (that was used to send data) and !% 9 the time of
the last (non-retransmitted) segment containing data on sub�ow 9 . If ∃ :, ; |
: ≠ ; , no Fin seen from the smartphone on sub�ow : , !�; > !�: and !%; >
!�: , then the connection experiences handover. Notice that only handovers
on the sub�ows carrying data are detected. Among the connections that use at
least two sub�ows, 25.7% experience handover. It has also the advantage to be
implementation independent since it does not use the Add Addr or Remove
Addr options that were not always supported by all implementations [Ear13].

Based on the subtrace T3, Figure 2.7 shows the fraction of unique bytes
that were sent by our proxy on the additional sub�ows on connections expe-
riencing handover. This illustrates the connections that could not be possible
if regular TCP was used on these mobile devices. Indeed, a handover is typ-
ically related to the mobility of the user who can go out of the reachability
of a network. Notice that this methodology can also detect handover in the
smartphone to proxy �ow. Indeed, 20.4% of connections experience handover
with all data sent by the proxy on the initial sub�ow because the smartphone
sent data on another sub�ow after having lost the initial one.
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2.3 Observing the iOS Multipath TCP Implementation

Apple’s iPhone devices represent the largest fraction of Multipath TCP ca-
pable hosts [BS16]. Initially, only the Siri application took advantage of the
availability of multiple paths. Since the deployment of iOS11 in September
2017, any application can request the usage of Multipath TCP for the connec-
tions it initiates. To encourage the evaluation of Multipath TCP, we designed
and implemented MultipathTester, an iOS application testing how Multi-
path TCP behaves under various network conditions. It provides two experi-
mentation modes. The �rst one generates di�erent tra�c patterns ranging
from bulk transfer to delay-sensitive request-responses and observes how
Multipath TCP operates within stable network conditions. The second one
requires the user to move until it triggers a network handover from Wi-Fi
to cellular network and observes how Multipath TCP handles such changing
environments.

The remaining of this section �rst presents the architecture of our mea-
surement platform (§2.3.1). After introducing the operations of the studied in-

teractive mode of the iOS Multipath TCP implementation (§2.3.2), we quickly
characterize its performance under stable network conditions (§2.3.3). Then,
we focus on how Multipath TCP handles network handovers (§2.3.4).

2.3.1 Design of MultipathTester

We now introduce MultipathTester, an iOS application aiming at evalu-
ating the performance of Multipath TCP. Our framework enables users to
observe how the iOS implementation behaves under our di�erent test modes
(§2.3.1.1). We then elaborate on our measurement infrastructure and imple-
mentation details (§2.3.1.2). We �nally provide a few statistics about the usage
of our application (§2.3.1.3).

2.3.1.1 Test Modes

MultipathTester relies on active measurements performed by voluntary
users. For this purpose, at the �rst run and before perfoming any measure-
ment, the application provides a consent form describing its research purpose
to the user. Once agreed, the user can explicitly start active measurements.
Two kinds of experiments are available. First, the stable network mode bench-
marks the connectivity using di�erent tra�c patterns. Second, the mobile
mode studies the impact of network handovers on Multipath TCP.

Stable Network Mode. During a stable network test, the application ex-
pects the user to stay at the same place so that the smartphone remains at-
tached to the same network(s) during the entire test. In these stable condi-
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tions, we benchmark the access point(s) to check if Multipath TCP behaves
correctly in these networks. MultipathTester monitors the network con-
nectivity during the test to detect user motion. It takes advantage of the
Reachability API [Reach] to keep the list of available network interfaces
from the smartphone’s point of view. If during its run, the availability of one
network interface changes (e.g., Wi-Fi being declared as lost by the device,
cellular just getting Internet connectivity,. . . ), the test is interrupted and clas-
si�ed as invalid.

To perform crowd-sourced measurements, the application needs to pro-
vide some service to the user. We present the stable mode as a network bench-
mark of the connected access point(s). On the initial screen, the user inter-
face indicates, among others, the support of IPv4 and IPv6 for both Wi-Fi and
cellular networks. When the tests run, MultipathTester shows real-time
updated graphs about variables of interest such as the experienced latency or
the achieved throughput. Thereafter, the user can consult details about the
test in a dedicated results screen.

Di�erent tra�c patterns can be used with the stable mode. These net-
work tests launch these tra�c patterns sequentially, one transport proto-
col at a time. The order of the runs are randomized to avoid possible traf-
�c correlation. MultipathTester provides a common interface to de�ne
tra�c patterns, making it easy to add new ones. From an implementation
viewpoint, each pattern implements two interfaces. The Test interface in-
cludes, inter alia, the run method called when launching the experiment and
getChartData providing some graph visualization during the run. TestResult
enables the results menu to fetch valuable information about the studied traf-
�c to present them to the user. MultipathTester implements four simple
tra�c patterns: ping, bulk, iperf and streaming.

� Ping. This test simply sends a stream of �ve HTTP GET requests for
a 10-byte �le and computes the median delay. Its main purpose is to
check the connectivity and to select the test server with which further
experiments will be performed.

� Bulk. This test performs an HTTP GET request for a 10 MB �le, and
records the download time.

� IPerf. It generates a bulk transfer similar to the iperf tool [iPerf].
The client sends new data as fast as possible during a few seconds. We
only use it to estimate the uplink bandwidth.

� Streaming. This tra�c simulates a situation where the user interacts
with a voice-activated application such as Siri while listening to an In-
ternet radio. To achieve this, the tra�c pattern follows a bidirectional
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Figure 2.8: The streaming tra�c pattern.

Figure 2.9: Mobility enables handover tests.

request-response fashion as shown in Figure 2.8. Every 100 ms, both
the client and the server send a 2 KB request to the peer that replies
with a 9-byte response. This short reply acts as a application-level ac-
knowledgment that con�rms the reception of each 2 KB chunk. The
sending host then computes the delay between the request and the cor-
responding acknowledgment. With such low-volume exchanges, we do
not expect any interference with the receive nor the congestion win-
dows. Notice that we implement the tra�c pattern with two indepen-
dent Multipath TCP connections to prevent head-of-line blocking when
a lost response blocks the delivery of the next request.

Mobile Mode. Our mobile tests focus on the situation illustrated in Fig-
ure 2.9. The smartphone is initially connected to both Wi-Fi and cellular net-
works while sending and receiving data simultaneously using the streaming

tra�c pattern. Then, the device moves away from the Wi-Fi access point. Af-
ter some time, as the Wi-Fi connectivity starts fading, Multipath TCP switches
to the cellular one. The mobile experiment evaluates how Multipath TCP han-
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Figure 2.10: The infrastructure used byMultipathTester.

dles network handovers. This feature is one of the motivating cases for sup-
porting multipath in the transport layer, as it can migrate connections from
one network to another one without notifying the application. We expect the
impact of the handover to be as low as possible on the applications, especially
when they are latency-sensitive. The test completes when either the operat-
ing system tears down the Wi-Fi network, or the SSID of the Wi-Fi access
changes.

To encourage users to perform this mobile test, we present it as a Wi-Fi
reachability estimator where the smartphone computes the range of the Wi-
Fi access point. The distance the device realized during a test is provided by
the Core Location API [CoreL]. This framework takes advantage of the
GPS when the user gives its consent, otherwise it estimates the localization of
the device with all the remaining components such as Wi-Fi, Bluetooth, mag-
netometer, barometer and cellular. MultipathTester computes two reach-
ability distances. The most naive one is the distance covered between the
start of the test and the instant when the operating system changes the con-
nectivity state of the Wi-Fi interface. However, when moving away from an
access point, it is likely that the detection of the Wi-Fi loss by the system is
not immediate. During a few seconds, the device might stay connected to a
network losing all transmitted packets. To estimate the range of the Wi-Fi
network, MultipathTester computes a "last data received on Wi-Fi" dis-
tance. At each location update by the Core Location API, the application
checks whether some bytes have been received on the Wi-Fi. If it is the case,
MultipathTester updates this second distance. As the streaming tra�c pat-
tern involves two data streams generating packets every 100 ms, we expect to
regularly receive data. When the test completes, MultipathTester presents
both computed distances to the user.
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2.3.1.2 Measurement Infrastructure

Our measurement infrastructure involves three di�erent nodes as shown in
Figure 2.10. On one side, there is the smartphone runningMultipathTester.
On the other side, we use two di�erent servers. The test server is contacted
by the smartphone to perform the experiments. We deploy three test servers
located on di�erent continents: Europe (France), North America (Canada) and
Asia (Japan). The collect server gathers the measurement results.

Each user-triggered experience is carried out as follows. First, the smart-
phone contacts the collect server to fetch metadata, such as the URL of avail-
able test servers and the list of experiments to launch. Right after, the smart-
phone initiates a ping tra�c pattern to each of the available test servers to
estimate the closest test server. Notice that these pings are synchronized, i.e.,
for each of the �ve runs, it waits for the reply of the previous ping by all the
test servers before launching the next ping. Then, once the user requests it,
MultipathTester interacts with the closest test server to perform experi-
ments. At the end of each test runs, the smartphone sends the test results
to the collect server. These outcomes include primary tra�c-speci�c metrics
(delays for streaming, download completion time and fetched �le for bulk,. . . ),
device and network information (name and type of the network accesses, ver-
sion of the application,. . . ) and dumps of the transport protocol states. These
dumps are periodically collected. Multipath TCP logging data comes from
both the TCP_INFO and the ioctl SIOCGCONNINFO interfaces. To access
them, we rede�ne Darwin kernel structures which have not been included in
the header �les provided by iOS, such as struct tcp_info and struct
mptcp_itf_stats.

The test servers use the Multipath TCP implementation in the Linux ker-
nel 4.14 (v0.94) [MPTCPlk] with the default multipath-speci�c algorithms
(default lowest-RTT packet scheduler, full-mesh path manager and the
OLIA congestion control scheme [Kha+13]). The smartphones use the native
implementation of (Multipath) TCP provided by the Darwin kernel [Darwin].

Overall, MultipathTester contains ∼9250 lines of code (without com-
ments), whose ∼7000 are Swift, 1000 are Objective-C and ∼1250 are Go code.

2.3.1.3 Usage Statistics

Since the �rst public release of MultipathTester on March 8th, 2018 until
April 30th, 2019, we collected 1098 test runs coming from 264 unique devices.
43% of the runs are mobile tests. The distribution of the test loads between
Europe, Asia and America is 65%, 17% and 18%, respectively. MultipathT-
ester has been used in 72 di�erent mobile carriers and 288 di�erent Wi-Fi
SSIDs.
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2.3.2 The Interactive iOS Multipath TCP Mode

On iOS, applications can explicitly request the usage of Multipath TCP using
the iOS API [MPiOS]. Apple provides three modes of operation for Multi-
path TCP, each with di�erent objectives: handover, aggregate and interactive.
The handover mode aims to provide seamless handover from Wi-Fi to cellular
networks for long-lived or persistent connections. The aggregate mode uses
all network connectivities to increase the throughput of the connection. The
interactive mode attempts to use the lowest-latency connectivity and is ad-
vised for latency-sensitive, low-volume connections. Nonetheless, the ability
to use the LTE network while the Wi-Fi might still be available raises con-
cerns about cellular data consumption. Users typically expect the device to
use the Wi-Fi network when available and usable, even if it sometimes pro-
vides lower throughput and/or larger latency than the cellular one. This is
why Apple restricts the aggregate mode to developer phones only. Since we
want our application to be as accessible as possible, we do not explore the
aggregate mode.

MultipathTester uses the interactive Multipath TCP mode. We focus on
this mode rather than the handover one as it is advised for latency-sensitive
applications, which matches our streaming tra�c pattern. To understand
its behavior, we analyzed its source code [Darwin] and inferred its opera-
tions. The interactive mode prioritizes the Wi-Fi network over the cellular
one, marking the latter one as a backup sub�ow. As the server runs its own
packet scheduler (in our case, the lowest-latency one), the use of the backup
sub�ow ensures that the peer will not use the cellular unless it encounters
connectivity issues with the Wi-Fi, such as retransmission timeouts (RTOs).
The iOS packet scheduler sends data only on the Wi-Fi sub�ow, unless one
of the following conditions holds.

1. The smoothed RTT of the Wi-Fi sub�ow is above a threshold initially
set to 600 ms, while the cellular path is not over this threshold.

2. The Wi-Fi path is experiencing RTO — i.e., the timer has �red and no
acknowledgment was received since that event — and the phone wants
to push new data.

3. The Wi-Fi RTO value is over a threshold initially set to 1500 ms, while
the RTO of the cellular path is lower.

The packet scheduler code checks those previous conditions in the presented
order. Notice that the threshold values of the RTT and the RTO can be de-
creased by the Apple’s Wi�Assist application when it considers the Wi-Fi
network as "bad". However, this system is closed-source, making it di�cult
to understand its behavior.
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Figure 2.11: MultipathTCPmaximumobserved application delays under sta-
ble conditions with the streaming tra�c pattern.

2.3.3 Stable Network Runs

Given that the studied interactive mode of iOS Multipath TCP prioritizes the
Wi-Fi network and uses the cellular only if it starts experiencing connectivity
issues, we do not expect Multipath TCP to behave di�erently from plain TCP
under stable conditions. Yet, these experiments allow us to get an idea of the
diversity of the networks where MultipathTester ran. In particular, our
bulk tra�c pattern shows that downloading a 10 MB already provides very
diverse results. The 25th and 75th percentiles of the transfer completion time
are 2.73 s and 9.69 s. The fastest run completed in 0.63 s (average throughput
of 127 Mbps) while the slowest one took 1232 s (mean rate of 65 Kbps). We also
observe such heterogeneous throughput distribution in the uplink direction
with our iperf tra�c. The tests experienced 25th and 75th percentiles of upload
throughput of 2.94 Mbps and 16.95 Mbps, respectively. Again, we also observe
quite extreme values, such as 10 Kbps or 257 Mbps.

Besides the throughput, MultipathTester also observes instabilities in
some networks. Figure 2.11 shows that with the streaming tra�c pattern,
most of the experiments observed maximum application delays of a few hun-
dreds of milliseconds. However, despite the low bandwidth usage and the
absence of network changes, 6% of these static streaming runs experienced
delays over 1 s. In particular, we focus our attention on the extreme run which
experienced maximum application delays of 5.5 s and 1.6 s in the upload and
download streams, respectively. The phone started the connection over the
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cellular interface, but could not establishh the Wi-Fi sub�ow, i.e., the Wi-Fi
network was reachable but not connected to the Internet. However, the cellu-
lar network seemed to be bu�erbloated. The smoothed RTT estimated by the
smartphone for the upload connection gradually increased from 100 ms at the
connection establishment to about 4.5 s at the end of the transfer, while the
smartphone did not retransmit any data. This shows the high heterogeneity
of networks that MultipathTester faced, even without considering mobile
situations.

2.3.4 Mobile Experiments

We now focus on our �ndings from our experiments where the user moves.
Our mobile tests only generates the streaming tra�c pattern. This section is
split into two parts. We �rst report some indicative results about the Wi-Fi
reachability distance estimations. We then concentrate on the performance of
the interactive mode of iOS Multipath TCP and evaluate whether it achieves
its low-latency goal.

2.3.4.1 Wi-Fi Reachability Distance

As suggested previously, there might be some delay, and therefore some dis-
tance between the point where the Wi-Fi becomes unusable and the system
e�ectively detects it. For this, we consider 235 experiments performed be-
tween March 8th, 2018 and April 30th, 2019 where the Wi-Fi network was lost
due to the user motion.

Figure 2.12 con�rms our intuition that the time a Wi-Fi network is kept
while being unusable is not negligible. Only 5% of the experiments observed
less than 1 s between the last received packet on the Wi-Fi and the sys-
tem withdrawing it. Actually, in most of these experiments, the smartphone
switched from one access point to another one — di�erent BSSIDs — within
a same network — same SSID. Rather, 78% of the runs observed delays over
10 s, and 12% saw reactions lasting more than 30 s. These results illustrate
the interest of using Multipath TCP in such scenarios. If the smartphone was
using plain TCP, the streaming tra�c would have been trapped on the Wi-Fi
network, waiting for a while before getting noti�ed of the loss of the connec-
tivity and trying to establish a new connection over the cellular network.

Since the user is moving away of the Wi-Fi access point, we observe di�er-
ent estimated Wi-Fi reachability distances taking either last received packet
or system detection criterias. Figure 2.13 shows that in the median run, the
Wi-Fi is usable for 23.5 m, while the system leaves the network after 41 m.
However, these values are very dependent on both the environment and the
user. Indeed, the Wi-Fi reachability distance would be very dependent on the
environment in which the experiment is performed (e.g., walls, trees,. . . ). In
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Figure 2.12: The time delta between the last received packet over the Wi-Fi
and the tear down by the iOS system.
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Figure 2.13: Estimated Wi-Fi reachability distance depending on the criteria
used, either last received packet or system tear down.
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Reason RTT Threshold Under RTO RTO Threshold Other
Test (%) 2.2% 67.0% 11.0% 19.8%

Table 2.4: Multipath TCP reason to start using the cellular.

addition, while MultipathTester advises the user to start the test close to
its Wi-Fi access point, nothing enforces it to do so. Intriguingly, we found a
run where the estimated Wi-Fi reachability distance was more than 241 km.
The reason behind this outlier comes from an implicit hypothesis we made
about the Wi-Fi access point. We assume it remains static during the test, al-
lowing considering the distance traveled is due to the user motion. However,
that particular run was connected to a high-speed train Wi-Fi access point.
As both the network and the user were moving together, this value actually
shows the distance covered by the train while running the experiment.

2.3.4.2 Multipath TCP and its Interactive Mode

We now consider here a dataset of 231 experiments performed between April
23rd, 2018 and April 30th, 2019. Our mobile dataset includes 44 distinct cellular
networks and 84 di�erent Wi-Fi ones.

Multipath TCP often waits for Wi-Fi RTO before switching to the cel-
lular network. The Multipath TCP interactive mode uses the algorithm
described in §2.3.2 to decide when the smartphone should start using the cel-
lular backup path. Thanks to the periodic collection of the internal state of
Multipath TCP, we can infer which condition triggered the usage of the cel-
lular path by the smartphone. Table 2.4 shows that two-third of the tests
started to use the cellular because new data arrived while the Wi-Fi sub�ow
was experiencing a RTO. This might be related to our streaming tra�c pattern
that generates data every 100 ms. In comparison, handovers caused by high
smoothed RTTs are rare. This might be linked with the high initial threshold
of 600 ms. Notice that the cause for 20% of the cellular switches cannot be
determined using the three �rst conditions. We suspect that Wi�Assist de-
clared the Wi-Fi network as "bad" and decreased the RTT and RTO thresholds.
However, these thresholds are not exposed by the Darwin kernel, making it
impossible to con�rm this hypothesis.

A Multipath TCP handover is not an abrupt process. As the smart-
phone moves away from the Wi-Fi access point, its performance will even-
tually decrease, leading to a network handover to the cellular connectivity.
Nevertheless, this switch is not necessarily instantaneous. Consider the sit-
uation shown in Figure 2.14. The connection starts over the Wi-Fi network.
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Figure 2.14: Example of a possible network handover.

After some time, it experiences retransmissions due to weaker signal. The
phone then decides to use the cellular path to retransmit the lost request as it
experienced an RTO on the Wi-Fi. Because a Multipath TCP sub�ow still re-
mains a TCP connection, the smartphone still retransmits the packet over the
Wi-Fi path too. These retransmissions might eventually succeed, leading to
the reuse of the Wi-Fi path. Therefore, there is a time interval during which
both Wi-Fi and cellular networks are functional and used by the connection.
We call this transient state the handover duration.

The ability of using both networks concurrently enables the smooth han-
dover that users expect. To quantify its duration, we measure the delay be-
tween the �rst data packet sent on the cellular network and the last activity
observed on the Wi-Fi one. The end of the Wi-Fi liveliness can be measured
as either the transmission time of the last packet (data or TCP acknowledg-
ment) sent by the phone or the reception time of the last packet received.
Figure 2.15 shows that when smartphones move, they simultaneously use the
Wi-Fi and cellular networks at some point. Indeed, only 10% of the test runs
experienced an abrupt switch from the Wi-Fi to the cellular network, i.e., the
Wi-Fi stopped working before the smartphone started using the cellular path.
This corresponds to the negative values in Figure 2.15. On the other hand, 58%
of the experiments observed a handover duration of at least 10 seconds. This
illustrates that in mobile scenarios, the network handover is not an abrupt
process.

Multipath TCP network handovers can a�ect the application. The
main objective of the interactive mode of iOS Multipath TCP is to enable the
application to automatically use the lowest-lantecy interface while keeping
the usage of the cellular one as low as possible. To this end, we focus on
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Figure 2.15: Duration of the Wi-Fi to cellular handover.
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Figure 2.16: Multipath TCP maximum observed application delays under
mobile conditions.
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the maximum delay observed by the sending host for both upload and down-
load streams of the streaming tra�c pattern, i.e., two maximum delays are
collected per test. Despite the interactive mode, Figure 2.16 shows that more
than 60% of the test cases have a maximum application delay that is longer
than a second for both data streams. To exemplify our results, imagine that
the download stream represents an Internet radio while the upload one sim-
ulates a voice-activated application such as Siri. With the median value at
2.6 s, this means that the user would have experienced a music stall in 50%
of the experiments if the playback bu�er was not at least 2.5-second long.
Similarly, with a 70th percentile of 6 s, the Siri application would have been
unresponsive for at least 6 s, possibly raising a connectivity error to the user.

These long application delays have several causes. One of them is that
the detection of the working interfaces by both peers is not synchronous.
Typically, when the smartphone is at the border of its Wi-Fi reachability, the
network starts losing packets and exhibiting latency variability, therefore in-
creasing the RTO value. Still, the network might still be considered as us-
able by the hosts. In particular, the server always chooses �rst the Wi-Fi
path when usable, and relies on the backup cellular one otherwise. When the
smartphone is out of Wi-Fi reachability, the server needs to �gure out that
the path is not usable anymore. In practice, this noti�cation comes when an
RTO occurs. However, the timer might have reached values over one second.
Furthermore, if a single valid Multipath TCP packet reaches the server from
the — potentially failed — Wi-Fi path, this sub�ow will be considered usable
again and hence preferred over the cellular backup one [Pin15]. The server
will be stuck over the Wi-Fi path until a new RTO enables it to use the cellu-
lar one. This situation may last for a while, as suggested by Figure 2.15. This
delay between the loss of the Wi-Fi network by the smartphone and its de-
tection by the server often explains the high observed application latencies.
While the server needs to rely on retransmissions, the phone has a better
view of the network, as it is easier for it to detect a weak Wi-Fi signal than
the server. From our results, we observe that upload connections tend to have
lower application delays than download ones, especially between the 50th and
90th percentiles. As in the upload connection, the phone is sending data, it
can adapt its packet scheduling thanks to local information.

Another cause of large application latencies is because despite having net-
work connectivity on the cellular interface, the smartphone does not estab-
lish any Multipath TCP sub�ow over it. It is possible that iOS keeps track
of the networks exhibiting middlebox interference [Paa16] such that it does
not retry using Multipath TCP for a while. Therefore, the experienced ap-
plication delay is the time between the transmission of the �rst unanswered
request and the noti�cation that the connection has been torn down.

We also observe a tail reaching hundreds of seconds. These experiences
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su�er from the lack of support of the Multipath TCP Add Addr option
[rfc6824] by the iOS implementation. This is probably due to privacy rea-
sons [Ear13], as the Add Addr option could potentially disclose in clear-text
all the addresses of the smartphone. Our test servers have both IPv4 and IPv6
addresses. With the happy eyeballs process [rfc6555], if the connection starts
on the Wi-Fi using IPv6 while the cellular is IPv4-only, the transfer remains
stuck on the Wi-Fi. Note that this issue does not occur in the converse situa-
tion — IPv4 Wi-Fi with IPv6-only cellular — as the iPhone includes a NAT64
daemon.

2.4 Conclusion

While many researchers conducted measurements with bulk transfers, the
actual bene�ts of Multipath TCP in the smartphone use case were unclear.
This chapter addressed this gap by performing two measurement studies.

The �rst one passively collected network trace generated by actual An-
droid applications running on smartphones using the Linux implementation
of Multipath TCP. On one hand, we con�rmed previous �ndings about the
smartphone environment, such as download-driven network tra�c and path
heterogeneity. On the other hand, we showed that when they are created, ad-
ditional paths are often unused. These form the main overhead of Multipath
TCP on smartphones. Yet, we identi�ed connections that bene�ted from the
Multipath TCP seamless network handover.

The second one actively spawned di�erent tra�c patterns to evaluate the
behavior of the iOS Multipath TCP implementation. Our stable tests empha-
sized the diversity of network performance in the current Internet. The mo-
bile runs pointed out the time required to assess the failure of a wireless net-
work. Although Multipath TCP enables the connection to switch from the
Wi-Fi connectivity to the cellular one, the application can su�er from this
potentially long process.

Both our measurement campaigns showed that Multipath TCP works in
the smartphone use case, yet there remains room for improvements. We will
address most of the issues raised here in the Chapter 3.



Tuning Multipath TCP for
Interactive Applications 3
The previous Chapter demonstrated that smartphones can take advantage of
multiple wireless networks without modifying applications thanks to Multi-
path TCP. On smartphones, user experience is always a compromise between
network performance and energy consumption. Devices especially bene�t
from the network handover ability of Multipath TCP. However, its reference
implementation in the Linux kernel is mainly bandwidth aggregation driven
and often wakes up the cellular interface by creating a path without sending
data on it. Furthermore, for most smartphone users, the Wi-Fi and cellular
networks are not equivalent. Wi-Fi has two major advantages compared to
cellular networks. First, using Wi-Fi consumes less energy [Hua+12; Nik+15].
Second, most service providers charge for cellular data while most Wi-Fi net-
works are free or charged on a �at-rate basis. For these reasons, many smart-
phone users only use their cellular interface for voice calls and when there is
no Wi-Fi network available [CSP17].

In this Chapter, we �rst review the related works to motivate the need
to tune Multipath TCP for the smartphone use case (§3.1). Next, we look at
the Apple’s Siri tra�c and characterize the behavior of an interactive applica-
tion (§3.2). We then propose MultiMob, a series of improvements that adapt
Multipath TCP to the requirements of today’s smartphone applications (§3.3).
More precisely, MultiMob provides the following compromise between the
experienced application latency and the utilization of the cellular network.

� A MultiMob server replies on the last network used by the
smartphone (§3.3.1). If a smartphone sends a request over a cellu-
lar sub�ow because its Wi-Fi performs badly, the server should reply
over the same sub�ow since the server has no information about the
client’s wireless conditions.

� MultiMob minimizes cellular usage and unused sub�ows
(§3.3.2). Like iOS [CSP17], MultiMob prefers to use the Wi-Fi inter-
face over the cellular one. MultiMob replaces the make-before-break

strategy of the Multipath TCP implementation in the Linux kernel by
break-before-make. With this strategy, the cellular network is only used
after a failure of the Wi-Fi one.

45
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Figure 3.1: The RRC state transitions in LTE network [Hua+12].

� MultiMob limits handover delays (§3.3.3). The break-before-make

strategy minimizes energy consumption at the expense of increased
handover delays. MultiMob reduces those delays by extending the
Multipath TCP protocol to carry data during the sub�ow handshake.

We evaluate MultiMob in both emulated Mininet environment (§3.4) and
real wireless networks using Android devices (§3.5). We �nally qualify the
applicability of MultiMob (§3.6) and conclude this Chapter (§3.7).

3.1 Motivations and Related Works

Before tuning Multipath TCP, it is important to understand how smartphones
interact with the wireless networks. We �rst provide some background about
the cellular power characteristics (§3.1.1). We then describe our arguments
calling for an adaptation of Multipath TCP for the smartphone use case
(§3.1.2).

3.1.1 LTE State Machine

The Long Term Evolution (LTE), also known as 4G, is the most advanced de-
ployed cellular technology. It has three main design goals: high throughput,
low latency and limited power consumption. To achieve this last objective,
the LTE has di�erent operation modes. We describe here the basic knowledge
needed for the remaining of this Chapter. Here, we consider the model pro-
posed by Huang et al. [Hua+12] and refer the interested reader to that paper
for further detail.

The Radio Resource Control (RRC) de�nes the power state of the cellular
interface. Figure 3.1 illustrates the two RRC states of LTE: RRC_CONNECTED
and RRC_IDLE. When the cellular interface is on but unused for a while, the
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Power (mW) Duration (ms)
Screen o� (base) 11.4 N/A
Screen 100% on 847.2 N/A
LTE promotion 1210.7 260.1

LTE RRC_CONNECTED Short DRX 1680.2 1 (period: 20)
LTE RRC_CONNECTED Long DRX 1680.1 1 (period: 40)
LTE RRC_CONNECTED tail base 1060 11576

LTE RRC_IDLE DRX 594.3 43.2 (period: 1280)
Wi-Fi promotion 124.4 79.1
Wi-Fi tail base 119.3 238.1

Wi-Fi beacon (idle) 77.2 7.6 (period: 308.2)

Table 3.1: LTE and Wi-Fi power model [Hua+12].

LTE is in the RRC_IDLE mode. The antenna is then in Discontinuous Recep-
tion (DRX ). This mechanism enables the interface to periodically wake up for
short instants — 43 ms in RRC_IDLE— while staying asleep for longer periods
of time — 1.28 s in this case. This limits the power consumption compared to
a continuously turned on antenna. Once the cellular interface needs to send
or receive a packet, the antenna promotes from the RRC_IDLE state to the
RRC_CONNECTED one. This promotion typically lasts for a few hundreds of
milliseconds — 260 ms in our model — before the interface becomes ready
for transmission. Therefore, if the smartphone wants to send a packet while
being initially in RRC_IDLE state, there will be a delay between the request
to send and the actual packet transmission by the cellular antenna. Upon pro-
motion completion, the LTE interface is in Continuous Reception mode where
packets can be sent and received. The antenna stays in this mode until no data
has been sent or received for 100 ms. The LTE then enters in Discontinuous
Reception. Two DRX sub-modes are present in the RRC_CONNECTED state.
Both monitor the LTE network for a short time — 1 ms — and then put the
antenna in a lower power mode for a longer period — 20 ms for Short DRX ,
40 ms for Long DRX . On one hand, if data needs to be transmitted or received
while being in one of the DRX modes, the antenna directly goes to the Contin-
uous Reception mode. On the other hand, if the antenna observes no network
activity in RRC_CONNECTED for 11576 ms, it switches to the RRC_IDLE state.

Each LTE mode has di�erent power consumption as shown in Table 3.1.
The cellular interface consumes more energy when interacting with the net-
work than when idle. Yet, the RRC_CONNECTED tail base, i.e., the "sleep"
state of DRX , has a non-negligible energy impact. It consumes more than a
smartphone screen with maximum luminosity. Also, an idle device stays for
more than 11 seconds in the RRC_CONNECTED state. For the transmission of
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a single packet, starting from the idle mode, the energy consumption from
the interface promotion to the end of the tail for LTE and Wi-Fi are respec-
tively 12.8 J (for 11.836 s) and 0.04 J (during 0.317 s). The energy consumed
per bit ratio can be very high for LTE, especially when only a few packets are
sent. The attentive reader will notice that Table 3.1 does not characterize the
power consumption of the Continuous Reception mode. It actually depends
on several factors, such as the throughput of the network and the fraction of
uplink tra�c. As a lower bound, we assume that the Continuous Reception
mode has the same power consumption as the one of the On mode of the
RRC_CONNECTED Short DRX , i.e., 1680 mW.

3.1.2 Multipath TCP on Smartphones

We outline in this section some lessons we learned based on discussions with
network operators, measurements with friendly users and previous works.

Smartphone applications rarely perform bulk transfers. Multipath
TCP was designed to aggregate bandwidth and many articles evaluate
whether it reaches that objective [Rai+11a; Che+13; PKB13; Paa+14; Den+14].
However, both previous works [Fal+10] and our measurements (§2.2) show
that smartphones rarely exchange very large �les. Most of the connections
carry a few KB. We also notice that many connections experience large idle
times. To illustrate this, we performed passive measurements by following
the methodology described in Section 2.2.1, except that we collect the network
tra�c on the client to get the smartphone’s viewpoint. Figure 3.2 shows the
maximum idle time observed by each of the 183 383 collected Multipath TCP
connections carrying data. Most of them experience idle times of less than
one second. Nonetheless, 15.8% of the connections face more than 10 seconds
of idle time between two consecutive data packets. From TCP’s point of view,
an idle connection is not a problem. Yet, from a battery consumption view-
point, an idle connection can consume energy if the radio needs to remain
active to support it.

