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Abstract

Computer networks are deeply ingrained in our daily lives. We rely on them to
place audio calls, to watch movies, or even to automate parts of our houses.
Each of these use-cases comes with its own requirements to ensure its proper
operation and generates unique traffic patterns. For example, video streams
require a large amount of bandwidth from a server to the client, for the duration
of the video. Efficiently supporting many requirements, potentially changing over
time, requires networks to be flexible. In this thesis, we study and improve
two key aspects of network flexibility. First, we tackle the issue of flexible
network control by introducing Fibbing, a technique which achieves a central
control over distributed routing protocols. We present the theory behind Fibbing
using provably-correct algorithms, as well as a prototype controller which is
compatible with unmodified commercial routers. Our algorithms scale to large
Internet Service Provider (ISP) topologies, and measureme...

Document type : Thèse (Dissertation)

Référence bibliographique

Tilmans, Olivier. Improving network flexibility.  Prom. : Bonaventure, Olivier



Improving network
flexibility

Olivier Tilmans

Thesis submitted in partial ful�llment of the requirements
for the Degree of Doctor in Applied Sciences

December 2018

Pôle d’ingénierie informatique
ICTEAM

Université catholique de Louvain
Louvain-la-Neuve

Belgique

Thesis commitee:
Pr. Anja Feldmann MPI-Inf, Germany
Pr. Charles Pecheur (President) UCLouvain, Belgium
Pr. Ramin Sadre UCLouvain, Belgium
Pr. Laurent Vanbever ETH Zürich, Switzerland
Pr. Olivier Bonaventure (Advisor) UCLouvain, Belgium



Improving network �exibility
by Olivier Tilmans

© Olivier Tilmans, 2018
Université catholique de Louvain
ICTEAM
Pôle d’ingénierie informatique
Place Saint Barbe, 2
1348 Louvain-la-Neuve
Belgique

This work was partially supported by grants from the EC Seventh
Framework Programme (FP7/2007-2013, grant no. 317647—Leone) and from
Communauté française de Belgique (ARC grant 13/18-054). This work was
also partially supported by a F.R.S.-FNRS FRIA scholarship (Fonds pour la
formation à la Recherche dans l’Industrie et dans l’Agriculture, rue
d’Egmont 5, B-1000, Bruxelles, Belgique).



Preamble

Projected to carry 3.3 Zetabyte1 annually by 2021 [Cisd], the Internet has
for long stopped to be a small network connecting universities. Indeed, it
is now deeply ingrained in our daily lives, as we rely on it to place voice
and video calls, watch movies, or get real-time road-congestion noti�cations
which seamlessly update our commute itineraries. Additionally, it also con-
nects automated factories to remote control centers, and enables enterprises
to move to virtual o�ce environments where everything is in the cloud.

This ever-growing list of applications comes with vastly di�erent needs of
connectivity for each of them, in terms of required bandwidth, expected laten-
cies and losses, or tra�c patterns (e.g., bursts). In parallel, the traditional net-
work boundaries are shifting, as end-hosts are getting more and more mobile,
while the services they connect to are dynamically instantiated in the cloud.
Implementing complex connectivity requirements in this context is thus a
major challenge, as it requires network to continuously adapt to changes.

Today’s networks are often statically con�gured to forward tra�c on a
best-e�ort basis, using historical tra�c demands to optimize their forwarding
paths. Indeed, most networks are composed of vertically-integrated routers
(e.g., routers from vendors such as Cisco or Juniper), use distributed routing
protocols (e.g., bundled as part of IOS, JunOS), and rely on coarse-grained
randomly sampled measurements (e.g., NetFlow). We say that these networks
are in�exible, as adapting to new requirements is challenging without caus-
ing service disruptions [Jun08; Ver16].
While Software-De�ned Networking [Kre+15] has been touted as the net-
work architecture that will support tomorrow’s use-cases due to its tremen-
dous �exibility, we argue that current implementations bring challenges of
their own. Moreover, deploying sdn through a clean-slate approach is unprac-
tical for most networks, forcing an incremental deployment of sdn features
co-existing with today’s protocols.
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ii Preamble

In this thesis, we study how to improve network �exibility. In particular,
we focus on two research questions, which are key to enable tight control-
loops as needed by future networks.

� How can we adapt forwarding requirements in today’s networks?

� How can we evaluate whether current requirements are met?

Drawing inspiration from the strengths of the sdn paradigm, answering
the �rst question requires to identify a new primitive enabling to centrally
control distributed routing protocols. Answering the second implies to be able
to monitor the behavior of a network in real-time, extracting �ned-grained
measurements which go beyond bandwidth estimation.

This thesis is structured in three parts. The �rst part introduces key con-
cepts forming the background behind today’s networks (§1).

Then, the second part tackles the issue of �exible network control. We
begin by presenting a technique to achieve a centralized control over dis-
tributed routing protocols (§3). More speci�cally, we �rst motivate why to-
day’s networks have a hard time to adapt to change, and introduce Fibbing, a
hybrid network architecture bringing sdn control to distributed routing pro-
tocols (§2). Then, we present the theoretical foundations of Fibbing (§3). In
particular, we show how Fibbing supports advanced routing requirements in
link-state routing protocols, by using provably correct algorithms to inject
fake nodes and fake links in the routers’ shared view of the network. After-
wards, we describe an implementation of Fibbing which controls ospf net-
works (§4). We show that this implementation is able to control unmodi�ed,
o�-the-shelf routers, and that it can scale to large networks and number of
requirements with little overhead. We conclude this part by discussing new
research perspectives opened by Fibbing (§5).

The last part of this thesis explores how to improve the �exibility of net-
work monitoring systems. More speci�cally, we focus on two kinds of net-
works which have poor visibility over their tra�c. On one hand, we introduce
Stroboscope, a monitoring framework that combines the visibility of tra�c
mirroring with the scalability of tra�c sampling (§6). Stroboscope enables isp
networks to collect �ned-grained tra�c samples, at scale, while actively con-
trolling the monitoring overhead, in order to enable advanced analyzes such
as estimating one-way delays. On the other hand, we present Flowcorder,
a monitoring framework enabling enterprise networks to precisely monitor
the performance of protocols as experienced by the end-hosts (§7). Flowcorder
supports transparently encrypted and multipath protocols, as it directly in-
struments the protocol implementations on the end-hosts to collect connec-
tion performance pro�les. Chapter (§8) concludes this third part.

We conclude this thesis and discuss future research in the last chapter (§9).
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Part I

Background





1Operating networks

The goal of computer networks is to enable the exchange of data between
di�erent machines, also known as end hosts. Most networks achieve this by
using ipv4 and ipv6, the Internet Protocol versions 4 [rfc791] and 6 [rfc2460].
In this protocol, end-hosts are identi�ed using an ip address. To send data to
another host, a sender then �rst has to chunk it into packets, then has to write
its own ip address and the one from the receiver as the source and destination
addresses in an ip header. As end-hosts are rarely directly connected to one
another, these packets are then relayed by intermediate nodes, routers, until
they reach their destination, using a process called ip forwarding. The Inter-
net is composed of the interconnection of multiple intermediate Autonomous
Systems (ases)—i.e., networks operated by a single administrative entity. Ex-
changing data over the Internet then implies to forward ip packets across
one or more ases. This forwarding process is the keystone of the Internet. In-
deed, to scale, each as is able to autonomously de�ne how each packet should
be forwarded, and can selectively exchange reachability information with its
neighbors. More importantly, this autonomy enables ases to optimize their
tra�c �ow, in order to maximize their resource utilization—i.e., de�ne along
what exact succession of routers (path) and with what priority each packet
should be forwarded. As such, one of the primary tasks when operating a
network is to manage this forwarding process.

This chapter brie�y presents the concepts behind ip forwarding, and how
operators can optimize packet forwarding in their networks. To that end, we
�rst present a high-level model of an ip router (§1.1), as found in most isp
networks. Then, we describe how forwarding paths are de�ned within an
as (§1.2). Next, we describe how networks are monitored, enabling them to
be troubleshooted as well as providing the necessary data to optimize their
forwarding paths (§1.3). Finally, we outline a recent network paradigm shift,
Software-De�ned Networking (sdn), which leverages programmable hard-
ware to enhance network �exibility (§1.4)
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Figure 1.1: ip routers’s functions and components can be organized in three
sets of planes: data, control and management.

1.1 Modeling an ip router

Fig. 1.1 depicts a high-level architecture of an ip router. ip routers are made
of three sets of components, referred to as planes.

Data-plane. This plane achieves the primary function of an ip router:
switching ip packets received on one of its interface, the ingress interface, to
output it on an egress interface. Beside forwarding packets, the data-plane can
also �lter them and/or modify them, by using access-lists—e.g., to drop unau-
thorized packets, or to set the value of some �elds in the ip header. All data-
plane operations are controlled by corresponding entries in the Forwarding
Information Base (fib). For example, pure ip forwarding requires to perform
a longest-pre�x-match lookup in the fib to extract the nexthop associated to
the destination address of the packet. Note that the data-plane operates inde-
pendently of the router’s cpu as all its operations are hardware primitives.

Control-plane. The control-plane consists of all the algorithms and pro-
tocols that manage the content of the fib. The control-plane components are
mostly implemented in software, and often come bundled with the router
Operating System (os). To manage the content of the fib, multiple routing
processes add routes in the Routing Information base (rib). This is a data
structure stored in the router’s memory which associates ip destination pre-
�xes to ip nexthops or local interfaces. As the rib is updated by the routing



1.1. Modeling an ip router 5

processes, the router os pushes these changes to the fib.
Fig. 1.1 shows four routing processes often found on routers. The Direct

routing process handles the directly connected routes—i.e., the ip addresses
and pre�xes that are reachable on the local network attached to the routers’
interfaces. The Static routing process keeps track of routes statically provi-
sioned by the operator, through the router con�guration. Finally, Fig. 1.1 lists
two of the most popular routing protocols, bgp [rfc4271] and ospf [rfc2328],
each de�ning another routing process. Routing protocols enable routers to ex-
change information with one another, in order to learn how to reach various
pre�xes. On one hand, the Border Gateway Protocol (bgp) enables routers from
one as to exchange the routes they know with routers belonging to another
as. bgp is thus an inter-domain routing protocol. On the other hand, Open
Shortest-Path First (ospf) is an Interior Gateway Protocol (igp), as it enables
routers to learn how to reach pre�xes located within the same as (§1.2).

All of these routing processes result in routes which can be installed in
the rib. To control whether a given route can be used by a router or not (i.e.,
installed in the rib), rib �lters can be con�gured by operators. For example,
to prevent bgp hijacks, an operator can �lter out all bgp routes concerning its
own pre�xes or those using private ip address ranges (e.g., 10.0.0.0/8 in ipv4).
By default, two routes towards the same ip pre�x are di�erentiated according
to the Administrative Distance ad of the routing process that computed it
(e.g., to favor routes coming from more “reliable” routing protocols).

Management-plane. The management-plane controls the overall be-
havior of the routers, by the means of its global con�guration. This con�gura-
tion de�nes all the active routing protocols, their speci�c options, as well as
other properties of the routers such as acls. The traditional way to con�gure
routers is to use a Command-Line Interface (cli), which is an interactive text-
based interface supporting a vendor-speci�c con�guration language. This cli
can be accessed on the router’s serial port (i.e., a management interface), or
remotely (e.g., using the Secure Shell protocol—ssh [rfc4251]). As large isp net-
works can easily have more than a hundred routers, this manual con�guration
process hardly scales and often leads to operational issues [Ver16; Jun08]. As
such, remote con�guration protocols (e.g., netconf [rfc6241]) combined with
a data model (e.g., yang [yang]) have emerged (e.g., OpenCon�g [Ope]).

Last but not the least, the management-plane provides monitoring (§1.3)
functions that provide statistics about both the router itself (e.g., ram and cpu
usage) and the tra�c �owing through its interfaces. These statistics can be ei-
ther collected by a Network Management System (nms)—pull-based monitor-
ing, e.g., using the Simple Network Management Protocol (snmp [rfc1157])—,
or automatically exported by the monitoring process—push-based monitor-
ing, e.g., NetFlow [rfc3954].
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Figure 1.2: In link-state igps, routers discover the complete network topology
and compute the shortest-paths to reach all pre�xes.

1.2 Intra-domain routing

Interior Gateway Protocols (igps) enable routers to exchange reachability in-
formation, such that each of them is able to autonomously derive rib entries
for all pre�xes located within their as. We de�ne two kinds of igps.

Distance-vector igps. In distance-vector protocols (e.g., rip [rfc2453]),
nodes maintain a table associating each destination in the network with its
relative cost, and the router it learned the route from. Periodically, each node
sends a summary of that routing table to all its neighbors. Upon receiving
routes on an interface, a node will add the cost of that interface to the cost
of the received routes. If the resulting cost of one of the new routes is lower
than the one in the node’s routing table, then that route is updated to the
newly received-one. In these protocols, nodes have no knowledge about the
network topology, they only have reachability information.

Link-state igps. Link-state protocols (e.g., ospf, is-is [rfc1142]) work
in two phases. First, routers discover their neighbors by periodically sending
hello messages over their links, and wait for other routers to answer. This
enables them to di�erentiate interfaces connected to end-hosts (i.e., stub net-
works) from those connected to another router. Interfaces connecting routers
enable them to establish an igp adjacency, over which they can exchange
reachability information. Beside enabling neighbor discovery, these hello
messages also provide a primitive link failure detection as receiving them
indicates that the link and the router “on the other side” are able to send data,
i.e., are up.

Once igp adjacencies are established, each router can then periodically
send Link-State Packets (lsp) to all its neighbors—i.e., packets describing the
pre�xes associated to its interfaces and the status of its igp adjacencies. In par-
allel, routers receiving lsp messages store them in a local database, and then
immediately broadcast it to all their neighbors. This repeated lsp broadcast
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enables all routers to eventually receive a copy of every router’s lsp, and is
called a �ooding procedure. By analyzing all the lsps it has received, a router
then knows: (i) all pre�xes located in the network; and (ii) the status of ev-
ery igp adjacency (i.e., router-to-router links). This enables routers to build a
graph describing the current, up-to-date, network topology. Routers then de-
rive routes towards every pre�x by executing the Dijkstra algorithm [FT84]
to compute shortest-paths towards each of them. Operators can in�uence the
results of this shortest-path computation by assigning a cost on every router
interface. For example, Fig. 1.2 shows a network where the cost of the link
between router a and b (a, b) has been set to 2, while the cost of (b, c) has
been set to 10. Consequently, b has a single shortest-path towards the purple
pre�x, located at router y, and transiting through router a. Similarly, a uses
the path [a b c d] to reach the blue pre�x located at router d.

Both distance-vector and link-state igps are inherently distributed, as routers
can always derive rib entries based on some information it exchanged with
its peers. As such, igps are highly resilient to network failures, and can scale
to very large networks. In practice, Link-state igps are however preferred to
distance-vector ones as they converge much faster [Fra+05] and can easily be
used as substrate for overlay protocols (e.g., Segment Routing [rfc8402]).

1.3 Monitoring networks

Monitoring their networks enables operators to both optimize them (e.g., plan
forwarding paths according to past tra�c demands) and to troubleshoot them
(e.g., identify which link is currently dropping packets). As such, monitoring
systems are essential to operate networks, and can be divided in two cate-
gories.

Activemeasurements. The �rst approach to monitor networks consists
in actively testing them. To that end, operators generate test tra�c (i.e., probe
packets) and observe how the network handles it. For example, ping is a com-
mon program that lets operators test whether they can reach a target host, and
also get rough latency estimates. Similarly, traceroute enables operators to it-
eratively discover all hops from a host towards a given destination ip address.
Active measurements are often automated, building up complete monitor-
ing frameworks—e.g., ip-sla [Cisa] checks whether Service Level Agreements
(slas) are met, Pingmesh [Guo+15] aggregates ping measurements to identify
potential issues in data-center networks. Operators are not the only ones mea-
suring their networks. Indeed, researchers often use active measurements—
e.g., to infer Internet topologies [SMW02], or test whether new protocols can
be deployed [Det+13; TDH+])—which are performed from globally deployed
probes—e.g., ripe atlas [RIP15], SamKnows [Sun+11].
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Passive measurements. Passive network monitoring consists in ob-
serving the actual tra�c �owing in the network, in order to extract measure-
ments. For example, routers maintain counters on a per-interface basis that
describe current link utilization and can be queried using snmp. Packet sam-
pling techniques (e.g., NetFlow [rfc3954]) go beyond interface-level statistics
by dissecting packet headers. More speci�cally, sampling enables to collect
statistics on a per-�ow basis1 such as the amount of bytes/packets, header
�ags (e.g., tcp syn), and start and end timestamps of �ows. To cope with the
high throughput observed in larger networks, this sampling process is often
randomized (e.g., sampling on average one packet randomly out of 1024). Ran-
dom Packet Sampling can be used in isp networks to estimate tra�c demand
matrices [Uhl+06], or to identify heavy-hitters [Zha+04].

1.4 Software-De�ned Networking

By decoupling the data-plane from the control-plane, Software-De�ned Net-
working (sdn) [Kre+15; FRZ13] is a recent network paradigm shift aiming at
increasing network �exibility. More speci�cally, complex, vertically-integrated,
routers are replaced in sdn by simpler programmable switches. Fig. 1.3 shows
an high-level overview of such switch. Compared to traditional routers (i.e.,
Fig. 1.1), sdn switches have no control-plane. Instead, the control-plane is
logically centralized in a new network element, the sdn controller. This con-
troller then uses well-de�ned apis supported by the switches in order to dy-
namically program their processing pipeline (e.g., using P4 [Bos+14]), or match-
action tables (e.g., using Open�ow [McK+08]).

sdn enables a tremendous amount of network �exibility, as operators can
program the switch behaviors to exactly �t their particular network needs.
For example, as the controller has a global view over the complete network
state, it can thus perform a global optimization and implement it using �ner-
grained constructs than the ones available in traditional networks—e.g., for-
ward tra�c based on both the source and the destination address. sdn also
enables to bypass the (long) standardization process that traditional protocols
have to go through, enabling operators to quickly experiment and implement
new routing protocols. Major cloud vendors have successfully transitioned
to sdn backbones [Hon+13; Jai+13]. Furthermore, sdn supports more use-
cases than pure routing. For example, it has been successfully used to build
�ned-grained network monitoring infrastructures [Kim+15; Zhu+15], coor-
dinate network function [BHH16], cache frequent key-value lookups within
switches [Jin+17], or speed-up distributed consensus [Jin+18].

1Traditionally identi�ed using their 5-tuple:
(source ip, destination ip, protocol number, source transport port, destination transport port)
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Figure 1.3: High-level architecture of a sdn switch.

Despite all of its promises, sdn has had a limited deployment. Indeed,
while sdn improves network manageability and �exibility, it also brings new
challenges. Indeed, centralizing the complete control-plane poses scalability
challenges (i.e., the sdn is in charge of everything) and resiliency challenges
(i.e., the controller is a single point of failure).
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2Motivation

Adapting forwarding paths is one of the most daunting task when managing
a network. Indeed, while such changes are mandatory to ensure that the net-
work is operating e�ciently, carrying these changes is an extremely complex
and error-prone task. Multiple studies [Jun08; Ver16] have shown over the
years that the vast majority of network outages are due to human errors when
deploying new con�gurations. Networks are thus seldom recon�gured, and
operators instead rely on over-provisioning, achieving a trade-o� between
pro�tability and the risk of service disruption. This results in in�exible net-
works, which can at the same time su�er from congestion (e.g., due to �ash
crowds [Ari+03]) and have most of their capacity unused.

As an example, consider a large network with hundreds of devices, includ-
ing those shown in Fig. 2.1a. This network provides a best-e�ort ip transit ser-
vice, and serves multiple customers through a common router (d), acting as a
Point-of-Presence (pop). More speci�cally, each customer pre�x is routed ac-
cording to the shortest-paths computed by the igp. One such pre�x (D1) sees
a sudden surge of tra�c, from multiple ingress routers (a, b, x, and y), threat-
ening to congest the path used to reach router d. An operator’s reaction to
this tra�c surge is twofold. First, to decrease the risk of congestion, the traf-
�c towards the pop should be load-balanced on unused links, such as (z, d).
Second, to handle an eventual Distributed Denial-of-Service (ddos) attack,
the tra�c �ows causing the surge must be directed through a scrubber. This
scrubber will analyze those �ows, and drop those considered to be malicious.

Performing these two tasks is challenging in traditional networks. The
�rst, adding new paths for load-balancing purposes, requires to carefully change
the con�guration of multiple routers. One possibility is to route tra�c over
both [a b c d] and [a y z d], which with ip forwarding requires their path cost
to be equal. This requires to change the con�guration of routers a and y such
that (a, y)=3 and (y, z)=4. Note that a hidden constraint when performing this
change is to pick metrics that will disallow the use of the link (y, c) as it would
create uneven load-balancing. The second task is more di�cult. As the scrub-
ber is not adjacent to router d, ensuring that the packets are forwarded via y

13
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Figure 2.1: Steering all tra�c towards destination address D1 through the
scrubber requires to change the FIB of every router.

requires to change the forwarding paths for all �ows towardsD1 such that the
scrubber is always reached before router d. Worse, because both D1 and D2
share the same egress router and thus the same set of shortest-paths, it is im-
possible to change the forwarding paths towards D1 without also re-routing
D2. Therefore, achieving the second task would steer both pre�xes through
the scrubber, preventing any form of load-balancing.