Many sub�ows do not carry data. The full-mesh path manager im-
mediately creates sub�ows on all active interfaces. Our measurements in
Section 2.2.3 show that 76% (resp. 86%) of the �rst additional sub�ows are
established within the �rst 100 ms (resp. 1 s) of the connection. Unfortu-
nately, most of these sub�ows are useless. Around 75% of the Multipath TCP
connections do not send any data over the additional sub�ows, i.e., all data
is exchanged over the initial path. With the default packet scheduler, if
the �rst sub�ow exhibits a lower round-trip-time than the additional ones,
Multipath TCP will only use the initial one. Previous works also indicate that
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Figure 3.2: On smartphones, it is frequent to observe connections experienc-
ing idle times of tens of seconds.

Multipath TCP can even perform worse than TCP with short �ows in hetero-
geneous networks [Han+15; Nik+16].

Mismatchwith user expectations. As previously emphasized, most users
favor Wi-Fi over cellular for both monetary and power consumption rea-
sons [Hua+12; Nik+15; CSP17]. They expect that their smartphone will use
Wi-Fi whenever it works well and will switch to cellular only if it brings
some bene�ts. However, the packet scheduling decision is taken by the
sender of the packet. In practice, our measurements (§2.2.2) and previous
works [Fal+10] indicate that smartphones mainly receive data, meaning that
most of the scheduling decisions are taken by remote servers. The default
packet scheduler considers the path with the lowest estimated round-trip-
time as the best one to send the next data. With the decreasing latency of the
LTE connectivity and network operators providing Wi-Fi access, the cellular
path can sometimes exhibit a lower latency than the Wi-Fi one [SB12]. The
server scheduling decisions can therefore go against the user expectations.

Backup sub�ows consume too much energy. According to the Multi-
path TCP speci�cation [rfc6824], one way to minimize the utilization of the
LTE connectivity is to always establish the cellular path as a backup sub-
�ow [Lim+14a]. While being useful in mobility scenarios, there is no point
in creating backup sub�ows if the primary one does not face any connec-
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tivity issue. Indeed, energy consumption is a major concern for mobile de-
vices [BBV09; CH10; CSP17], and many works explore various solutions to
limit the battery usage on smartphones [Ra+10; Che+15]. However, as sug-
gested by Section 3.1.1 and previous works [Den+14], opening a sub�ow on
the cellular interface without using it is expensive from an energy consump-
tion viewpoint, the Wi-Fi interface consuming at least �ve times less than
the LTE one [Nik+15]. In the remaining of this Chapter, we consider the LTE
model proposed by Huang et al. [Hua+12] described in Section 3.1.1 to esti-
mate the cellular power consumption. We expect similar results with other
models [Nik+15]. Based on our model, we identify user-initiated connections
in Multipath TCP Backup mode that create cellular sub�ows without sending
data on them. In our passive measurements, we observe 12 988 connections
that created 628 RRC_CONNECTED periods on cellular and consumed more
than 4670 J just because of the Syn sent. Our LTE model [Hua+12] indicates
that for a smartphone, opening a single cellular sub�ow is equivalent, from
a energy consumption viewpoint, to lighting up the screen at 100% during
the RRC_CONNECTED period, which lasts more than 11 s. Preventively open-
ing the cellular sub�ow as previously proposed [Paa+12] is therefore very
expensive from the battery perspective. Despite this, both Apple’s Siri and
the interactive mode of iOS Multipath TCP still create cellular sub�ows at the
beginning of the connections.

Related works. Pluntke et al. [PEK11] is the �rst work addressing the en-
ergy concern with Multipath TCP by proposing a packet scheduler aiming to
minimize the power consumption. It does not take into account mobile situa-
tions. Peng et al. [Pen+14] introduce various algorithms to optimize both en-
ergy consumption and throughput for �le transfer and video streaming. How-
ever, they only rely on simulations. Lim et al. [Lim+14a] propose eMPTCP,
an energy-e�cient Multipath TCP version for mobile devices. In practice, it
proposes a path manager delaying the establishment of the cellular sub�ow
until a given threshold of transferred bytes is crossed. In addition, it also ships
a packet scheduler that selects the cellular path only if the Wi-Fi throughput
is not su�cient. While working with bulk transfers, interactive applications
can transmit very few bytes and do not require large bandwidth. Furthermore,
eMPTCP does not consider device mobility. Sinky et al. [SHG16] propose to
rely on the signal strength of the Wi-Fi network to tune the congestion win-
dow to trigger seamless Wi-Fi handover with bulk transfer. However, it was
only tested under NS3-DCE environment and not with actual devices. Han
et al. [Han+16] propose a packet scheduler that stops using the cellular net-
work when the Wi-Fi is su�cient to support delay-tolerant tra�c. However,
interactive applications are typically delay-sensitive and the solution does
not discuss the unused cellular sub�ows. Frömmgen et al. [Fro+16] suggest
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a packet scheduler duplicating data packets on all available network paths.
While it ensures low-latency delivery, such strategy does neither take energy
consumption into account nor consider user policy who prefers Wi-Fi over
cellular networks.

3.2 Mimicking Apple’s Siri Tra�c

Voice-activated applications will likely play a growing role on smartphones in
coming years [Hem16; Kni16]. One of them is Apple’s Siri assistant. Despite
being the �rst application using Multipath TCP at large scale [BS16], little is
known about the Siri tra�c. Asse� et al. [Ass+16] analyze the reaction of Siri
to losses and jitter but do not provide any model of the tra�c produced by
this application.

Siri interacts with a few well-known servers. To characterize its tra�c,
we captured all the packets exchanged with these servers from a university
campus network serving several thousands of wireless devices during a week.
We focus our analysis on the 18 166 Multipath TCP connections that did not
perform any handover to a cellular network since we only captured packets
over the Wi-Fi one. This can be assessed with TCP’s sequence number and
Multipath TCP’s Data Sequence Number.

Siri runs over HTTPS, probably to ensure privacy and also to reduce the
risk of middlebox interference. The client sends requests that are immediately
answered by the server. Figure 3.3 presents some statistics extracted from the
Siri trace. 60% of the Siri connections last between 5 and 10 seconds. This
time is likely correlated to the time needed to ask a question to the assistant
and getting back the reply. Notice that 15% of the connections last more than
20 seconds, perhaps because of successive user interactions with the Siri ap-
plication. Figure 3.3b shows that 77% of the data packets sent by Siri clients
have a size between 50 and 500 bytes. Only 7% of client-generated packets
are larger than 1000 bytes. Looking at the connection behavior, several small
packets are sent within a few microseconds to form bursts of a few thousands
of bytes. This tra�c pattern is probably related to the voice sampling process.
In comparison, MSS-sized packets represent only 20% of the packets sent by
the server. The large fraction of short packets also suggests that the Siri appli-
cation disables the Nagle algorithm to avoid delaying packet transmissions.

To evaluate the interplays between a simple interactive application and
Multipath TCP, we use a simpli�ed model of the observed Siri behavior. Our
model is a client-oriented process with three states as shown in Figure 3.4.
The client maintains the sent counter. In the Sending burst state, the client
sends a burst of 2500 bytes using packets carrying between 50 and 500 bytes.
Then sent is incremented and the client waits in the Inter-burst wait state
before going back to Sending burst . Once sent reaches sent_thres, the
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Figure 3.3: Analysis of the Siri traces collected on the campusWi-Fi network.

Figure 3.4: Client-side state machine of a simple voice activated application.
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Figure 3.5: MultiMob high-level architecture.

client switches to the Inter-request wait state representing the delay between
successive user interactions. We empirically set sent_thres to 9, and the
durations of the Inter-burst wait and Inter-user interaction wait states are 1/3 s
and 5 s, respectively. We model the server as a process returning a 750 bytes
response after each burst. Our simple client application then collects the delay
between each request and its associated server response. Both our client and
server applications disable both Nagle’s and Cork’s algorithms. Unless explic-
itly stated, all the measurements presented in the following of this Chapter
are based on this tra�c pattern.

3.3 Tuning Multipath TCP

We now explain how MultiMob improves the Linux Multipath TCP imple-
mentation for the smartphone use case. Figure 3.5 illustrates the high-level
architecture of MultiMob. We �rst add to the server’s packet scheduler a
heuristic that enables it to infer the wireless conditions a�ecting the client
sub�ows (§3.3.1). Second, we adopt a break-before-make path management
by implementing an oracle that monitors the network and opens cellular sub-
�ows only when needed (§3.3.2). Third, we extend the Multipath TCP pro-
tocol so that the client can retransmit data inside the Syn used to create an
additional sub�ow during a network handover (§3.3.3).

3.3.1 Towards Global Packet Scheduling

When a Multipath TCP connection has 2 or more sub�ows, each of the com-
municating hosts independently selects its best sub�ow to transmit each data
packet. The Linux implementation relies on the default packet sched-
uler selecting the available sub�ow having the lowest estimated round-
trip-time (RTT). This packet scheduler works well in a variety of environ-
ments [Paa+14]. However, selecting sub�ows only on the basis of their es-
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Algorithm 1 isNewerThan(B 5 , >B 5 )
Input: B 5 a sub�ow, >B 5 another sub�ow or None
Output: Return true if sf

1: if >B 5 is None then return true
2: if B 5 has newer original reception than >B 5 then
3: return true ⊲ See text for de�nition
4: return false

Algorithm 2 MultiMob’s server-side packet scheduler tracks the sub�ow
that was most recently used by the client.
Output: 14BCB 5 next sub�ow to use

1: 14BCB 5 ←None
2: for B 5 in working sub�ows where data was not sent yet do
3: if isNewerThan(B 5 , 14BCB 5 ) then ⊲ See Algorithm 1
4: if B 5 is available then
5: 14BCB 5 ← B 5

6: return 14BCB 5

timated RTT is not always the best solution. Consider a smartphone user
that moves while using the Siri application. It regularly sends small bursts
of data and the server returns responses. In an environment where the Wi-Fi
network features a lower latency than the cellular network, the packet sched-
uler will prefer the Wi-Fi path. As the generated tra�c is low, its congestion
window will remain open as long as the Wi-Fi network behaves well. If the
smartphone detects that the Wi-Fi starts being lossy, it will shift its tra�c
over the cellular sub�ow. Nevertheless, the server is not aware of the smart-
phone’s motion and its packet scheduler still sends responses over the Wi-Fi
sub�ow because it exhibits the lowest latency. The server will only switch
to the cellular sub�ow after the expiration of its retransmission timer, which
potentially wastes from hundreds of milliseconds to several seconds.

To solve this problem, MultiMob includes a server-side packet scheduler
that uses the most recent data sent by the smartphone as a hint to select the
most suitable sub�ow. On the smartphone, MultiMob uses the default
packet scheduler while setting the cellular interface as a backup one. This
enables the smartphone to favor the Wi-Fi path and only use the (backup) cel-
lular sub�ow when the Wi-Fi one experiences retransmissions. Algorithm 2
describes the operations of the server-side MultiMob packet scheduler. It
maintains for each sub�ow the timestamp of the last original packet received
over it. A packet is considered to be original if it contains new data (based
on its Multipath TCP Data Sequence Number) or if it successfully concludes a
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sub�ow establishment. Similarly, an acknowledgment is viewed as original if
its Data ACK advances the lower edge of the sending window. TheMultiMob
scheduler removes from consideration the potentially failed sub�ows and the
ones where this data has already been transmitted. Then it iterates over all
remaining sub�ows to identify the one having the most recent original re-
ception. If the congestion window of this sub�ow is not full, the scheduler
selects it.

Thanks to the MultiMob packet scheduler, the server can quickly detect
the most suitable sub�ow while taking into account sub�ow backup prefer-
ences. For an interactive application like Siri that sends small requests, the
tra�c will not completely �ll the congestion window and the server will al-
ways reply on the sub�ow that was last used by the client.

3.3.2 Break-Before-Make Path Management

In the Linux kernel implementation, when a Multipath TCP connection starts,
the full-mesh path manager initiates the exchange over the primary net-
work interface and then additional sub�ows over the other ones. If we con�g-
ure the cellular interface as a backup one, data packets will only be sent over
that network once the Wi-Fi network fails. This make-before-break approach
minimizes the amount of data sent over the cellular interface. Unfortunately,
this strategy does not minimize energy consumption. Between an exchange
carrying a few KB of payload and another one containing only Syn and Fin
packets, there is little di�erence from a power consumption viewpoint. Re-
call that in Section 3.1.2, we highlighted a set of Multipath TCP connections
keeping the cellular interface in the power-hungry RRC_CONNECTED mode
by establishing sub�ows without using them.

MultiMob opts for a break-before-make approach and creates sub�ows
over the backup interfaces after having detected failures on the primary ones.
With break-before-make, the key issue from a performance viewpoint be-
comes how quickly can the smartphone detect that a wireless interface works
badly in order to establish backup sub�ows. MultiMob includes two mecha-
nisms signaling when the backup interface must be used. First, the client em-
beds an oracle that monitors the connections’ state to create sub�ows when it
experiences sending issues (§3.3.2.1). Second, MultiMob extends the Multi-
path TCP protocol to inform the peer about additional data to be received
(§3.3.2.2).

3.3.2.1 Monitoring Connection Status

When sending packets over a wireless network, the smartphone may observe
delivery failures. In particular, we can assume that if a network interface ex-
periences connectivity issues, sub�ows using it will experience retransmis-
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IPsrc IPdst Network interface TCP sub�ows TCP stats
1.2.3.4 4.5.6.7 Wi-Fi [tp1, tp3] sloss 2%,. . .
2.3.4.5 5.6.7.8 Cellular [tp2] sloss 0%,. . .
2.3.4.5 4.5.6.7 Cellular [tp4, tp5] sloss 15%,. . .

Table 3.2: Oracle monitoring table example.

sions and losses, even if they belong to di�erent connections. MultiMob
relies on this assumption to spot network connectivity problems through a
Multipath TCP oracle implemented as a kernel module. To track those events,
our oracle maintains a monitoring table of netpaths as shown in Table 3.2. A
netpath is a tuple (IPsrc, IPdst, network interface). By aggregating this infor-
mation on a per network �ow basis we reduce the size of the monitoring table
compared to a per transport �ow one. Such structure is well adapted to real
deployments using proxies [KT; Tes19] where all Multipath TCP connections
are terminated on a proxy.

When a new sub�ow is created, the oracle checks if its corresponding
netpaths is already in the table. If so, the sub�ow is added to the list of TCP
sub�ows matching this entry. Otherwise, a new entry is created. When a
sub�ow stops, it is removed from the sub�ow list it belongs to. If a netpath
does not have any associated sub�ow anymore, its entry is removed from the
monitoring table.

Our oracle computes every )B seconds statistics based on the sub�ows
associated to a given netpath. Our implementation collects three1 metrics:
smoothed loss rate (sloss), smoothed retransmission rate (sretrans) and
maximum RTO. Those statistics are computed based on the per-sub�ow state
maintained by the Linux kernel. It also takes into account Tail Loss Probes
(TLP) [Duk+13]. When the TLP timer �res, we enter Forward Acknowledg-
ment mode and the packet at the head of the write queue is marked as lost.

The oracle computes the smoothed rates — sloss and sretrans — by
using Volume-weighted Exponential Moving Averages (V-EMA), similar to
what Android uses to estimate the loss rate of Wi-Fi beacons. These V-EMAs
reduce to the three following equations

E0;8+1 =
?A>38+1
E>;8+1

(3.1)

1The perceptive reader will notice that we collect information on an interface basis without
considering link-layer metrics such as Wi-Fi beacons. Actually, we wanted to compile such
information but we faced practical issues. Nexus 5 smartphones use a Broadcom Wi-Fi card
and a Qualcomm GSM one both requiring proprietary drivers and we did not found a way
to collect their metrics in the kernel. As these data are made available to the Android OS,
it should be possible to make them available for the Linux kernel too. Yet, we leave this for
future work.
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Parameter Meaning

slossthres
Threshold value of sloss that triggers

backup sub�ow creations on the netpath

sretransthres
Threshold value of sretrans that triggers

backup sub�ow creations on the netpath
)B Period between each V-EMA computation
U Sensitivity parameter of the V-EMA equations

Table 3.3: The di�erent parameters of the oracle.

?A>38+1 = U (E0;=4F · E>;=4F) + (1 − U)?A>38 (3.2)

E>;8+1 = U · E>;=4F + (1 − U)E>;8 (3.3)

where E0;=4F is the new value of the studied metric (e.g., number of lost sent
packets during the last)B period), E>;=4F is the volume of this new value (e.g.,
total number of packets sent during the last )B period), ?A>38 is the product
at iteration 8 , E>;8 the volume at iteration 8 and E0;8 the value of the V-EMA
at iteration 8 . Note that ?A>30 = E>;0 = E0;0 = 0 and no value is computed if
E>;=4F = 0. U ∈ [0, 1] is a sensitivity parameter experimentally set to 0.5, as
Android.

The MultiMob oracle sets thresholds to detect under-performing net-
paths. Once a threshold is crossed, MultiMob triggers the creation of backup
sub�ows for all connections associated to the under-performing netpath. It
also marks the sub�ows associated with that netpath as potentially failed.
Since the oracle is part of the Linux kernel, it can query the state of all es-
tablished Multipath TCP connections. It can then prompt backup sub�ows
creation once any connectivity issue is detected. All the oracle parameters
are summarized in Table 3.3.

3.3.2.2 Signaling Idle Connections

As it is based on indications of sending issues, our Multipath TCP oracle alone
is not su�cient to trigger the backup interface usage under all possible tra�c
patterns. In particular, consider a smartphone-initiated download. During
such transfer, the server pushes data towards the client. The smartphone only
sends Acks to the server. However, TCP does not ensure the reliable delivery
of the Ack packets once they do not contain any payload. If the primary
sub�ow fails, the smartphone will stop receiving data, but it is di�cult for
the Multipath TCP stack to distinguish between losses in the network and
the server application becoming idle for any reason, especially when no other
network tra�c is running concurrently.
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Figure 3.6: The modi�ed Multipath TCP Data Sequence Signal option.

A �rst naive approach would be to let the client regularly probe the server
with keep-alives. Such active probing would consume energy and could de-
grade wireless performance [Hu+15]. With HTTP, another solution would be
that a Multipath TCP aware client uses the Content-Length header sent by
the server to detect idle times in the middle of a transfer to create an additional
sub�ow, e.g., via the enhanced socket API [HB16].

To let all applications bene�t from such information without modifying
them, MultiMob extends Multipath TCP so that the server can indicate to
the client that a data transfer is not �nished yet. We de�ne two signals. The
�rst one is sent in the Multipath TCP Data Sequence Signal (DSS) option. We
take one of the unused bit in the reserved �eld of the DSS and call it the Idle

bit, as shown in Figure 3.6. A host sets the Idle bit when it sends a data packet
that empties its send bu�er. Otherwise, the Idle bit is reset. Since this bit is
included in the DSS option, it is sent reliably to the peer. Then, a receiver
does not expect a connection to be idle unless it has received a DSS option
with the Idle bit set. Notice that the Multipath TCP’s Idle bit di�ers from the
TCP’s Push one used to signal that the carried data must be promptly deliv-
ered to the receiver. Although the Push bit is typically set when the carried
data empties the sending bu�er (like with SSH), our experiments revealed that
it is often set in many MSS-sized packets during bulk exchanges. The second
signal indicates after how much idle time the receiving host should trigger the
creation of backup sub�ows. For this, we rely on the Experimental Multipath
TCP option [rfc6824b] that carries the current value of the sender’s RTO. The
client sends an request RTO option from time to time and the server returns
the same option containing its current retransmission timer RTOserver. The
receiving host uses that value to set its idle timer at max(500 ms, RTOserver).
This timer is restarted each time it receives a data packet having its Idle bit re-
set, and stopped if the last data packet had the Idle bit set. If the timer expires,
the stack informs the oracle that triggers the creation of backup sub�ows.
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3.3.3 Immediate Reinjections

The break-before-make approach described in the previous section is bene�-
cial from an energy viewpoint. However, a mobile typically detects the fail-
ure of a wireless interface by the expiration of its retransmission timer or
using Tail Loss Probe (TLP). This unacknowledged data can only be retrans-
mitted over another interface once a sub�ow has been established over this
network. Such establishment requires a four-way handshake, as described in
Section 1.3.2. While this ensures complete authentication of both connection
participants, this handshake unfortunately delays the reinjection of the lost
data, since the client needs to wait for two network round-trip-times on the
backup interface.

To reduce this delay, we extend Multipath TCP to support the transmis-
sion of data inside Syn packets and immediately after Syn/Ack ones. For this,
we de�ne two new Multipath TCP options: Fast Join In and Fast Join Out.
These are di�erent from TCP Fast Open [Rad+11; rfc7413] because a new
sub�ow is established between hosts that already share state for one Multi-
path TCP connection.

A naive approach would be to simply place data inside the Syn and re-
quire the server to accept it immediately. Unfortunately, this solution would
induce obvious security problems because this Syn is not authenticated. With
Multipath TCP, the Syn initiating an additional sub�ow carries the Mp Join
option containing a random number used to authenticate the server in ad-
dition to the 32-bit token that identi�es the connection. This token alone is
not su�cient to authenticate the client because a passive listener might have
observed it during the establishment of a previous sub�ow for the same con-
nection [rfc6181], e.g., on an open Wi-Fi network.

The Fast Join Out option described in Figure 3.7 addresses this issue and
allows the client to carry data in the initial Syn without causing any security
issue. Note that as there is only 40 bytes for TCP options and current popu-
lar ones found in Syn packets are Maximum Segment Size (4 bytes), Selective
Ack (2 bytes), Timestamps (10 bytes) and Window Scale (3 bytes + 1 padding
byte), the Fast Join Out option must be engineered to �t into 20 bytes. As
highlighted by Figure 3.8, the Fast Join Out option in the initial Syn is 20-
byte long and contains three important �elds. First, the token TokenS iden-
ti�es the Multipath TCP connection as in the Mp Join option. Second, the
Data Sequence Number (DSN) indicates the Multipath TCP sequence number
of the data contained in the Syn payload. The associated DSNC must be the
�rst unacknowledged data byte. Third, the 32-bit truncated HMAC (HMACC)
authenticates the client. Its computation is the following

HMACC = HMACKS || KC
(TokenS || DSNC) (3.4)
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Figure 3.7: With Fast Join Out, the client can directly send data inside the
Syn packet.
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Figure 3.8: The Fast Join Out option in the initial Syn.
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Figure 3.9: The Fast Join Out option in the Syn/Ack.
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where KC and KS are respectively the connection keys of the client and server
that were exchanged during the Multipath TCP connection handshake. To
prevent replay attacks, our implementation accepts only one Syn containing
the Fast Join Out option for a given DSNC. To be eligible, the DSNC present
in the Fast Join Out option should match the one expected by the server.
However, Acks packets might not have reached the client. To cope with this
situation, we de�ne EDSN as the next Expected DSN by the server and DSNC

as the DSN contained in the Fast Join Out option of the Syn packet. The
server accepts the establishment of the sub�ow if the following inequality
holds

EDSN - wndrcv ≤ DSNC ≤ EDSN (3.5)

where wndrcv is the receive window of the server. Notice that the Fast Join
Out option also carries both the Data-Level Length and Checksum �elds.
Similar to the Multipath TCP DSS option, this information enables the re-
ceiver to detect middlebox interference a�ecting the data. The B bit indicates
whether the client wants to consider this new sub�ow as a backup one.

To authenticate the server, it computes the following HMACS

HMACS = HMACKC || KS
(DSNC || Data ACKS) (3.6)

where DSNC is the Data Sequence Number contained in the Syn packet and
Data ACKS is the value of the acknowledged Multipath TCP sequence num-
ber, possibly updated by the data received. The server then sends a Syn/Ack
packet with the Fast Join Out option carrying both the computed HMACS

and the updated Data ACKS, as described in Figure 3.9. Once it sent the
Syn/Ack packet, the server can start sending data. At the reception of the
Syn/Ack packet, the client �rst checks that the Data ACKS value is in the
expected range, i.e.,

DSNC + Data-Level LengthC ≤ Data ACKS ≤ LUSBC + 1 (3.7)

where Data-Level LengthC is the Data-Level Length value sent in the Syn
packet and LSUBC is the largest unacknowledged sent byte by the client over
the Multipath TCP connection. If the inequality holds, the client can check
the computed HMACB using Equation 3.6. If it matches, it replies with an
Ack packet and the additional sub�ow is established.

The Fast Join Out option is useful when the mobile client sends data to
a remote host. However, there are situations where only the server pushes
data towards the client. A �rst typical example are streaming applications
where the server pushes data at a regular rate. Another example is a long
client-initiated �le download. When the oracle running on the mobile client
detects losses or the absence of data, it may want to quickly establish a sub-
�ow without having data to send to the remote host. Such path creation can
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Figure 3.10: With Fast Join In, the client can recover a data transfer in only
one round-trip-time instead of two.
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Figure 3.11: The Fast Join In option in the initial Syn.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Kind = 30 Length = 16 ST = 9 Rsv B Address ID

Sender’s Truncated

HMAC

Sender’s Random Number

Figure 3.12: The Fast Join In option in the Syn/Ack.
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then enable the server to continue its data transfer. This case is covered by the
Fast Join In option whose operations are described in Figure 3.10. Actually,
this option is very similar to the Fast Join Out one. Instead of computing
HMACC with the DSN, Fast Join In uses the current client-side Data ACK

value.
HMACC = HMACKS || KC

(TokenS || Data ACKC) (3.8)

The client then sends this value along with the associated Data ACKC in the
Fast Join In option in the Syn packet as shown in Figure 3.11. The Syn packet
is only considered if the carried Data ACKC �ts in the expected server range,
i.e.,

SUSDS ≤ Data ACKC ≤ LUSDS + 1 (3.9)

where SUSDS and LUSDS are respectively the smallest and the largest unac-
knowledged sent bytes by the server. If the inequality is true, the receiving
host can verify the HMACA computation using Equation 3.8. In order to pre-
vent replaying attacks, the server only accepts a given Data ACKC value once
for a given connection. Note that compared to the Fast Join Out one, the
Fast Join In option in the Syn packet does not carry Data-Level Length nor
Checksum �elds, as there is no payload in such packets. This leaves more
space to support 8-byte long HMAC.

The main di�erence between Fast Join Out and Fast Join In resides
in the Syn/Ack packet. While the Data ACKS provided in the Fast Join Out
Syn/Ack can possibly acknowledges previously sent client data, the next DSN
to be sent by the server is necessarily Data ACKC. To avoid deterministic
value, the server instead generates a random value RB as in classical Mp Join
and communicates it to the client as shown in Figure 3.12. Therefore, the
HMACS is computed as follows.

HMACS = HMACKC || KS
(Data ACKC || RS) (3.10)

Once the Syn/Ack is sent, the server can immediately transfer data over this
new sub�ow. At the other side, once the Syn/Ack has been received and the
HMACS veri�ed, the client considers the sub�ow as established. With Fast
Join In, a download-only data transfer can be resumed within one round-
trip-time, instead of two with normal Mp Join.

3.4 Emulation Results

In this Section, we evaluate each of the MultiMob components in Mininet
environment [Han+12]. We consider a scenario with two disjoint paths be-
tween the client and the server as illustrated in Figure 3.13. Our emulations
use Multipath TCP v0.91 in the Linux kernel 4.1. Unless explicitly stated,
the primary path exhibits a round-trip-time of 15 ms and the additional one
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Figure 3.13: The studied network topology in our emulations.
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Figure 3.14: Maximum delay to return an answer to simpli�ed interactive
requests. Each scenario ran 25 times. 100% losses generated by a netem com-
mand begin to occur on the primary path when the client is in Inter-request
wait state, i.e., between request bursts.

25 ms. Both paths have a bandwidth of 10 Mbps and the router queue sizes
are equal to the bandwidth-delay product. When the simpli�ed interactive
tra�c is tested, it runs for 20 s.

We �rst evaluate the impact of the MultiMob server-side scheduler
(§3.4.1). We then show that the packet scheduler alone is not su�cient and
discuss how the operations of the oracle are a�ected by the threshold val-
ues (§3.4.2) and the periodicity of the V-EMAs computations (§3.4.3). Next,
we demonstrate the bene�ts of the Idle bit (§3.4.4) and �nally assess the time
saved by using Fast Join Out compared to the normal Mp Join (§3.4.5).

3.4.1 MultiMob Server-Side Packet Scheduler

In this simple scenario, the client opens the connection over the primary path
and then creates a backup sub�ow over the additional one. We test di�erent
packet schedulers on the server. Figure 3.14 shows that when there is no loss,
both the default and the MultiMob server-side packet schedulers exhibit
quite similar performances. Notice that since the Linux sysctl tcp_slow_-
start_after_idle is set to 1, a request can be answered within two RTTs
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Figure 3.15: Maximum delay to return an answer to simpli�ed interactive
requests. Each scenario ran 25 times. 25% losses generated by a netem com-
mand begin to occur on the primary path when the client is in Inter-request
wait state, i.e., between request bursts.

if its sending phase generates more packets than the initial congestion win-
dow (10 packets). However, when the primary sub�ow fails between two
requests, the MultiMob packet scheduler reduces the maximal experienced
delay by a factor of two compared to the default one. When the client sends
its �rst request after a loss, it experiences a RTO before reinjecting the packets
on the additional path. Nonetheless, the server is not aware that the primary
sub�ow failed. With the default packet scheduler it sends the reply on the
primary lossy path. It therefore also experiences a RTO before reinjecting the
response on the additional sub�ow. Since the MultiMob server-side sched-
uler follows the last client decision, it does not experience RTO and hence
reduces the delay perceived by the application.

Notice that while the MultiMob scheduler works well when the primary
path completely fails, it is not su�cient to handle all loss patterns. Figure 3.15
illustrates that when the primary path exhibits 25% random losses, the per-
formance of both the default and the MultiMob packet schedulers are less
predictable. At client side, the default packet scheduler still prefers the
lowest latency sub�ow, even if lossy. The path selected by the server-side
MultiMob packet scheduler is function of the last received packet. While
the use of the oracle still lets the application experience delays of several
hundreds of milliseconds, it helps to decrease their variability.

3.4.2 In�uence of the Threshold Values of the Oracle

One of the foundations of our oracle is to consider currently active connec-
tions as connectivity probes. Continuous and bulk transfers typically have a
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(a) Maximal delay to answer a simpli�ed interactive request.
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(b) Estimated mean power consumption of the additional path, assuming it is a cellu-
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Figure 3.16: Simpli�ed interactive requests with light continuous back-
ground tra�c. The second interface is set as backup. If any, the loss event
begins when the client is in Inter-request wait state, i.e., between request
bursts. The oracle periodicity)B is 100 ms. Markers show medians and error
bars 25th and 75th percentiles over 25 runs.
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better network view than on/o� and idle ones. When they su�er from losses,
such transfers make the oracle trigger the creation of backup sub�ows for
all related connections, even idle ones. This enables limiting the number of
connections experiencing RTOs before using the backup path.

To assess this, we set up a light background request/response �ow (12
KB/s) and generate simpli�ed interactive request tra�c. To observe how the
threshold of V-EMA values a�ects the operations of the oracle, we focus here
on the smoothed loss rate one (slossthres). Figure 3.16a shows the maxi-
mum perceived application latency to answer a request and Figure 3.16b es-
timates the energy consumption of the additional backup path, considering
that it is an always-on cellular interface. Without any loss, we observe simi-
lar request delays between all con�gurations. Notice that when the oracle is
present, it prevents the creation of the backup path. This decreases the esti-
mated power consumption compared to the default full-mesh behavior di-
rectly creating the backup sub�ow after the connection establishment. When
losses occur on the primary path, our oracle detects that the background traf-
�c experiences connectivity issues, and therefore creates backup sub�ows for
all connections using that netpath. Then, the simulated interactive client can
directly use the additional path and does not experience any RTO. Since the
server relies on the MultiMob packet scheduler, it replies on the sub�ow
used for the last request. On the contrary, if there is no oracle, the interactive
connection client must experience a RTO before using the additional path,
even if the additional sub�ow is always established at the beginning of the
connection. Furthermore, when the link is very �appy (20 to 30% of random
losses), without the oracle the client tries to reuse the lossy primary path once
some packets manage to use it. Our oracle prevents this behavior by consid-
ering the primary path as potentially failed, discouraging the smartphone’s
packet scheduler to reuse the primary path.