Instead of relying on the igp, additional protocols and techniques are
needed to implement an acceptable set of forwarding paths, such as those
visible on Fig. 2.1b. Tunneling protocols (e.g., using a mpls [rfc3031] data-
plane, with a control-plane running ldp [rfc5036], rsvp-te [rfc3209] or Seg-
ment Routing (sr) [rfc8402]) could be used to encapsulate and forward all
�ows towards D1, implementing the forwarding paths shown on Fig. 2.1b.
Unfortunately, as D1 has four ingress routers, four tunnels would need to be
con�gured. Depending on the tunneling mechanism, achieving the required
paths would also require to add state on downstream routers (e.g., rsvp-te)
and/or to encode such path in every forwarded packet (e.g., Segment Routing).
This increases the control-plane and/or the data-plane overhead.

Software De�ned Networking (sdn) could easily solve the problem, as it
provides a centralized and direct control over the fib of every network de-
vice (e.g., OpenFlow [McK+08], pce [rfc4655]), thus to program all fib entries
needed to achieve Fig. 2.1b. However, sdn brings challenges of its own, as it
trades away the scalability and resiliency aspect of distributed routing pro-
tocols. Indeed, a sdn controller has to compute and install all fib entries for
every �ow, on every switch, and react quickly to topology changes. The con-
troller is thus a bottleneck, due to both the size of the state to manage and
the throughput at which it can update routes. In contrast, distributed rout-
ing protocols naturally split the network state across routers, and parallelize
route computations. Distributing the controller across several nodes [Dix+13;
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Ber+14] to improve its reliability and scalability leads to additional challenges
as it becomes a distributed system of its own, managing a shared state. Finally,
the deployment of SDN as a whole is major hurdle due to the huge installed
base of devices and management tools that need to be upgraded, as well as
the lack of expertise with the technology of human operators. As a result, ex-
isting SDN deployments are often limited in scope, e.g., for new deployments
of private backbones [Jai+13; Hon+13], software deployments at the network
edge [Cas+12], or restricted to data-centers [Tav+09; Sin+15].

This part presents Fibbing, a technique that provides a direct control over
the routers’ fib by manipulating the input of distributed routing protocols.
Indeed, the content of routers’ fib in a network using a link-state igp (e.g.,
ospf [rfc2328], is-is [rfc1142]) is computed autonomously by each router as
it computes shortest-paths over a synchronized view of the network. Leverag-
ing this, a Fibbing controller introduces fake nodes (with fake pre�x reacha-
bility information) and fake links (with speci�c metrics) to modify the shared
view of the topology. This coaxes routers to compute desired shortest-paths
without recon�guring them, i.e., a Fibbing controller lies to routers to con-
trol their fib. In essence, Fibbing inverts the routing function: given the for-
warding entries (i.e., the output) and the routing protocol (i.e., the function),
Fibbing computes the corresponding routing messages to send to the routers
(i.e., the input).

A Fibbing controller can solve the problem in Fig. 2.1 by injecting two fake
nodes (Fig. 2.2a), connected to routers x and y with the depicted link metrics.
Both fake nodes advertize reachability information exclusively towards D1.
When x recomputes its shortest-path towards D1, it now prefers to use the
one going through fx as it is cheaper (9) than the one going through d (10).
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Centralized/sdn Distributed/traditional Hybrid
OpenFlow, pce, sr igp, ldp Fibbing

Forwarding paths:
con�guration 6(declarative & global) 7(indirect & per-device) 6(declarative & global)
manageability 6(direct control) 7(need for coordination) 6(direct control)
path installation 7(by controller, per-device) 6(by device, distributed) 6(by device, distributed)

Robustness:
network failures 7(by controller) 6(local) 6(local)
controller failures 7(ad-hoc sync) 66(distributed) 6(sync via igp)
partitions 7(uncontrollable devices) 6(distributed) 6(fallback on igp)

Routing policies: 66(any path) 7(shortest paths) 6(any loop-free paths)
6better 7worse

Table 2.1: Fibbing combines the advantages of existing control planes and
avoids their main drawbacks

Similarly, b, a, and y, select the shortest-path going through fy. Routers can
then update their fib to the newly selected nexthops. As router x (resp. y)
uses a fake node as nexthop, it resolves it to the real nexthop b (resp. z) using
mapping information that was injected along the fake node. The resulting
data-plane paths are then those shown in Fig. 2.2b. As no fake nodes announce
a route towards D2, the forwarding paths used to reach D2 are unchanged.

Table 2.1 positions Fibbing against the two main networking paradigms.
Namely, Fibbing adopts a hybrid approach, improving the �exibility and man-
ageability of traditional igps by adopting a sdn-like approach, while preserv-
ing their inherent scalability and resiliency. More precisely, this hybrid ap-
proach gives Fibbing the following advantages.

Fibbing is expressive. A Fibbing controller can program the igp to steer
tra�c along any set of loop-free paths, on a per-destination basis (i.e., for
any ip pre�x length, up to a single address). This enables Fibbing to support
advanced forwarding applications such as tra�c engineering, load balanc-
ing, fast fail-over, and tra�c steering through middleboxes. As it relies on
destination-based routing protocols, Fibbing does not support �ner-grained
routing and forwarding policies such as matching on port numbers. How-
ever, those policies can easily be supported by integrating Fibbing in “�exible
igps” [Pse+18] or by using middleboxes.

Fibbing scales and is robust to failures. Fibbing o�oads most of the
failure-recovery work to the igp itself. Additionally, Fibbing can quickly com-
pute augmented topologies to avoid loops and blackholes upon network fail-
ures. At the same time, Fibbing minimizes the size of these augmented topol-
ogy to account for the limited cpu and memory resources of ip routers. Finally,
Fibbing gracefully handles controller failures, by easily replicating controller
instances and supporting both fail-open and fail-close semantics.
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Fibbing keeps the path installation distributed. Prior approaches
like the Routing Control Platform [Cae+05] rely on bgp as a “poor man’s” sdn
protocol enabling a controller to directly push fib entries on each router. In
contrast, Fibbing leverages the routing-protocol speci�cations to push mod-
i�cation on the view of the network shared by all routers. Doing so, Fibbing
can trigger multiple forwarding changes at once, while letting routers com-
pute on their own the content of their fib. In other words, while the controller
computes the routing input centrally, the routing output is still computed in
a distributed fashion.

Fibbing works on existing routers. We present a Fibbing prototype,
able to program real, unmodi�ed, routers (we tested it with Cisco and Juniper
routers). Our measurements show that these routers can install hundreds of
thousands of fib entries with an average installation time of less than 1ms
per entry. This enables Fibbing to operate at much greater scale and with a
faster convergence than what is achievable with recent sdn switches [Jin+14;
Rot+12], without requiring new hardware. Furthermore, Fibbing enables to
incrementally deploy in existing network sdn features which were typically
restricted to clean-slate deployment in private backbones (e.g.,
Google’s B4 [Jai+13], Microsoft’s SWAN [Hon+13]).

The rest of this part is divided in three chapters, structured as follows.
A �rst chapter presents the theory behind Fibbing (§3). Doing so, it high-

lights the abstraction enabled by the approach, formulates novel and provably
correct algorithms to e�ciently augmented topologies, and �nally positions
Fibbing in a broader context, i.e., by showing its interactions with other pro-
tocols, discussing its applicability, and comparing it against prior art.

Then, a second chapter presents an implementation of Fibbing in a real
igp, namely ospf (§4). More speci�cally, it begins by mapping core Fibbing
concepts (e.g., fake nodes and fake path costs) to ospf messages and attributes,
and then presents the architecture of a prototype Fibbing controller com-
patible with real unmodi�ed routers. After that, the chapter demonstrates
the applicability of Fibbing through measurements showing its low overhead
on routers, a discussion of its failure-handling mechanism, and a case study
where Fibbing performs real-time tra�c engineering.

Finally, a summary (§5) concludes this part and discusses future research
directions.



18 Chapter 2. Motivation



3Flexible intra-domain
routing with Fibbing

This chapter presents the theory behind Fibbing. To that end, we begin by
describing the abstraction it enables, by showing how a network operator can
express and realize high-level forwarding requirements (§3.1). Next, we for-
malize the Topology Augmentation Problem, and propose new algorithms to
compute compact augmented topologies (§3.2). Among those algorithms, we
discuss in detail the implementation of an e�cient greedy heuristic which
minimizes the size of the augmented topologies, the Merger algorithm, and
prove its correctness (§3.3). To assess the practicality of the approach, we
show that a Fibbing controller can quickly generate small augmented topolo-
gies through benchmarks conducted on realistic isp topologies (§3.4). Then, we
study the interactions between Fibbing and other protocols that use informa-
tion from the igp (§3.5), such as its in�uence on the bgp decision process (§3.5.2).
After that, we discuss practical considerations about the approach (§3.6), such
as its ability to enable incremental sdn deployment in legacy networks. Fi-
nally, we position Fibbing in a broader context by comparing it to related
works (§3.7).

3.1 An abstraction to control paths in link-state IGPs

To control the forwarding paths computed by the igp, Fibbing follows four
consecutive stages, illustrated in Fig. 3.1, based on two inputs: (i) the network
topology, which is automatically obtained from the igp; and (ii) the desired
forwarding requirements. More speci�cally, these forwarding requirements
are either expressed directly as per-destination Directed Acyclic Graphs (dags),
or indirectly using a high-level declarative language. In the latter case, the
Compilation (§3.1.1) stage translates these high-level requirements into con-
crete forwarding dags. Then, the Augmentation (§3.2) stage solves the Topol-
ogy Augmentation Problem, and computes an augmented topology that sat-
is�es these forwarding dags in milliseconds. An Optimization (§3.3) stage can
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Figure 3.1: A Fibbing controller follows four steps to program paths in an igp.

then reduce the size of the augmented topology while preserving the forward-
ing paths, minimizing the control-plane overhead at the expense of a slightly
longer computation (hundreds of milliseconds §3.4). Finally, fake nodes and
links contained in the augmented topology are transformed to actual igp mes-
sages in the Injection (§4) stage. These messages are then �ooded by the igp,
causing all routers to update their fib to implement the operator require-
ments.

In this section, we �rst present the high-level language to express require-
ments and its compilation process (§3.1.1). Then, we show that Fibbing is ex-
pressive, enabling to program a wide-range of forwarding behaviors (§3.1.2).

3.1.1 A declarative language to express requirements

In Fibbing, operators con�gure a logically centralized controller in order to
de�ne network-wide requirements on the forwarding paths to be used. As
These requirements can be expressed using the high-level language shown
in Fig. 3.2. This language enables operators to follow a declarative approach
when con�guring their network, i.e., to specify what their requirements are,
simplifying their management. This process is in stark contrasts with the de-
scriptive approach used in network running traditional distributed protocols,
i.e., specifying how to implement the requirements, where each device has to
be con�gured individually.

Fibbing requirements are a collection of per-destination requirements. That
is, Fibbing enables to specify requirements (use) for any ip pre�x, up to a
single ip address (towards <pre�x>), regardless of whether it is advertised
in the igp or not. These requirements fall in two categories: (i) forward-
ing requirements describe the paths along which the tra�c should be for-
warded to reach the destination; and (ii) backup requirements (identi�ed by
the asBackupOf() operator) describe forwarding requirements that should
be used when an igp topology change causes one of the listed links to fail. In
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req ::= d1; . . . ;dn Fibbing requirements
d ::= use (fwd | backup) towards <pre�x> Per-destination requirement

fwd ::= (fwdmi
i and fwd

mj
j ) | (fwdi or fwd j ) | p Forwarding requirement

p ::= [n+] Path expression
n ::= <id> | Q Node expression

backup ::= fwd asBackupOf( link+) Backup requirement
link ::= [<id>i , <id>j] Link expression
m ::= <integer> (defaults to 1) Multiplicity attribute

Figure 3.2: Abstract syntax of the Fibbing requirement language.

turn, each forwarding requirement is either recursively de�ned as a conjunc-
tion (and) or as a disjunction (or) of forwarding requirements, or describes
a single path. A conjunction of n paths indicates that the tra�c should be
load-balanced across all n paths, optionally using the multiplicity attribute to
control splitting ratios. More precisely, when load-balancing tra�c across the
set of paths and multiplicity attributes pm1

1 , . . . ,p
mn
n , a path pmi

i will receive a
fraction of the tra�c equal to mi∑n

k=1mk
. A disjunction of n paths indicates that

the tra�c should be forwarded along one of those n paths (for example, to
ensure the traversal of one of the replicas of a middlebox). Finally, a concrete
path is a sequence of node identi�ers (e.g., igp router id, loopback address).
For �exibility, paths can be loosely de�ned using wildcards (Q) nodes, repre-
senting any sub-sequence of nodes.

To minimize the number of requirements that should be speci�ed, Fibbing
follows an exception-based approach. Nodes that are not part of a forwarding
requirement have to keep their original set of nexthops, as computed by the
igp without a Fibbing controller.

Compilation. Translating requirements to per-destination forwarding
dags is a three-step process.

First, the compiler ensures that all forwarding requirements only contain
concrete paths by expanding the eventual wildcard nodes. A wildcard node
expansion requires to replace the wildcard by one of the simple paths between
its surrounding nodes, or any node in the network if the wildcard denotes a
path tip. Each expansion then de�nes a concrete path, and the disjunction of
all these concrete paths then replaces the original loosely de�ned path. This
step can be computationally expensive as, in general, a network can have a
number of paths that is exponential in the number of nodes. While unlikely
in practice, especially for networks designed according to the current best
practices, we bounded the number of paths that can be expanded out of a
single requirement (10 by default). If no solution is found with the current set
of paths during the topology augmentation, then those paths are expanded
further.
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Figure 3.3: Fibbing let operators program on-demand load-balancing.

Second, once all requirements are well-de�ned, the compiler groups them
by destination and computes the Disjunctive Normal Form (dnf) of each re-
quirement.

Finally, the compiler iterates over the resulting disjunction of path re-
quirements, and builds a tentative forwarding graph for each clause. If the re-
sulting graph is loop-free (i.e., it is a dag), the compiler then checks that every
node present in the igp topology is also present in the dag. If a node is missing
from a dag specifying primary forwarding requirements, it is added in the
dag with its nexthops set to those from the unmodi�ed igp shortest-paths.
Forwarding dags corresponding to backup requirements are also tagged with
the set of links they protect.

3.1.2 Fibbing is expressive

Fibbing enables to steer any �ow along a given path (§2). More precisely, Fib-
bing is able to enforce any forwarding dag on a per-destination basis [VVR14].
We now highlight its expressive power through three high-level use cases.

Fibbing enables to program on-demand load-balancing.
Load-balancing tra�c over multiple paths is a key primitive when designing
networks, for example to maximize throughput, minimize response time, or
increase reliability. Fibbing enables operators to dynamically add or remove
paths on a per destination basis to con�gure ecmp-based load-balancing, and
to control the resulting splitting ratios. For example, consider the network
depicted in Fig. 3.3a, where three sources s1, s2, and s3 send tra�c to three cor-
responding destinations d1, d2, and d3. Demands and link capacities are such
that link (c, d) is congested. To alleviate congestion, load-balancing should be
induced, for example by splitting on b tra�c towards d2 over two paths: via
[b x d] and via [b c d].

This can be achieved in traditional igps by inducing additional equal-cost
paths (e.g., by re-weighting (b, x) to 5). However, as this would a�ect equally
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the tra�c towards d1 and d2, this would congest the upper path. More gener-
ally, it is impossible to route the tra�c destined to D1 and D2 using di�erent
set of paths purely in conventional igp.

This simple requirement can easily be expressed with Fibbing as:
use ([b x d] and [b c d]) towards d2

Fig. 3.3b shows an augmented topology which achieves this requirement. A
fake node announcing d2 is attached to b (with a metric of 5 on the fake link),
and is mapped to x. After introducing this node, b has two shortest paths (of
cost 15) to reach d2, and splits its d2 tra�c (equally) over x and c.

Fibbing controls ecmp splitting ratios. While e�ectively removing
the congestion, the augmented topology shown on Fig. 3.3b results in a link
utilization imbalance as [b c d] is used to nearly its full capacity. Averaging
out the link utilization ratios would reduce the risks of future congestion,
should the demands change. Achieving this requires to send a third of the
tra�c destined to d1 over the bottom path [a y z d]. Fibbing enables to pro-
gram the ecmp splitting ratios through the multiplicity attribute that can be
set on paths, leading to the following additional requirement:

use ([a b x d]2 and [a y z d]) towards d1
Fig. 3.4a shows an augmented topology achieving both load-balancing re-
quirements. We see that the multiplicity attribute resulted in the addition of
a redundant fake node fa mapping to b, as it has the same cost as the path
[a b c d] and maps to the same nexthop. Combined with fa’, this now causes
a to have 3 equal-cost shortest-paths in the control-plane, and thus 3 fib en-
tries. As two of these shortest-paths use the same nexthop (b), we see on
Fig. 3.4b that twice as much tra�c towards d1 goes over (a, b) than over (a, y).
Combined with the fake node for d2 on b, this minimizes the maximum link
load in the network.
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Figure 3.5: Fibbing provisions backup paths to avoid post-failure congestion.

Fibbing can provision backup paths. While igps automatically rebuild
new sets of shortest-paths after a link or node failure, these new paths might
not be e�cient and could have unwanted side e�ects (e.g., causing conges-
tion, increasing delays). Fibbing enables to precisely control the paths that
will be used post-failures. More precisely, Fibbing can provision backup paths
to protect speci�c tra�c �ows. As an illustration, consider the network in
Figure 3.5a. The failure of a link of the sub-path [b c d] would lead to con-
gestion since tra�c �ows towards d1 and d2 are both rerouted using the same
alternate path ([b x d]), which includes a low capacity link (x, d). To prevent
congestion, tra�c towardsd1 andd2 should use disjoint post-failure paths, yet
only use those when the primary path has failed. This is impossible to achieve
in conventional igps as both tra�c �ows share the same source and destina-
tion nodes, and would require signi�cant control-plane overhead in mpls. In
contrast, Fibbing can achieve this easily using the following requirement:

use [a b Q] asBackupOf([b, c] [c, d]) towards d1
use [a y Q] asBackupOf([b, c] [c, d]) towards d2

Fig. 3.5b shows the corresponding augmented topology, which has a single
fake node advertising d2. The metric to reach the fake node is such that: (i) it
is more expensive to use the fake node than to use the default igp shortest-
path; and (ii) it will be the new shortest-path towards d2 if any of the links of
[b c d] fails. Unfortunately, while successful for this example, Fibbing cannot
satisfy all possible backup paths requirements (§3.2.5).

3.2 Augmenting topologies

In this section, we formulate the augmentation problem (§3.2.1), and we show
how the Fibbing controller quickly computes augmented topologies from a
set of forwarding dags. We rely on a divide-and-conquer approach based on
three consecutive steps.

1. Topology initialization (§3.2.2). We modify if necessary the initial
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igp metrics to guarantee that a Fibbing controller can always enforce any set
of forwarding dags. This operation only needs to be done once, when Fibbing
is �rst deployed in the network.

2. Per-destination augmentation (§3.2.3). We solve the Topology Aug-
mentation Problem for each per-destination forwarding dag on the initialized
topology. We designed two algorithms for this step, achieving di�erent trade-
o�s between computation time and augmentation size. The fastest one, Sim-
ple, computes augmented topologies within milliseconds. Simple injects one
dedicated fake node for every router that changes its nexthop. The relatively
slower algorithm, Merger, aggressively reduces the size of the augmented
topology by re-using the same fake nodes to program multiple routers. While
the speed of Simple makes it well-suited to react quickly to transient events,
such as failures,Merger is better suited to be run in background, progressively
optimizing the augmented topology.

3. Optimization across destinations (§3.2.4). We further reduce the
number of fake nodes and edges by merging the per-destination augmenta-
tions. Namely, whenever safe, we replace multiple fake nodes announcing
di�erent destinations with a single fake node which either announces all the
destinations or creates a shortcut between routers in the augmented topology.

Finally, we discuss how backup requirements can be implemented using
our augmentation algorithms (§3.2.5).

3.2.1 The Topology Augmentation Problem

We begin by de�ning three concepts that are key to formulate the problem
we want to address. They will serve as basis when designing the algorithms
solving it.

Nexthop selection process. We assume that routers select their nex-
thop set for a given pre�x according to the decision process presented in (§1.1),
i.e., local routes are preferred to those computed by the igp. For example, as
d in Fig. 3.5 has local routes for d1 and d2 (e.g., learned from another routing
protocol, or directly connected routes), it will never prefer to use a route an-
nounced by a fake node, regardless of the announcement cost. In contrast, as
a has no such route, it will select the igp shortest-path towards each pre�x,
thus possibly decide to use the route announced by a fake node if it is shorter.

Fake edges nexthopmapping information. Fibbing injects fake nodes,
attached to real nodes using fake edges, in the igp. Alongside these fake ele-
ments, Fibbing also injects mapping information, linking each fake edge to a
real forwarding nexthop. Throughout this part, we assume that a fake edge
in the shortest path from any router r to any destination d corresponds to the
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ability of r to resolve the fake edge to be any of its neighbors using this map-
ping information. In the introductory example in Fig. 2.2a, for instance, the
fake edge between x and its adjacent fake node fx translates into x forwarding
tra�c to b.