When using the oracle, the creation of additional sub�ows depends on
the network conditions and the slossthres parameter. When set to a low
value like 10%, the interactive tra�c client experiences low delays but the
backup path is quickly created, as a few losses su�ce. With higher threshold
values like 40%, the additional path remains closed in the median case when
the primary path experiences 10% of random losses. However, the interactive
tra�c can experience high latencies, possibly larger than without the oracle,
as it cannot shift the tra�c on the non-existent backup path. Based on those
emulation results, we experimentally set slossthres to 25% for real mobile
devices as a reasonable trade-o� between low-latency and low additional path
use. The sretransthres is set to 50% and the maximum RTO threshold is
empirically set to 1.5 s to avoid using a sub�ow that might hurt interactivity
because of the lack of retransmission responsiveness.
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Figure 3.17: Varying )B with simpli�ed interactive tra�c only, with
slossthres and sretransthres respectively set to 25% and 50%. Markers show
medians and error bars 25th and 75th percentiles over 20 runs.

3.4.3 In�uence of Oracle Periodicity

As suggested by the equations of the V-EMA, the reactivity of the oracle also
depends on the smoothed computation periodicity )B . Indeed, as Figure 3.17
shows, the lower )B , the quicker the reaction of the oracle to losses and the
lower the variability of the detection. A value of 1 ms allows a very fast re-
action, but the oracle might spend a lot of CPU time to update its monitoring
table. On the contrary, a value of 1 s is not responsive enough. In the remain-
ing of our experiments, we empirically set )B to 500 ms to match sub-second
reactivity while keeping low CPU usage on mobile devices.

3.4.4 Bulk Download and Primary Sub�ow Loss

In Section 3.3.2.2, we motivated that monitoring the connections sending data
is not su�cient when the smartphone only receives data. To illustrate this
situation, Figure 3.18 plots the time-sequence graph of �le download from
the receiver’s viewpoint. After about half a second, the client detected that it
did not receive data anymore while the Idle bit was not set in the DSS option.
Therefore, it triggers the creation of a sub�ow on the backup path. Once it
experiences a RTO, the server starts using the newly created sub�ow and the
data transfer succeeds. Notice that in our experience, the retransmissions at
6 s were caused by a burst of duplicate Acks.

3.4.5 Fast Join Bene�ts

The primary goal of our proposed Fast Join options is to decrease the estab-
lishment time of backup sub�ows. To assess this, we evaluate the bene�ts of
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the Fast Join Out option with regular request/response tra�c where the pri-
mary path experiences 100% losses after �ve seconds. Figure 3.19 shows the
delta of the application-perceived delays of the �rst request following the loss
event using either Mp Join or Fast Join Out. When the request �ts inside a
single TCP packet, as for the popular Siri application, the Fast Join Out pro-
vides immediate client data reinjections and the responses can be received
after one RTT instead of three RTTs with Mp Join. If the request requires
several TCP packets to be sent, Fast Join Out still saves one RTT compared
to the regular Mp Join. These results con�rm our intuitions provided by Fig-
ures 1.9 and 3.7.

3.5 Performance Evaluation

This section presents the evaluation of MultiMob on Nexus 5 smartphones
running a slightly patched Android 6.0.1. To perform our evaluation, we back-
ported Multipath TCP v0.89 to the Linux 3.4 kernel on Nexus 5 phones. Four
client con�gurations are studied.

1. No Backup: the regular Multipath TCP behavior with the full-mesh
path manager, without considering the cellular as a backup network;

2. Backup: same as No Backup, but considering the cellular as a backup
and using it once the primary Wi-Fi path is potentially failed, i.e., it
experiences RTOs — this is the default backup behavior since Multi-
path TCP v0.90;

3. IETF Backup: same as Backup, except that the backup path is used only
if there is no more primary Wi-Fi sub�ow, i.e., all the Wi-Fi sub�ows
have been torn down — this was the backup behavior until Multipath
TCP v0.89;

4. MultiMob: our proposed Multipath TCP tuning described in Sec-
tion 3.3.

In the remaining of this section, we often call the three �rst con�gurations as
the vanilla Multipath TCP con�gurations. We use two di�erent servers. The
�rst one, using the default packet scheduler, is used by vanilla Multipath
TCP con�gurations. The second one, leveraging the MultiMob server-side
packet scheduler, is used by the MultiMob con�guration.

We �rst explore particular use cases with micro-benchmarks to under-
stand the bene�ts of MultiMob (§3.5.1). We then compare at a larger scale
vanilla Multipath TCP with MultiMob through active measurements per-
formed on a set of modi�ed Android 6 devices used by real users (§3.5.2).
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3.5.1 Micro-Benchmarks

We �rst compare the standard Android 6.0.1 network stack with MultiMob
(§3.5.1.1). We then study actual user mobility with both simpli�ed interactive
and streaming applications (§3.5.1.2).

3.5.1.1 Android Network Handover

Android 6.0.1 includes a network interface controller. Like iOS, Android fa-
vors the Wi-Fi connectivity over the cellular one and sets the Wi-Fi interface
as the default one. By default, once connected to a Wi-Fi network, Android
switches o� the cellular interface. We patch Android so that the cellular an-
tenna always remains on, even when getting Wi-Fi connectivity.

To avoid staying on underperforming Wi-Fi networks, Android 6 moni-
tors the Wi-Fi interface and computes layer-2 transmission and reception suc-
cess rates with a V-EMA [AOSP]. Android then computes a network score
that combines these success rates, the Received Signal Strength Indication
(RSSI) and the throughput of the Wi-Fi network. If the Wi-Fi score drops be-
low the cellular one, Android selects the cellular network as the default one
and tears down the Wi-Fi connectivity.

When an Android smartphone associates to a Wi-Fi access point (AP),
it �rst sends a HTTP request to a Google server. This enables the device to
detect if the AP is behind a captive portal. If the request succeeds, the Wi-Fi
connectivity is considered as functional. Nevertheless, Android does not seem
to monitor the performance of the selected Wi-Fi network besides tracking
the Wi-Fi beacons. This can cause application degradations when the device
is connected to overloaded shared Wi-Fi APs [AEK09]. In such networks,
priority is given to the network subscriber, the leftover capacity being shared
among the other users. If the network subscriber makes intensive usage of its
network, the community users might experience consequent losses.

To mimic such situation, we connected two smartphones to the same Wi-
Fi AP providing Internet access with a distance of about a meter. Both run
our simpli�ed interactive application without any Inter-request wait time —
i.e., sent_thres = ∞ — for 80 seconds. One smartphone uses plain TCP
while the other one includes MultiMob. After 5 s, the WAN interface of the
Wi-Fi AP starts experiencing random losses on outgoing packets. This lossy
period lasts 50 s, after which the random loss is removed. Figure 3.20 shows
the maximum application perceived delay by the simulated interactive client
depending on the percentage of random losses on the WAN interface. With
low loss percentages (≤ 10%), both phones experience similar delays. This
is because losses can be recovered with fast retransmissions, and the experi-
enced loss rate is not su�cient for theMultiMob oracle to trigger the cellular
sub�ow creation. However, with higher loss rates, while MultiMob switches
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Figure 3.20: Maximal application perceived delays for simpli�ed interactive
tra�c without any Inter-request wait time over 3 runs, showing minimal,
median and maximal values.

to the cellular network while keeping sub-second maximum application de-
lays, Android persists in using the Wi-Fi network and does not break the TCP
connection. From Android’s viewpoint, the Wi-Fi performance remains good
because Wi-Fi beacons are still successfully received, although Internet con-
nectivity itself is severely altered. This experiment shows that MultiMob,
initially being single-path, can react to such connectivity failures while plain
Android continues to use underperforming networks.

3.5.1.2 Mobility Scenarios

To evaluate how MultiMob performs in changing wireless conditions, we
go for the short walk presented in Figure 3.21 with two smartphones. The
�rst one uses the MultiMob con�guration while the other one has a vanilla
Multipath TCP one. Our walk begins at A, close the Wi-Fi AP. Starting from
C, the Wi-Fi signal becomes weaker given the distance and the presence of
trees and buildings. Android usually detects the loss of the Wi-Fi signal and
tears down the Wi-Fi network at location D. From spot F, the Wi-Fi signal
becomes available again.

Simulated Interactive Tra�c. Each of our test phones sends 100 requests
during our 80 s walk from A to D. Figure 3.22 shows the instantaneous mean
over the test duration of the fraction of packets that are carried by the cellular
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Figure 3.21: Walk map for mobile micro-benchmarks.
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(a) No Backup vs. MultiMob.
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(b) Backup vs. MultiMob.

Figure 3.22: Evolution of the mean fraction of total packets carried by the
cellular network for the simpli�ed interactive tra�c.
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Max Requests Mean Estimated
Con�guration Delay (ms) Answered Cellular Power (mW)

No Backup 1112 100 884
Backup 780 100 885

IETF Backup 21938 84 558
MultiMob 1187 100 657

Table 3.4: Aggregated results from simulated interactivemicro-benchmarks.
MultiMob shows the median value over the three runs.

interface for both runs. In addition, Table 3.4 shows aggregated results related
to these tests. In the vanilla Multipath TCP con�gurations, the cellular sub-
�ow is always created at the beginning of the connection, but no data packet
is sent on that network while the Wi-Fi connectivity remains functional. This
is expected for both Backup and IETF Backup cases, and the larger observed
RTT on the cellular network combined to the low induced network load ex-
plain the No Backup result. When the client requests start being lost between
locations C and D, the cellular network is used to recover the connectivity,
except for the IETF Backup case which waits for the system to tear down the
Wi-Fi sub�ow before using the cellular one. This leads to missed requests
(as the sending bu�er �lls up and gets full) and very large experienced ap-
plication delays. On the contrary, both the No Backup and Backup cases
leverage the already established cellular sub�ow to reinject requests over it
as soon as an RTO occurs on the Wi-Fi path. MultiMob needs �rst to detect
the connectivity loss with its oracle before establishing the cellular sub�ow.
Yet, its experienced maximum application delay remains similar to those of
No Backup and Backup cases. On the opposite, MultiMob consumes less
cellular energy since it delays the utilization of the LTE network.

Fixed Rate Streaming Tra�c. For this test, we con�gure the smartphone
to stream a web radio over HTTP while performing twice the walk presented
in Figure 3.21. Our servers relay the same web radio at a constant bit rate
using Icecast. Since all the data �ows from the server to the client, all the
packet scheduling decisions are made by the server. We compare each vanilla
Multipath TCP con�guration with MultiMob over a dozen of runs. Notice
that since the IETF Backup con�guration clearly underperforms the other
ones, we do not discuss it in the remaining of this section.

Figure 3.23 shows the time-sequence graph for the No Backup vs. Mul-
tiMob test. We did not observe any stall during our dozen of experiments,
which is important for a streaming application. However, the No Backup
smartphone receives data nearly exclusively on the cellular interface, even
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Figure 3.23: Time-sequence graph of the server streaming �ow as perceived
by the client for the run comparingNo Backup vs. MultiMob. Color indicates
on which interface the packet was received.

when the Wi-Fi network is available. From the server perspective, the cellu-
lar sub�ow appears to be more stable with often a lower estimated smoothed
RTT than the Wi-Fi one. This explains why the default packet scheduler
prefers using the cellular network. On the other hand, with its associated
packet scheduler, MultiMob forces the server to use the Wi-Fi path when
still being used by the smartphone. The Wi-Fi to cellular (between C and D)
and LTE to Wi-Fi (between F and A) handovers are distinguishable on the
MultiMob graph. Furthermore, notice that the MultiMob phone waits for
40 s before opening the cellular sub�ow. This corresponds to the instant the
smartphone’s receive timer detects that no more data is received after some
time without having received the Idle bit. Based on our cellular power con-
sumption model, the No Backup smartphone would have consumed 444 J
(1386 mW) while the MultiMob one spent 329 J (1028 mW).

In the Backup vs. MultiMob test, the usages of the network interfaces
are similar, i.e., the Wi-Fi network is used when available. Over a dozen of
runs we did not observe any stall, except for a speci�c test that impacted
both Backup and MultiMob. Figure 3.24 shows the bu�er playing time on
the client for that particular run. At 50 s (�rst C to D pass), the MultiMob
smartphone faces a half-second stall time. This is due to the reception of a
retransmitted packet on the Wi-Fi network while the cellular sub�ow was al-
ready established. Since packets are acknowledged on the sub�ow they came
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Figure 3.24: Playing time of the client bu�er for the worst case test in Backup
vs. MultiMob. Color indicates on which interface the last packet was re-
ceived.

from, the MultiMob server-side scheduler then tries to reuse the Wi-Fi path
to send new data, but it was meanwhile lost. After experiencing a RTO, the
server �nally reinjects these new data packets on the cellular sub�ow and the
connection continues. In its case, the Backup smartphone radio experienced
a 3 s stall at time 205 s (second C to D pass). This stall is actually caused by the
default packet scheduler always favoring the primary Wi-Fi sub�ow over
the cellular one. Indeed, around 200 s, the Wi-Fi was underperforming, so the
server experienced RTOs and reinjected data over the cellular path. However,
some Wi-Fi retransmissions eventually got acknowledged, causing the server
to reuse the Wi-Fi path. These packet losses increased the server estimations
of both the smoothed RTT and the variability of the Wi-Fi path, hence ris-
ing the value of its RTO. When the smartphone eventually went out of Wi-Fi
reachability, it took seconds for the server to �re its retransmission timer. In
comparison, when the MultiMob server-side packet scheduler received the
acknowledgment for the packet retransmitted on the Wi-Fi path, it �gured
out that no original data was acknowledged. It therefore did not consider the
Wi-Fi sub�ow to transmit the next packet. Again, the Backup con�guration
opened the cellular path at the beginning of the connection, while MultiMob
did it at 45 s. This induces a smaller energy consumption by MultiMob with
319 J (994 mW), though the Backup one remains close with 347 J (1083 mW).
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3.5.2 Measurements with Real Users

We now summarize active measurements performed on Nexus 5 Android de-
vices distributed to a few students and academics over a period of seven weeks
(from 28th January to 22nd March 2017). We installed on each smartphone an
application that periodically changes the network con�guration, either once
during night or after a device reboot. Our measurement application mon-
itors the smartphone accelerometer. Once it detects user motion, it starts
sending data following the simpli�ed interactive request pattern described in
Section 3.2 during 80 s. The test network conditions depend on the presence
of Wi-Fi and/or LTE networks. To observe the performance of all Multipath
TCP con�gurations to switch from the Wi-Fi connectivity to the cellular one,
we only consider here tests where both Wi-Fi and LTE interfaces are online at
the beginning of the measurements. Notice that the Wi-Fi may be lost during
some tests, though it is not always the case.

Figure 3.25 shows our in-the-wild measurements with the simpli�ed in-
teractive request tra�c. First, Figure 3.25a reveals that nearly all the requests
are answered within one second. Notice that with the No Backup con�g-
uration, 29% of the requests require 100 ms or more to be answered. This
shows that the simultaneous usage of both networks with such tra�c can
lead to increased perceived delays because of the network heterogeneity be-
tween paths. Next, we focus on the maximal application perceived delays
over a run shown in Figure 3.25b. We con�rm that waiting for the Wi-Fi in-
terface being torn down by the OS before using the cellular one, as done by
the IETF Backup con�guration, is not suitable for mobile situations. For all
the remaining con�gurations, the largest application perceived latency often
remains within one second, with some outliers of a few seconds. This shows
that MultiMob does not impact too much interactive applications by delay-
ing the creation of cellular sub�ows.

The main di�erence between MultiMob and vanilla Multipath TCP con-
�gurations appears in scenarios where the Wi-Fi connectivity remains alive
during the entire test. Figure 3.25c presents the estimated cellular energy
consumption based on the test network trace collected on the clients. Since
vanilla Multipath TCP con�gurations always open additional sub�ows at the
beginning of the connection, they consume cellular energy by sending Syn
and Fin control packets, even if no actual data is sent on that interface. Back-
ground connections initiated by our real users can sometimes increase the
energy consumption by using the cellular network. In contrast, since most of
the time MultiMob does not create additional sub�ows, its cellular energy
consumption remains very low. MultiMob therefore achieves a reasonable
trade-o� between low latency for delay-sensitive applications and limited en-
ergy impact.
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(c) Estimated mean cellular power consumption during tests where the primary path
stays alive.

Figure 3.25: Simpli�ed interactive tra�c with real users.
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3.6 Limitations

Both our emulation and real network experiments show that MultiMob
works in the smartphone use case. However, it is important to keep things in
perspective and highlight some weaknesses of our solution.

Multipath TCP remains hard to implement and deploy at a large scale.
Besides the iOS one, the main Multipath TCP implementation resides in the
Linux kernel. Such integration enables any TCP-based application, without
requiring any modi�cation, to bene�t from the multiple network accesses
the device has. At the time of writing, despite being initiated ten years ago,
Multipath TCP has not been integrated in the mainstream Linux kernel yet,
although this upstream e�ort is now close to succeed. Its acceptance has
been hindered by the initial implementation design requiring lot of multipath
awareness in the plain TCP work�ow. Meanwhile, the mainstream kernel is
moving on with new features, while a Multipath TCP version is speci�c to a
given kernel one. This requires additional e�ort to port Multipath TCP to a
speci�c device-required kernel version.

Limited set of real users. As suggested by the legend of Figure 3.25b, the
dataset generated by our half-dozen of users is quite small. Actually, this is
a consequence of the previously mentioned point. Smartphone vendors of-
ten fork a particular version of the Linux kernel and then apply speci�c code
patches for their devices. This implies that the Linux version run by a smart-
phone depends on both the device and the Android version. In our case, we
based the smartphone code on a backport of Multipath TCP v0.89 (based on
Linux 3.14) to the Nexus 5 speci�c kernel based on Linux 3.4 realized by Gré-
gory Detal. Except a few �agship devices [Bon18], it is unlikely that smart-
phone vendors will o�cially support non-mainstream Linux kernel features
on a large panel of devices. Our potential user base is therefore limited to our
particular device (the Nexus 5 device released in 2013) and to their willingness
to install our custom Android ROM.

MultiMob hacks Multipath TCP for a speci�c use case. In this Chap-
ter, we made the assumption that all users want to limit their cellular usage
while keeping low latency for interactive tra�c. In some countries, operators
often sell LTE data quotas for a period and surcharge users if they exceed their
limit. However, there are people who pay little attention to their cellular con-
sumption and just want to always get the largest bandwidth and/or the lowest
latency. For these users, the classical full-mesh path manager and either
the default packet scheduler without backup interface or the redundant
one [Fro+16] would better suit their needs. MultiMob proposes a trade-o�
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between low latency and limited cellular usage. If it does not �t the user’s ex-
pectations, the client device can still fallback to the default full-mesh path
manager. Yet, with the Linux implementation, it remains hard for a given
Multipath TCP server to select the most suitable packet scheduler on-the-�y,
especially if the client has no way to express its requirements. Similarly, Mul-
tiMob adds a few protocol mechanisms (the fast join and the idle bit) which
are not standardized. These would not work if the peer do not support them.
A recent work propose to extend the behavior of a Multipath TCP Linux stack
with eBPF code [Tra19] but only a few well-known parts of the Multipath TCP
stack can be currently tuned.

MultiMob is constrained by TCP itself. The Multipath TCP control
plane relies on TCP options. However, this is a scarce resource. Because
of the 4-bit encoding of the Data O�set �eld in the TCP header, there remains
only 40 bytes left for TCP options. As a consequence, the �elds of the fast join
options were tweaked to �t in the byte limit and the Fast Join Out option
in the Syn packet does not support 8 bytes DSN. All these engineering e�orts
inhibit innovation at transport protocol level. Another limitation comes from
the Multipath TCP design goals to avoid deployment issues. Multipath TCP
sub�ows must behave like regular TCP �ows. While this seems legitimate, it
induces sub-optimal strategies. Consider the case where a smartphone sends
a full congestion window of data on a Wi-Fi network, and all these packets
are lost. The smartphone then reinjects all these data on the cellular connec-
tivity which get acknowledged. The transfer hence continues on the cellular.
At some point, the smartphone notices that the Wi-Fi is functional again and
wants to reuse it. Nonetheless, it has �rst to retransmit all the previously
lost packets on the Wi-Fi network, even if their data was �nally transmitted
over the other sub�ow, before starting sending useful new data. By honor-
ing their TCP requirements, Multipath TCP sub�ows face overhead which
may impact applications. An alternative would be to reset such retransmit-
ting sublows and re-establish a new sub�ow on the same network directly.
Yet, this approach is not the cleanest one and still induces additional control
tra�c.

3.7 Conclusion

Given that smartphones have both cellular and Wi-Fi interfaces, user expect
them to be able to perform seamless handovers between wireless networks.
Multipath TCP enables such seamless handovers since it can use both cel-
lular and Wi-Fi networks for a single connection. Yet, using both interfaces
simultaneously is very expensive from both monetary and energy viewpoints.
After having characterized how an interactive application looks like, we pro-
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posed, implemented and evaluated MultiMob, a set of improvements to the
Multipath TCP Linux implementation and protocol. MultiMob uses break-
before-make to minimize energy consumption and includes an oracle moni-
toring the status of ongoing connections. It extends the Multipath TCP pro-
tocol to indicate idle transfers and support immediate retransmissions over a
di�erent network path. Furthermore, thanks to its server-side packet sched-
uler, a server automatically selects the best performing sub�ow to respond
to requests from a smartphone. We performed both emulation and real net-
work experiments showing that MultiMob achieves a lower cellular energy
consumption while keeping good latency performance on smartphones.

Despite achieving its trade-o� goal, we also highlighted the limitations
of our MultiMob work. They mainly come from both the Multipath TCP
kernel-space implementation and the constraints of TCP itself. Therefore,
one could ask if TCP is still suitable for the modern Internet. In the coming
Chapters, we explore a newer, more �exible alternative than TCP: QUIC.





QUIC 4
While TCP is the dominant Internet transport protocol, applications do not
always require reliable delivery. For instance, real-time services often set a
transmission deadline where overdue data is ignored by the application. If the
packet arrives too late, it is somewhat equivalent to a non-delivery or a packet
loss. To address such needs, the User Datagram Protocol (UDP) [rfc768] is a
transport protocol providing packet-based, connectionless service. It does not
ensure in-order nor actual data delivery but prevents corrupted data from be-
ing delivered to the application. Figure 4.1 illustrates the UDP packet header.
Compared to the TCP one (Figure 1.3), it is much simpler as it only contains
the ports (multiplexing di�erent applications running on a given host), the
length of the payload (up to 65535 bytes) and the checksum. Hence, UDP is
a minimal-overhead transport protocol for applications that do not require
TCP services.

Innovation in the network and transport layers of the TCP/IP protocol
suite has been rather slow during the last decades. It took roughly twenty
years to design, implement and deploy IPv6 [Dha+12]. TCP continues to be
incrementally improved [rfc7414] with recent extensions including Multi-
path TCP [rfc6824] and TCPCrypt [Bit+10], despite the proliferation of mid-
dleboxes slowing their deployment [Hon+11]. New transport protocols such
as SCTP [rfc4960] generated interest [Bud+12], but are still not widely de-
ployed on the Internet.

The remaining of this Chapter introduces QUIC [QUIC-t; Lan+17], a new
transport protocol built atop UDP aiming at replacing TCP while addressing
large deployment concerns. In particular, its design objectives are the follow-
ing.

� Built-in secured exchanges with both authenticated and encrypted

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port

Length Checksum

Figure 4.1: The UDP header [rfc768].
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header and payload;

� Reliable, in-order data stream multiplexing to support multiple distinct
transfers over a single connection;

� Low-latency connection establishment;

� Connection migration and resilience to NAT rebinding.

The built-in encryption enables QUIC to address both privacy [rfc7258] and
ossi�cation issues that middleboxes cause on transport protocols such as
TCP [Hon+11]. QUIC addresses the need of application protocols such as the
Hypertext Transfer Protocol (HTTP) [rfc7540] to e�ciently exchange di�er-
ent objects (text, pictures, videos,...) over a single connection. For the web
in particular, reducing the latency is key for user experience [Fla+13]. A fast
QUIC connection establishment contributes to this latency reduction com-
pared to the 2 or 3-RTT secure TCP/TLS connection establishment. QUIC is a
connection-oriented protocol above UDP which does not rely on the classical
4-tuple (IP src, IP dst, portsrc, postdst) during connectivity failures events such
as NAT rebinding.

Google �rst proposed in 2016 an initial version of QUIC [gQUIC] em-
bedded in its Chrome browser. We refer to this particular version as gQUIC.
Langley et al. [Lan+17] reported that gQUIC represented more than 30% of
the egress Google tra�c. Its features attracted so much interest that the IETF
chartered a working group to standardize it [QUIC-t] — refered as iQUIC. As
of January 2020, there are about twenty implementations taking part in its
process. While basic principles are similar, iQUIC is now quite di�erent from
gQUIC.

In the remaining of this Chapter, we focus on the design of iQUIC. Before
diving into its operations, we �rst introduce the main QUIC building blocks:
packets and frames (§4.1). Then, we describe the lifetime of a QUIC connec-
tion, starting from its establishment (§4.2), continuing to the data exchange
(§4.3), discussing the handling of possible network changes (§4.4) and �n-
ishing by its closure (§4.5). We conclude this Chapter by discussing notable
di�erences between iQUIC design and the original gQUIC to fully understand
this thesis work (§4.6).

4.1 Container Packets and Core Message Frames

From the network viewpoint, a QUIC packet is composed of two parts as ex-
empli�ed in Figure 4.2. First, the cleartext header contains a few �ags and
the Destination Connection ID. This identi�er enables the receiving host to
map the packet to the connection it belongs to. This makes the packet, and
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Figure 4.2: An example of Short Header QUIC packet.

Frame Type Type-dependent Fields...

Figure 4.3: Format of aQUIC frame. The FrameType�eld is a variable-length
integer.

hence the connection, independent of the 4-tuple used to carry it. The second
part is a large encrypted payload divided into several parts. Its �rst element
is the packet number. Each host maintains distinct packet number spaces
for sending and receiving data. These sequence numbers are monotonically
increasing. Within one �ow direction, all packets have di�erent packet num-
bers. In cases where data needs to be retransmitted, it is put in another packet
with a higher number than the original one. This simpli�es several transport
functions by removing the ambiguity of having multiple retransmitted pack-
ets with the same packet number. These ambiguities a�ect round-trip-time
estimation and loss recovery in TCP.

The remaining of the encrypted payload consists in a sequence of frames.
They carry data and control information while QUIC packets act as their con-
tainer. In other words, when a packet is lost, frames are the messages that are
retransmitted, if needed. On the wire, frames follow the Type-Value pattern as
illustrated in Figure 4.3. This �exible format combined to encryption makes it
easy to de�ne new frames while mitigating deployment problems due to net-
work ossi�cation. Notice that the Frame Type �eld is encoded as a variable-
length integer called varint. Such encoding uses the two most signi�cant bits
to indicate the length of the �eld ranging from 1 to 8 bytes. Currently, frames
always format their Frame Type using one byte. Yet, this potentially allows
QUIC to de�ne up to 262 di�erent frames.

Currently, there are about twenty di�erent frames covering about thirty
values — some of them reserving a range acting as �ags for their opera-
tions. Figure 4.2 shows the most common ones. QUIC supports several data
streams like the Stream Control Transmission Protocol (SCTP) [rfc4960].
The STREAM frame contains the Stream ID (identifying the data �ow), a
Byte O�set and the payload associated to that stream. In Figure 4.2, the
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Frame Type Largest Acknowledged

ACK Delay ACK Range Count

First ACK Range ACK Ranges (# ACK Range Count)

Figure 4.4: Format of an ACK frame. All its �elds are variable-length inte-
gers, the visual size of �elds is for reader’s convenience.

packet carries two STREAM frames belonging to di�erent data streams with
their own identi�er. The ACK frame is a kind of generalization of TCP and
SCTP’s SACK blocks. As illustrated in Figure 4.4, ACK frames acknowl-
edge a �rst block of packets whose numbers are contained in the range
[Largest Acknowledged − First ACK Range; Largest Acknowledged]. Addi-
tional ACK Range Count ranges can be contained in the ACK Ranges �eld.
The number of blocks an ACK frame can contain is only limited by the maxi-
mum size of a QUIC packet, while TCP’s SACK option cannot exceed the 40-
byte limit of TCP options. Notice that the ACK frame also includes an ACK

delay �eld enabling the peer to accurately estimate the path latency, even if
the host delays the sending of ACK frames. Our illustrating packet also in-
cludes a MAX DATA frame advertising the receive window of the sender. It
indicates the amount of data that can be sent over the entire connection. The
control of the receive bu�er can also be performed at stream-level using the
MAX STREAM DATA frame including the related Stream ID. Note that those
MAX DATA and MAX STREAM DATA frames only appear in some QUIC
packets, unlike TCP that embeds the Window �eld in TCP headers.

All the current QUIC frames — including the ones previously presented
— are idempotent. Receiving a valid frame more than once does not in-
troduce any ambiguity at the receiver’s side. The Byte O�set �eld of the
STREAM frame is absolute and does not su�er from the wrap-around ambigu-
ity that a�ects TCP’s sequence number. Similarly, since the packet numbers
are monotonically increasing, ACK frames explicitly acknowledge speci�c
packets, enabling the sender to �gure out possible spurious frame retransmis-
sions. Both the MAX DATA and MAX STREAM DATA frames advertise the
absolute amount of data that could be sent, the receiver considering the high-
est observed value. Such absolute o�set prevents the uncertainty present in
TCP when several packets with the same acknowledgment number advertise
di�erent relative Window values. While QUIC does not enforce idempotent
frames, future extensions should ensure this property.
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4.2 Establishing a QUIC Connection

As of January 2020, the QUIC protocol standardization is not yet �nished.
Nonetheless, this process bene�ts from deployment experiences that con-
tribute to its speci�cation. This is possible thanks to the built-in QUIC ver-
sion negotiation that takes place prior to any exchange between two peers.
Such process enabled Google to update its gQUIC stack bundled in its Chrome
browser every few months [Rüt+18]. It is also useful for the standardization
process where iQUIC implementations indicate which version of the speci�-
cation they follow. With distinct version numbers, the QUIC protocol can be
very diverse: changes in the encryption and authentication schemes, di�erent
formats or even type values for a given frame, new messages,...

To ensure that implementations can negotiate current and future versions,
the QUIC speci�cation de�nes protocol invariants [QUIC-inv] that must be
respected by all its versions. In practice, the �rst packets of a QUIC exchange
use a Long Header containing a 4-byte Version �eld. If the server supports the
proposed value, the communication goes on as explained next. Otherwise, it
replies with a Version Negotiation packet listing all its supported versions.
With this mechanism, the client is aware of the server capabilities and can
then select one mutually supported version. While this process adds one RTT
for the connection establishment, it is not the common case. When the client
knows the server in advance, it is very likely that the upcoming connections
will use the previously negotiated version, hence saving a RTT.

To encrypt its exchange, QUIC relies on the Transport Layer Security Ver-
sion 1.3 (TLS 1.3) [rfc8446]. When a client contacts a server for the �rst time,
it sends an Initial packet containing the Client Hello (CHLO) TLS message
in a dedicated CRYPTO frame. The server similarly replies by transmitting a
CRYPTO frame containing the Server Hello (SHLO) TLS message. Both CHLO
and SHLO contribute to the generation of the encryption key being used by
the connection. After having exchanged these TLS messages (one round-trip-
time), the QUIC peers start transmitting data. During this �rst connection,
peers can also negotiate pre-shared keys (PSKs) for future exchanges. With
them, a client initiating subsequent connections can already encrypt its Initial
packet with a PSK, allowing peers to directly start exchanging data without
waiting for a round-trip-time.

In addition to the encryption, hosts negotiate during the connection es-
tablishment the Connection IDs (CIDs) that are used in the clear-text header
of QUIC packets. Each QUIC host advertises the asymmetric, unidirectional
CID that its peer must use to reach it, independently of the 4-tuple (IP src, IP
dst, portsrc, postdst). In other words, the client (resp. the server) sends packets
to its peer by setting in the Destination Connection ID �eld the CID chosen by
the server (resp. the client). Such recipient-oriented routing enables network
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Client Server

PN 42[STREAM(id=9, o�set=0, "Image data")]

Process Image

PN 43[STREAM(id=9, o�set=1000, "Image data")]

PN 44[STREAM(id=4, o�set=0, "HTML data")] Receiver

limited

Process

HTML
PN 12[ACK(42, 44)]

Packet 43 lost

retransmit its

frames

PN 45[STREAM(id=9, o�set=1000, "Image data")]

Process Image
PN 13[ACK(42, 44-45), MAX DATA(16000)]

Receive win-

dow open

PN 46[STREAM(id=9, o�set=2000, "Image data")]

Process Image

PN 13[ACK(42, 44-46)]

Figure 4.5: Illustrating the bene�ts of QUIC stream multiplexing. Only
the packet number (PN) and the relevant content of frames are shown for
reader’s convenience.

engineers to perform load-balancing between their servers [Iye18].
During this handshake, hosts may want to advertise some internal QUIC

values to their peer, such as their initial receive window. This is possible
through the QUIC transport parameters carried as a TLS extension in both
CHLO and SHLO messages. These parameters can be used to specify, e.g.,
how the ACK delay in the ACK frame should be decoded or disable mecha-
nisms like connection migration.

4.3 Exchanging Data

Once the handshake completed, data can be exchanged over a QUIC connec-
tion using Short Header packets. To understand its operations, consider again
the client packet illustrated in Figure 4.2. It requests two objects — an HTML
page of 1000 bytes on stream 4 and an image of 3000 bytes on stream 9 — and
advertises a connection-wide receive window of 3000 bytes. Figure 4.5 illus-
trates a scenario of a server answering the client’s request assuming QUIC
packets can contain up to 1000 bytes of data. The server uses the two �rst
packets to send the beginning of the image, while the third packet carries the
HTML page. Notice that the server cannot send the last bytes of the image yet,
as the client restricts the transmission of at most 3000 bytes over the connec-
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Client Server

NAT
DCID A, PN 23[...]

Di�erent 4-

tuple

Reduced data exchange

DCID D, PN 14[PATH CHALLENGE,...]

Change DCID
DCID B, PN 24[PATH RESPONSE,...]

Path validated, exchange can continue

Figure 4.6: An example of NAT rebinding and how the QUIC connection mi-
grates. Only the Destination Connection ID (DCID), the packet number (PN)
and the relevant frames are illustrated.

tion. Assume now that the second packet is lost. In that case, the client sends
a packet containing an ACK frame acknowledging only the �rst and the third
ones. Upon its reception, the server can notice that the second packet was
not received, and can retransmit the lost STREAM frame in another packet
with a higher number. Once the missing data is received, the client decides to
authorize the server to send up to 16000 bytes over the connection with the
MAX DATA frame, hence allowing the transmission of 13000 additional data
bytes over the connection. This receive window increase enables the server
to send the last image data bytes completing the client’s request.

Despite the loss of the second packet that delayed the transmission of the
image �le, the HTML one was directly processed by the client thanks to the
QUIC stream multiplexing. In comparison, TCP only o�ers a single in-order
byte stream over a given connection. If the image and HTML objects were
interleaved over a single TCP connection, like HTTP/2 does [rfc7540], the
HTML �le could not have been processed before the reception of the retrans-
mission due to the in-order TCP delivery.

4.4 Handling Network Changes with Connection Migration

Because it relies on UDP, a QUIC exchange may experience di�erent 4-tuples
during its lifetime. Such changes can be caused either by hosts themselves
— like a client switching from a Wi-Fi network to a cellular one — or by the
network — NAT rebinding is the typical example. Thanks to its labeling by
CIDs, QUIC connections can handle these events by design. Figure 4.6 shows
that a server can map an incoming packet to its connection even if a NAT
modi�ed its source IP address and port.
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Frame Type Sequence Number

Retire Prior To Length (1 byte)

Connection ID (Length bytes)

Stateless Reset Token (16 bytes)

Figure 4.7: Format of a NEW CONNECTION ID frame. The visual size of
�elds does not re�ect their actual length, annotated to each �eld. Non anno-
tated �elds are variable-length integers.

This connection migration ability however raises two main concerns. The
�rst one resides in the identity of the new remote IP address and port. Despite
QUIC packets are authenticated by TLS 1.3 — hence causing less problems
than with TCP— a malicious client might forge a QUIC packet by faking the
source IP address and port of a victim device, hoping that the server will �ood
it. To address this concern, consider again the case where the 4-tuple change
comes from a NAT rebinding as illustrated in Figure 4.6. When the server
notices a change in the 4-tuple, it reduces its sending rate and starts the path

validation process. It consists in sending a speci�c frame, the PATH CHAL-
LENGE one, containing some random data. The process completes when the
host initiating the address validation receives a PATH RESPONSE frame echo-
ing the content of the original PATH CHALLENGE one. This process ensures
that, although the server perceives a di�erent 4-tuple, it still communicates
with the same client.

The second main concern is the privacy implications of moving a CID
over a di�erent 4-tuple. This could enable a passive observer to correlate the
activity of the di�erent paths. To mitigate this issue, QUIC includes the NEW
CONNECTION ID frame illustrated in Figure 4.7. The sender advertises an
additional Connection ID that its peer can use in its sent packets to reach it. In
Figure 4.6, the server previously provided the additional CID B to the client.
When noticing the reception of a PATH CHALLENGE frame, it decided to
change the Destination Connection ID set in its sent packets. This behavior
is not mandatory but enables concerned hosts to limit the impact of connec-
tion migration on privacy. Each Connection ID comes with a monotonically
increasing Sequence Number — the one of the initial CID being 0. This label
allows the frame’s receiver to announce to its peer that it will not use CIDs
with a Sequence Number inferior to Retire Prior To. Such signaling is also
possible without communicating any CID. In that case, hosts instead use the
shorter RETIRE CONNECTION ID frame.
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Characteristic iQUIC gQUIC
Encryption TLS 1.3 [rfc8446] QUIC Crypto [QUIC-c]

Packet Number Encrypted In clear-text

Connection ID
Adaptable length,

unidirectional
8-byte long,
bidirectional

Connection
Migration

Path validation +
Connection ID change Nothing special

Table 4.1: Summary of the main di�erences between iQUIC and gQUIC.

4.5 Closing the Exchange

QUIC bundles two levels of exchange: the data one with STREAM frames and
the connection one. Each of these has its own termination mechanisms.

Similar to TCP, data streams can be closed either gracefully or abruptly.
The graceful method uses a Fin bit carried in the STREAM frame. For the
abrupt one, a sending (resp. receiving) host can reset a stream by sending a
RESET STREAM (resp. STOP SENDING) frame.

Hosts can terminate a connection in three ways. First, the exchange re-
mains idle for a period larger than a host-speci�c timeout — advertised to the
peer using QUIC transport parameters — implicitly closing the connection.
Second, a peer can explicitly request the connection termination by sending a
CONNECTION CLOSE frame, optionally mentioning the reason of this event.
Third, a host may also send a Stateless Reset packet when it cannot send a
CONNECTION CLOSE frame for any reason. In this last case, the Stateless
Reset packet carries the Stateless Reset Token — carried by NEW CONNEC-
TION ID frames — to avoid denial of service attacks due to forged packets.
Regardless of the method used, the connection closure resets all the open data
streams.

4.6 Di�erences between iQUIC and gQUIC

This Chapter summarized the main elements of the current iQUIC protocol.
Its design is mainly based on the experience of the gQUIC one. Although both
provide the same services from the application viewpoint, there are a few
important di�erences between iQUIC and gQUIC that are worth to mention.
These are summarized in Table 4.1.

Encryption. One of the key motivations for QUIC is its low-latency con-
nection establishment enabling encrypted data exchange in the �rst client
packet. However, the design of gQUIC started in 2012 [Ros13], i.e., two years
before the �rst draft of TLS 1.3. At that time, the available state-of-the-art
encryption protocol was TLS 1.2 [rfc5246]. It requires a round-trip-time to
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negotiate the encryption material for the connection, which mismatches this
low-latency objective. To bridge this gap, gQUIC embeds the quite informal
QUIC Crypto protocol [QUIC-c]. Lychel et al. [Lyc+15] formalized it and
identi�ed several practical attacks against the QUIC Crypto protocol. Still, it
served as a prototype for the current version of TLS 1.3 [rfc8446] now bun-
dled in iQUIC.

Packet Number. When using symmetric encryption keys, all encrypted
packets must use a di�erent nonce that needs to be communicated to the
peer to decrypt the payloads. Because the packet number is monotonically
increasing, it is a reasonable candidate for being the nonce. Therefore, the
gQUIC packet headers contain the packet number in clear-text. However,
leaving this monotonically increasing packet number unencrypted raised pri-
vacy concerns about the linkability of a connection by pervasive monitor-
ing [rfc7258]. In addition, some actors feared that network vendors might de-
sign middleboxes "optimizing" a connection by looking at its sequence num-
bers [Not18]. The consensus within the QUIC WG was to keep the packet
number as the nonce for the encryption of the payload. This encrypted pay-
load is then sampled to produce a second nonce used for the encryption of
the packet number. Such process enables iQUIC to leave only a few �ags and
the Destination Connection ID in clear-text to narrow the possible unwanted
interactions with in-network agents.

Connection ID. gQUIC’s 8-byte Connection IDs are randomly generated
by the client at the beginning of a connection. Then, packets sent by both
hosts contain the same bidirectional CID. Both the symmetric property and
the �xed 8-byte length of CIDs are problematic. Because the server does not
in�uence the client-chosen CID, it raises two main issues. First, there is a risk
that two clients contacting the same server select the same CID. Assuming
that the client’s Connection ID selection is truly random, with the birthday
paradox, when there are

√
264 = 232 concurrent connections at the server,

there is a probability of 50% that two of them share the same CID. In that
case, both a�ected connections might be corrupted. Second, as Connection
IDs are the sole indication for packet routing, their symmetry makes it dif-
�cult for network engineers to balance the load among servers. Both issues
motivated the choice of unidirectional Connection IDs for iQUIC. As each
host determines the CIDs for the packets it receives, there is no more iden-
ti�er clash and servers can design self-balancing Connection IDs [Iye18]. In
addition, the length of 8 bytes is both too short (like datacenter-chosen CIDs)
and too long (for Internet-of-Thing use cases). To adapt to various situations,
iQUIC supports variable host-de�ned Connection ID lengths.

Connection Migration. Both gQUIC and iQUIC connections can seam-
lessly handle 4-tuple changes. Still, gQUIC connections continue their op-
erations without particular migration management. The issues discussed in
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Section 4.4 were raised during the standardization of iQUIC. Hence, gQUIC
does not verify that the new path is usable and does not use NEW CONNEC-
TION ID frames.





Multipath gQUIC 5
One missing feature of QUIC is the ability to simultaneously exploit the dif-
ferent paths that exist between a client and a server. Today’s mobile devices
such as smartphones have several wireless interfaces and users expect to be
able to combine them easily. Furthermore, a growing fraction of hosts are
dual-stacked and the IPv4 and IPv6 paths between them often di�er, providing
di�erent performance [Bev+13; Liv+15; LED16]. Previous Chapters demon-
strate that Multipath TCP addresses this gap, both for bandwidth aggregation
and network handover use cases. The current version of the QUIC protocol
uses only a single UDP �ow between the client and the server, preventing
the simultaneous usage of several paths. While the QUIC connection migra-
tion mechanism allows moving a �ow from one 4-tuple to another one, this
can be seen as a form of hard handover. Experience with Multipath TCP on
smartphones [BS16] and our previous Chapters show that multipath trans-
port provides seamless network handovers.

In this Chapter, we build upon the lessons learned with Multipath TCP
and �rst propose extensions to gQUIC to enable it to simultaneously op-
erate over multiple paths (§5.1). We implement Multipath QUIC inside the
quic-go open-source implementation written in Go [Cle+17] and compare
its performance with Multipath TCP in a wide range of scenarios using
Mininet [Han+12] (§5.2). Next, we extend this analysis to real wireless net-
works by including Multipath QUIC into our MultipathTester iOS applica-
tion described in Section 2.3 (§5.3). After reviewing the related works (§5.4),
we conclude this Chapter (§5.5).

5.1 Adding Multipath to gQUIC

As for Multipath TCP, there are two main motivations for adding multipath
capabilities to a transport protocol like QUIC. The �rst one is to pool re-
sources of di�erent network paths to carry the data over a single connec-
tion [WHB08]. Such pooling is important for multi-homed devices when
transferring long �les, but it can also help dual-stacked hosts to automati-
cally select the best network when the quality of the IPv4 and IPv6 paths
di�er. Another motivation is the resilience to connectivity failures. On dual-
homed devices with wireless interfaces, such as smartphones, one network

95
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Figure 5.1: High-level architecture of Multipath gQUIC, here illustrating a
connection with three paths.

Figure 5.2: The format of a Multipath gQUIC packet.

can fail at any time and users expect that their applications will immediately
switch to the other one without any visible impact [Paa+12; CSP17]. These
use cases are covered by Multipath TCP [BS16; CSP17].

In this Section, we focus on the initial design of the multipath extensions
for the gQUIC protocol [gQUIC]. The overall architecture of Multipath QUIC
is shown in Figure 5.1. We �rst discuss how hosts can distinguish the usage
of multiple paths (§5.1.1). We then explain how this multipath usage keeps
the data transfer reliable (§5.1.2). Next, we discuss the inclusion of multipath-
speci�c algorithms into QUIC, i.e., path management (§5.1.3), packet schedul-
ing (§5.1.4) and congestion control (§5.1.5). Finally, we summarize the bene�ts
of our design (§5.1.6).

5.1.1 Path Identi�cation

Hosts need to agree on a way to identify the di�erent paths used. A �rst
solution would be to make those paths implicit by sending ranges of packet
numbers over a particular path. However, paths can exhibit heterogeneous
characteristics with very di�erent delays. Because the packet number in the
clear-text header of gQUIC is not encrypted, middleboxes in the network can
see it and might decide to drop packets with smaller packet numbers than
the highest seen on the connection. Such a device placed in front of a server
using multiple paths might break the slowest one.
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As illustrated in Figure 5.2, Multipath gQUIC takes the explicit approach
by including in the clear-text header the Path ID on which it was sent. The
presence of this �eld is determined by a previously unused bit in the Flags

�eld of gQUIC packets. Putting the Path ID in the header also enables Multi-
path gQUIC to collect some metrics — such as round-trip-time or lost packets
— for a given path. It also allows hosts to detect a remote address change over
a speci�c path, e.g., due to NAT rebinding. When such events occur, hosts can
update the 4-tuple associated to the path accordingly.

5.1.2 Reliable Data Transmission

To send data, QUIC uses encrypted STREAM frames. These contain a stream
identi�er and an absolute byte o�set. This information is su�cient to enable a
receiver to reorder the data contained in STREAM frames that it receives over
di�erent paths. However, the QUIC acknowledgment is per-packet based and
reordering could a�ect packets sent on di�erent paths due to network het-
erogeneity. With a single packet number space, this could lead to huge ACK
frames containing many ACK blocks. To cope with this, each path maintains
its own packet number space, as emphasized in Figure 5.1. By combining the
Path ID and the Packet Number in the public header, Multipath gQUIC ex-
poses the paths to middleboxes. Because packet numbers are now relative
to paths, Multipath gQUIC also adds a Path ID �eld in the ACK frame. This
enables a receiver to acknowledge QUIC packets that have been received on
di�erent paths. Our mp-quic implementation returns the ACK frame for a
given path on the path where the data was received to avoid a�ecting the la-
tency measurements of a given path. However, since it contains the Path ID,
it is possible to send ACK frames over other paths.

Notice that reusing the same sequence number over di�erent paths might
have a detrimental impact on security, as the cryptographic nonce would be
reused. To mitigate this issue, two approaches are applicable. The naive one
consists in restricting each sequence number to be used only once over all
paths. Nevertheless, this solution might complicate implementations as the
packet number spaces require some coordination to prevent reusing the same
value over di�erent paths. Instead, our approach resides in involving the Path
ID with the packet number in the nonce computation. This ensures that it is
not possible to get the same nonce twice across paths. Furthermore, it in-
creases the theoretical maximum number of packets over a QUIC connection
to 262×nbpaths, where nbpaths is the number of paths used over the connection.

5.1.3 Path Management

A QUIC connection starts with a secure handshake. Like gQUIC, Multipath
gQUIC performs the cryptographic handshake over the initial path. There
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Figure 5.3: The ADD ADDR frame advertising sender’s addresses.

are probably opportunities to leverage the availability of several paths for
the secure handshake [Cos+18], but we leave this for future works. Similar
to Multipath TCP, Multipath gQUIC uses a path manager that controls the
creation and the deletion of paths. Our mp-quic implementation embeds a
full-mesh path manager. Upon handshake completion, it makes the client
open one path over each of its interfaces.

An important di�erence compared to Multipath TCP is that Multipath
gQUIC can directly use a new path by placing data in the �rst packet. Recall
from Section 1.3.2 that Multipath TCP requires a three-way handshake before
being able to use any path. Since Multipath gQUIC allows both hosts to create
bidirectional paths, it must ensure that the chosen identi�ers do not clash.
Hence, bidirectional paths created by the client (resp. the server) have an
even (resp. odd) Path ID. However, our implementation does not currently
use server-initiated paths because clients are often behind NATs of �rewalls
that would block them.

Often, a host is not aware of all the reachable addresses of its peer. To
enable, e.g., a dual-stacked server to advertise its IPv6 address to the client
over a connection initiated on IPv4 addresses, Multipath gQUIC includes an
ADD ADDR frame shown in Figure 5.3 carrying the addresses of the sending
host. This frame can be reliably exchanged at the beginning of a connection
or when addresses change. Given that frames are encrypted, the ADD ADDR
frame does not su�er from both the security concerns of the Add Addr op-
tion in Multipath TCP [Ear13] and its unreliable delivery. Each advertised
address contains an Interface Type (indicating if the address correspond to,
e.g., a Wi-Fi or a cellular network) and an Address ID. Similarly, a reliable
REMOVE ADDR frame advertises the loss of a previously announced address
to the peer. This frame contains the Address ID of the removed address. No-
tice that in order to be idempotent, those frames need to be ordered, as a very
late ADD ADDR frame might arrive after a REMOVE ADDR one actually
scheduled after. Therefore, both ADD ADDR and REMOVE ADDR frames
contain an Address ID speci�c Sequence Number ordering the events con-
cerning that Address ID. In addition, Multipath gQUIC enables hosts to get a
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global view about the active paths’ performance thanks to the PATHS frame.
It contains the Path ID of the paths considered as active by the sending host
and statistics such as the estimated path round-trip-time. It can also com-
municate underperforming or broken paths and thus speed up the handover
process in mobility scenarios.

5.1.4 Packet Scheduling

As soon as several paths are active, a Multipath gQUIC sender needs to se-
lect over which path each packet will be transmitted. This selection is per-
formed by the packet scheduler. Previous works proposed and analyzed sev-
eral packets schedulers for Multipath TCP [Paa+14; OL15; Fer+16]. In Multi-
path gQUIC, our starting point is the default scheduler used by the Multi-
path TCP implementation in the Linux kernel [MPTCPlk]. Recall that it re-
lies on the smoothed measured round-trip-time (RTT) and prefers the path
with the lowest RTT provided that its congestion window is not already full.
Multipath gQUIC uses the same heuristic, but with two major di�erences.

First, while Multipath TCP has to decide which data — either new or rein-
jected — will be sent on which path, the Multipath gQUIC scheduler also
determines which control frames (ACK, MAX DATA, PATHS,...) will be in-
cluded in a given packet. Since frames are independent of the packets con-
taining them, they are not constrained to a particular path. Therefore, when a
packet is marked as lost, its frames are not necessarily retransmitted over the
same path. In comparison, Multipath TCP is forced to (re)transmit data in se-
quence over each path to cope with middleboxes. The retransmission strategy
is thus more �exible in Multipath QUIC than in Multipath TCP. Notice that a
sub-optimal scheduling of the MAX DATA frames might cause head-of-line
blocking. To prevent such receive bu�er limitations, the scheduler bundled
in our mp-quic implementation ensures proper delivery of the MAX DATA
frame by sending them on all paths when they are needed.

Second, when a new path starts in Multipath gQUIC, the host does not
have an estimation of the path’s RTT yet. A �rst solution would be to ping
the new path and wait one RTT to obtain this measurement, but Multipath
gQUIC would then lose its ability to directly send data on new paths. An-
other approach would be to use round-robin at the start of the connection
and automatically switch to the lowest latency path once RTT estimations
are available. However, this approach is fragile when paths exhibit very dif-
ferent delays and hosts could then possibly face head-of-line blocking. Our
implemented scheduler duplicates frames over paths when the path’s char-
acteristics are still unknown. While this induces some overhead, it enables
faster usage of the new paths without facing head-of-line issues.
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5.1.5 Congestion Control

To achieve a fair distribution of the network resources, transport protocols
rely on congestion control algorithms. Both single-path TCP— in the Linux
kernel — and gQUIC— in our base quic-go and the Chromium implemen-
tations — use CUBIC [HRX08]. Using CUBIC in a multipath protocol would
cause unfairness [Wis+11]. Several multipath congestion control schemes
have been proposed [Wis+11; Kha+12; Pen+16]. In our Multipath gQUIC im-
plementation, we integrate the OLIA congestion control scheme [Kha+12]
which provides good performance with Multipath TCP. The adaptation and
the comparison of other multipath congestion control schemes to Multipath
QUIC is left for further study.

5.1.6 Summary

Overall, our Multipath extensions to gQUIC are simpler and clearner than the
Multipath extensions to TCP [rfc6824], while keeping them as deployable as
possible. Thanks to the clean support for multiple data �ows by STREAM
frames, Multipath QUIC does not need to specify a new type of sequence
number, in constrast to Multipath TCP’s Data Sequence Number. Multipath
QUIC does not need to specify mechanisms to detect or react to middlebox in-
terference given that all the frames are encrypted and authenticated. This also
reduces the possibility of attacking a QUIC connection, compared to Multi-
path TCP whose security relies on keys exchanged in clear during the ini-
tial handshake [rfc6824]. Furthermore, thanks to the independence between
packets and frames, Multipath QUIC can spread multiple data streams over
several paths by design and the packet scheduling is potentially more pow-
erful than Multipath TCP’s one. Finally, the �exibility of QUIC allows us to
easily de�ne new types of frames to enhance the protocol.

5.2 Performance Evaluation of Multipath gQUIC

The are several approaches to evaluate the performance of a transport pro-
tocol. On the one hand, many TCP extensions have been evaluated by sim-
ulations before being deployed [FF96; Rad+11; Rai+12]. On the other hand,
the gQUIC designers deploy improvements on the Google servers and use the
collected statistics to tune the protocol [Lan+17]. In this Section, we rely on
measurements on the Mininet emulation platform [Han+12] with complete
(Multipath) gQUIC and (Multipath) TCP implementations, taking (Multipath)
TCP as the baseline. We �rst describe our methodology based on experi-
mental design [And12] (§5.2.1). After discussing some Mininet con�guration
details (§5.2.2), we then explore how transport protocols behave with bulk
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Low-BDP High-BDP
Factor Min. Max. Min. Max.

Capacity [Mbps] 1 50 1 50
Round-Trip-Time [ms] 0 50 0 400
Queuing Delay [ms] 0 100 0 2000

Random Loss [%] 0 2.5 0 2.5

Table 5.1: Experimental design parameters (inspired by Paasch et
al. [PKB13]). Notice that we limit the path’s bandwidth to 50 Mbps due to
the performance of the quic-go implementation.

transfers, either with large �les (§5.2.3) or short ones (§5.2.4). Finally, we as-
sess how multipath transport protocols handle network handover (§5.2.5).

5.2.1 Methodology

In this Section, we consider a multipath network with two multi-homed hosts
over disjoint paths with di�erent characteristics as shown in Figure 3.13 on
page 64. The performance of multipath protocols is a function of the links’
bandwidth, the round-trip-times, the presence of bu�erbloat (i.e., the queu-
ing delays) and the random packet losses. Instead of focusing on a few well-
chosen cases, we provide a fairer comparison of the multipath bene�ts by
leveraging an experimental design approach [And12] covering a wide range
of parameters. Multipath TCP already bene�ted of such evaluation methodol-
ogy [PKB13]. Our experimental design selects the values of these parameters
using the WSP algorithm [SCS12] over the ranges listed in Table 5.1. We
group our experiments into four classes.

� Low-BDP-no-loss: environments with a low bandwidth-delay prod-
uct and no random losses;

� Low-BDP-losses: environments with a low bandwidth-delay product
and random losses;

� High-BDP-no-loss: environments with a high bandwidth-delay prod-
uct and no random losses;

� High-BDP-losses: environments with a high bandwidth-delay prod-
uct and random losses.

For each class, we consider 253 network scenarios, i.e., 253 samples in our
parameter space. For each scenario, we vary the path used to start the con-
nection, leading to 506 experiments. Each experiment is repeated 9 times for
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each protocol — TCP, Multipath TCP, gQUIC, Multipath gQUIC— and we an-
alyze the median run. We use the Linux kernel version 4.1.39 patched with
Multipath TCP v0.91 as our baseline. Our Multipath gQUIC implementation,
based on the quic-go one written in Go language, implements the design
and the algorithms presented in Section 5.1. Experiments run in Virtual Ma-
chines (VMs) hosted on a server powered by a Intel Xeon E5540 @ 2.53 GHz.
Each VM has two dedicated cores and 4 GB of RAM.

To ensure a fair comparison given that QUIC uses encryption consuming
CPU on our emulation platform, our measurements use HTTPS over (Multi-
path) TCP (TLS 1.2 [RD08]) or (Multipath) gQUIC (QUIC crypto [QUIC-c]).
When using the single path protocols, we use the CUBIC congestion control.
Since there is no multipath variant of CUBIC, we use the OLIA congestion
control scheme with multipath versions of transport protocols. The maximal
receive window values are set to 16 MB for both TCP and QUIC.

5.2.2 Performing Accurate Experiments with Mininet

The Mininet emulation platform [Han+12] is a powerful tool enabling fast
network experiments. However, the speci�cation of the topology, and in par-
ticular the link characteristics, should be performed with care. Our exper-
iments aims at representing a network where the bottleneck link has the
speci�ed bandwidth with the router introducing queuing delay due to its
bu�er. The remaining of the network introduces propagation delay and pos-
sibly random losses. To introduce such link alterations, we rely on the tc
tool [Alm+99].

Nevertheless, Mininet hosts use di�erent network name spaces within
the same Linux kernel. Several researchers revealed interference leading to
unrealistic results when tc commands are directly attached to the sending
hosts [Frö17] or when requesting very small propagation delays [Leb17]. Fur-
thermore, the API o�ered by Mininet to specify the link characteristics gener-
ates questionable con�gurations. When requesting speci�c bandwidth, prop-
agation delay and bu�er size, Mininet sets up both htb and netem [Hem+05]
on the outgoing interface of the hosts attached to the con�gured link. This
setup can generate unexpected results when specifying small bu�er sizes. In-
deed, netem implements the link delay by keeping packets during a period
lasting latency in a bu�er of capacity limit. This means that in one �ow
direction, e.g., server to client one, there cannot be more than limit pack-
ets in-�ight in the network. To assess our intuition, we consider a loss-free
single-path network with a 50 Mbps link exhibiting a one-way delay of 20 ms
— 40 ms RTT — and set the limit of netem to only 30% of the bandwidth-
delay product (75 KB with 50 packets instead of 250 KB and 167 packets). We
run iperf [iPerf] in UDP mode to generate a constant-rate tra�c. When
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Figure 5.4: Our network topology in the Mininet platform, annotated with
the tra�c control operations. For clarity, we only show actions for the client
to server �ow (resp. the server to client �ow) on the upper path (resp. the
lower path).

generating a 50 Mbps tra�c, the network only achieves a throughput of 28.5
Mbps. This surprising result actually matches the netem behavior restricting
the usable bandwidth to 75KB/20ms = 3.75MB/s = 30Mbps. This �nding
shows that relying on the limit parameter of netem on a link to implement
a router’s bu�er is not appropriate.

Instead of using the Mininet defaults, we set up manually our tc com-
mands in our speci�c network topology illustrated in Figure 5.4. As suggested
by Frömmgen et al. [Frö17] we do not set any command on hosts’ interfaces.
To implement our router’s bu�er, we police the tra�c on the ingress interface
of the �rst switch to implement a First-In-First-Out queue. The policing com-
mand accepts the speci�ed link rate plus a burst size corresponding to the
router’s bu�er size. The exceeding packets are dropped. We then shape the
tra�c at the same rate as the policing on the outgoing interface of the �rst
switch. Finally, we set the netem command applying link delays and random
losses on the outgoing interface of the second switch. Since the tra�c was
previously shaped, the limit parameter of the netem command can be set
to the bandwidth-delay product, but in practice we set a much higher value
to avoid interference. With our setup to reproduce the previously considered
scenario, we achieve a throughput of 49 Mbps with UDP packets and observe
with TCP tra�c a latency variation matching the queue size. These results
convince us about our proposed emulation methodology.

5.2.3 Large File Download

Our �rst explored tra�c pattern is the download of a 20 MB �le over a single
stream. Here, a multi-homed host wants to minimize the download time and
thus maximize the bandwidth aggregation of the available paths. The client
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Figure 5.5: gQUIC tends to be slightly faster thanTCP. On average, Multipath
gQUIC and Multipath TCP exhibit similar performance.

measures the delay between the transmission of the �rst connection packet
and the reception of the last byte of the �le.

Low-BDP-no-loss: Both Protocols Achieve Similar Performance

Our �rst metric is the ratio between the delay to receive the �le with TCP
and the time required using gQUIC. If the ratio equals 1, both protocols are
equivalent. If the ratio is larger than 1, TCP is slower than gQUIC. Figure 5.5
provides the Cumulative Distribution Function (CDF) of this ratio over all
considered experiments with a low bandwidth-delay product and no random
losses. Notice that packet losses due to router bu�er over�ow can still oc-
cur in these environments. When a single path is used, we do not observe
much di�erence between TCP and gQUIC. This is expected since in this sit-
uation, the congestion control is the main in�uencing factor, and both use
CUBIC. Notice that for some runs, there is a little advantage for gQUIC. This
is because gQUIC tunes the CUBIC congestion control algorithm to emulate
the gQUIC connection as two TCP ones. Such behavior was motivated by
Google’s YouTube use case that carries both audio and video data streams
over a single connection. In practice, when a loss occurs due to router’s bu�er
over�ow, the TCP’s CUBIC multiplies its congestion window by 0.7, while the
gQUIC’s factor is (2 − 1 + 0.7)/2 = 0.85.

When using multiple paths, both gQUIC and TCP achieve similar per-
formance. This is expected as both protocols operate in bu�erbloat-free net-
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works and the few lost packets can be easily recovered by fast retransmis-
sions. Since our experimental design aims at representing all possible cases
within our parameter space, we expect to face quite extreme scenarios. Never-
theless, the performance gap between Multipath TCP and Multipath gQUIC
in these outliers remains limited. In particular, we identify one case where
Multipath TCP performs 25 % better than Multipath gQUIC and another one
where Multipath gQUIC is 2× faster than Multipath TCP.

Experimental Aggregation Bene�t

The completion time ratio between protocols only shows whether (Multipath)
gQUIC performs better or worse than (Multipath) TCP for a given experiment.
To better assess the bene�ts of multipath protocols over single-path ones for
speci�c scenarios, we propose a modi�cation of the aggregation bene�t met-
ric [Kas12; PKB13]. Instead of comparing the measured goodput with the sum
of the link bandwidths, our experimental aggregation bene�t (EABen) com-
pares the sum of the goodputs achieved by single-path protocols over each of
both links with the goodput of the multipath variant. Let C be a multipath
aggregation experience with n paths. G

i

s
is the mean goodput achieved by

a single-path connection on path i. G
max

s
is the maximum single-path mean

goodput measured over the n paths. Given Gm the mean goodput achieved
by a multipath protocol over a given experiment C, the experimental aggre-
gation bene�t EABen(C) is de�ned by

EABen(C) =

{
Gm−G

max

s

(∑n

i=1 G
i

s
)−G

max

s

if Gm ≥ G
max

s
,

Gm−G
max

s

G
max

s

otherwise.
(5.1)

An EABen of 0 indicates that a multipath protocol achieves the same perfor-
mance as the single-path variant over the best path. If multipath achieves a
mean goodput equal to the sum of the mean goodputs over all paths, then the
experimental aggregation bene�t equals 1. A value of -1 for the EABen indi-
cates that the multipath protocol failed to transfer data. Because we rely on
experimental values, the EABen can be greater than 1 when the performance
of multipath protocols is better than the sum of the performances of the sin-
gle path variants over each path, i.e., EABen ∈ [−1;+∞[. In this Section, we
compare Multipath gQUIC with single-path gQUIC and Multipath TCP with
single-path TCP.