Fake nodes scoping. A Fibbing controller can generate two types of
fake nodes. First, locally scoped fake nodes are targeted to a single router.
More precisely, they are ignored by all routers but the target one when they
compute their shortest-paths. This enables to control the fib of a target router
without side e�ects for the other ones. Second, globally scoped fake nodes
target all routers in the network. As such, all routers take them into account
when computing their paths. Hence, if carefully computed, they can reduce
the size of the augmented topology as they can a�ect more than one router.
All of our previous examples used globally scoped fake nodes.

Problem 1 (Topology Augmentation Problem). Given an initial topology G
and a set of forwarding dags, compute an augmented topologyG ′ ⊃ G such the
following two properties hold: (i) for each path [u v . . . d] in the forwarding dag
towards d , the nexthop of u in one of its shortest paths for d in G ′ is either v or
a fake node fu such that the fake edge linking u to fu maps to v; and (ii) the
number of shortest-paths towards d for any node r in G ′ is equal to the sum of
the number of paths [u . . . d] times their multiplicity attributes (§3.1.1) across all
forwarding dags towards d .

3.2.2 Topology Initialization

The goals of the topology initialization procedure are twofolds. First, it guar-
antees that Fibbing can always �nd an augmented topology implementing
the requirements of any arbitrary forwarding per-destination dag. Second, it
increases the likelihood that the resulting augmented topologies can be ef-
�ciently reduced through the optimization algorithms (Merger (§3.3) or the
cross-destination algorithms (§3.2.4)). To that end, we proportionally increase
all link metrics (multiplying them by a constant factor) if any of them is too
low. We also set high announcement cost for any destination (e.g., the number
of hops in the longest path in the network topology times the maximum link
weight). More generally, our initialization procedure ensures the following
property for the topology:

Property 1 (Fibbing compliance). A topology is Fibbing compliant if, for every
destination d , the total cost of the shortest path from every router (including the
ones announcing d) to d exceeds 2.

This property ensures that for any router r and destination d , the con-
troller can always compute a fake path P with two properties: (i) P is shorter
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than the original shortest-path from r to d ; and (ii) P is longer than the orig-
inal shortest-path from any other router n , r to d .

Topology initialization is non-intrusive. The initialization procedure
only a�ects two sets of parameters (link metrics and pre�x announcement
costs), present in any link-state routing con�guration. Additionally, multiply-
ing them by a constant factors preserves the original forwarding paths. This
re-weighting process can be carried out using known lossless recon�gura-
tion techniques [Van+11]. This procedure is strictly required only once in
the network lifetime. Indeed, Fibbing compliance is independent of the sta-
tus of the links, or the forwarding requirements. Topologies growing in size
can be easily kept Fibbing compliant by ensuring that the new destinations
are announced with large enough costs and that the new links have weights
consistent with those already made Fibbing compliant.

Fibbing compliance enables full Fibbing expressivity. Consider the
igp topology visible in Fig. 3.6a. As it is, this topology is not Fibbing compli-
ant as there is one shortest-path that costs 2 ([A B d]). Changing a’s nexthop
would then require to add a fake node fa advertizing d . The new fake path
[a fa d] would then need to have a lower cost than the current shortest-path
(2). The cost of a path is computed as the sum of the traversed link metrics, as
well as the announcement cost of the destination. As routing protocols typ-
ically require that these values are set to strictly positive integer, 2 is thus
the minimal cost of a path. It is thus impossible to change a’s nexthop using
Fibbing in this topology.

Fig. 3.6b shows a possible output of our initialization procedure applied
to the topology in Fig. 3.6a, where all metrics have been multiplied by 5. The
topology is thus Fibbing compliant, and any per-destination forwarding dag
can be implemented with Fibbing in Fig. 3.6b. For example, re-routing a’s
tra�c through c implies to inject a fake node such that the resulting fake
path cost is less than 10.

We now prove with the following theorem that Fibbing compliance is a
su�cient condition to implement any arbitrary set of Fibbing requirements.
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Theorem 1 (Fibbing expressiveness). Any set of per-destination forwarding
dags can always be enforced by augmenting a Fibbing-compliant topology re-
gardless of the fake node scoping type being used.

Proof. We prove theorem 1 by describing a simple topology augmentation
procedure that can place indiscriminately globally or locally visible fake nodes.

Let G be the initial topology. For every forwarding dag with destination
d , let hr1, . . . ,hrn be the set of nexthops of each node r in the dag. For each
nexthophri of r, we attach to r one fake node fri announcing d . Each of these
fake nodes generates a new fake path [r fri d] in the augmented topology.
We set the total cost of those newly added fake paths to 2. Since G is Fibbing
compliant, then the cost of any other path from r to d in G whose nexthop is
not a fake node is greater than 2. Hence, the shortest-paths of every node r
in the augmented topology will be the set of paths {∀i ∈ [1,n] | [r fri d]}. The
forwarding dag is then implemented by mapping all fake links to their right
physical links. �

Note that Theorem 1 applies to destinations in the augmented topology
and does not necessarily match the destination pre�xes announced in the
original igp. It thus implies that Fibbing controls the path for any ip pre�x,
including those resulting from the (de-)aggregation of existing pre�xes (from
a /0 to a /32 or /128) and pre�xes not originally reachable in the igp.

3.2.3 Per-destination augmentation

Two algorithms can be used to solve the Topology Augmentation Problem,
Simple and Merger. As both can implement any set of requirements (See The-
orem 1), we illustrate their operations and key di�erences on the same set of
forwarding requirements, visible in Fig. 3.7



3.2. Augmenting topologies 29

Algorithm 1 The Simple topology augmentation algorithm.
let G: igp topology
let d: destination pre�x
let D: forwarding dag towards d

1: F ←� The fake paths to inject
2: for all r ∈ G do
3: ND ← {nh ∈ D | ∃ (r,nh) ∈ D} Compute the nexthops of r in D

4: NG ← {nh ∈ G | ∃ (r,nh) ∈ G}
5: N ←� The nexthops for the fake paths of r
6: cost ← 2 The total cost of the fake paths
7: if NG ⊂ ND then We add equal-cost paths
8: cost ← dist (r, d , G) Compute the shortest-path cost from r to d in G

9: N ← ND \ NG
10: else if NG , ND then We de�ne new paths
11: N ← ND

12: for all nh ∈ N do Add per-nexthop local fake paths towards d
13: for i = 1, . . . ,multiplicity(D, r, nh) do
14: F ← F ∪ { (’local’, r, nh, d , cost ) } Enforce the multiplicity attribute

15: return F

Simple

The Simple algorithm relies solely on locally scoped fake nodes. For every
destination d and corresponding forwarding dag D, Simple adds fake nodes
to each router whose nexthops in the original igp topologyG di�er from those
in D. More precisely, as shown on Alg. 1, Simple works on a per router basis.

For every router present in the igp topology, the algorithm compares the
desired set of nexthops in D, to the one computed by the igp. If the two sets
are equal, then the algorithm moves to the next router in G. Otherwise, Sim-
ple has to create locally scoped fake paths to implement the requirements.
If the requirements add new shortest-paths to be used in conjunction with
the ones computed by the igp (line 7) then Simple only adds fake paths for
the new nexthops (line 9), with a total cost set to the original shortest-path
cost. In the more general case, the algorithm adds one fake path towards d
per desired nexthop (line 11) with a total cost of 2. As the topology is Fibbing
compliant, this ensures that r will recompute its nexthops to be the desired
set. Finally, the algorithm (line 13) ensures that the eventual multiplicity at-
tributes (see §3.1.1) in D are met by replicating fake paths accordingly.

Executing Simple to implement Fig. 3.7b leads to the augmented topology
visible in Fig. 3.8a. Routers a, b, c, and y are required to change their respective
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and augmentation size to satisfy the forwarding requirements from Fig. 3.7b

nexthop set. Moreover, a needs to load-balance tra�c over one additional
nexthop (y). Simple thus injects four locally scoped fake nodes. Three of these
fake nodes change the preferred shortest-path of routers c, c and y, as the
new fake paths have a total cost of 2. The fourth fake node adds a new equal-
cost path on router a, hence has the same total fake cost as the existing igp
path (21). Note that as the fake nodes are locally scoped, each of them only
a�ects the routers on which they are attached. Consequently, none of these
fake nodes can be removed, as doing so would cause routers to revert to the
default igp nexthops. For example, removing fc would cause c to fallback to
using d as nexthop as it would exclude fy from its shortest-paths computation
(i.e., c cannot use the locally scoped fake node of y).

Merger

The Merger algorithm aims to implement forwarding requirements with a
lower control-plane overhead than Simple. Merger reduces the size of the
augmented topology by relying on globally scoped fake nodes, where a single
fake node can change the nexthops of multiple routers. In contrast to the
four fake nodes created by Simple to implement the requirements of Fig. 3.7b,
Merger only needs two (see Fig. 3.8b). The �rst one (fy) to change the nexthops
of a, y, and c. And the second one (fb) to change the nexthop of b. Additionally,
the fake path costs are set such that a sees two equal-cost paths (with a total
cost of 12), load-balancing its tra�c over b and y.

We now intuitively present the generic four steps followed by Merger to
implement a forwarding dagD towards a destinationd in a Fibbing compliant
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Figure 3.9: Merger iteratively merges successive fake nodes.

topologyG. Additional details and correctness proofs are reported in Sec. 3.3.

Step 1—Initial fakenode placement. Merger places an excessive amount
of globally scoped fake nodes in the network. For illustrative purposes, a
strawman approach (see §3.3) is to add one fake node for each nexthop of
every non-terminal node in D (see Fig. 3.9a). For each of these fake nodes,
Merger then computes acceptable bounds for the resulting fake path costs.

We de�ne, the upper bound ub(fr) of a fake node fr as the maximal total
fake path cost such that r will compute [r fr d] as (one of) its shortest-path(s).
Initially, Merger sets ub(fr) = dist(r, d , G) − 1, e.g., ub(y)=14. Intuitively, this
upper bound carries the constraint that a fake node has to be used. In contrast,
the lower bound lb(fr) of a fake node fr carries the constraint that a fake
node can only be used by a speci�c set of nodes. More precisely, lb(fr) is the
minimal fake path cost such only r and its ancestors in D without a fake node
can compute a shortest-path going through fr. In this example, as every node
in the network has a fake node, Merger sets the initial value of any lb(fr) to
2. We say that a fake path cost is acceptable whenever lb(fr) ≤ ub(fr).