Low-BDP-no-loss: Multipath Is Bene�cial to Both Protocols

Research on Multipath TCP has shown that its performance was impacted by
the characteristics of the initial path [Arz+14]. We thus split the results into
two categories depending on whether the connection is created on the best



106 Chapter 5. Multipath gQUIC

MPTCP vs. TCP MPQUIC vs. QUIC

Protocol

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
E

x
p

e
r
i
m

e
n

t
a
l

A
g
g
r
e
g
a
t
i
o
n

B
e
n

e
f
i
t

Best path first Worst path first

Figure 5.6: In Low-BDP scenarios without random losses, using several paths
is more bene�cial to gQUIC than to TCP.

or the worst performing path from an experimental viewpoint. Figure 5.6
shows the experimental aggregation bene�t over the 253 Low-BDP scenarios
without random losses. Our measurements show that the multipath capa-
bility bene�ts to both TCP and gQUIC. Indeed, independently of the initial
path, both Multipath TCP and Multipath gQUIC achieve a positive experi-
mental aggregation bene�t in respectively 91% and 88.5% of our scenarios.
The Multipath TCP results stay in-line with the previous �ndings of Paasch
et al. [PKB13]. For the Multipath gQUIC ones, this is encouraging since ex-
cept the duplication of the initial congestion window, there is no built-in spe-
ci�c optimization such as the Opportunistic Retransmission and Penalization
(ORP) [Rai+12] mechanism of Multipath TCP.

Low-BDP-losses: (Multipath) gQUIC Outperforms (Multipath) TCP

Random losses — such as those that occur on wireless links — a�ect the per-
formance of reliable transport protocols. We now analyze the experiments
in Low-BDP environments with such losses. As mentioned in Table 5.1, we
consider random losses of up to 2.5%. This range �ts in the retransmission
rates experienced by Google’s deployment [Lan+17]. Figure 5.7 shows that
in those scenarios, (Multipath) gQUIC performs better than (Multipath) TCP.
(Multipath) gQUIC overall better handles losses than (Multipath) TCP thanks
to its ACK frames that can acknowledge up to 256 packets number ranges.
This is much larger than the 2-3 blocks than can be acknowledged with the
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Figure 5.7: In Low-BDP scenarios, (Multipath) gQUIC reacts faster than (Mul-
tipath) TCP to random losses.

SACK TCP option depending on the space consumed by the other TCP op-
tions. Therefore, early retransmits are more e�ective in gQUIC and it su�ers
less from head-of-line blocking.

Low-BDP-losses: Multipath Is Still Bene�cial to gQUIC

Figure 5.8 shows that using multiple paths can still reduce download times
compared to single-path over the best path. Regardless of the initial path char-
acteristics, Multipath gQUIC (resp. Multipath TCP) achieves better goodput
than the best single-path variant in 63% (resp. 29%) of our considered scenar-
ios. Again, the packet scheduling is much less a�ected by random losses given
gQUIC’s round-trip-time estimation. Furthermore, the content of a packet
marked as lost is not automatically retransmitted by Multipath gQUIC on the
same path, unlike Multipath TCP. Also, if the content is delivered over an-
other path, Multipath gQUIC does not need to eventually deliver again the
packet over the original path — addressing Multipath TCP’s goal that each
path behaves like a regular TCP �ow. When a packet is lost, the OLIA con-
gestion control scheme reduces the sending window over the a�ected path.
The loss detection mechanisms can enable Multipath gQUIC to take advan-
tage of multiple paths, even if they are lossy.
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Figure 5.8: Multipath can be still advantageous for gQUIC in lossy environ-
ment, though the measured goodput varies more.
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Figure 5.9: Without random losses, we observe the same trend of ratio com-
pletion time in High-BDP environments as Low-BDP ones.
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Figure 5.10: Multipath gQUIC can remain advantageous for long transfers in
High-BDP environments.

High-BDP-no-loss: Multipath Protocols Still PerformWell

When the network does not exhibit random losses, Figure 5.9 con�rms that
the trend about download completion times in Low-BDP environments is also
present in High-BDP ones. The explanation about the single-path protocol
is similar. However, we observe that Multipath gQUIC outperforms Multi-
path TCP in 90% of the experiments, with the median run showing a ratio of
1.175. In addition, the experimental aggregation bene�ts of multipath proto-
cols decrease while staying most of the time positive, as shown in Figure 5.10.
When choosing the less performing path, multipath is bene�cial in 73% of the
scenarios with gQUIC, while this percentage reaches 67% with TCP. In such
networks, Multipath TCP su�ers from the capture e�ect of the initial sub�ow
and most of the bytes are carried by this path. Indeed, due to the additional
path establishment delay, the initial path has more time to grow its congestion
window. In comparison, Multipath gQUIC starts using both paths at the same
time and achieves a better load balancing across them. Because all paths can
start sending data once the connection is established, congestion windows
evolve more fairly. Besides the capture e�ect and despite the large size of the
�le, the impact of the connection handshake latency is sometimes visible.
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Figure 5.11: gQUIC performs better than TCP in High-BDP environments
when there are random losses.

High-BDP-losses: (Multipath) gQUIC Better Copes with Losses

When adding random losses in High-BDP networks, (Multipath) gQUIC still
outperforms (Multipath) TCP as shown in Figure 5.11. Based on the previous
insights provided by Low-BDP-losses and High-BDP-no-loss experiments,
this result is expected. The better loss signaling, more precise latency esti-
mation, the higher scheduling �exibility and the fairness in the evolution of
the paths’ congestion window with (Multipath) gQUIC explain this outcome.

Despite those mechanisms, Figure 5.12 indicates that the usage of multiple
paths is bene�cial to gQUIC in only 41% of the studied scenarios (Multipath
TCP being advantageous in 9% of the cases). In such networks, it might be
relevant to explore non loss-based congestion control schemes and to take
into account the loss rate in the packet scheduling.

Explaining the CoNEXT Results: Huge Bu�ers

The perceptive reader would note that the results presented in this Section
di�ers from the ones presented in our CoNEXT 2017 paper. The cause of
these dissimilarities comes from a network miscon�guration from our side.
Link characteristics were set using tbf and netem. Instead of specifying
the bu�er size by setting the limit parameter of netem, we relied on the
latency one of tbf. Without setting its limit parameter, netem implicitly
allocates a bu�er of 1000 packets. With such large values, there is no packet
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Figure 5.12: In the extreme lossy High-BDP networks, there is room for im-
provement for both Multipath gQUIC and Multipath TCP.

loss as the tra�c is previously shaped. This makes connections su�er from
severe bu�erbloat.

Therefore, our previous "Low-BDP" environments actually backed huge
bu�ers with quite small propagation delays (up to 50 ms RTT). Figure 5.13
shows that in such loss-free conditions, the performance of single-path
gQUIC and TCP protocols are similar. As they both rely on the CUBIC con-
gestion control, their sending windows increase exponentially at the same
rate, achieving the same results.

However, when using multiple paths in such situations, gQUIC outper-
forms TCP in 86.5% of the considered experiments. To explain this di�erence
and quantify the impact of each of the factors, we consider the median expe-
rience with a MPTCP / MPQUIC completion time ratio of 1.28. The studied
scenario consists in an initial path showing a RTT of 27.6 ms, a queue size of
39 ms and a bandwidth of 13.06 Mbps, while the additional one has a RTT of
44 ms, a queue size of 98 ms and a bandwidth of 6.42 Mbps. In such a network,
Multipath gQUIC completes in 9.03 s, while Multipath TCP takes 11.6 s.

This result is mainly due to the receive window increase. Except at con-
nection beginning, we notice that the Multipath gQUIC transfer is never
blocked by the receive window. In comparison, the Multipath TCP connec-
tion faces idle times taking together a few seconds due to receive bu�er limita-
tions. Especially during the beginning of the transfer, the reordering between
both paths exceeds the receive window, leading to head-of-line blocking. Un-
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Figure 5.13: With huge bu�ers preventing packet losses, gQUIC and TCP
exhibit similar performance. On average, Multipath gQUIC tends to be faster
than Multipath TCP.

der those conditions, Multipath TCP uses the Opportunistic Retransmission
and Penalization (ORP) [Rai+12] mechanism that also leads to retransmis-
sions of packets from the slow path over the fast one, limiting the overall
goodput. Indeed, the (Multipath) TCP receive bu�er autotuning present in
the Linux kernel relies on the estimated network RTT [Rai+12]. However, it
often increases too slowly regarding the experienced reordering. In compar-
ison, (Multipath) gQUIC updates its receive window by increments commu-
nicated by MAX DATA frames sent on all available paths. Its initial value is
32 KB. If the receiver consumes half of this increment, it sends a MAX DATA
frame increasing the receive window. In addition, if two MAX DATA frames
are scheduled within 2 estimated smoothed RTTs, the increment is doubled.
With this strategy, in our considered scenario , Multipath gQUIC reaches a
stable receive window of 2048 KB + (2048 KB + 1024 KB)/2 = 3584 KB af-
ter carrying 2.5 MB. In comparison, Multipath TCP uses a receive window of
2.3 MB after exchanging 4.6 MB. The TCP’s automatic bu�er tuning increases
with the estimated round-trip-time, however this estimation grows too slowly
compared to the actual experienced latency. To con�rm our intuition in such
pathological networks, we run again the experiment with Multipath TCP and
force its receive window to its maximal value of 16 MB at connection initia-
tion. In such conditions, the transfer completes in 10.4 s with a completion
ratio of 1.15 compared to Multipath gQUIC. This result con�rms the non-
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Figure 5.14: For small transfers, gQUIC is faster than TCP thanks to its
shorter handshake.

negligible impact of the receive window autotuning on multipath protocols.

5.2.4 Short File Download

While large transfers are useful to illustrate the bandwidth aggregation ca-
pability of multipath transfers, they are not representative of all the possible
tra�c patterns on the Internet. For instance, Google reported that a single re-
quest in its search engine generates an average response of 100 KB [Lan+17].
We now focus on the download of a 256 KB �le over a single stream in Low-
BDP-no-loss environments.

(Multipath) gQUIC outperforms (Multipath) TCP

Figure 5.14 shows that single-path gQUIC outperforms HTTPS over TCP.
For short transfers, the connection establishment is a non-negligible frac-
tion of the total transfer time. With gQUIC, the secure handshake provided
by the QUIC Crypto consumes a single round-trip-time. With TLS 1.2 with
TCP, the three-way handshake combined to the TLS one consume together
three round-trip-times. This delay could be reduced by using the recent TLS
1.3 [rfc8446] and the TCP Fast Open extension [Rad+11].
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Figure 5.15: For small transfers, gQUIC should remain single-path with het-
erogeneous paths.

Multipath is not useful for short bulk transfers

As highlighted by Figure 5.14, Multipath gQUIC outperforms Multipath TCP
in most of the situations. However, using a multipath protocol with a band-
width aggregation objective is not really desirable for short transfers, as illus-
trated in Figure 5.15. When the connection is initiated on the best performing
network, using multiple paths can bring some bene�ts, as suggested by pre-
vious results [Den+14]. However, performance mainly depends on the con-
nection handshake latency and the data transfer might be over before taking
full advantage of the multipath opportunities. In addition, Multipath gQUIC
can sometimes face head-of-line blocking due to its fast usage of both paths,
as it may send some last data on the less performing path. Notice that the us-
age of multiple paths might be relevant for short transfers when facing lossy
network paths. In such cases, the scheduling algorithm should adapt to the
case it performs.

5.2.5 Network Handover

We now consider a speci�c situation that involves a request/response traf-
�c over a single connection and where the initial path becomes completely
lossy after some time. This can correspond to a smartphone initially both con-
nected to a bad Wi-Fi network and a good cellular one. Recall from Chapters 2
and 3 that such situation is one of the main motivations for adding Multipath
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Figure 5.16: Multipath gQUIC is able to performnetwork handover by design
while achieving lower application latency than Multipath TCP.

TCP on smartphones [CSP17]. We emulate this case by focusing on a spe-
ci�c network scenario where the initial path has a lower latency (15 ms RTT)
than the additional one (25 ms RTT). The client sends 750-byte long requests
every 400 ms and the server immediately replies to these requests with 750-
byte responses. The client computes the application perceived delay between
sending the request and getting the response. Initially, paths are loss-free.
After 3 seconds, the initial path becomes completely lossy without notifying
the OS (using tc netem loss 100%).

Before exploring Multipath gQUIC, let us �rst explain how Multipath TCP
achieves network handover. Figure 5.16 shows that initially, both hosts use
the initial path as it exhibits a lower latency than the other one. Since the loss
event occurs after an answered request, the client is the �rst to notice the
network failure. In practice, the Multipath TCP implementation in the Linux
kernel considers a path as potentially failed when it experiences a RTO with-
out observing any network activity since last packet transmission [Pin15].
The a�ected path remains in this state until data is acknowledged on this
path. The default packet scheduler temporarily ignores potentially failed
paths. This enables it to quickly decide to use another path when severe losses
a�ect a particular path. Hence, after facing a RTO, the client reinjects the re-
quest over the slow but functional path. However, when the remote host
receives the data that has been reinjected over the second path, it does not
know that a previous copy was sent unsuccessfully over the �rst path. It just
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follows its scheduling strategy preferring the lowest latency path, which re-
mains the initial path from the server perspective. Therefore, it �rst sends
the response over the initial lossy path, experiences a RTO marking the �rst
path as a potentially failed one and then reinjects it over the additional path.
This recovery time could be long for interactive applications. In our speci�c
scenario, our client measures a maximum application delay of 750 ms when
using Multipath TCP.

In comparison, Multipath gQUIC prevents the RTO at server side and
achieves a maximum application delay of 288 ms. The Multipath gQUIC client
still experiences an RTO when sending the �rst request after the initial path
became lossy. However, instead of simply retransmitting the lost STREAM
frame, the client host also includes in the packet a PATHS frame indicating
that the initial path is potentially failed. When the server receives that frame,
it can then directly mark the initial path as unusable and send back the re-
sponse to the client, continuing the connection on the functional path. Notice
that such approach could be applied to Multipath TCP too. Nevertheless, car-
rying such message requires the de�nition of a new clear-text Multipath TCP
option which, unlike QUIC frames, is vulnerable to middlebox interference.

5.3 Real Network Comparison using MultipathTester

In this Section, we extend our performance analysis with real wireless en-
vironment. In practice, we leverage our MultipathTester iOS application
presented in Section 2.3 to bundle our mp-quic implementation and compare
Multipath gQUIC with the iOS one of Multipath TCP. We �rst describe the
adaptation we made to our application to include Multipath gQUIC (§5.3.1).
We then investigate the performance of Multipath gQUIC under stable net-
work runs (§5.3.2). Finally, we compare the behavior of Multipath gQUIC
with iOS Multipath TCP when running our mobile experiments (§5.3.3).

5.3.1 Adapting MultipathTester

Our MultipathTester application integrates supports for both Multipath
gQUIC and Multipath TCP from day one. Hence, all the design elements pre-
sented in Section 2.3.1 still apply. We only describe here the speci�c aspects
of Multipath gQUIC.

Streaming Tra�c Pattern. Considering the streaming tra�c pattern pre-
sented in §2.3.1.1, its implementation di�ers between Multipath TCP and
Multipath gQUIC. Recall that with Multipath TCP, two independent connec-
tions are used to prevent head-of-line blocking when a lost response blocks
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the delivery of the next request. As (Multipath) QUIC supports stream mul-
tiplexing, we employ a single connection that carries two independent data
streams.

Mobile Mode. When launching the mobile mode, we simultaneously eval-
uate both Multipath TCP and Multipath QUIC, meaning that they compete
for the network interfaces. However, due to the low tra�c volume generated
by the streaming tra�c pattern — 40 KB/s uplink and 40 KB/s downlink — we
believe that the impact on the observed delays should be negligible. Further-
more, running them simultaneously enables us to evaluate protocols using
the same network conditions due to device mobility.

Collecting Multipath QUIC Internal States. Our Multipath gQUIC im-
plementation itself logs its internal variables in a �le using a dedicated thread.
Its content, updated every 100 ms, includes path congestion window and
smoothed estimated round-trip-time. These data are then sent to the collect
server.

Multipath QUIC Infrastructure. On both smartphone and test servers,
we use our mp-quic implementation to serve (Multipath) QUIC. Recall that this
version is based on an old gQUIC version using a di�erent network format
than iQUIC. However, except for the gQUIC connectivity, we do not expect
much di�erence with iQUIC in terms of (multipath) performances.

Multipath QUIC Path Management and Packet Scheduling. To avoid
being unfair with regard to Multipath TCP, we con�gure the Multipath QUIC
scheduler such as it also advertises all cellular paths as backup ones. To do
so, we take a free bit in the ADD ADDR frame to indicate if the advertised
address — along with its Address ID — is a backup one or not. The peer is
then aware that a path is backup one, either if the remote source address is
marked as such or if a received PATHS frame indicates that the path uses a
backup Address ID. This prevents QUIC from using the cellular path directly.
If the smartphone notices RTO on the Wi-Fi path or some data being in-�ight
for more than 600 ms, it starts using the cellular path.

5.3.2 Stable Network Runs

In this section, we brie�y describe some interesting results obtained during
stable network tests. We �rst provide single-path �ndings and then expand
on multipath ones.
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Figure 5.17: In America, we observe that IPv6 o�ers better results than IPv4
under our bulk tra�c pattern, probably due to NAT64.

IPv6 Connectivity. Proportionally, the American server observes the
largest proportion of IPv6 compatible hosts, with 65% of smartphones having
an IPv6 address. In comparison, the European one only observes 43% of the
devices with IPv6 addresses, and on the Asian one, this number drops to 29%.
However, we also observe that having an IPv6 address does not guarantee
QUIC connectivity using IPv6. On the European server, if we select the de-
vices having both IPv4 and IPv6 addresses, we observe a gQUIC connectivity
success rate of 89% using IPv4, but this rate decreases to 58% over IPv6. When
digging into the tests where the IPv4 gQUIC handshake succeeded but not the
IPv6 one, we notice two kinds of equally balanced errors. The �rst one is sim-
ply the IPv6 gQUIC handshake that timeouts. Most of the times, this happens
when IPv6 is provided by the Wi-Fi network. Indeed, this issue arose in 12
di�erent Wi-Fi networks, while only 2 distinct cellular ones su�ered from
such timeouts. The second error cause is the gQUIC client that encounters a
"no route to host" error while trying to send a packet to an IPv6 address. This
typically occurs when the smartphone selects the Wi-Fi network as its de-
fault interface while it only provides IPv4 connectivity, even though an IPv6
address is allocated on the cellular interface. Such routing issue is probably
due to a bad interaction between iOS and the gQUIC implementation.

Performance of QUIC Using IPv4 vs. IPv6. When QUIC is usable over
both IPv4 and IPv6, we do not observe much di�erence in terms of perfor-
mance using the di�erent tra�c patterns on the European server. However,
on the American one, we see better results with IPv6 than with IPv4. For
instance, Figure 5.17 provides the ratio of the download completion times of
a 10MB �le between gQUIC IPv4 and gQUIC IPv6. In 75% of the measure-
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ments, using IPv6 leads to shorter completion times than using IPv4. Consid-
ering the same test set and looking at the streaming tra�c pattern, we observe
lower maximum experienced delays with gQUIC IPv6 than with gQUIC IPv4.
This might be related to the high deployment of IPv6 in American networks,
where the IPv4 connectivity is provided by NAT64. Other studies [Dha+12]
have shown that IPv6 was faster than IPv4 in mobile networks.

Usage of gQUIC on Uno�cial Ports. QUIC usually runs on port 443,
but some middleboxes might expect other protocols such as DTLS on this
port and could interfere with QUIC [Lan+17]. To detect the presence of such
middleboxes, we also run our ping tra�c with gQUIC on the non-standard
port 6121 to observe if it experiences connectivity issues. Globally, we do not
observe much di�erence between ports 6121 and 443.

Performance of Multipath gQUIC vs. Multipath TCP. When the
smartphone can use both Multipath TCP and Multipath gQUIC, we observe
similar performance for each protocol with our di�erent tra�c patterns. This
is expected as we applied the same scheduling strategy preferring the Wi-Fi
network with both protocols. However, especially with the iperf tra�c pat-
tern, we notice that when the network o�ers a large upload bandwidth, i.e.,
over 50 Mbps, Multipath TCP achieves a much higher throughput than Mul-
tipath QUIC. This is probably related to the implementation overhead. Multi-
path TCP in the Darwin kernel is much more optimized than the gomobile
framework making the link between Swift code and the user-space mp-quic
implementation written in Go.

A Note About the Extreme Multipath TCP Streaming Run In the
light of the Multipath gQUIC run, we reconsider the Multipath TCP extreme
streaming runs facing a maximum upload delay of 5.5 s shown in Figure 2.11.
The Multipath gQUIC run take place 35 s before the Multipath TCP one, also
without having Internet connectivity over the Wi-Fi network. Still, the max-
imum observed application delay was 51 ms, which is very di�erent from
the 5.5 s with Multipath TCP. This shows that smartphones might experience
very di�erent network conditions within a short period, even without user
mobility.

In Real Networks, Path Validation Is Required. When performing our
experiments, we identi�ed a design issue a�ecting gQUIC, and therefore
Multipath gQUIC. Recall that in gQUIC, there is no particular mechanism
to assess whether a path is really working. This allows Multipath gQUIC to
directly use new addresses when communicated. However, such approach is
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Figure 5.18: The performance of both protocols mainly depends on the net-
work conditions.

unsafe when networks are either asymmetrical or subject to middlebox inter-
ference. We faced this last case with a smartphone connected to a dual-stack
Wi-Fi network. While Multipath TCP managed to download a 10 MB �le
in about 5 seconds, Multipath gQUIC needed more than 10 minutes to com-
plete the transfer. Digging in this particular run, the connection began with
IPv4 addresses. Then, the client started to send packets over IPv6 ones. The
network lets those IPv6 packets �ow from client to server, but it — probably
a �rewall — dropped all the IPv6 packets towards the client. Such situation
made the server crazy, as it received packets containing mostly control frames
on the IPv6 path (so the path seemed to work), but none of its sent data was
acknowledged. To address this case, we adapted Multipath gQUIC hosts to
consider a path as usable only if it receives acknowledgments for previous
packets. If a host has nothing useful to send, we trigger a PING frame on the
required path. We limit the sending rate of a non-validated path to an initial
congestion window. With such adaptation, our mp-quic manages to achieve
similar performance as Multipath TCP for our 10 MB download.

5.3.3 Mobile Experiments

With the built-in support of Multipath TCP in iOS and Multipath QUIC pro-
vided by our application, MultipathTester can compare how both protocols
handle network handovers when the user moves. Here, we study a subset of
the collected dataset where both protocols were usable. This dataset contains
104 experiments, involving 40 cellular networks and 61 Wi-Fi ones.
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To compare their performance, we consider the maximum delay experi-
enced by each of the protocols over the same run. We then compute for each
mobile test the ratio between the maximum delay of Multipath TCP and Mul-
tipath QUIC. Figure 5.18a shows that when Multipath QUIC uses the same
scheduling strategy as Multipath TCP, we do not observe a clear trend in fa-
vor of one protocol over the other. Each of them tends to start using the
cellular interface at the same time. In addition, Fig. 5.18b indicates that for
a given test run, we can observe very di�erent experienced maximum de-
lays between Multipath TCP and Multipath QUIC. This result is both surpris-
ing and encouraging. Although Multipath TCP is included in iOS11, it does
not seem to detect handovers better than our application. This indicates that
smartphone applications that will include Multipath QUIC in the future could
reach similar handover e�ciencies as Multipath TCP.

Yet, Multipath QUIC avoids some of the issues that Multipath TCP en-
counters. Recall the case described in §2.3.4 where some sub�ows are not
established, probably due to middlebox interference with the clear-text Multi-
path TCP options. Because it is encrypted, Multipath QUIC does not su�er
from these issues, leading to much lower application delays.

5.4 Related Works

Before our Multipath gQUIC contribution, few scienti�c articles have ana-
lyzed QUIC or its performance. Megyesi et al. compare QUIC, SPDY and
HTTP [MKM16]. They analyze page load times and report that each proto-
col has some advantages over the others in some environments. Carlucci
et al. performed a similar study with HTTP/1.1. and a earlier version of
gQUIC [CDM15]. Langley et al. reported gQUIC represents more than 30%
of the egress tra�c at Google, a large fraction being induced by mobile de-
vices [Lan+17]. Kakhki et al. [Kak+17] identi�ed some performance issues
with the Chromium implementation of gQUIC.

Our Multipath gQUIC work attracted interest from other researchers.
Viernickel et al. [Vie+18] concurrently developed a Multipath gQUIC pro-
totype atop the quic-go implementation. They focus on speci�c scenar-
ios and con�rm most of the �ndings presented in this Chapter. Rabitsch et
al. [RHB18] leverage our mp-quic implementation to develop a stream-aware
scheduler based on a previously proposed Multipath TCP scheduler [Lim+17].

5.5 Conclusion

Multipath capabilities are important for smartphone and dual-stack hosts.
In this Chapter, we proposed extensions to the gQUIC that enable this new
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protocol to use several paths simultaneously. Our extensions remain sim-
ple thanks to gQUIC’s �exible design. We implemented Multipath gQUIC in
the open-source quic-go implementation in Go. We evaluated its perfor-
mance over more than a thousand Mininet scenarios covering a wide range
of parameters. We showed that in lossless environments, the performance
of Multipath TCP and Multipath gQUIC are comparable. When losses are
present, we pointed out that the usage of multiple paths is gQUIC remains
bene�cial, while this multipath capability is less advantageous for TCP. Then,
we extended our analysis to actual wireless networks by leveraging our iOS
MultipathTester application. We showed that Multipath gQUIC works in
real networks, and when using the same multipath algorithms, it achieves
results similar to Multipath TCP ones.

Still, QUIC is a very changing protocol and the current iQUIC version
is now very di�erent from the base gQUIC one. In addition, our in-the-
wild measurements revealed some gQUIC design issues a�ecting Multipath
gQUIC. With our gained knowledge, we address those concerns in Chapter 6.



Rethinking the Multipath
Extensions for iQUIC 6
Throughout the realization of this thesis, the QUIC protocol was in constant
evolution. During the IETF standardization process and considering the im-
plementations’ experience, it gradually gained in complexity. Its speci�cation
is split into several documents. Their contents contain keywords de�ning a
speci�c behavior that a protocol implementation must follow. The main doc-
ument about the transport features of QUIC initially contained 44 pages and
less than 100 keywords (gQUIC, or iQUIC version 00). Now, the same docu-
ment spans 139 pages (without appendices) mentioning 380 keywords (iQUIC
version 24).

Because the base QUIC protocol changed, the design of its Multipath ex-
tensions was also a�ected. However, Multipath gQUIC su�ers from many
design issues coming from gQUIC itself that we �rst discuss (§6.1). The cur-
rent iQUIC version �xes them, and based on our gained experience, we revisit
the design of our Multipath extensions (§6.2). Multipath iQUIC leverages the
current architecture to revisit how a multipath transport protocol can bene�t
from network asymmetries (§6.3). We also present a resilient connection es-
tablishment strategy to make Multipath iQUIC less a�ected by the initial net-
work path choice (§6.4). We �nally conclude with the lessons learned (§6.5).

6.1 Design Issues A�ecting Multipath gQUIC

The initial version of our Multipath extensions described in Chapter 5 raises
several major concerns that are critical for possible IETF standardization. In
particular, Multipath gQUIC does not check that new paths are actually us-
able (§6.1.1), is vulnerable to pervasive monitoring (§6.1.2), poses technical
challenges due to the utilization of the gQUIC Connection ID (§6.1.3) and
does not enable hosts to control the number of paths used (§6.1.4).

6.1.1 Absence of Path Validation

Recall from Section 4.6 that gQUIC does not perform any particular operation
when it observes a change in the 4-tuple used by a connection. Our in-the-
wild experiments described in Section 5.3.2 con�rm that this missing feature
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is detrimental to Multipath gQUIC. We adapted our mp-quic implementation
to consider a path as usable only if it received acknowledgments at some
point. However, this approach is a quick �x. To reach a wide adoption, the
Multipath extensions should embed a clean solution in the protocol itself.

6.1.2 Correlating Multipath Tra�c

In the gQUIC design, the packet number is put in the clear-text packet header.
Multipath gQUIC does the same with the Path ID to inform middleboxes that
observing decreasing packet numbers is expected. Nevertheless, it also ex-
poses the connections to passive path correlation. An attacker can easily �g-
ure out that two di�erent IP addresses actually belong to the same host. As
iQUIC focuses on mitigating pervasive monitoring [rfc7258], its Multipath
extensions should not introduce new privacy concerns.

6.1.3 Immutable Symmetric Connection ID

In addition to the privacy concerns, a �xed symmetric Connection ID also
causes at least three technical issues. First, since the Connection ID is chosen
by the client, a server might experience several concurrent gQUIC connec-
tions using the same identi�er. Second, it makes it di�cult to move a gQUIC
�ow from one host to another one, e.g., to migrate a client to a closer server
than the current one. Third, Multipath gQUIC relies on the assumption that
network paths are bidirectional, hence sustaining packet delivery in both di-
rections. However, our experience reveals that actual networks do not always
let packets go through in both directions.

6.1.4 Uncontrolled Path Management

Multipath gQUIC hosts can initiate new bidirectional paths at any time with-
out requiring the peer’s consent. Creating a new path is as simple as sending
a packet carrying a new Path ID. Nevertheless, this approach does not allow
a host to restrict the number of paths over a given connection. For instance, a
peer may not want to allocate too many resources to support a high number of
concurrent paths. A malicious client could also perform a Denial-of-Service
attack by requesting the usage of a huge number of paths. Note that although
Multipath TCP relies on a 4-way handshake to fully establish additional sub-
�ows, it does not embed a protocol mechanism to indicate the desired number
of paths over a connection.
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Figure 6.1: Architectural view of Multipath iQUIC with a connection having
two sending uni�ows and three receiving uni�ows.

6.2 Multipath Extensions for iQUIC

We now present our Multipath extensions updated to iQUIC addressing the
concerns described in the previous Section. Compared to Multipath gQUIC,
"paths" are actually unidirectional �ows — called uni�ows — and their pack-
ets are identi�ed using the Connection ID (§6.2.1). Such an approach allows
QUIC hosts to keep the number of uni�ows used by the peer under con-
trol (§6.2.2). The Multipath extensions are negotiated at connection estab-
lishment (§6.2.3). Data and control frames can then be spread over multiple
network paths (§6.2.4). A Multipath iQUIC host can also advertise its map-
ping between local IP addresses and uni�ows to its peer (§6.2.5). Nonetheless,
this path asymmetry impacts the uni�ow latency estimation (§6.2.6) and re-
quires some adaptation of the hosts’ algorithms, such as the packet scheduler
(§6.2.7). Still, Multipath iQUIC addresses the main concerns raised by Multi-
path gQUIC (§6.2.8).

6.2.1 Identifying Unidirectional Flows with Connection IDs

Similar to Multipath TCP, Multipath gQUIC considers a path as a bidirectional
channel where each direction exhibits similar path characteristics. However,
network links such as ADSL do not provide the same bandwidth in each di-
rection and the One-Way-Delay (OWD) often di�ers between the forward
and the reverse directions on the Internet [Pat+08]. Multipath iQUIC breaks
the symmetric assumption and leverages the asymmetric Connection IDs to
integrate unidirectional paths called uni�ow. In other words, packets belong-
ing to a given connection’s uni�ow exhibit the same Destination Connection
ID in their headers1. We refer to this speci�c Connection ID as the Uni�ow

1The QUIC expert would — rightly — say that all packets �owing over a given uni�ow do
not necessarily share the same Destination Connection ID, as it can be updated with NEW
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Frame Type Uniflow ID Sequence Number

Retire Prior To Length (1 byte)

Connection ID (Length bytes)

Stateless Reset Token (16 bytes)

Figure 6.2: Multipath version of the NEW CONNECTION ID frame. The vi-
sual size of �elds does not re�ect their actual length, annotated to each �eld.
Non annotated �elds are variable-length integers.

Connection ID (UCID). We distinguish two kinds of uni�ows, as illustrated in
Figure 6.1. On the one hand, the sending uni�ow can transmit packets to the
remote host by including the corresponding Uni�ow Connection ID in the
headers. On the other hand, the receiving uni�ow collects incoming packing
carrying the related Uni�ow Connection ID in their headers. Notice that each
uni�ow has its internal Uni�ow ID.

This notion of uni�ow is seamlessly included in single-path iQUIC. Each
packets’ �ow uses a di�erent Connection ID in the header. Each host sees a
speci�c 4-tuple (IPsrc, IPdst, portsrc, portdst) which is not necessarily the mir-
ror of the peer’s one since middleboxes like NAT may modify packets’ ports
and IP addresses. Therefore, the uni�ows on which the connection starts are
called the initial uni�ows. Hosts identify these initial uni�ows using Uni�ow
ID 0.

6.2.2 Proposing Sending Uni�ows to the Peer

There is a one-to-one mapping between the receive uni�ows of a host and
the sending uni�ows of its peer. More speci�cally, the receive uni�ow ad-
vertised by host 0 identi�ed by the Receive Uni�ow ID C and mapped to the
Uni�ow Source Connection ID W corresponds to the sending uni�ow of host
1 identi�ed by the Sending Uni�ow ID C and carrying packets with the Uni-
�ow Destination Connection ID W . Each host controls its number of receive
uni�ows — and so the number of sending uni�ows of the peer — it wants to
maintain. Once the uni�ow is initialized, the host can advertise it to its peer
using the adapted version of the NEW CONNECTION ID frame shown in Fig-
ure 6.2. This frame indicates to the receiver that this Sending Uniflow ID is
now usable and that packets can be sent over it by including the communi-
cated Connection ID in their headers. The NEW CONNECTION ID typically

CONNECTION ID frames. For the sake of simplicity, we assume now that this Connection ID
does not change.
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Client Server

IP
src I, DCID A, PN 5[NEW CONNECTION ID(UID 1, PCID X)]

Receive Uni-

flow 1 Ready

IP
src I, DCID A, PN 6[ADD ADDRESS(IP J)]

IPdst
I, DCID B, PN 4[ACK(UID 0, 6)]

IPdst
J, DCID X, PN 0[PATH CHALLENGE]

Map Sending

Uniflow 1 to

IP
dst

J

IP
src I, DCID A, PN 7[PATH RESPONSE]

Sending Uni-

flow 1 Ready

Figure 6.3: An example of a server starting using a new sending uni�ow. The
client starts the connection on its IP I and the server always uses the same IP.
Only the client’s Source IP (IPsrc) and Destination IP (IPdst), the Destination
Connection ID (DCID), the packet number (PN) and the relevant frames are
illustrated.

comes along with an ADD ADDR frame — using the same format as Multi-
path gQUIC illustrated in Figure 5.3 — to let the remote use the uni�ow over
the advertised IP address. Figure 6.3 illustrates how a client can propose a
new uni�ow to the server. Once both the NEW CONNECTION ID and the
ADD ADDR frames received, the server decides that packets of its sending
uni�ow 1 are sent to the IP address J. However, this new IP address must �rst
be validated before starting transmitting data. Hence, the server initiates a
path validation over this new sending uni�ow by delivering the PATH CHAL-
LENGE frame. Since the client has only one sending uni�ow — its initial one
— it carries the corresponding PATH RESPONSE frame to the initial sending
uni�ow. Once the path validation completes, the server can start using the
provided sending uni�ow to send packets towards the client.

Notice that Multipath iQUIC keeps the Sequence Number �eld in the
NEW CONNECTION ID frame as pointed out in Figure 6.2. This enables hosts
to change the Connection ID used to mark packets over a given path for, e.g.,
privacy concerns.

The server must validate the provided remote address to prevent �ooding
a victim pointed by a malicious client. This process delays the usage of the
new uni�ow by a RTT. However, the validity of the provided address might
be cached to save the latency introduced by the path validation.

Note that Multipath iQUIC keeps the same REMOVE ADDR frame as
Multipath gQUIC to advertise the loss of a previously communicated address.
The frame contains the Address ID of the corresponding address along with
a sequence number ordering the events to that particular Address ID.
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Frame Type Uniflow ID Largest Acknowledged

ACK Delay ACK Range Count

First ACK Range ACK Ranges (# ACK Range Count)

Figure 6.4: Multipath version of the ACK frame. All its �elds are variable-
length integers, the visual size of �elds is for reader’s convenience.

A host might also discover new peer’s addresses by observing the 4-tuple
of incoming packets. A client behind a NAT could send its private addresses
in ADD ADDR frames, but those are typically not reachable by the server.
Instead, the client can initiate the uplink �ow on its desired addresses — for
instance by performing path validation — such as the server discovers the
publicly accessible addresses. The server can then validate the seen addresses
in order to use them.

6.2.3 Negotiating the Multipath Extensions

During the handshake, hosts exchange the max_sending_uniflow_id
QUIC transport parameter to indicate the maximum value of Sending Uni-
�ow ID that they want to support. If both hosts advertise it, the multipath
extensions are enabled on the connection. These values are independent, i.e.,
hosts may advertise di�erent max_sending_uniflow_id values. Because
of the mirroring between uni�ows, the sending host sets the upper bound
of the number of peer’s receiving uni�ows to the advertised value. Yet, this
transport parameter does not impose the peer to provide the desired number
of sending uni�ows. The receiver keeps the �nal decision on the number of
receiving uni�ows it wants to support since it sends the NEW CONNECTION
ID frames proposing them.

6.2.4 Ensuring Reliable Data Exchange

As Multipath gQUIC, Multipath iQUIC relies on STREAM frames to carry ap-
plication data. Hence, we just need to acknowledge packets on a per-uni�ow
basis where each uni�ow has its own packet sequence number space. Fig-
ure 6.4 shows that our Multipath extensions adapt the ACK frame to include
the host’s Receiving Uni�ow ID — which is equivalent to the peer’s Sending
Uni�ow ID — it acknowledges. The ACK frame uses the (internal) Uni�ow ID
instead of the related Connection ID for three reasons. First, the Uni�ow ID
takes fewer bytes than the Connection ID. Second, the Connection ID used
by a uni�ow might change over time. Third, the Uni�ow ID is included in the
nonce computation to avoid reusing a same nonce over distinct uni�ows.
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Frame Type Sequence

Active Receiving Uniflow Active Sending Uniflow

Receiving Uniflow ID 0 Local Address ID RU0 Remote Address ID RU0

... Other Receiving Uniflow Entries ...

Sending Uniflow ID 0 Local Address ID SU0 Remote Address ID SU0

... Other Sending Uniflow Entries ...

Figure 6.5: Format of a UNIFLOWS frame. All its �elds are variable-length
integers, the visual size of �elds is for reader’s convenience.

6.2.5 Acknowledging the Addresses Used by Uni�ows

Multipath iQUIC hosts may observe di�erent 4-tuples for a given uni�ow. For
instance, a NAT might be present such as the client sees a private address (e.g.,
192.168.1.10) while the server observes a publicly reachable one. To get a com-
plete view of the utilized addresses, Multipath iQUIC hosts rely on the ADD
ADDR and UNIFLOWS frames. Each advertised address by a ADD ADDR has
an identi�er, as illustrated by Figure 5.3 on page 98. However, a client may
communicate a private address to its peer, and the server would observe dif-
ferent addresses. Hence, the client also sends the UNIFLOWS frame shown in
Figure 6.5 to indicate to which local Address ID the source (resp. destination)
IP address of sending (resp. receiving) uni�ows corresponds. This enables
the frame receiver to map the observed IP address to an advertised one. The
server can then appropriately react to a REMOVE ADDR, even if the 4-tuple
diverges between hosts. The UNIFLOWS frame’s sender also communicates
the remote Address ID s whose it believes that its uni�ows use. Note than
unlike in Multipath gQUIC, the UNIFLOWS frame does not currently contain
the host estimated round-trip-time.

6.2.6 Estimating the Latency of Uni�ows

The major concern of introducing uni�ows resides in their latency estimation.
When using a bidirectional path, a reliable transport protocol can estimate its
RTT by observing the delay between the data sending and its corresponding
acknowledgment. However, with Multipath iQUIC there is no more guaran-
tee that ACK frames are deterministically coming from a receiving uni�ow.
Previous works proposed techniques to estimate the One-Way-Delay (OWD)
of a unidirectional path [CSP15] but getting precise OWD is hard without
clock synchronization [DRT08]. Instead, we propose to consider the RTT be-
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tween tuples of sending uni�ows and receiving ones. This approach is easy
to implement as the host knows on which sending uni�ow it sent the packet
and on which receive uni�ow it received the corresponding acknowledgment.
Therefore, duplicating acknowledgments on several uni�ows does not modify
the RTT estimation of a uni�ow tuple.

6.2.7 Impacts on the Multipath-speci�c Algorithms

Congestion Control Algorithms. Compared to Multipath gQUIC, the
path asymmetry does not impact the congestion control considerations.
These schemes only operate on the sending uni�ows.

Path Manager. It is now split into two parts. First, it decides how many
receiving uni�ows it provides to the connection. Second, it waits for pro-
posed sending uni�ows and associates them to a 4-tuple. The mapping al-
gorithm can follow previously proposed strategies, such as the full-mesh
one. Notice that unlike Multipath TCP and Multipath gQUIC, the server also
performs its sending uni�ows’ management. To limit network interferences
(NAT, �rewalls,...), the server �rst waits for the reception of a packet with a
given address before using it for its sending uni�ows.

Packet Scheduling. In comparison to Multipath gQUIC, two elements af-
fect the packet scheduling. First, the algorithm must take into account the
sending uni�ow — and its corresponding 4-tuple — it wants to validate to
schedule a PATH CHALLENGE frame. This enables it to collect a latency
estimation before starting sending data over it. Notice that in the case the
4-tuple was recently validated in a previous connection involving the same
hosts, the scheduler might directly reuse it with cached information. Second,
a latency-based packet scheduler should now rely on the RTT between tu-
ples of uni�ows to decide on which sending uni�ows it should send packets.
While the actual OWD of a sending uni�ow is not available, such a scheduler
can determine a partial order between the latency of the sending uni�ows
to prioritize the transmission of packets on the fastest uni�ow. In practice,
our latency-based packet scheduler performs a sending uni�ow’s RTT esti-
mation based on its 2-tuples (sending uni�ow ID, receiving uni�ow ID) RTT
estimations, weighted by the number of packets belonging to these 2-tuples.

6.2.8 Summary

Overall, our updated design leverages the features of iQUIC to address the
concerns introduced by Multipath gQUIC described in Section 6.1 while keep-
ing a clean design. Our Multipath extensions extend the iQUIC Connection
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Figure 6.6: Network topology used for asymmetric experiments.

Factor Min. Max.
Capacity [Mbps] 5 50

One-Way-Delay [ms] 2.5 25

Table 6.1: Experimental design parameters for the asymmetric experiments.

ID asymmetry to its unidirectional �ows to make hosts aware of the net-
work imbalance. Each host controls the number of peer’s sending uni�ows
while determining their associated Path Connection ID. The encrypted uni-
�ow negotiation through NEW CONNECTION ID makes it hard for an at-
tacker to �gure out that a group of Uni�ow Connection IDs actually belong
to a same multipath connection. Multipath iQUIC validates a new 4-tuple
before spreading packets over a sending uni�ow using it.

6.3 Exploring Asymmetric Network Use Cases

To demonstrate the feasibility of our design, we implement our multipath
extensions in the picoquic implementation2 [Hui18]. To assess its bene-
�ts, we evaluate Multipath iQUIC in a lab equipped with Intel Xeon X3440
processors, 16 GB of RAM and 1 Gbps NIC, running Linux kernel 4.19 and
con�gured as shown in Figure 6.6. The links R1-R3 and R2-R3 are con�gured
using netem [Hem+05] to add transmission delays and using htb to limit
their bandwidth.

To cover a large range of link characteristics, we rely on the experimen-
tal design approach [Fis35] and de�ne the parameters’ ranges as shown in
Table 6.1. We then use the WSP algorithm [SCS12] to broadly sample this pa-
rameter space into 139 points. Notice that the uplink one-way-delay d

up and
the downlink one d

down are two di�erent parameters. The same applies for
the uplink bandwidth bw

up and the downlink one bw
down. Since our topology

features two paths, we explore a 8-dimension parameter space. Each param-
eter con�guration is run 9 times and the median run is reported.

2The full description of our implementation is available in Section 7.4.2.
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Figure 6.7: Comparing the bene�ts of the Multipath extensions between
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In our experiments, we consider both our Multipath iQUIC implemen-
tation based on picoquic and our previous Multipath gQUIC implementa-
tion mp-quic. Both use the lowest latency �rst packet scheduler. The client
computes the Download Completion Time (DCT) between the issue of the
GET request and the reception of the last byte of the server response. We
consider here the download of a �le of 10 MB over a single stream. For
each implementation, we perform both single-path experiments over the R1-
R3 link and multipath ones using both links. Figure 6.7 shows that while
both QUIC implementations achieve lower DCT when using the two links,
the multipath ability tends to bene�t more to iQUIC than to gQUIC. In our
considered experiments, Multipath iQUIC achieves a median speedup of 84%
while the Multipath gQUIC one is 61%. By computing the DCT ratios between
the implementation themselves, Figure 6.8 shows that single-path iQUIC and
gQUIC achieve similar performance. This means that comparing them di-
rectly, Multipath iQUIC is in general faster than Multipath gQUIC.

Two factors explain these results. First, our Multipath iQUIC packet
scheduler leverages the path asymmetry awareness such that it can e�ciently
utilize a link exhibiting a low downlink OWD and a high downlink band-
width, even if they exhibit a high uplink OWD and a low uplink bandwidth. In
comparison, Multipath gQUIC considers both directions of a path as a whole
and does not distinguish uplink characteristics from downlink ones. Such spe-
ci�c links a�ect the Multipath gQUIC’s packet scheduler decisions. Second,
our mp-quic implementation forces the ACK frames to be sent on the same
path they acknowledge. This acknowledgment strategy addresses concerns
about the variability of path’s RTT estimations in Multipath gQUIC. Because
the Multipath iQUIC latency estimations are speci�c to a tuple (sending uni-
�ow, receiving uni�ow), there is no more such issue. Our Multipath iQUIC
client actually embeds ACK frames for all its receiving uni�ows in all pack-
ets it sends to the server. This strategy is bene�cial when one network path
su�ers from a very low uplink bandwidth.

To con�rm our intuitions, we reconsider the same experiments with the
same tested networks (139 points), except that in all these con�gurations we
set bw2

up to 0.1 Mbps. Figure 6.9 con�rms that in such situations, Multipath
gQUIC barely bene�ts from the additional path as it receives its acknowl-
edgments at a very low rate. Instead, our Multipath iQUIC implementation
achieves to aggregate the downlink bandwidth of the additional link, even if
its uplink one is very low.

6.4 Making Connections Resilient to the Initial Path Choice

Our Multipath extensions enable hosts to simultaneously use several net-
work paths once the connection is established. Still, Multipath iQUIC remains
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Figure 6.9: Comparing the bene�ts of the Multipath extensions between
gQUIC and iQUIC when the additional path exhibits an uplink bandwidth
of 0.1 Mbps.

single-path during the handshake since it needs to negotiate the usage of the
extensions. The transfer time can therefore be a�ected by a high-latency ini-
tial path.

Instead of adding complexity to the iQUIC handshake process, we pro-
pose a resilient connection start by initiating a Multipath iQUIC exchange on
each available network path. The client will notice one of them that receives
�rst a reply from the server. The client then closes the connection with the
slowest handshake and continues the transfer with the fastest one. Consider
the example shown in Figure 6.10. The client initiates two connections, C1

and C2, on two di�erent network paths. As it receives �rst a response from C2

on Path 2, the client closes C1 and continues the transfer with C2. Based on
the received NEW CONNECTION ID and ADD ADDR frames, the client then
initiates path validation of Path 1. As C2 was established over Path 2, hosts
can directly exchange regular iQUIC packets on it. Such a strategy makes
the Multipath iQUIC performance independent of the initial network path
choice. Notice that our resilient Multipath iQUIC allows taking advantage
of the bidirectional path exhibiting the lowest RTT, but it does not consider
network asymmetry. A similar strategy is currently considered for Multipath
TCP at the IETF [AK19].

To assess the bene�ts of the resilient strategy, we consider a two-path
network topology as shown in Figure 6.6. However, paths are symmetric —
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Server via Path 1 Client Server via Path 2
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C1: [CRYPTO(SHLO)]

C1: [CONNECTION CLOSE] C2: [NEW CID, ADD ADDRESS]

Validate path for use in C2 Can already exchange data for C2

Figure 6.10: Resilient Multipath iQUIC connection establishment, here with
the case of Path 2 being faster than Path 1.
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tional one, launching a redundant connection is bene�cial, especially for
short transfers. Otherwise, the performance does not change.
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same characteristics in upload and download — and the bandwidth is set to 50
Mbps. We restrict our parameter space to the bidirectional RTT of each path
ranging from 10 ms to 400 ms and sample 139 points. The bu�er sizes are
set to the bandwidth-delay product. We run the experiments 9 times and the
median run is reported. We consider here the time between the �rst packet
sent by the client and the reception of the last byte of the fetched �le by the
client. Figure 6.11 splits our studied network scenarios into two categories.
The �rst one contains the situations where the �rst path exhibits a higher RTT
than the additional one. In that case, if the client initiates a second connection
on this additional link — as resilient Multipath iQUIC does — its handshake
�rst completes and the transfer time decreases. Such redundant connection
establishment is especially bene�cial to short transfers whose the connection
handshake constitutes a major fraction of the download time. The relative
ratio of completion time decreases with the size of the �le transferred. The
second category groups the situations where the �rst path shows a lower
latency than the additional one. In that case, both versions of Multipath iQUIC
have the same performance, as expected.

6.5 Conclusion

In the previous Chapter, we proposed Multipath extensions to gQUIC en-
abling hosts to simultaneously take advantage of several paths. However,
they su�er from design issues that this Chapter �rst listed. Based on our ex-
perience, we designed and implemented Multipath extensions to iQUIC ad-
dressing all these concerns. A key point of Multipath iQUIC is its awareness
of path asymmetries allowing client to server packets to �ow on a given net-
work while another path carries server to client ones. We performed an exper-
imental design evaluation assessing the bene�ts of our approach in scenarios
where links show asymmetric characteristics. We also presented a technique
to limit the impact of using a slow path to initiate a Multipath iQUIC connec-
tion. All in all, we believe that this multipath design would bene�t to other
Internet actors and we hope it will be considered for standardization.
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Transport protocols including TCP [rfc793], RTP [rfc1889], SCTP [rfc2960]
or QUIC [QUIC-t; Lan+17] play a key role in today’s Internet. They extend
the packet forwarding service provided by the network layer and include a
variety of end-to-end services. A transport protocol is usually designed to
support a set of requirements. Protocol designers know that these require-
ments evolve over time and all these protocols allow clients to propose the
utilization of extensions during the connection’s handshake.

These negotiation schemes have enabled TCP and other transport proto-
cols to evolve over the last decades [rfc7414]. A modern TCP stack supports
a long list of TCP extensions. These include Window Scale [rfc1323], Times-
tamps [rfc1323], Selective Acknowledgments [rfc2018], Explicit Congestion
Noti�cation [rfc3168] and Multipath extensions [rfc6824]. However, mea-
surements indicate that it remains di�cult to deploy TCP extensions [Fuk11;
Hon+11]. Both the Window Scale and the Selective Acknowledgment options
took more than a decade to be widely deployed [Fuk11]. The Timestamp op-
tion is still not supported by a major desktop OS [Bal18]. Multipath TCP is
only available in one major mobile OS [App18]. This slow deployment of TCP
extensions is caused by three main factors. First, popular stacks rarely imple-
ment TCP extensions unless they have been standardized by the IETF. Second,
TCP is still part of the operating system and clients’ and servers’ implemen-
tations are not upgraded at the same pace. Often, maintainer of clients’ (resp.
servers’) implementations wait until the servers’ (resp. clients’) ones support
a new extension before implementing it. This results in a chicken-and-egg de-
ployment problem. Third, some middleboxes interfere with the deployment
of new protocol extensions [Hes+13; Hon+11].

The QUIC protocol [Lan+17] described in Chapter 4 addresses most of
these deployment issues. Thanks to its encryption features and its fram-
ing mechanism encoding user data and control information, it prevents most
of the middleboxes’ interference [Lan+17]. In addition, its protocol ver-
sion negotiation enabled Google to update its proprietary gQUIC without
requiring IETF consensus. Measurements indicate that Google updated its
gQUIC version — shipped as a library — at the same pace as its Chrome
browser [Rüt+18].

We believe that the openness of the Internet is a key element of its success,

137



138 Chapter 7. Pluginizing QUIC

and ultimately anyone should be able to tune or extend Internet protocols
to best �t their needs. Traditional transport protocols like TCP are tuned
using con�guration variables or socket options [DMT02] and more recently
with eBPF code [Bra17]. Although recent works enable an application to add
new TCP options [TB19], it remains impossible to precisely con�gure the
underlying TCP stack.

In this Chapter, we completely revisit the extensibility of transport pro-
tocols. We consider that transport protocols should provide a set of basic
functions which can be tuned, combined and dynamically extended to sup-
port new use cases on a per-connection basis. Such an approach could enable
QUIC applications to adapt their underlying transport layer to their speci�c
needs, e.g., using specialized packet scheduling algorithms or taking advan-
tage of non-standard extensions. This would bring innovation back in the
transport layer with researchers and software developers being able to easily
implement, test and deploy new protocol features. For this, we leverage the
extensibility and security features of QUIC. We make four main contributions
in this Chapter.

� We design a technique where an extension to the QUIC protocol is bro-
ken down into a set of protocol plugins which can be dynamically at-
tached to an existing implementation. These plugins interact with this
implementation through code which is dynamically inserted at speci�c
locations called protocol operations.

� We propose a safe and scalable technique that enables the on-demand
exchange of protocol plugins over QUIC connections. This solves the
deployment problem of existing protocol extensions.

� We implement a prototype of Pluginized QUIC (PQUIC) by extend-
ing picoquic [Hui18], one of the most complete implementations of
iQUIC. We add to picoquic a virtual machine that allows executing
the bytecode of protocol plugins in a platform independent manner
while monitoring their behavior.

� We demonstrate the bene�ts of PQUIC through a plugin that adds Mul-
tipath support and show how we can tune it to di�erent use cases.

This Chapter is organized as follows. First, we present the design of
PQUIC and how our PQUIC implementation supports plugins (§7.1). We next
propose an overview of the security models, attacks and how PQUIC solves
them when exchanging plugins over QUIC connections (§7.2). After report-
ing our experience with an early prototype (§7.3), we describe how we imple-
ment the Multipath extensions using only plugins and evaluate their overhead
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(§7.4). We also explore how plugin properties, and in particular their termi-
nation, can be veri�ed (§7.5). After contrasting with related works (§7.6) and
discussing the broader implications and questions of this work (§7.7), we �-
nally conclude and consider future work (§7.8).

7.1 Local Plugin Insertion

Our design for Pluginized QUIC (PQUIC) builds upon the QUIC protocol
whose speci�cation is being �nalized within the IETF1 [QUIC-t]. From a
protocol viewpoint, there are few di�erences between PQUIC and QUIC. We
defer the explanation of these di�erences until Section 7.2.

From the implementation viewpoint, the main di�erence between a
PQUIC implementation2 and a QUIC one is that PQUIC is easily customiz-
able on a per-connection basis. This customization relies upon a modular,
extensible design that allows adding and modifying behaviors for the target
�ows. A PQUIC implementation can be extended by dynamically loading one
or more protocol plugins. A protocol plugin consists of platform-independent
bytecode which can be executed within the PQUIC implementation.

A PQUIC implementation provides an API to protocol plugins. Most
protocol implementations are designed as black-boxes that provide a small
external API to applications. For example, a TCP implementation exposes
the socket API. A PQUIC implementation can be represented as a gray-box
containing a set of functions that are exposed to protocol plugins. These func-
tions are shown in Figure 7.1 as light gray rectangles. In PQUIC, we call these
functions protocol operations. These are common routines being part of any
implementation, and the work�ow of PQUIC can be expressed as a succes-
sion of such protocol operations. As in a C API, each protocol operation has a
speci�cation and a set of conditions under which it should be called. Sample
protocol operations in PQUIC include the parsing and processing of frames,
the preparation of the packet’s header, setting the retransmission timer, up-
dating the RTT, adding new data in the sending bu�er, etc. By default, all
the connections share a common built-in behavior provided by the PQUIC
implementation.

1We base this work on the version 14 of the IETF QUIC drafts [QUIC-14].
2We applied the principles described in this Section to two very di�erent QUIC im-

plementations. We �rst implemented an early prototype based on quic-go [CS18] writ-
ten in Go [DB19b]. We then developed a much more advanced implementation based on
picoquic [Hui18] written in C. This Section focuses on the picoquic implementation, but
we discuss the quic-go one in Section 7.3.
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Figure 7.1: High-level architecture of the PQUIC gray-box model with two
running connections. These concurrent connections can be tuned by dis-
tinct protocol plugins modifying or adding protocol functions. Protocol op-
erations whose behavior is provided by protocol plugins are represented by
darker squares.

On-the-�y protocol plugin insertion. A pluglet consists of bytecode in-
structions implementing a function, e.g., computing an RTT estimate. A man-

ifest contains the globally unique plugin name and indicates how to link sev-
eral pluglets to a connection, i.e., to which protocol operations they should be
attached. The combination of the pluglets and the manifest forms a protocol

plugin. Once a PQUIC connection is established, PQUIC can potentially load
plugins at any time to provide a new behavior for functions, represented by
dark gray rectangles in Figure 7.1. Notice that PQUIC can also integrate new
protocol operations that were not present in the base protocol implementa-
tion, such as the processing of unreliable messages as pictured in Figure 7.1.

Isolation between connections and between plugins. Each plugin is
instantiated to operate on a given connection. Distinct connections can load
di�erent plugins as shown in Figure 7.1 without any interference. Our frame-
work ensures that each instance has its own memory which is only shared
among pluglets of this plugin. The plugin memory is isolated from access by
any other plugin or connection. This yields strong memory safety guarantees
for the plugins and the sharing of information. Interactions between them are
still possible through the protocol operation interface or by calling the func-
tions exposed by PQUIC. Nevertheless, these are clearly de�ned information
�ows that ease the reasoning about the behavior and the safety of the plugins.

The remaining of this Section details the core elements of PQUIC. We
�rst describe the environment executing pluglets (§7.1.1). Next, we elaborate
on the concept of protocol operations (§7.1.2). We then describe how PQUIC
interfaces with pluglets (§7.1.3). Finally, we provide details about how plugins
can interact with the application they serve (§7.1.4) and some optimization
about plugin reuse (§7.1.5).
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7.1.1 Pluglet Operating Environment (POE)

Pluglets are the building blocks of the protocol plugins. These pieces of byte-
code are independent of the PQUIC implementation itself. Therefore, we need
to provide an environment to execute them. This environment has to solve
two major concerns. First, it has to provide an abstraction where plugins can
run regardless of the underlying hardware and operating system. Second,
given the untrusted nature of the plugins, the environment should keep each
pluglet under control.

To address both these issues, PQUIC executes pluglets inside a lightweight
virtual machine (VM). Various VMs have been proposed for di�erent pur-
poses [BMG99; Fle17; Geo+10; Haa+17; Lin+14; Wan+15]. In our current
PQUIC version, our Pluglet Operating Environment (POE) relies on a user-
space implementation [IO 18] of the eBPF VM [Fle17]. eBPF provides a con-
cise number — about 100 — of 64-bit RISC instructions. It contains 11 64-bit
registers labeled from R0 to R10. An eBPF program has read/write access to
the �rst ten ones — from R0 to R9. R10 contains the read-only pointer to the
top of the 512-byte long stack. An eBPF program can also call external regis-
tered functions through a dedicated call opcode and relies on �ve registers
— R1 to R5 — to communicate the arguments. This overall architecture is vol-
untary close to the modern CPU ones to make Just-In-Time (JIT) compilation
simple. Although being present in the Linux kernel since 2014 where it has
been used to support various services [Bra17; Edg15; Gre15], the eBPF VM
can be too restrictive to implement some legitimate behaviors. The kernel-
space eBPF VM includes a veri�er that is very conservative, as it puts hard
limits on the size and complexity of an acceptable eBPF program.

Our user-space implementation extends a relaxed version of the eBPF ver-
i�er with additional monitoring capabilities. Those are similar to works in
Software-Based Fault Isolation [Wah+94; Yee+09]. First, our POE checks sim-
ple properties of the bytecode to ensure its (apparent) validity. This includes
checking that: (i) the bytecode contains an exit instruction, (ii) all instruc-
tions are valid (known opcodes and values), (iii) the bytecode does not contain
trivially wrong operations (e.g., dividing by zero), (iv) all jumps are valid, and
(v) the bytecode never writes to read-only registers. Furthermore, our POE
statically veri�es the validity of stack accesses. A plugin is rejected if any of
the above checks fails for one of its pluglets.

Second, our POE monitors the correct operation of the pluglets by inject-
ing speci�c instructions when their bytecode is JIT compiled. These monitor-
ing instructions check that the memory accesses operate within the allowed
bounds. To achieve this, we add a register to the eBPF VM (R11) that cannot be
used by pluglets. This register is used to check that the memory accesses per-
formed by a pluglet remain within either the plugin dedicated memory or the



142 Chapter 7. Pluginizing QUIC

pluglet stack. Any violation of memory safety results in the call of a speci�c
PQUIC-provided function removing the plugin and terminating the connec-
tion with an error. In practice, any memory access requested by pluglets leads
to the inclusion of 20 additional eBPF instructions, plus the rewriting of the
o�sets of jump opcodes. The LLVM Clang compiler supports the compilation
of C code into eBPF. This allows us to abstract the development of pluglets
from eBPF bytecode and propose a convenient C API for writing pluglets.

7.1.2 Protocol Operations

In order to attach pluglets to PQUIC implementations, we need to de�ne an
API revealing the insertion points and the interface between PQUIC and the
pluglets. For this, we break down the protocol execution �ow into generic
subroutines. These speci�ed procedures are called protocol operations. Each
has its human-readable identi�er, inputs, outputs and speci�cations. PQUIC
de�nes two kinds of protocol operations. On the one hand, a parameteriz-
able protocol operation has a high-level goal, but its actual behavior — and
therefore its function — changes depending on the given parameter. This pro-
vides a generic entry point allowing the de�nition of new behaviors without
changing the caller for, e.g., the serialization of new QUIC frames. On the
other hand, a non-parameterizable protocol operation de�nes a speci�c func-
tion. Our PQUIC implementation currently includes 72 protocol operations.
Four of them take a parameter3. We can split these operations into several
categories. A �rst category concerns the handling of the QUIC frames. This
includes their parsing, processing and writing. A second category groups
all the internal processing of QUIC. It contains the logic for retransmissions,
updating the RTT, deciding which data streams to send next, etc. A third
category involves the QUIC packet management. It includes setting the Spin
Bit [TK18], retrieving the Connection IDs, etc. A fourth category contains
several events in the connection work�ow whose protocol operations have
empty anchor points, i.e., no default behavior. For instance, a protocol op-
eration exists after decoding all the frames of an incoming packet or when
noticing a packet loss.

To illustrate how an implementation can be split into protocol operations,
consider the example shown in Figure 7.2a. The processing of an ACK frame
would likely be performed in its dedicated function. One of its sub tasks is the
computation of the RTT estimation, which is implemented in its own func-
tion too. PQUIC keeps the same programming �ow. As shown by Figure 7.2b,
PQUIC functions are wrapped by a protocol operation whose human-readable
string identi�er describes its goal. While the name of the protocol operation
and the original function are similar, the processing of ACK frames is linked

3Please refer to https://pquic.org for the latest numbers.

https://pquic.org
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(b) PQUIC design.

Figure 7.2: Turning a monolithic design into protocol operations with the
ACK processing example. It also illustrates the di�erent anchors for the plu-
glets.

to a more generic process_frame operation taking ACK as parameter. As
illustrated, a given protocol operation can call other operations. Furthermore,
protocol operations are split into three anchors, each of which is a possible
insertion point for a pluglet. Protocol operations with parameters propose a
speci�c set of anchors for each parameter value. The �rst anchor, called RE-

PLACE , consists of the actual implementation of the operation. This part is
usually provided by the original PQUIC function. This mode enables a plu-
glet to override the default behavior. Because it may modify the connection
context, at most one pluglet can REPLACE a given protocol operation. If a
second one tries to REPLACE the same operation, it will be rejected and the
plugin it belongs to will be rolled back. The two other anchors, PRE and
POST , attach the pluglet just before (resp. just after) the protocol operation
invocation. These modes are similar to the eBPF kprobes in the Linux ker-
nel [KPH16]. By default, those are no-ops in PQUIC. Unlike the REPLACE

anchor, any number of PRE and POST pluglets can be inserted for a given
protocol operation. In return, they only have read access to the connection
context and the operation’s arguments and outputs. The only write accesses
they have are to their pluglet stack and their plugin-speci�c memory. In the
rest of this Chapter, unless explicitly stated, we discuss pluglet insertion in
REPLACE mode, and refer to pluglets inserted in PRE and POST as passive
pluglets.
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Figure 7.3: Attaching POEs in REPLACE mode to protocol operations.

7.1.3 Attaching Protocol Plugins

Implementing protocol extensions may require a combination of several plu-
glets forming a plugin. The POE provides a limited instruction set and isolates
the bytecode from the host implementation. Therefore, plugins require an in-
terface with which they can operate on their connection. Moreover, a plugin
might need to share some state among its pluglets.