AsG is Fibbing compliant, we can already compute an (ine�cient) initial
augmentation by setting the cost of all fake paths [r fr d] to lb(fr) (i.e., 2).

Step 2—Fake node merging. Merger then combines successive fake
nodes together. More speci�cally, the algorithm iteratively tries to merge con-
secutive fake nodes on any simple path in D. To determine whether any two
fake nodes can be merged, the algorithm checks three conditions, formalized
in (§3.3.4). To illustrate them, we now consider the merging attempt of fa and
fy.

First, Merger ensures that if a loses its fake node and computes a shortest-
path going through fy, the tra�c will only �ow along the desired paths. To
that end, it veri�es that all the shortest-paths in G ′ from a to y are also in-
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cluded in D.
The second condition ensures that fy can absorb the constraints of fa.

More precisely,Merger computes new provisional bounds [lb’(fy), ub’(fy)] for
fy that would be the result of merging fa into fy. Intuitively, these new bounds
must ensure that fy is suitable for both y and a. For example, ub’(fy) must guar-
antee that dist(a, y,G) +max{dist(y, fy,G)} < dist(a,d,G), thus that a will
prefer to use the path going through fy over its original igp path. Similarly,
the lower bound must be such that lb(fa) ≤ lb′(fy) + dist(a, y,G), i.e., the new
lower bound of fy “as seen from a” does not attract unwanted nodes. The
condition is then veri�ed if those provisional bounds are acceptable, i.e., if
lb′ ≤ ub′, which is true in this example as lb’(fy)=2 and ub’(fy)=11.

Finally, as the bounds of fy have changed, Merger checks the consistency
of the bounds of all other fake nodes. More speci�cally, it simulates the re-
moval of fa and the new bounds of fy and compute the bounds adjustments
needed using a fake cost bounds propagation procedure (§3.3.3). The condition
is then veri�ed and the changes applied if all adjustments yield acceptable
bounds, and no locally scoped fake node is introduced by the procedure. This
guarantees the absence of unwanted nexthop changes. In addition, this pro-
cedure also ensures that bounds across load-balanced paths are consistent
with one-another, i.e., that all possible fake path costs computed by the node
splitting the tra�c are equal. In our example, this requires to raise the lower
bound of fa’ to lb’(fa’)=lb’(fy)+dist (a, y, G)=12. Another iteration merges fc
into fy, causing ub(fy) to be decreased to 4. Similarly, the upper bound of fa’
thus becomes ub’(fa’)=ub’(fy)+dist (a, y, G)=14. Eventually, fa’ is merged into
fb, hence the �nal bounds of fb being [12 − 2, 14 − 2] on Fig. 3.9b.

Step 3—Redundancy elimination. While smaller than Fig. 3.9a, Fig. 3.9b
can still be reduced further. For example, fx creates a fake path that is re-
dundant with the original igp path of x, i.e., maps to the same nexthop with
an upper bound equal to its initial one. For each such fake node, Merger
then attempts to remove it. Such removal is conceptually equivalent to set-
ting lb(fx) = ub(fx) = dist (x, d , G). Similarly to the merging step,Merger then
checks whether it can ensure the consistency of the lower bounds of all other
fake nodes in the network and adjust them if needed. As this is the case for fx,
it can thus be safely removed (and does not trigger any change of bounds in
this particular example). This also applies to fz, although removing it causes
the lower bounds of fy to increase to 3 (which is then re�ected on fb due to
the equal-cost constraint).

Step 4—Fake path creation. Eventually, as the set of fake nodes F can
no longer be reduced, Merger then creates one fake path per fake node. More
speci�cally, it selects an integer k ≥ 0 such that ub(fi) ≤ k ≤ ub(fi) for any
fake node fi ∈ F and sets their total fake path cost to lb(fi)+k . Choosing a
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Figure 3.10: Fake nodes present in multiple per-destination topology augmen-
tation can be merged together to further reduce their number.

value for k is a tradeo� minimizing either the risk of unenforceable backup
requirement (§3.2.5) if k is small, or minimizing the impact on other protocols’
decision (§3.5.2) if k is high. As the �nal costs are now known, Merger then
�nally enforces all multiplicity attributes speci�ed in the requirements. More
speci�cally, for any router r which has a nexthop n with a multiplicity at-
tributem, Merger addsm−1 locally scoped fake nodes mapped to n with fake
path costs set to create additional equal-cost paths for r in the augmented
topology.

3.2.4 Cross-Destination optimization

Augmenting topologies on a per-destination basis may lead to the creation
of redundant fake nodes. More speci�cally, fake nodes attached to the same
router, mapping the same nexthop, but announcing di�erent pre�xes. In the
cross-destination optimization step, we reduce such redundancy in two ways:
(i) we merge redundant fake nodes; and (ii) we convert some fake nodes to
fake shortcuts.

Cross-destination merging. LetG1 andG2 be the per-destination aug-
mentation towards destinations d1 and d2. We iterate on every pair of fx1
and fx2, attached to the same router x mapping to the same nexthop n but
announcing di�erent destination pre�xes d1 and d2. If fx1 and fx2 both have
the same scoping type (e.g., both are globally scoped), then we replace both
of them by a single fake node fx’, attached to x with a cost of 1, and also
mapping to n. fx’ then announces both destinations such that each di has an
announcement cost of dist (x, di , Gi )−1 for i ∈ {1, 2}, where dist (x, di , Gi ) is,
by construction, the total fake cost path of [x fxi d].

For example, assume that an additional destination is attached to x in
the network in Fig. 3.7a, with an associated forwarding requirement caus-
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ing a fake node to be added on b and mapped to x. The result of the cross-
destination merging is then shown in Fig. 3.10a, where b has a single fake
neighbor announcing both destinations (rather than multiple fake neighbors
each announcing a single destination), with di�erent announcement costs for
each destination.

Creating fake shortcuts. So far, all augmented topologies are composed
of fake nodes able to attract multiple routers, for multiple speci�c destination
pre�xes. To reduce even further the size of the augmented topology, we re-
place when possible such fake nodes and destination announcements with
fake paths connecting real routers, i.e., fake shortcuts, without fake destina-
tion announcements.

Fake shortcuts are directed fake links. A fake shortcut enables to over-
ride the igp metric of a link, in a given direction, for every destination in
the network. Let r and n be two routers, and fr be a fake node attached to
r and mapped to n. fr can be replaced if we can �nd a shortcut cost c such
that no shortest path in the resulting augmented topology from r and from
its neighbors to every destination is changed. This can require to adjust the
lower bounds of the fake nodes still present in the topology.

We can add such fake shortcuts to our example from Fig. 3.10a. Indeed, as
visible on Fig. 3.10b, we can �nd such cost c = 1 to replace fb. In contrast, fy
cannot be replaced by a fake shortcut as it is required to enforce c’s desired
nexthop, regardless of the cost of the link (y, z)1.

3.2.5 Implementing backup requirements

Similarly to primary requirements, backup requirements are represented us-
ing per-destination forwarding dags representing the desired forwarding paths
after the failure of one its protected link set L. Satisfying them requires runing
slightly modi�ed versions of Simple and Merger. LetG be an initial topology,
G ′ be an augmentation of G that satis�es primary requirements, and G ′′ a
subsequent augmentation to implement the backup requirements.

Simple requires two modi�cations. First, to compute G ′, the algorithm
always injects one fake path per nexthop for every router that has a changed
nexthop set (i.e., always executes line 11 in Alg. 1). Second, when computing
G ′′, Simple sets the cost of the new fake paths to 3 instead of 2. This ensures
that backup requirements can only be used if the primary ones have failed.

Implementing backup paths with Merger requires to modify its de�nition
of upper and lower bounds when computingG ′′. More speci�cally, let fr be a
fake node towards a destinationd and attached to a router r. The lower bound
of fr when computing G ′′ must be set to the total cost of the shortest-path

1Recall that link metrics in existing igps are strictly positive integers
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Figure 3.11: Our current algorithms do not support all backup requirements.

P from r to d in G ′ plus one. This ensures that the fake node is only used
as backup. Similarly, the upper bound of fr is the minimal cost of all post-
failure shortest-paths from r to d , di�erent from P , minus one. Note that we
only consider the paths computed on instances G ′ with one of the protected
links removed (i.e., single-failure cases). This ensures that the fake paths are
the preferred post-failure paths.

Finally, once the per-destination algorithms have augmented the topology
to implement the backup requirements, the cross-destination algorithms (§3.2.4)
can then further optimize them without any modi�cation.

Limitations. Our current augmentation algorithms may not always be
able to provision2, backup paths even in a Fibbing compliant topology. Indeed,
our augmentation algorithms are unable to enforce a backup forwarding dag
D if there exists a post-failure path not included in D whose cost is the pre-
failure shortest-path cost c , or c + 1. Consequently, it is impossible to restrict
the set of post-failure paths to a subset of those used before the failure (e.g.,
use only 1 path out of 3 equal-cost ones). Indeed, any such change would also
implicitly restrict the set of paths during normal operations.

Consider the combination of primary and backup forwarding require-
ments visible in Fig. 3.11. As the primary requirement is already ful�lled by
the default igp shortest-paths (see Fig. 3.11a), no fake nodes will be added to
the network by Simple nor Merger. In contrast, the backup requirement vis-
ible in Fig. 3.11b cannot be enforced. Indeed, to be used only after the failure
of the primary path, the total cost of the new fake path [a fa d] would need
to be strictly higher than 10. At the same time, it should also be lower than
11 to be preferred to the default post-failure igp path [a c d]. The backup re-
quirement thus cannot be implemented. While a possible solution would be
to attach a fake node on b to arti�cially decrease the cost of the primary path
(e.g., with a cost of 4), thus enabling to provision a backup fake node on a, this
solution induces a greater control-plane overhead and is thus not applied au-
tomatically in our augmentation algorithms. Instead, if a backup requirement
cannot be implemented, our algorithms report it to the operator.

2The controller can always enforce any backup forwarding dag reactively (e.g., as in §4.4).
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3.3 TheMerger algorithm

The description of Merger presented in (§3.2.3), while intuitive, is unpractical.
Indeed, as the feasibility of any given merging attempt is constrained by the
previous one, computing the minimal augmented topology requires to con-
sider an exponential number of merging attempts.

For example, in Fig. 3.9a, merging �rst fy into fz causes the bounds fz to
become [2,4]. This then prevents both fa and fc from being merged into fz.
The resulting augmented topology is thus larger than the one in Fig. 3.9b,
were fa and fc are merged before fy. More generally, identifying the mini-
mal augmented topology requires to explore all permutations of merging at-
tempts. As our example has 7 fake nodes, it de�nes up to 7! = 5040 possible
merging sequences if all individual merging attempts could succeed (e.g., if
the requirement dag is a subset of the current igp paths).