To address these needs, PQUIC is organized as illustrated in Figure 7.3. As
explained previously, the behavior of a protocol operation is either provided
by a built-in function (e.g., param_op[p1]) or overridden by a POE running
a pluglet (e.g., noparam_op1). Observe that plugins can also provide new
protocol operations absent from the original PQUIC implementation. This
can be done either by hooking a new parameter value for an existing protocol
operation (e.g., like param_op[p2]) or by adding a new protocol operation
(e.g., noparam_op2). PQUIC is thus extensible by design.

A POE is created for each inserted pluglet. Each POE contains its own
registers and stack. The POE heap memory points to an area common to all
pluglets of a given plugin, as illustrated in Figure 7.3. This link, maintained
by the PQUIC implementation, provides a communication channel between
pluglets. In addition to the isolation bene�ts, this architecture ensures that
aggressive or ill memory management only a�ects the faulty plugin itself.
Thanks to our POE, pointer dereferencing is restricted only to the pluglet
stack and its plugin memory. In addition, the pluglet also needs to commu-
nicate with the host implementation to interact with its connection. As in a
related work [AW18], PQUIC exposes some functions to the POE. These func-
tions form an API that pluglets can use. Table 7.1 presents the key functions
of this API. We detail its six major operations below.

Exposing connection �elds through getters and setters. Letting plu-
gins directly access the �elds of PQUIC structures makes the injected code
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Functions Usage
get/set Access/modify connection �elds

pl_malloc/pl_free Management of the plugin memory
get_metadata Retrieve a memory area shared by pluglets

pl_memcpy/pl_memset Access/modify data outside the POE
plugin_run_protoop Execute protocol operations

reserve_frames Book the sending of QUIC frames

Table 7.1: PQUIC API exposed to pluglet bytecode.

very dependent on PQUIC internals. Consider the case of two hosts with
di�erent PQUIC versions. If the newest version added a new �eld to a struc-
ture being used by a pluglet, the o�set contained in its bytecode would point
to a possibly di�erent �eld, leading to unde�ned behavior. Therefore, our
proposed PQUIC interface abstracts the implementation internals from the
pluglets, making them compatible with di�erent PQUIC versions or imple-
mentations. From a practical viewpoint, core protocol structures are made
available to the POE (connection, packet, path,...) as opaque tags. Pluglets
can then access a speci�c structure �eld by providing both the opaque tag
and a well-de�ned key to the getters and setters. In addition, our interface
allows the PQUIC host to monitor which �elds are accessed by the injected
code. A host could thus reject plugins based on the �elds that it wishes to
access. For example, a client could refuse plugins that modify the Spin Bit,
as it is not encrypted. Similarly, depending on its local user policies, a host
could accept or deny a plugin accessing the TLS state4.

Managing plugin memory. Pluglets might need to keep persistent data
across calls. Therefore, we provide functions to allocate and free memory in
the plugin dedicated area. Our framework dedicates a �xed-size memory area
split into constant size blocks [Ken12]. Such an approach provides algorith-
mic Θ(1) time memory allocation while limiting fragmentation which — from
our experience — considerably a�ects the performance of plugins.

Retrieving data shared by pluglets. Pluglets from the same plugin might
need to access a common data structure. It might be desirable for pluglets
to attach a plugin-speci�c structure to a given core protocol structure, e.g.,
to mark a speci�c packet with a special value. PQUIC enables pluglets to
associate some plugin-speci�c metadata with a speci�c identi�er to a given
core protocol structure.

4As of current writing, we do not expose TLS keys to plugins.
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B C

(a) Without plugins.

A
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(b) With ?1 plugin.

A

B C

(c) With ?2 plugin.

A

B C

(d) With both ?1 and ?2 plugins.

Figure 7.4: Combining plugins requires protocol operation monitoring. (a),
(b) and (c) are valid calls graphswhile (d) is not since it creates a loop between
� and �.

Modifying connection memory area. Plugins might need to modify
memory outside the POE. For instance, a pluglet might need to write a new
frame inside a bu�er maintained by the PQUIC implementation. Our API
keeps control on the plugin operations by checking the accessed memory ar-
eas.

Calling other protocol operations. This feature is required when a pro-
tocol operation depends on another one. However, such capability raises po-
tential safety issues. As plugins can potentially call any protocol operation,
a PQUIC implementation needs to take care of possible loops due to these
calls. To prevent such loops, the call graph of the protocol operations must
always remain loop-free. Nevertheless, ensuring this property for any combi-
nation of loop-free plugins is di�cult to assess before executing them due to
the combinatorial state explosion. Consider the example shown in Figure 7.4.
There are three protocol operations A, B, and C, all guaranteed to terminate.
Even if both ?1 and ?2 plugins are legitimate and do not create any cycle,
their combination might introduce an in�nite loop, as shown in Figure 7.4d.
To avoid this situation, a PQUIC implementation keeps track of all the cur-
rently running protocol operations in the call stack. From an implementation
viewpoint, this check can be done in Θ(1) time by dedicating a running bit
in the protocol operation structure. The bit is set when invoking the protocol
operation — before calling the PRE anchors — and reset once it completes —
after all POST pluglets returned. If a call is requested for an operation that is
already running, PQUIC stops the connection and raises an error.
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Scheduling the transmission of QUIC frames. PQUIC provides a way
for pluglets to reserve a slot for sending frames, whether they de�ne a new
frame or use an existing type. However, it should enforce two rules. First,
plugins must not prevent PQUIC from sending application data. Therefore,
as long as there is payload data to be sent, standard QUIC frames such as
STREAM, ACK and MAX DATA should have a guaranteed fraction of the
available congestion window. Second, a plugin sending many large frames
should not be able to starve other plugins. Concurrently active plugins should
have a potentially fair share of the sending congestion window. To achieve
this, PQUIC includes a frame scheduler which is a combination of class-based
queuing [FJ95] and de�cit round-robin [SV96]. Frames are classi�ed based on
their origin, either from the core implementation itself or from plugins. When
both classes are pushing frames, the scheduler ensures that the core ones get
at least G% of the available congestion window. A de�cit round-robin then
distributes the remaining budget among the plugin frames.

7.1.4 Interacting with Applications

We showed how plugins can cooperate within PQUIC. Plugins can also in-
teract with the application served by PQUIC. This allows them to extend the
application-facing interface of PQUIC to bring new functionalities. For in-
stance, a plugin could implement a message mode for QUIC to supplement
the standardized ordered byte-stream abstraction [QUIC-t]. Another exam-
ple would be a plugin proposing an application-driven Multipath QUIC path
manager similar to the extended Multipath TCP socket API [HB16]. This
communication channel is established in a per-plugin bidirectional manner.
First, an application can call EXTERNAL protocol operations. These are new
anchor points that can be de�ned when injecting pluglets. The EXTERNAL

mode is similar to the REPLACE one, but it makes the protocol operation only
executable by the application. This allows it to directly invoke new methods,
e.g., queuing a message to be sent or requesting the usage of a path on a given
4-tuple. Second, a plugin can asynchronously push messages back to the ap-
plication, so that it remains independent of the application control �ow.

7.1.5 Reusing Plugins across Connections

The plugin injection involves the creation and the insertion of POEs at their
respective anchors and the instantiation of the plugin heap. These remain
dedicated to a given connection for its entire lifetime. Once the connection
completes, the plugin resources may be freed. Nevertheless, it is likely that
plugins get reused on subsequent connections. Furthermore, POEs only de-
pend on the pluglets and are isolated from the connections on which they op-
erate. Therefore, to limit the injection overhead, we introduce a cache storing
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the plugin associated POEs and memory. When a new connection injects the
same plugin, it can reuse the cached POEs as is, without verifying or compil-
ing the pluglets again. The plugin heap must be reinitialized to avoid leaking
information between unrelated connections.

7.2 Exchanging Plugins

The previous Section has described the system aspects of PQUIC and the pos-
sibility of extending a PQUIC implementation through protocol plugins that
are injected on the local host. As TLS 1.3 is an integral part of QUIC, third
parties such as middleboxes or attackers cannot modify the data exchanged
over such a connection. Protocol plugins could, therefore, be exchanged over
an existing QUIC connection. Accepting remote protocol plugins poses the
challenge of establishing the trust in their validity, e.g., their termination.

To address this threat, we propose an open system. Our solution bears
a similarity to Certi�cate Transparency [rfc6962]. Both are using a Merkle
Pre�x tree [Mer87] as the base for the system log and allow each party to
contribute to their global protection only by checking their own safety. Our
design enables independent developers to publish their own plugins for which
the PQUIC peers’ trust in their validity is established by independent plugin
validators (PV). Yet, we have fundamental di�erences from Certi�cate Trans-
parency in the various roles of the distributed system, and within the con-
struction of the system log itself. As opposed to Certi�cate Transparency,
no party has to track the entire log to keep the users safe. We directly o�er
to plugin developers an e�cient mean — logarithmic in the number of plu-
gins published — to check whether any spurious plugin has been published
on their behalf. This prevents the need for a third party monitor to emerge.
A second important design choice consists in letting PQUIC peers formulate
their safety requirements by combining the PVs they trust. This process al-
lows end-users to pin security requirements as a logic expression. The validity
of plugins with respect to this expression can be e�ciently checked.

In the remaining of this Section, we �rst describe how participants can
distribute plugin trust (§7.2.1). After enumerating our threat model and the
guarantees we need (§7.2.2), we detail our Secure Plugin Management System
(§7.2.3). Finally, we describe our extensions to the QUIC protocol to support
the exchange of protocol plugins over a QUIC connection (§7.2.4).

7.2.1 Distributing Trust

A simple approach for establishing trust in plugins would be for an applica-
tion developed by foo.com and using PQUIC to only accept plugins from
authenticated foo.com servers. However, such a technique would prevent
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Figure 7.5: Our secure Plugin Management System.

foo.com developers to bene�t from services provided by third-party servers,
e.g., bar.be. We go beyond this restrictive approach and propose the open
system illustrated in Figure 7.5. It includes four types of participants: (i) the
plugin developers, (ii) the Plugin Repository (PR) that hosts protocol plugins,
(iii) the plugin validators (PVs) that vouch for plugins validity and (iv) the
PQUIC peers.

Plugin developers may be independent of the PQUIC implementers. They
write plugins and publish them on the PR. Publishing a plugin forms a bind-

ing, which we de�ne as the concatenation of the globally unique plugin name
with the bytecodes of all its pluglets and the associated manifest, i.e.,

binding = pluginname || pluginmanifest || plugincode

Ensuring the uniqueness of plugin names can be done by hierarchical nam-
ing, e.g, a plugin providing multipath and written by foo.com can be named
com.foo.multipath. The PR holds all protocol plugins from all developers
and centralizes the secure communication between all participants.

A plugin validator (PV) validates the correct functioning of a plugin. The
validation itself depends on the PV capabilities as described in Section 7.5. PVs
can obtain the source code from developers willing to ease their validation,
but must check that they are able to reproduce the submitted bytecode. PVs
can then serve the bytecodes of plugins they validated. The state of our sys-
tem, i.e., the plugins hosted on the PR and their validation by PVs, progresses
on a discrete time scale de�ned by the epoch value. At each epoch, plugins
can be added or updated, and each PV can update their plugins validation.

Each PV builds a Merkle Pre�x Tree [Mer87] containing the plugins it
successfully validated and digitally signs its root, forming a Signed Tree Root
(STR). The STR is then sent to the PR. Such distribution enables participants
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to fetch the STR even if the related PV is down. A PV can build at most one
tree per epoch. We defer the explanation of building the Merkle Pre�x Tree
by PVs in Section 7.2.3. When the PR is o�ine, the PVs can serve their own
STRs. The absence of a plugin in a tree can be due to two reasons. Either
the validation failed or no validation took place at that epoch. The failure
cause is communicated to the PR. Plugin developers monitor the validations
published by PVs to ensure that the tested plugins match the submitted code.

Before exchanging plugins, PQUIC peers must provide evidence of plugin
validity. Our system allows expressing requirements in terms of PV appro-
bation. More precisely, if %+8 is the identi�er of a PV, a PQUIC implemen-
tation can send a logical formula that expresses its required validation, e.g.,
%+1 ∧ (%+2 ∨ %+3). This design allows the PQUIC peers to precisely express
their required safety guarantees.

Our system is distributed. This makes PQUIC peers tolerant to participant
failures. In the previous example, if both the PR and PV3 are o�ine, then the
peer can still rely on PV1 and PV2 to validate the provided plugin.

7.2.2 Threat Model and Security Goals

Our distributed system addresses the following threat model. Any participant
can act maliciously. Plugin developers may publish malicious code. A PQUIC
peer may want to inject illegitimate code on the remote host. PVs may give
false assertions on the validity of a plugin. The PR may equivocate on the
STRs received from PVs. Both PR and PVs may modify the code served, or
impersonate the developers.

Our system o�ers the guarantee that some aforementioned problems are
immediately detected, and the others are eventually discovered. It also en-
sures that a plugin name securely summarizes its code. Furthermore, a PQUIC
peer is always able to identify which party faulted. As a result, given that the
PR and PVs can be freely selected by PQUIC peers, we assume that they are
willing to protect their reputations, which could be degraded upon discover-
ing problems. In summary, our system covers the following security goals.

Central identities, distributed validation. The PR centralizes the iden-
tities of both developers and PVs. A PV can publish its current STR necessary
for the proof of consistency, and notify developers about plugins that failed
its validation. A developer can publish plugins, report PVs equivocations and
inconsistencies of its bindings at all PVs.

Non-equivocation. A PV cannot equivocate by presenting distinct STRs to
di�erent PQUIC peers. If it does, participants eventually detect this with the
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help of others. A STR acts as a tamper-resistant log for all the bindings vali-
dated by a PV. We assume that regular checks for non-equivocation of STRs
are performed by other participants and reported on the PR. For instance,
others PVs could query the STR of a particular PV and compare it with the
STRs maintained by the PR. Any PQUIC peer may eventually learn about an
equivocation on any received STR.

Secure human-readable names for plugins. When a PQUIC peer wants
to use a given plugin, it does not need to reason about developers identity or
plugin validity. The name is globally unique, human-readable and unequivo-
cally matches a plugin.

Detection of spurious plugins. If a PV injects a spurious binding, the
developer owning the plugin name will be able to detect this and alert PQUIC
peers through the PR. A peer may be abused before the detection happens.
However, the end-user will eventually know which PV faulted.

7.2.3 System Overview

PVs retrieve plugins from the PR. They build a Merkle Pre�x Tree at each
epoch containing all successful validated plugins. Each path to the leaf of this
binary tree represents a pre�x, and bindings are placed in leaves depending on
the truncated bits of H(pluginname). For instance, in a 3-depth tree, the pre�x
of the left-most leaf is ’000’. Empty leaves are replaced by a large constant
value 2 chosen by the PV. Interior nodes are hashed as H(hl || hr) with hl

(resp. hr) being the hash value of the left (resp. right) child sub-tree.
Leaf nodes contain one or more bindings. Several bindings may be located

at the same leaf node when the hash pre�x of di�erent names H(pluginname)

collides. In this case, the leaf node contains a linked list of bindings. Under
the assumption of uniform hashing, we can engineer the depth of the tree
such that a collision happens with low probability, depending on the number
of plugins within the PR. Without collision, the leaf node value is de�ned as

hleaf = H(binding)

If there is any collision, the leaf node value concatenates the bindings i,j,... as
follows

hleaf = H(H(bindingi) || H(bindingj) || ...)

After having updated its Merkle Tree, the PV digitally signs its root
and publishes the STR to the PR where its public-key information is avail-
able for all participants. Note that the tree computation is inspired by
CONIKS [Mel+15], but our construction di�ers so that bindings are located in
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Figure 7.6: Performing the proof of consistency. Red values forms the au-
thentication path, and green values are re-computed to verify that itmatches
the root.

the tree depending on the hash value of their plugin names, which makes it
impossible for a PV to put two bindings for the same plugin and to stealthily
populate one with a malicious code.

A PQUIC peer willing to send a plugin over a QUIC connection needs
to provide the authentication paths from PVs that ful�ll this peer’s required
validation, e.g., %+1∧ (%+2∨%+3). Obtaining a path only requires sending the
name of the plugin to a PV. The PV then computes the authentication path in
Θ(log(=) +U), with U = =/< being the load factor de�ned from = the number
of plugins and< the number of available leaves.

The PV then sends back to the PQUIC peer the authentication path for the
binding corresponding to the requested plugin name, as shown in Figure 7.6.
The hash values of any other bindings that may be part of this leaf are also
sent back by the PV. The PQUIC peer then sends the plugin alongside the
corresponding authentication paths obtained for a set of validators matching
the other peer’s required validation. PQUIC peers can preemptively fetch
authentication paths for the plugins they intend to use at each epoch.

Finally, the peer receiving the plugin recomputes the root value from the
binding and the authentication path to match the STR cached for the current
epoch as pictured in Figure 7.6. If the computed root matches the STR, then
the plugin is accepted.

When verifying a binding at a PV, a developer sends the name of the cor-
responding plugin to the PV. If only a single hashed binding is present in the
tree, the developer checks that it matches theirs. If multiple hashed bindings
are present, i.e., because of a collision, the developer receives their clear text.
This allows them to discern whether the collision was due to a pre�x collision
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ServerClient

CRYPTO(CHLO(supported_plugins=[monitoring]))

· · ·
CRYPTO(SH(plugins_to_inject=[multipath]))

PLUGIN_VALIDATE(multipath, %+1 ∧ (%+2 ∨ %+3))

PLUGIN_PROOF(multipath, �%%+1 , �%%+2 ), PLUGIN(multipath)

Figure 7.7: Example �ow for the exchange of the FEC plugin.

or the PV added a spurious binding.
If the PV tree does not contain the hashed binding of a given plugin, its

developer obtains a proof of absence, i.e., an authentication path to the linked-
list without the developer’s binding or an authentication path to the constant
value 2 indicating an empty leaf such that it matches the truncated bits of
H(pluginname).

7.2.4 Exchanging QUIC Plugins

Given the �exibility of QUIC, it is relatively simple to modify it to support
the exchange of plugins. The QUIC connection establishment packets con-
tain QUIC transport parameters such as the maximum number of streams, the
maximum packet size or the idle timeout [QUIC-t]. To enable plugin injec-
tion, PQUIC proposes two new QUIC transport parameters: supported_-
plugins and plugins_to_inject, both containing an ordered list of pro-
tocol plugins’ identi�ers. The �rst supported_plugins parameter an-
nounces the plugins that a PQUIC peer can inject locally. These plugins are
stored inside its local cache. The second plugins_to_inject announces
the plugins a PQUIC peer would like to communicate to the other peer in or-
der to apply them on the running connection. Once the QUIC handshake has
completed, both peers have a complete view of the available and requested
plugins. Then, there can be two outcomes. Either (0), all plugins requested
for injection are already available. In this case, they are injected as local plug-
ins, as explained in Section 7.1, in the order described by the plugins_to_-
inject transport parameter. Else (1), one or more plugins are unavailable lo-
cally, they are then transferred as illustrated in Figure 7.7. In this example, the
client announces the support of a monitoring plugin while the server would
like to inject a multipath plugin into the client. First, the client announces its
required validation formula for missing plugins, hence multipath, with the
PLUGIN_VALIDATE frame. Second, the server responds with authentication
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paths from PVs that ful�ll this formula in a PLUGIN_PROOF frame. The re-
quested plugin is then transferred over the plugin stream in PLUGIN frames,
akin to the QUIC cryptographic stream. When receiving the remote plugin,
the client performs the check of the proof of consistency. Upon success, it
stores the plugin in its local cache. Remote plugins are not activated for the
current connection, but rather o�ered in subsequent connections as part of
the locally available plugins. While PQUIC is capable of injecting plugins at
any time (as explained in Section 7.1), synchronizing their injection between
two hosts raises potential issues. For instance, consider the case of a plugin
modifying the format of an existing QUIC frame, e.g., the multipath plugin
adding a Path ID �eld at the beginning of the Ack frame. How can QUIC hosts
agree when they should expect to parse the Path ID �eld in the incoming Ack
frames? We prevent these issues by this conservative choice.

While the exchange mechanisms introduce some overhead, we believe it
remains acceptable. The �xed cost of exchanging plugin bytecodes is only
present during the �rst connection, as subsequent ones will take advantage
of the PQUIC caching system described in Section 7.1.5. Furthermore, if the
plugin is not mandatory for the use of the application (e.g., adding the mul-
tipath extension to better aggregate the available network links), the plugin
exchange does not prevent data from being transmitted over the connection.
Indeed, data and plugin streams can be concurrently used thanks to the QUIC
frame multiplexing.

7.3 Exploring Simple Protocol Tuning

Before digging into large plugins, we �rst consider here simple plugins com-
posed of only one pluglet inserted in REPLACE mode modifying speci�c algo-
rithms. For this, we �rst implemented a proof-of-concept prototype based on
our mp-quic implementation supporting Multipath gQUIC to assess the fea-
sibility of our solution. Our plugins are written in C and we use the clang
and llvm tools to produce the eBPF bytecode which can be injected inside
our QUIC implementation.

To make the mp-quic implementation pluggable, we inserted (i) a map of
plugins for each connection context with a dedicated API to inject code, (ii)
an API implementing anchors, testing if a plugin is present to run it and pro-
cessing the shared context, and (iii) code integrating the eBPF VM as a library.
Notice that this version only integrated the POE (§7.1.1) thanks to the previ-
ously presented user-space eBPF VM written in C [IO 18]. This prototype thus
does not integrate the generic API presented in Section 7.1.3 (as it relies on
a ad-hoc, protocol operation speci�c structure stored in the shared memory),
but helped to design it.

We use mp-quic to demonstrate that protocol plugins can be pushed in
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Figure 7.8: The network used for the ACK tuning experiment.

an implementation written in a di�erent language and explore multipath use
cases. To enable the eBPF VM to interact with mp-quic, we use cgo. This
standard Go package allows calling C code from a Go program. However,
it requires data to be copied into a particular structure passed to cgo and
eventually to the VM.

In the remaining of this Section, we perform our experiments in the
Mininet environment [Han+12]. We �rst show how a plugin can tune the
Multipath QUIC ACK scheduling strategy (§7.3.1). We then demonstrate the
dynamic loading of pluglets by limiting the sending rate (§7.3.2). Finally,
we detail the overhead of protocol plugins in our prototype implementation
(§7.3.3).

7.3.1 Tuning ACK Frame Scheduling

Our �rst multipath use case is a scenario with asymmetric bandwidth shown
in Figure 7.8. In this environment, it would be bene�cial to send data over the
bottom path and the acknowledgments over the upper one. This is possible
with QUIC since frames are independent of the packet carrying them in con-
trast with Multipath TCP where acknowledgments must be sent on the same
path as data. However, as stated in Chapter 6, changing the acknowledgment
strategy of Multipath gQUIC can a�ect the performance since latency mea-
surements would be a�ected. Protocol plugins can be injected at remote side
to ensure a consistent acknowledgment strategy.

Consider the network shown in Figure 7.8 with a 20 MB bulk download.
Sending acknowledgments on the same path as data is not the best strategy,
as acknowledgments would saturate the R2-R3 link. With this strategy, Fig-
ure 7.9 show that the client needs between 6 and 10 seconds to download the
20 MB �le from the server. We then implement a pluglet of 30 lines of code
that attaches to the SelectACKPath operation on the client to force it to send
all acknowledgments on the upper path. Our results show that this strategy
signi�cantly reduces the download times as acknowledgments are returned
quickly to the server and they do not saturate the upper link.
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Figure 7.9: When plugin code forces ACK frame sending on the R1-R3 path,
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Figure 7.10: Three plugins, loaded at di�erent times, controlling the rate over
an expensive path.

7.3.2 Restricting the Pacing Rate

Our second use case is inspired by smartphones. Recall from Chapters 2 and 3
that Multipath TCP enables them to simultaneously use both the Wi-Fi and
the cellular networks. However, many users have volume caps on their cel-
lular plans and do not want to use the cellular network for large downloads
when Wi-Fi is available.

In this situation, the smartphone needs to control the operation of the
server to restrict the bandwidth consumed on the cellular network. However,
a server cannot easily infer what is the desired bandwidth cap over a given
path. We address this problem with a protocol plugin that is pushed by the
smartphone to the server at the beginning of the connection. This plugin is
attached to the congestion control mechanism on the server and throttles its
congestion window over the cellular path, but not over the Wi-Fi one. By
writing only 10 lines of C code, our plugin allows this behavior. Figure 7.10
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eBPF cgo eBPF Preparing Empty struc- Empty struc-
code no-op no-op structure ture to cgo ture to eBPF

-25.1 % -4.9 % -6.1 % -8.9 % -21.7 % -21.7 %

Table 7.2: The performance di�erence of mp-quic with the pluginized packet
scheduler compared to native Go code.

shows the e�ect of three di�erent plugin versions over a two-path scenario
with 80 Mbps and 50 ms RTT links. The �rst one, injected after the handshake,
limits the rate to 3 MB/s. The second one, inserted after three seconds after
removing the �rst one, caps the speed to 10 MB/s. Finally, the last one, added
after six seconds after dropping the previous one, constraints the link to 1
MB/s. Our results presented in Figure 7.10 con�rm the e�ect of these plugins
and demonstrate that they can be injected at any time on a connection after
the handshake.

7.3.3 The Cost of Protocol Plugins

The proposed protocol plugins come with a trade-o� between customization
and performance. Two factors in�uence their impact. First, there is a network
overhead to exchange protocol plugins on a per connection basis. Second,
there is some computational overhead to call plugin code instead of native
one.

Network Overhead. The transmission of the executable bytecode gener-
ates additional load on the network. With the eBPF user-space VM used in
our prototype, the executable codes are ELF �les containing metadata (sec-
tions header, strings table, symbols table,...) in addition to the raw eBPF byte-
code. Our two simple use cases presented here introduce plugins requiring
only a few lines of C code, leading to ELF �les of 1 KB and 512 B for the
ACK scheduling and the pacing rate, respectively. With very simple plugins,
this network overhead is negligible for video streaming applications or the
download of large web pages.

Computational Overhead. Executing the protocol plugins inside a VM
provides portability and isolation, but is slower than native code. Further-
more, the interactions with the instrumented implementation can also intro-
duce some additional load. To quantify this overhead, we benchmark our mp-
quic implementation by measuring the throughput on localhost when trans-
ferring 50 MB. This is a standard benchmark used by the quic-go imple-
mentation.
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The packet scheduler is a critical component for multipath proto-
cols [Paa+14] and previous works proposed to make it �exible to application
needs [Frö+17]. We consider the lowest-latency packet scheduler, both in
native Go code — no plugin — and as a plugin. This plugin weights around
3 KB for 107 lines of C code. The packet scheduler is a critical element of the
sending work�ow, as it is called at each packet transmission occasion. Ta-
ble 7.2 indicates that in our mp-quic implementation, this plugin reduces the
achieved throughput by 25% compared to its native Go variant. As previously
explained, cgo bridges the Go implementation with the eBPF VM. To commu-
nicate with the eBPF VM, mp-quic must �rst prepare a structure that exposes
the connection context to the VM. As the core mp-quic implementation cannot
predict which �elds of the connection context will actually be used, it must
put all of them in the structure. This consumes CPU times. If the scheduler
in native Go code also �lls such structure, its performance drops by 9%. This
result demonstrates the value of proposing an API of getters and setters to the
VM. Nevertheless, the main overhead comes from the stack switch induced
by cgo. Its impact depends on the size of the interface structure. Running
the native Go scheduler with a cgo no-op without any communicated data
decreases the performance by 5%. Doing the same with a 8 KB communicated
structure lowers the performance by 22%. In such cases, we do not observe
any di�erence between cgo and eBPF no-ops. We could mitigate the perfor-
mance impact of cgo by using a user-space eBPF VM written in native Go
language. However, to our knowledge, such software was not available at the
time we made our mp-quic prototype.

7.4 Building Complete Extensions with Plugins

Building on our previous experiences with our early mp-quic prototype, we
now focus on a much more complete implementation of PQUIC based on
the picoquic one [Hui18] written in C. It fully implements all the mech-
anisms presented in Section 7.1 as well as the plugin exchange described
in Section 7.2.4. We �rst discuss some implementation details about how
we make picoquic pluginizable (§7.4.1). Then, we describe how we man-
aged to fully implement the multipath extensions using only plugins (§7.4.2)
and evaluate its performance against a native Multipath QUIC implemen-
tation (§7.4.3). This approach enables hosts to provide di�erent multipath-
speci�c algorithms depending on the application requirements (§7.4.4). We
also demonstrate that our approach allows PQUIC hosts to combine orthog-
onal plugins (§7.4.5). Finally, we conclude this Section by analyzing the over-
head brought by protocol plugins (§7.4.6).
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7.4.1 Making the Implementation Pluginizable

While the core ideas of PQUIC have been discussed in Section 7.1, they re-
quire a speci�c implementation design that we explain now. In particular,
we describe (i) how we seamlessly call protocol operations regardless of their
behavior being provided by pluglets or not, (ii) how we provide a generic in-
terface to pass arguments to the POE, and (iii) how we handle nested protocol
operation calls without any interference.

Refactoring Implementation Functions with Pointer Indirections

A naive solution to make a speci�c part of the implementation customizable
by a pluglet is to adopt a similar approach as our early prototype described
in Section 7.3 by inserting explicit checks — if/else — for a POE at speci�c
code locations. Such an approach su�ers from at least two drawbacks. First,
it prevents plugins from adding protocol operations that were not already
present in the base implementation. Second, it requires that built-in functions
must be aware if a pluglet is present or not to run their behavior. The presence
of pluglets should not be the concern of built-in, pluginizable functions.

Instead, our PQUIC implementation replaces native function calls by pro-
tocol operations identi�ed by human-readable names. From a concrete view-
point, each connection context includes a hash table making the link between
the string identi�er and an internal structure representing the protocol op-
eration. When a connection is created, the PQUIC implementation registers
all the protocol operations. The address of the built-in function is stored in
the internal protocol operation. The awareness of the presence of POEs is
thus delegated to this protocol operation structure. When a plugin de�nes a
new protocol operation, the PQUIC implementation creates a new entry in
the connection-related hash table, hence achieving the requested design. No-
tice that computing the hash of a protocol operation’s identi�er takes time
— about 100 `B with our implementation. To mitigate its impact, we pre-
compute the hash value at host initialization such that the core implementa-
tion can reuse it without further processing.

A Generic Interface for the POE

Distinct protocol operations often require di�erent inputs and outputs. How-
ever, our user-space eBPF VM only supports pluglets taking only one argu-
ment. In our early mp-quic prototype, we used it to communicate the pointer
to a protocol operation speci�c structure containing the �elds of interest. Yet,
this sets the issue of a generic interface between the core implementation
and POEs, especially when de�ning new protocol operations. In addition,
this raises the challenge of memory access management by plugins — as both
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the content of the structure and the plugin heap should be accessible by the
pluglet.

To solve these issues, the only argument provided to the pluglet is an
opaque tag referencing the connection context. Although this tag actually
corresponds to the related structure pointer, the pluglet cannot dereference
it as it points to a memory area outside its allowed bounds. The pluglet then
uses the provided tag as an argument to the getters and setters to retrieve the
variables of interest. All the values handled by these getters and setters are
protoop_arg_t, which actually correspond to uint64_t. When a plugin
wants to access a speci�c structure, it �rst fetches its tag and then uses it in
the structure-dedicated getter and setter. To retrieve the protocol operation
arguments, the plugin uses a speci�c connection’s getter with the index cor-
responding to the desired input. Similarly, a dedicated setter enables pluglets
to communicate output(s) to the caller. Such a design ensures a common in-
terface for all plugins while focusing the memory access management only
to the plugin heap.

Handling Nested Protocol Operation Calls

Because all the codes de�ning the behavior of protocol operations — either
built-in or provided by a plugin — use the common API to fetch inputs and
provide outputs, there is a need for coordination to avoid interference be-
tween di�erent protocol operations. In particular, a pluglet might call another
protocol operation before fetching a given input or might generate an output
before calling another protocol operation. To keep this isolation between dif-
ferent inputs and outputs, our central plugin_run_protoop function saves
all the previous inputs and outputs on its stack before preparing the new ones
for the protocol operation to be called. Once it returned, the inputs and out-
puts previously stored on the stack are restored and the pluglet continues its
execution without noticing any change in its inputs or outputs. Notice that
it gets the outputs of the called protocol operation in a structure it used to
call it. In addition to this argument processing, our plugin_run_protoop
function also checks for protocol operation call loops by setting (when call-
ing) and resetting (when returning) a speci�c bit in the protocol operation
structure.

7.4.2 Implementing the Multipath Extensions with Plugins

Protocol plugins can be used to implement various extensions to PQUIC.
With less than 100 lines of C code, a PQUIC plugin can add the equivalent
of Tail Loss Probe in TCP [Fla+13], or support for Explicit Congestion Noti-
�cation [Wes18]. In this Section, we rather focus on the much more complex
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Multipath extensions for the QUIC protocol described in Chapter 6 to demon-
strate the �exibility and the extensibility of PQUIC. Other use cases have been
considered too, we invite the interested reader to look at our SIGCOMM 2019
paper for further detail [De +19]. From a concrete viewpoint, our Multipath
plugin consists in 26 pluglets injected in 14 distinct protocol operations. Fig-
ure 7.11 illustrates most of the injected pluglets and their insertion point. To
understand the design of our Multipath plugin, let us consider several com-
mon code paths.

First, upon reception of a packet containing frames, a PQUIC implemen-
tation parses its header mentioning the Connection ID. Because the base
picoquic implementation supports connection migration (but not the si-
multaneous usage of multiple paths), it embeds the notion of path. Since
the Connection ID implicitly indicates to which incoming path the packet
was sent, we injected a pluglet in REPLACE mode to the get_incoming_-

path protocol operation as illustrated in Figure 7.11f. After decrypting the
packet, the PQUIC implementation starts decoding each frame along with
the related connection and incoming path contexts. QUIC frames always start
with their Type variable-length integer �eld. This type acts as an identi�er
of the decoded frame. We split the frame decoding process into two protocol
operations as pictured in Figure 7.11a. First, the parse_frame one interprets
the frame’s raw bytes and returns a C frame-speci�c structure containing all
the frame’s �elds. Second, the process_frame one takes the output of the
parse_frame protocol operation as input and performs actions depending on
the actual content of the frame. This distinction between the parsing and
the processing of frames — although not strictly required — aims at keep-
ing focused protocol operations to avoid very large and complex pluglets. In
addition, since our implementation stores sent packets as raw bytes, it re-
quires parsing again its frames without doing any further processing. In our
current Multipath plugin, we implemented ADD ADDRESS, ACK and NEW
CONNECTION ID frames. Notice that the two last ones, which are actually
small modi�cations of the original ones, are implemented with their own type
(MPACK and MP NEW CONNECTION ID). This induces the addition of two
pluglets (one in parse_frame, the other in process_frame) for each frame.

While the processing of the ADD ADDRESS and MP NEW CONNEC-
TION ID frames does not involve additional protocol operation calls, the one
of the MPACK frames includes other ones. When receiving an acknowledg-
ment, the host can estimate the network latency. Therefore, the processing
of MPACK frames requests the update_r� protocol operation. The Multipath
plugin inserts a pluglet in REPLACE mode to make path-aware RTT estima-
tions. Then, it handles the acknowledged packets through the process_ack_-

range protocol operation. This one �rst adapts the range that it communicates
through its MPACK frames through the process_ack_of_ack_frame protocol
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decode_frame parse_frame [MPACK] process_frame [MPACK] update_r process_ack_range

(a) Handling the reception of a frame (MPACK case).
process_ack_range process_ack_of_ack_frame dequeue_retransmit_packet notify_frame[MPACK]

(b) Processing an ACK range (continuation of Figure 7.11a).

prepare_packet schedule_frames schedule_path predict_header_length write_frame[MPACK]manage_paths

(c) Sending a QUIC packet.

Figure 7.11: Themodi�ed code path to include themultipath extensions only
with plugins. Added protocol operations and parameters are shown in green
while pluglets inserted in REPLACE and POST modes are respectively rep-
resented in red and blue.
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prepare_packet set_next_wake_time

(d) Sending a QUIC packet (continuation
of Figure 7.11c).

create_packet_header get_destination_connection_id

(e) Creating an header of a packet to be
sent.

incoming_packet get_incoming_path

(f) Identifying the receive path of an in-
coming packet.

connection_state_changed

(g) Being noti�ed that the connection
state is ready.

Figure 7.11: Themodi�ed code path to include themultipath extensions only
with plugins. Added protocol operations and parameters are shown in green
while pluglets inserted in REPLACE and POST modes are respectively rep-
resented in red and blue.

operation. Under the hood, this last operation parses again the sent pack-
ets’ raw bytes — hence calling parse_frame — and is updated by a pluglet to
make it aware of MPACK frames. Finally, based on the received ACK range,
the implementation can go through its sent packets bu�er thanks to the de-

queue_retransmit_packet protocol operation to determine if the packet can
be freed or otherwise its content should be retransmitted. In any case, our
PQUIC implementation informs plugins about the (non) delivery of their re-
served frames through the notify_frame protocol operation. Again, a pluglet
in REPLACE mode is inserted for each implemented frame.

Now that we completed the packet reception’s code path, we focus on
the sending one shown in Figures 7.11c and 7.11d. At some point, the code
�ow calls the prepare_packet protocol operation which itself requests the
schedule_frames one. It determines which frames will be included in the
next packet to be sent. Because the base PQUIC implementation only uses a
single path, our Multipath plugin injects a pluglet in REPLACE mode allow-
ing the usage of others paths. In particular, we dedicate the selection of the
path to a new protocol operation schedule_path. With such decomposition,
PQUIC hosts can change their path selection algorithm without considering
the frames that will be put on the selected outgoing path. The Multipath plu-
gin also introduces another protocol operation, manage_paths, associating
the available paths to speci�c 4-tuples. In our current version, the sched-

ule_path protocol operation always calls the manage_paths one, but it can
also be extended to listen to speci�c events, such as the loss of an IP address.
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Once the sending uni�ow has been selected, the schedule_frames protocol
operation estimates the available packet space for frames by calling the pre-

dict_header_length one. As each sending uni�ow has a distinct Connection
ID, with possibly di�erent lengths, we put in a pluglet in that protocol oper-
ation. Once a frame has been selected for sending, it calls the write_frame

protocol operation with its type as a parameter. Again, each of our four im-
plemented frames has its own dedicated pluglet. Once the content of the
packet has been determined, the prepare_packet protocol operation relies on
the set_next_wake_time one to determine when the timer should �re. We
adapt its operations with a pluglet to make it aware of the di�erent avail-
able paths. Finally, just before sending the packet to the network, it requires
writing its header through the create_packet_header protocol operation. As
each sending uni�ow has a di�erent Destination Connection ID, we insert a
pluglet at the get_destination_connection_id protocol operation, as shown
in Figure 7.11e. Notice that since picoquic actually sends packets using
the sendmsg call — �lling its auxiliary data with the desired packet’s 4-tuple
from the path context — there is no need for the Multipath plugin to tweak it.

The last piece of our Multipath plugin resides in knowing when PQUIC
hosts can start using several paths. As explained in Chapter 6, PQUIC peers
must �rst complete the handshake before beginning multipath operations.
This is why we insert a last pluglet in POST mode to the connection_state_-

changed protocol operation as pictured in Figure 7.11g. Once the connection
becomes ready, our pluglet triggers the sending of both ADD ADDRESS and
MPNEWCONNECTION ID frames, hence enabling the use of multiple paths.

Together, all these pluglets form a PQUIC plugin of 2750 lines of C code
that provides basic multipath capabilities following the requirements enu-
merated in Chapter 6. Our plugin supports the exchange of Path Connection
IDs and host IP addresses. It then associates a sending Uni�ow ID between
each pair of host addresses, similar to the full-mesh path manager used by
Multipath TCP. We implement both the round-robin and the lowest latency
�rst schedulers.

7.4.3 Evaluating the Multipath Plugin

We evaluate the performance of our Multipath plugin in a lab equipped with
Intel Xeon X3440 processors, 16 GB of RAM and 1 Gbps, running Linux kernel
4.19 and con�gured as shown in Figure 7.12. The links R1-R3 and R2-R3 are
con�gured using netem [Hem+05] to add transmission delays and using htb
to limit their bandwidth. One-way delay d is expressed in milliseconds and
bandwidth bw in Mbps.

To evaluate our plugin in a wide range of environments, we reuse the ex-
perimental design approach [Fis35]. We de�ne ranges on the possible values
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Figure 7.12: Network topology used for experiments.
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Figure 7.13: Over two symmetric network paths, multipath tends to complete
transfers twice faster than single-path.

for the parameters presented and use the WSP algorithm [SCS12] to broadly
sample this parameter space into 139 points. Each parameter combination is
run 9 times and the median run is reported. This mitigates a possible bias in
parameter selection and gives a general con�dence in the experiment results.
We use the parameter range {d1 ∈ [2.5, 25] ms, bw1 ∈ [5, 50] Mbps, d2 =

d1, bw2 = bw1}, and assume that both links have similar bandwidth and delay
characteristics. Note that when links are lossless, congestion-induced losses
can still be observed due to the limited bandwidth and router bu�ers, set to
the bandwidth-delay product. Our plugin is cached on both the client and the
server.

For both single path and multipath settings, we record the time between a
GET request issued by the client and the reception of the last byte of the server
response. We then compute the ratio of the single path completion time over
the multipath one to obtain the speedup ratio. We observe its evolution with
the size of the requested �le and compare it with the ratio obtained using the
native mp-quic implementation presented in Chapter 5. Figure 7.13 shows that
with small �les, there is little gain in using two paths. This is not surprising
since each path is constrained by its initial congestion window. Notice that
the initial path window of mp-quic (32 KB), inherited from quic-go [CS18],
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is twice the default one of PQUIC (16 KB). This explains the small speedup
gain of our plugin on 50 KB �les. With larger �les, both mp-quic and our
Multipath plugin e�ciently use the two available paths. The speedup ratio
of both the native mp-quic and our Multipath plugin tends to reach 2 with 10
MB �les.

7.4.4 Adapting the Multipath Plugin to Interactive Use Cases

Providing tuned multipath-speci�c algorithms to dedicated use cases is one
of the key motivations to distribute the Multipath extensions as plugins. Con-
sider the case of packet schedulers. When network paths exhibit similar de-
lays and bandwidths, a simple round-robin scheduler works well when per-
forming bulk transfers. Once di�erent delays are observed, a lowest-latency
�rst one is more suitable. However, when the application requires a low-
latency service within a wireless environment, solutions such as MultiMob
(§3.3) are more appropriate.

Our PQUIC approach enables hosts to use all these di�erent scheduling
strategies without modifying their implementation. From a concrete view-
point, our Multipath plugin is split into two parts. The �rst one contains
the core pluglets providing the support for the extensions. The second one
consists in the multipath-speci�c algorithms — here the path manager and
the packet scheduler. While the �rst part always contains the same pluglets,
a host can select the most appropriate multipath-speci�c algorithms in the
plugin it negotiates with its peer.

To demonstrate the bene�ts of this approach, let us reconsider the sce-
nario presented in Section 5.2.5 where a delay-sensitive application gener-
ating request/reponse tra�c loses its lowest latency path (15 ms RTT) after
3 seconds (using tc netem loss 100%). We evaluate two variants of the
Multipath plugin. The �rst one embeds the lowest latency �rst path scheduler
at both client’s and server’s sides and prefers using the initial network path
(15 ms RTT) over the additional one (25 ms RTT). The second variant still
uses this lowest latency �rst scheduler at client’s side but makes the server
follow the client’s scheduling decisions similar to the MultiMob’s server-
side packet scheduler (§3.3.1). In practice, it records the remote address of
the last received packet and forces the server to send the next packet on a
sending path reaching the given remote address. Each 1400-byte request sent
every 400 ms triggers a 750-byte response. Unlike our previous experiments,
each request/response takes place in its own stream, meaning that a delayed
response does not impact subsequent requests. Notice that our Multipath plu-
gin does not implement the PATHS frame, i.e., a host noticing a path failure
does not advertise it to its peer.

We perform our experiments in the same lab as in Section 7.4.3. Fig-
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Figure 7.14: A server-side packet scheduler following the client’s decisions
prevents the server from su�ering a RTO too.

ure 7.14 indicates that before the loss event, the two experiments uses the
lowest latency network path. Notice that the initial request observes a re-
sponse delay of 20 ms because the client still limits its packet size to 1252
bytes to avoid fragmentation as it did not send a path MTU discovery packet
yet. Hence, the request is split into two packets. Since the latency scheduler
wants to test the additional path, the complete request arrives at the server
after 12.5 ms, which replies on the fastest path5. When the loss event occurs,
it takes 50 ms for the client to notice that the preferred path is potentially
failed and duplicate the frames over the additional path. While the server-
side scheduler follows the last client’s decision and directly replies on the
additional path, the lowest latency �rst scheduler also experiences a RTO at
server side after 50 ms. Then, both Multipath variants continues the tra�c
over the working additional path.

7.4.5 Combining Orthogonal Plugins

Given the isolation provided by PQUIC, it is possible to load di�erent plugins
on a given PQUIC implementation provided that they do not both replace a
same protocol operation. To demonstrate this design �exibility, we show how
our Multipath plugin can be injected together with another one providing un-
reliable messages. This last plugin relies on the EXTERNAL anchor presented
in Section 7.1.4 to let the application request the unreliable delivery of data.
Their combination typically suits a QUIC-based Multipath VPN application.

5The server-side scheduler also behaves the same way but for di�erent reasons. At the
time it fully receives the �rst request, the additional path is not validated yet, only leaving the
fastest one for the response.



168 Chapter 7. Pluginizing QUIC

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
DCT in/out

0.00
0.25
0.50
0.75
1.00

CD
F

1.5 KB
10 KB
50 KB
1 MB
10 MB

Figure 7.15: Download Completion Time ratio of TCP inside and outside a
multipath client-server tunnel.

Benchmark Native eBPF JIT-compiled eBPF Interpreted
Simple loop 839 ms 1706 ms 17000 ms

Get / Set 844 ms 5336 ms 40150 ms

Table 7.3: Execution time for the micro-benchmarks (median over 3 runs).

We evaluate the performance of combining these two plugins in the same
network scenario explored in Section 7.4.3. Our scenario creates Linux tun-
nel interfaces at both client and server sides to carry IP datagrams inside a
PQUIC connection. We measure the ratio of Download Completion Time
(DCT) when running a single TCP Cubic �le transfer inside and outside the
Multipath VPN tunnel for di�erent �le sizes.

As expected, we do not observe any bene�t in using multipath for tun-
neling a short TCP transfer, as pictured in Figure 7.15. However, as �le size
grows the bene�ts of using multiple paths become clear. By spreading the
tra�c over the two symmetric paths, our combined plugins reach a DCT ra-
tio that tends to 0.55. This shows that our plugins enable TCP to aggregate
both paths’ bandwidth without being aware of the multipath usage.

7.4.6 Plugin Overhead

The balance between �exibility and performance is a classical trade-o�.
Google and the IETF have decided to run QUIC over UDP despite the fact
that Google measured that "QUIC’s server CPU utilization was about 3.5 times

higher than TLS/TCP " [IS18]. The performance gap between TCP and UDP
has since been slightly reduced, but UDP remains slower [BD18]. As PQUIC
delegates the execution of the plugins to the POE, there is a processing over-
head due to the Just-In-Time (JIT) compilation, the run-time veri�cations per-
formed by our monitor at each memory access, and the utilization of the API
to safely access PQUIC state variables.

Executing code in the POE is less e�cient than running native code. To
assess this, we write a simple for loop performing at each iteration a sum,
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Plugin G̃ Goodput f/G̃ G̃ Load Time
PQUIC, no plugin 1104.2 Mbps 3.8% 0.0 ms

Monitoring (0) 1037.3 Mbps 4.6% 6.35 ms
Multipath 1-path (1) 756.6 Mbps 3.1% 8.28 ms

0 and 1 714.2 Mbps 4.4% 13.00 ms

Table 7.4: Benchmarking plugins over 10Gbps links (20 runs).

a multiplication and a division on a 64-bit integer and evaluate it on a lap-
top running on a Intel Core i7-4810MQ CPU @ 2.80GHz with 16 GB of RAM.
We implement it both as a plugin and in native C code and run the loop one
billion times. Table 7.3 indicates that the POE is twice slower than native
code. Such overhead could probably be mitigated by using a more optimized
VM with a smarter JIT compiler. We also evaluate the impact of our get/set
API by writing a for loop getting and setting two integer �elds at each iter-
ation. Running the loop 500 millions times, we observe that our get/set API
is six times slower compared to direct memory accesses. Notice that in all
our experiments, we consider JIT-compiled bytecode. Our user-space eBPF
VM also enables us to run it in interpreted mode. However, on a computa-
tionally intensive benchmark, the interpreted mode is ten times slower than
JIT-compiled one.

To observe this performance impact in more bandwidth-intensive envi-
ronments, we benchmark our PQUIC implementation by measuring the com-
pletion time of a 1 GB download between two servers with 10 Gbps NICs.
We initially performed our analysis with our lab described in Section 7.4.3,
but we noticed that the main CPU overhead came from the TLS encryption
and decryption of packets. This is because our initial processors — Intel Xeon
X3440 — do not provide hardware support for AES encryption. Hence, we
relaunch our experiments with servers equipped with Intel Xeon E5-2640 v3
CPUs. These bene�t from newer instruction sets — notably AES-NI — and
allow us to focus on the plugin execution overhead. Note that our PQUIC im-
plementation is single-threaded and thus does not bene�t from the additional
CPU cores.

Table 7.4 reports the median achieved goodput, its relative variance and
the plugin loading time for each plugin. PQUIC achieves a median goodput
of 1104.2 Mbps. This low performance compared to TCP is partly due to the
fact that picoquic, the implementation on which PQUIC is based, has not
been optimized yet for performance. Indeed, as the QUIC speci�cation was
still evolving when we built our implementation, there was limited interest in
deeply optimizing a QUIC implementation at that stage. Comparing PQUIC
to the version of picoquic we based our work on could allow measuring
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the impact of adding our approach to a QUIC implementation. However, this
is technically challenging, as our PQUIC version also contains performance
and bug �xes to picoquic6. There is thus no picoquic version match-
ing the current state of PQUIC. We could also compare the latest version of
picoquic with PQUIC. Nevertheless, both picoquic and the QUIC speci�-
cation itself have substantially evolved during our work, adding many degrees
of freedom that would confuse the performance evaluation.

Since QUIC encrypts everything, it is di�cult for network operators to
troubleshoot their connections. We propose a protocol plugin [De +19] —
consisting of 500 lines of C code spread into 14 pluglets — that attaches byte-
codes at strategic PRE and POST anchors to monitor the state of running
PQUIC connections. When evaluating this monitoring plugin, we observe a
goodput reduction of 7% which matches the additional 8% CPU instructions
executed. We also observed a 10% increase of TLB load misses caused by the
context switches between PQUIC codes and the POEs. Given that the moni-
toring code complexity is low, these results illustrate the overhead of adding
several pluglets within the critical path.

The benchmark of the Multipath plugin over a single path achieves a me-
dian goodput of 756.6 Mbps. Several factors explain this reduction. First, the
acknowledgments are created by the plugin usingMPACK frames, which con-
stitutes a signi�cant part of the client execution time. Second, the Multipath
plugin provides a path manager and a path-aware frame scheduler. This adds
several new protocol operations into the packet processing code path.

Combining both the monitoring and the Multipath plugins results in a
6% goodput reduction compared to multipath only. This demonstrates that
plugins with orthogonal features are e�ciently combined using PQUIC.

Inserting plugins takes time, as described in the last column of Table 7.4.
This time is proportional to the number of inserted pluglets and their com-
plexity. The instantiation of POEs (between 4 and 7 ms) is the major contrib-
utor to this loading time. Note that this overhead is only present when there
is no cached plugin available. If the host previously loaded the plugin in a
completed connection, it can reuse its POEs as described in Section 7.1.5 to
load the plugin in less than 30 `s.

Plugins can be exchanged between PQUIC peers over the network as de-
scribed in Section 7.2.4. To limit the exchange overhead, we rely on a ZIP
compression scheme to transfer plugins. We take advantage from the fact
that pluglets from a given plugin can contain duplicate code from common
functions. Compressing the Multipath plugin reduces that exchanged over-
head from 138 KB (plain ELF �les) to 40 KB (compressed ones). Assuming
the plugin exchange starts at the beginning of the connection with an initial

6Actually, our current version of PQUIC achieves higher goodput than the original version
of picoquic we base our work on.
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congestion window of 16 KB, it requires 2 RTTs to be exchanged.

7.5 Validating Plugins

As explained in Section 7.2, PQUIC peers can request proofs of the validity
of protocol plugins when receiving them over a QUIC connection. The val-
idation is carried out by the Plugin Validators. These validators can apply a
range of techniques, from manual inspection, privacy checks [Ege+11; Li+15],
to fuzzing [PAJ18] or using formal methods [MZ19] to validate the plugins
submitted by developers. Formal methods are attractive because they enable
validators to provide strong proofs for network protocols [Bis+05; BBK17;
Chu+18].

A very important property for any code is its (correct) termination. If a
protocol plugin would be stuck in an in�nite loop with some speci�c input,
then it would obviously be unsafe to use it in a PQUIC implementation. To
demonstrate the possibility of using formal techniques to validate protocol
plugins, we used the state-of-the-art T2 [CPR06; BK19] automated termina-
tion checker. T2 has been extended to handle a large fragment of Compu-
tational Tree Logic (CTL) [Coo+07; CKV11]. Verifying CTL reduces to an
extended termination proof of the program combined with CTL information
in states. Therefore, we focus here on the termination property.

Using the appropriate tools [Khl+15; KG+19], we checked the termination
of our Multipath pluglets by compiling their C source code to T2 programs.
The T2 prover assumes the termination of external functions, i.e., functions
of the PQUIC implementation available through the POE. On the 26 pluglets
composing the Multipath plugin, we managed to prove the termination of 23
of them. To obtain those proofs, we had to slightly modify the source code
of some pluglets to ease the proof process. For example, we added an explicit
size to NULL-terminated linked lists and used it to bound the loops iterating
over them. The three remaining multipath pluglets could not be proven due
to their complexity. It seems that T2 badly handles codes containing multiple
nested (bounded) loops. Since T2 can export its termination proofs in �les,
these could be attached to the plugins to be the proof-carrying code proposed
by Necula [Nec02]. However, given the size and complexity of these proofs, it
is unreasonable to expect a PQUIC implementation to download and process
them when loading plugins.

7.6 Related Works

Improving the �exibility of networks is a topic widely studied in the litera-
ture. In the late nineties, active networks [TW96; Ten+97] were proposed
as a solution to bring innovation inside the network. Various techniques
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were proposed to place bytecode inside packets so that routers could exe-
cute it while forwarding them. PLAN [Hic+98], ANTS [WGT98] and router
plugins [Dec+98] are examples of such active techniques. Interest in active
networks slowly decreased in the early 2000s [Cal06], but Software De�ned
Networks [McK+08] and P4 [Bos+14] can be considered as some of their suc-
cessors.

Most of the work on active networks focused on the network layer and
only a few researchers addressed the extensibility of the transport protocols.
CTP [WHS01] is a transport protocol that is composed of various micro-
protocols that can be dynamically combined at run-time through the Cac-
tus [Hil+99] system. STP [Pat+03] enables the utilization of code written in
Cyclone [Jim+02] to extend a TCP implementation. icTCP [GAA04] exposes
TCP state information and control to user-space applications to enable them
to implement various extensions. To our knowledge, these techniques have
not been deployed. In comparison, we believe our approach can be deployed
at large scale as it relies on QUIC which prevents middlebox interference and
enables a safe exchange of protocol plugins. Our Multipath plugin goes be-
yond the extensions proposed for STP and icTCP. CCP [Nar+18] provides a
framework to write congestion control schemes in transport protocols in a
generic way. Although we did not explore it in this Chapter, a new conges-
tion controller could easily be implemented as a protocol plugin.

To deploy protocol plugins, we design a secure plugin management sys-
tem that bares similarities to Certi�cate Transparency [rfc6962]. Our Merkle
Pre�x Tree construction has the major di�erence that plugin developers do
not have to scan the entire tree in order to detect spurious plugins linked to
their owned name, but only the branches in which their plugins lie.

Our Plugin Operating Environment is based on a simple user-space im-
plementation of the eBPF VM [Fle17; IO 18]. Other execution environments
that provide built-in memory checks such as CHERI-MIPS [Woo+14] or We-
bAssembly [Haa+17] could be valid alternatives to our POE. Evaluating their
relevance in the protocol plugin context would be an interesting future work.

7.7 Discussion

Extending the behavior of client-side protocol implementations is di�cult.
First, deploying client updates can take several months or even years. Sec-
ond, it remains unpractical to tune a protocol implementation when connec-
tions require very di�erent services. Currently, experimental QUIC exten-
sions such as mp-quic [DB17a] and QUIC-FEC [MDB19] are implemented as
source code forks. Updating the base QUIC protocol and combining these ex-
tensions impose a signi�cant engineering and maintenance burden, which is
currently only a�ordable by large Internet companies. We envision PQUIC
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implementations to be both simple and stable, providing connection-speci�c
extensions through plugins. PQUIC could enable developers to focus on one
implementation interface while still supporting very di�erent implementa-
tion’s internal architectures, such as zero-copy and partial hardware o�oad.

Through its plugins, PQUIC provides quick deployments of extension pro-
totypes. Still, the bene�ts of plugins for complex standardized extensions do
no fade. For instance, while the Multipath speci�cation describes its wire for-
mat, both the packet scheduling and path management algorithms depend
on the application. Whereas server implementations would likely provide
built-in support of the Multipath extension for better performance, PQUIC
provides more �exible tuning at client side than a simple on/o� extension
switch. These algorithms could be pushed by the server itself.

7.8 Conclusion and Future Work

Extensibility is a key requirement for many protocol designs. We leverage
the unique features of QUIC to propose a new extensibility model that we
call Pluginized QUIC (PQUIC). A PQUIC implementation is composed of a set
of protocol operations which can be enriched or replaced by protocol plugins.
These plugins are bytecodes executed by a Protocol Operating Environment
(POE) that ensures their safety and portability. The plugins can be dynami-
cally loaded by an application that uses PQUIC or received from the remote
host thanks to our secure plugin management system. We demonstrate the
bene�ts of this approach by implementing the Multipath extensions to QUIC
exclusively with plugins.

This new protocol extensibility model opens several directions for future
work. First, a similar approach could be used for other networking protocols
in both the data place and the control plane [Wir+19]. Second, new tech-
niques ensuring the implementation conformance to protocol speci�cations
could be explored. These could leverage the PQUIC interface to assess that a
plugin composition is correct. A third direction would be to revisit how we
design protocol robustness [RBP19].

Another direction would be to develop new veri�cation techniques
adapted to pluginized protocols. While our POE detects and prevents the ex-
ecution of a range of incorrect and malicious programs, there remain areas of
improvements in the domain of static eBPF veri�cation techniques [Ger+19].

Finally, PQUIC could be the starting point for the next version of QUIC.
This would require the IETF to also specify protocol operations to ensure
the inter-operability of plugins among di�erent implementations. To achieve
this, one must identify the minimal core protocol operations required. This
set should be simple enough to allow very di�erent implementations, hav-
ing possibly very speci�c internal architectures such as zero-copy support, to
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interoperate. Instead of adding more and more features to a monolithic im-
plementation, developers could leverage the inherent extensibility of a plug-
inized protocol to develop over a simple set of kernel features that are easy
to extend.



Conclusion 8
Over time, the application requirements have evolved. While the Inter-

net was initially designed to remotely access terminals and exchange bulk
�les between computers, it now serves very diverse functions such as voice-
activated applications and video streaming. In addition, the rise of mobile
devices motivated the support of multiple paths in transport protocols. Yet,
protocol implementations are often optimized for speci�c needs and they typ-
ically lack of �exibility to new use cases.

This thesis tackled these issues by exploring how we can make multi-
path transport protocols �exible to di�erent application requirements. First,
we performed in Chapter 2 two di�erent measurement campaigns evaluating
the performance of Multipath TCP on smartphones. The �rst one focused on
the implementation in the Linux kernel and observed the tra�c generated by
real users using unmodi�ed Android applications through a Multipath TCP-
enabled proxy. While this setup enables smartphones to simultaneously use
both Wi-Fi and cellular networks, only a few connections actually take ad-
vantage of these multiple paths, the other ones generating network overhead
without sending useful data on additional paths. Nonetheless, we showed
that connections that survived from the loss of their initial path represent a
consequent fraction of connections using multiple paths. To further inves-
tigate user mobility, we performed as second measurement campaign based
on the iOS implementation. We developed a speci�c application generating
active measurements in both stable and mobile conditions. In particular, we
revealed that the handover process from the Wi-Fi network to the cellular one
is not abrupt, i.e., Multipath TCP simultaneously uses both wireless networks
to handle such mobile situations. Still, with user motion there remains room
for improvement in terms of application-perceived latency.

Then, based on our previous �ndings, we presented in Chapter 3 how we
can tune Multipath TCP to better �t latency-sensitive applications under de-
vice mobility while meeting user’s expectations in terms of cellular network
usage. Our solution consists in three parts: (i) a server-side packet sched-
uler following the client’s last decisions; (ii) a path-manager creating cellular
sub�ows when noticing a bad primary network; and (iii) protocol additions
to detect idle paths and to quickly create additional sub�ows. Our evalua-
tion assessed that our tuned Multipath TCP achieves reasonable application-
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perceived latency while limiting the cellular network overhead. However, due
to deployment and technical constraints, our measurements with real users
were limited to a few devices. Also, the overall implementation e�ort was
quite large compared to their actual bene�ts.

To get rid of both kernel-space and TCP constraints, we considered the
QUIC protocol and proposed an initial multipath design in Chapter 5. Com-
pared to Multipath TCP, our proposal is cleaner and simpler to deploy at large-
scale. By following an experimental design approach, we evaluated both
Multipath TCP and Multipath gQUIC in a broad range of emulated network
scenarios. In lossless networks, we obtained similar results for both Multipath
TCP and Multipath gQUIC. Thanks to its better loss signaling, QUIC still ben-
e�ts from the usage of multiple paths exhibiting losses, unlike TCP. We then
extended our evaluation to real wireless networks and con�rmed that the per-
formance of Multipath TCP and Multipath gQUIC are similar. Nonetheless,
our experience with real networks pointed out some limitations in that initial
design. In Chapter 6, we reconsidered the Multipath extensions for the QUIC
protocol to address all the previously raised concerns. While being more de-
ployable that the initial design, our new one also takes into account network
asymmetries. Our in-lab experiments con�rm that in such networks, our im-
proved design provides higher bene�ts than the initial one.

Finally, we proposed in Chapter 7 to completely revisit how transport
protocols are speci�ed and implemented. To make them fully extensible, we
proposed that pluginizable protocol implementations provides a �exible API
to their serving applications. Hosts can extend their protocol behaviors by in-
jecting protocol plugins on a per-connection basis. These can be exchanged
to the peer over the QUIC connection. We demonstrated that our Multipath
extensions can be provided only with plugins and showed that we can achieve
similar performance than a native Multipath QUIC implementation. We envi-
sion the case where pluginizable client implementations can be �nely tuned
by protocol plugins served by native server implementations. Such an ap-
proach would make transport protocols fully �exible to the application re-
quirements.

Open Problems

This thesis opened several directions for future research. First, our Multi-
pathTester application provides an opportunity to collect multipath proto-
cols measurements at a large scale thanks to the iOS support of Multipath TCP
and the Multipath QUIC implementation bundled by the application. For the
sake of fairness, we shipped a Multipath QUIC packet scheduler similar to
the one of iOS Multipath TCP in interactive mode. Thanks to the �exibility
of Multipath QUIC, it would be possible to explore other multipath-speci�c
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algorithms or even explore other QUIC extensions, such as Forward Erasure
Connection.

Second, while MultiMob is an adaptation of Multipath TCP, some of its
ideas can be applied to Multipath QUIC as well. In particular, we could con-
sider the break-before-make path management approach to Multipath QUIC
and how the oracle could be adapted to monitor QUIC �ows instead of TCP
ones.

Third, the new design of Multipath QUIC explicitly takes into account
the network asymmetry to use unidirectional paths. This motivates research
works about one-way path characteristic estimations — such as one-way de-
lay — to perform cleverer packet scheduling.

Last but not least, we believe that our PluginizedQUIC work opens several
followup works on its own. A �rst direction would apply the proposed exten-
sibility model to other protocols, possibly at other layers than the transport
one. A second direction would be to explore new veri�cation techniques to
assess that plugins ful�ll speci�c safety properties. A third direction would
be to identify and specify the core operations of PQUIC— and possibly in-
cluding an advanced permission model — such that any protocol plugin can
seamlessly work regardless of the PQUIC implementation.
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