The rest of this section details the greedy heuristic used by Merger to
drastically reduce the number of merging attempts. More precisely, after in-
troducing the notations used throughout this section (§3.3.1), we �rst present
how the Merger heuristic (§3.3.2) guarantees a time complexity that is linear in
the number of fake nodes. Then, we formalize the two key procedures at the
heart of Merger: (i) the fake cost bounds propagation procedure (§3.3.3), which
ensures that bounds are consistent across fake nodes; and (ii) the merging pro-
cedure (§3.3.4), which merges fake nodes when proved safe. Finally, we prove
the correctness of Merger (§3.3.5), guaranteeing that the reduced topologies
always implement the input forwarding requirements.

3.3.1 General notations

This sections uses the following notations.
LetG be a generic, non-augmented, weighted topology provided in input

to Merger.G ′,G ′′, . . . are then the augmented topologies iteratively computed
by Merger, i.e., after each successive merging attempt.

For any graph G, sp(s,d,G) and dist(s,d,G) indicate the set of shortest-
paths from s tod inG and their associated cost. Similarly, the cost of a path P in
T is cost(P,G), i.e., cost(sp(s,d,G),G) = dist(s,d,G). Likewise,all_paths(s,d,G)
denotes all simple paths from s to d in G.

For any fake node fx, attached to a node x, nh(fx) is the node to which fx
is mapped, i.e., the real nexthop corresponding to the fake node.

For any topology G, if Merger successfully computes G ′ which imple-
ments a requirement dag D towards a destination d , then all fake path costs
inG ′ must be consistently assigned, i.e., there exists an integer k ≥ 0 such that
for any globally scoped fake node fx, cost([x fx d],G ′) = lb(fx + k).

Finally, a guarantee in an augmented topology (e.g., about paths travers-
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ing a speci�c fake node) is an assertion valid for any value of k used for
consistently-assigned fake path costs.

3.3.2 A linear-time heuristic to reduce topologies

Merger limits the number of merging attempts to explore in two ways.

1. Bounding the number of possible merges. First, it limits the over-
all number of fake nodes, thus the total number of possible merges. To that
end, in the initial fake node placement step (§3.2.3), it only adds fake nodes
to routers whose required nexthop set is di�erent from the one computed by
the igp. This e�ectively bounds the number of fake nodes of any augmented
topology by the number of nexthop changes (instead of the total number of
links in the requirement dag). Note that, this restriction on the initial set of
fake nodes e�ectively precludes the existence of redundant fake nodes, and
thus removes the need to execute the third step presented in the overview of
Merger (§3.2.3). In our example, the initial set of fake nodes is thus the same
one as the one computed by Simple, shown in Fig. 3.8a, albeit with globally
scoped fake nodes.

While the initial upper bounds of each of these fake nodes is as de�ned
in (§3.2.3) (i.e., set to dist(r,d,G) − 1 for any fr attached to r inG), their lower
bounds have to be computed carefully to ensure their consistency. Indeed,
setting all of them to 2 no longer guarantees that a requirement dagD towards
destinationd is correctly implemented. We address this by executing once the
fake cost bounds propagation procedure (§3.3.3).

Note that Theorem 1 does not provide guarantees if fake nodes are con-
nected only to nexthop changing nodes. As a result, some initial fake bounds
could never be acceptable. We solve each of those cases by replacing the prob-
lematic fake node by a locally scoped one.

2. Attempting to merge a given fake node only once.
We now de�ne the ordering in which merges are attempted. To ensure

that Merger has a time complexity that is linear in the number of fake nodes,
such ordering must consider the merging of each fake node at most once.

Let P=[r1 . . . rm d] be any source-sink path in D. For each such path,
F (P)={fn1, . . . , fnk } is then the set of fake nodes attached to nodes of P and
implementing P in G ′. We de�ne a total order in F (P) such that for any fni
and fnj in F (P), fni < fnj if and only if the routers ri and rj to which fni
and fnj are respectively attached are such that ri is an ancestor of rj in D.
In F (P), fnj is the successor of fni if fni < fnj and there are no fnk such that
fni < fnk < fnj .

To de�ne the ordering of its merging attempts, Merger iterates over all
nodes in D, sorted according to a topological ordering [Kah62]. For each such
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node r, Merger then checks whether there are any fake nodes fr, fr’ . . . at-
tached to r. For each such fr, let P be the set of paths from r to d in D that
contains the sub-path [r nh(fr)]. Merger then tries to merge fr with its suc-
cessor fs in any of the F (Pi ), with Pi ∈ P. Irrespectively of the outcome of
this procedure, fs will remain (possibly, with modi�ed bounds if fr has been
merged into it). When Merger reaches the last node of the topological order,
it will have tried to merge every fake node exactly once.

Applied to the fake node placement from Fig. 3.8a, this yields the fol-
lowing ordering: {fa into fy, then fc into fy}. Note that as the topological sort
de�nes a partial ordering, the reverse sequence would also be a valid ordering
in this example. More generally, the intuition behind our heuristic is that if
there exists a sequence of merging attempts such that all succeed, then any
permutation of that sequence will yield the same augmented topology. Ad-
ditionally, requirement dags tend to have more source-sink paths than they
have sinks, i.e., paths tend to collapse onto each other to end in common des-
tinations. As such, merging from the sources towards the sinks reduces the
risk of preventing multiple fake nodes from being merged into the same one
(as would happen in Fig. 3.9a if fy is merged into fz before trying fa or fc).

3.3.3 The fake cost bounds propagation procedure

The fake cost bounds propagation procedure takes as input the non-augmented
topology G, the target forwarding DAG for D, a destination d , and a set of
globally scoped fake nodes with their bounds, possibly initialized (§3.3.2). The
procedure then ensures that the bounds are consistent across all fake nodes,
by ensuring that three conditions are met for any fake node fx attached to a
router x: (i) lb(fx) ≤ ub(fx); (ii) only x and its ancestors inD which do not have
an attached fake node can compute a shortest-path in G ′ towards d ending
by [x fx d]; and (iii) the range of consistently assigned fake path costs must
be the same across equal cost paths.

To achieve this, the procedure �rst formalizes the constraints on any fake
cost bounds as inequalities to be respected. Then, it �xes these bounds one by
one, in a precise order, satisfying the computed inequalities. In the following,
we provide a more detailed description of those two phases.

Formalization of the constraints on fake cost bounds

This is a static computation based on the link weights inG, and the set of input
fake nodes. More speci�cally, consider any fake node fr attached to a node r.
We �rst formalize the constraints between fr and any other fake node, and
then between fr and nodes not attached to a fake node. In any case, we impose
that bounds are sound, i.e., that lb(fr) ≥ 2 and that ub(fr) < dist(r,d,G).
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Let n , r be any other node in G, to which Merger has also attached
another fake node fn announcing d . We now distinguish between two cases,
depending on the existence of a common ancestor m in D of both n and r
(possibly n or r themselves), such that: (i) m is the root of at least two di�erent
paths P1, P2 in D; and (ii) fn (resp. fr) is the �rst fake node used to implement
P1 (resp. P2) in G ′.

If no such m exist, we then want to impose that the path [n . . . r fr d]
is longer than [n fn d], ensuring that n uses its own fake node. Under the
assumption of consistently assigned fake path costs, this property holds if
lb(fn) < dist(n, r,G) + lb(fr). We therefore use this inequality as the formal-
ization of the dependency between lower bounds lb(fr) and lb(fn).

Otherwise, fn and fr implement equal-cost paths for m. We then impose
that the cost of both paths as computed by m is the same. This property is
veri�ed when both fake nodes have the same fake costs bounds relatively
to m, i.e., when both lb(fn) + dist(m, n,G) = lb(fr) + dist(m, r,G), and when
ub(fn) + dist(m, n,G) = ub(fr) + dist(m, r,G). More generally, leveraging these
equalities and taking into account their soundness constraints, we formalize
the dependencies between bounds implementing equal-cost paths with the
following inequalities: lb(fr) ≥ max{dist(m, n,G) + 2 − dist(m, r,G) | fm ∈ F },
and ub(fr) < min{dist(m, n,G) + dist(n,d,G) − dist(m, r,G) | fm ∈ F }, for any
fake node fr ∈ F , such that F is the set of fake nodes implementing equal-cost
paths for a node m

Similarly, let x be any node in G which does not have an attached fake
node in G ′, and P be all simple paths from x to d in D. If at least one path
in P is implemented inG ′ without any fake node, the shortest-path cost of x
towards d is then �xed (i.e., kept constant). This cost needs to be taken into
account when computing the lower bound of fr. To that end, we treat x as if
it had a fake node whose upper and lower bounds were equal to dist(x,d,G),
and introduce the corresponding inequalities as detailed above. If all paths in
P traverse at least one node attached to a fake node, then the �nal shortest-
path cost from x to d depends on the values of those fake nodes. We can then
safely ignore x when computing the bounds of fr, assuming that the set of
input fake nodes was sound (i.e., there exists a set of consistently assigned
fake path costs able to implement D).

To come back to our example, using the same initial fake node locations
as in Fig. 3.8a, the initial lower bound of fy (resp. fb) is 3 as it is constrained
by z (resp. x), which has a �xed shortest-path cost (12). On the other hand,
fc’s lower bound is 2 as it is not close enough to z or x to attract them. Due
to the ecmp constraint linking fa and fb, fa’s lower bound is consequently set
to 5. All of these fake nodes have the same upper bound as in Fig. 3.9a.
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Computing concrete fake cost bounds

The fake cost bounds of a given fake node fx is likely to depends on the bounds
of another fake node fn, which itself has constraints linking it back to fx, i.e.,
fake nodes can have circular dependencies on their cost bounds. To break
these cycles, this phase iterates over all of them and �xes them one a at time.

Let i be a generic iteration of the fake cost bounds propagation proce-
dure. We split the set of input fake nodes in two, with Fi denoting the set
fake nodes without concrete bounds at iteration i and Ki the one contain-
ing fake nodes with �xed bounds. For each fake node fn ∈ Fi , we de�ne its
tentative bounds, referred to as blb(fn) and dub(fn), as the least constrain-
ing values of its bounds (i.e., minimizing its lower bound and maximizing its
upper bound) that satis�es its associated inequalities. More speci�cally, if a
fake node fr ∈ Ki appears in one the inequalities of fn, we then use its con-
crete bounds to solve it (i.e., ub(fr) and lb(fr) have been �xed in a previous
iteration). Otherwise, we have fn ∈ Fi , fn , fx and consider lb(fr)=2 and
ub(fr)=dist(n,d,G) − 1 when solving inequalities involving fr. Using these
tentative bounds, the procedure then performs three steps.

Step 1—Sorting fake nodes. We �rst sort all fake nodes in Fi accord-
ing to the value of a speci�c function δ , in descending order. This function
represents the relative in�uence of a fake node on the bounds of all the other
ones. More precisely, the value of this function represents the minimal value
that is imposed by a fake node on the lower bound of the closest fake node
attached to a di�erent node. That is, for a fake node fx, its δ value at itera-
tion i is δi (fx) = blb(fx) −min{dist(x, y,G) | y ∈ Fi ∪ Ki }. If two nodes have
the same δi value, any deterministic tie-breaker can then be used to have a
total order in Fi .

Step 2—Fixing one set of bounds. Let fr be the �rst fake node in Fi
(i.e., the one with the highest δi ). We �x both lb(fr) and ub(fr) to their current
tentative values. We then remove fr from Fi and add it to Ki .

Step 3—Fixed bounds propagation. As fr now has concrete bounds,
we propagate these in the constraints of other fake nodes in Fi and update
their tentative bounds accordingly. For example, consider any of the con-
straint inequalities ensuring that [a fr d] is the shortest-path in G ′ from r
to d , i.e., in the form of lb(fr) < dist(r, n,G) + lb(fn), with fn ∈ Fi . Such
inequality is satis�ed if lb(fn) ends up having a value strictly greater than
blb(fr) − dist(r, n,G).

We thus update blb(fn) tomax{blb(fn), blb(fr) − dist(r, n,G) + 1}.
Note that this propagation may render the bounds of fn no longer accept-

able, i.e., blb(fn) ≤ dub(fn). In such cases, we remove all fake nodes attached
to n, and implement its required nexthops using locally scoped fake nodes
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Figure 3.12: When propagating the fake cost bounds of fc, the lower bound
of fb becomes greater than its upper bound, forcing Merger to replace fb by
a locally scoped fake node.

with a cost of 2. Then, we restart the fake cost bounds computation from
scratch, ignoring these locally scoped fake nodes when computing fake cost
bounds. Fig. 3.12 shows a topology where this is the case. Indeed, due to d and
a not having a fake node, fc and fb have to pick lower bounds high enough
to not attract them. When executing the fake cost bounds propagation pro-
cedure with these tentative bounds, fc is then examined �rst since it has a
larger delta value (δ1(fc) = 6; δ1(fb) = 4). The fake cost bounds of fc are thus
�xed to [8,8]. Propagating the lower bound of fc then causes the constraint
that fb should not attract c to evaluate as lb(fb) > lb(fc) + dist(c, b,G), i.e.,
lb(fb) > 8 + 2. This new tentative lower bound for fb is however greater than
its upper bound (6), hence transform fb into a locally scoped fake node.

3.3.4 The merging procedure

The Merger algorithm reduces the size of an augmented topology by merg-
ing globally scoped fake nodes together, when deemed safe. Consider any
two fake nodes fu and fv, part of the input set of fake nodes F . We now for-
mally describe the three checks performed by Merger to determine if fu can
be safely merged into fv, and what would be the resulting fake cost bounds
changes across all fake nodes in the augmented topology.

Check 1—Shortest path compliance.
Merger �rst ensures that the post-merging paths are the ones in the forward-
ing requirements D. Let A be the set of nodes that will depend on fv to im-
plement their required nexthops in D. That is, A includes u and all ancestors
of u in D which do not have a fake node attached. Merger then checks that
every node in S forwards its tra�c towards v only along the desired paths,
i.e., that ∀n ∈ A, sp(n, j,G) = all_paths(n, j,D).
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Check 2—Candidate compatibility.
Merger attempts to compute new provisional fake cost bounds for fv, that will
meet both the original constraints on the bounds of fv and also those from
fu. More precisely, these new bounds must guarantee that: (i) sp(u,d,G ′) be-
comes the concatenation of sp(u, v,G ′) and [v fv d]; and (ii) these new bounds
must ensure that all nexthops in G ′ are kept unchanged before and after the
merger.

Let lb’(fv) and ub’(fv) be the provisional lower and upper bounds of fv.
Achieving the �rst constraint then implies that ub′(fv) + dist(u, v,G) ≤ ub(fu),
and thus that ub’(fv) =min{ub(fb), ub(fu)−dist (u, v, G)}, i.e., the provisional
upper bound must guarantee that the fake node will announce a total fake
path cost that is preferred to the default igp paths of both u and v.

Similarly, assuming consistently assigned fake path costs, achieving the
second constraint imposes that ∀fn ∈ F \A, lb(fn) < dist(n, v,G) + lb′(fv),
i.e., no node but those in A can compute a shortest-path that goes through fv.
Note that if we assume that the original lower bounds of fu and fv were con-
sistent (i.e., were the results of the fake cost bounds propagation procedure),
we can then reformulate this as lb’(fv) =max {lb(fv), lb(fu)−dist (u, v, G)}. In-
deed, as the shortest-path compliance check succeeded, subtractingdist(u, v,G)
from lb(fu) e�ectively preserves the constraints on the lower bound of fu
while “moving” it on fv (i.e., normalizing it). This enables to compare the two
lower bounds in order to keep the most constrained one, meeting the con-
straints of both fake nodes.

Merger then �nally checks that these provisional bounds ensures the ex-
istence of a fake path cost implementing D in G ′, i.e., lb′(fv) ≤ ub′(fv).

Check 3—Network-wide feasibility.
Merger then simulates the e�ects of merging fu into fv to assess the needed
fake cost bounds changes, as well as their feasibility. Indeed, the removal of
fu and the possibly changed bounds of fv could introduces some bounds in-
consistencies inG ′. More precisely, the second check only guarantees that fv
proposes a path preferred to the igp one, and that no “unwanted” node uses
fv. It does not guarantee that fv will be the preferred one by all nodes in A,
or that equal-cost constraints are met.

To ensure the network-wide consistency of fake cost bounds, Merger cre-
ates д as a copy ofG which does not contain fu and has the bounds of fv set to
their provisional values. Then, it executes the fake cost bounds propagation
procedure on д. If the fake cost bound propagation succeeds without adding
locally scoped fake nodes, this third check then succeeds.

If any of those three checks fails, Merger immediately aborts the merging
attempt. Otherwise, we set G ′ to д, i.e., the augmentation of G now has one
less fake node, and Merger attempts to merge another pair of fake nodes.
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3.3.5 Merger is provably correct

We prove the correctness of Merger, i.e., its ability to implement any forward-
ing dag with a reduced augmented topology, in two steps. First, we show that
the algorithm correctly implements any input forwarding dag after the fake
cost bounds computation procedure (see Theorem 2). Second, we prove that
merges performed during the merging procedure never change the forward-
ing paths implemented in the pre-merging augmented graph (see Theorem 3).
The correctness of Merger then follows by noting that it �rst executes the
fake cost bounds propagation procedure, and then iteratively executes the
merging procedure followed by the fake cost bounds propagation.

Note that as Merger never changes any link or link weight in G, for any
pair of real nodes x and y in G, we always have dist(x, y,G) = dist(x, y,G ′).

Correctness of the fake cost bounds propagation procedure

LetG be the original igp topology, andG ′ the topology as computed byMerger
after the fake cost bounds propagation procedure.

Lemma 1 (Once �xed, fake cost bounds are never changed during the pro-
cedure). If lb(fx) is �xed at an iteration i of the fake cost bounds propagation
procedure, then δi (fx) = δ j (fx) for any iteration j with j > i .

Proof. Recall that the δ function is the di�erence between lb(fx) and the dis-
tance between x and the closest real node attached to a fake node. Proving
that δi (fx) = δ j (fx) for any iteration j with j > i implies to prove that once
�xed, lb(fx) stays constant. Assume by contradiction that there exists another
iteration j, with j > i in which lb(fx) is changed. More precisely, as lower
bounds may only increase during the propagation phase in step 3, we then
have lbj (fx) > lbi (fx). This implies that there exists a fake node fz at it-
eration j such that lbj (fz) − dist(x, z,G) + 1 > lbi (fx). By de�nition of the δ
function, this then means that δ j (fz) ≥ lbi (fx) > δi (fx). This would cause
fake node fz to be �xed before fx as δ j (fz) > δ j (fx), which contradicts the
hypothesis that j > i and thus proves the statement. �

Lemma 2 (The δ function de�nes a constant total ordering for �xed bounds).
If lb(fx) is �xed at an iteration i of the fake cost bounds propagation procedure
and δi (fx) ≥ δi (fy) at that iteration, then δ j (fx) ≥ δ j (fy) at any iteration j > i .

Proof. Assume by contradiction that δi (fx) ≥ δi (fy) but δ j (fx) < δ j (fy) in a lat-
ter iteration j, such that j > i and lb(fy) , lb(fy). Let m be the closest iter-
ation to i such that δm(fx) < δm(fy). By Lemma 1, if lb(fx) is �xed at i , then
δl (fx) = δi (fx) for any l > i , hence δi (fx) = δm(fx). Let x and y be the real
nodes respectively attached to x and y.
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One of the following two cases must then apply.

• m = i+1. In this case, the delta function of fymust have been increased
during the i-th iteration. Such increase then implies that the lower bound of
fy gives us blbm(fy) =max{blbi (fy), lbi (fx) − dist(y, x,G) + 1} We have two
sub-cases.

If lbm(fy) = lbi (fy), then δm(fy) = δi (fy). As we have by hypothesis,
δi (fx) ≥ δi (fy) and δi (fx) = δm(fx), we must then have δm(fx) ≥ δm(fy).

Otherwise, we have lbm(fy) = lbi (fx) − dist(y, x,G) + 1, which we can re-
formulate as lbm(fy) − 1 = lbm(fx) − dist(y, x,G). Per its de�nition, the value
of δm(fy) is lbm(fy) − cost(P,G), where P is a given path in G; as the cost
of any igp path is strictly positive, we thus have δm(fy) ≤ lbm(fy) − 1. More-
over, δm(fx) = lbm(fx) − dist(x, z,G)with z being the closest node to x also at-
tached to a fake node; consequently,δm(fx) ≥ lbm(fx) − dist(x, y,G). Combin-
ing those, we have δm(fy) ≤ LBm(fy) − 1 = lbm(fx) − dist(x, y,G) ≤ δm(fx),
thus that δm(fx) ≥ δm(fy).

Both sub-cases generate a contradiction, asm was de�ned as an iteration
in which δm(fx) < δm(fy).
• m > i + 1. In this case, there must be an iteration n, with i < n ≤ m,

such that δn−1(fx) ≥ δn−1(fy) and δn(x) < δn(y). As lb(fx) is �xed in iteration
i , δn−1(fx) = δn(fx) = δi (fx). lb(fy) thus can only be �xed at iteration n and
must increase by hypothesis between iteration n − 1 and n, implying that
δn(fy) > δn−1(fy).

Consider a lower bound lb(fz) , lb(fy) being �xed at n − 1. Fixing it at
iteration n − 1 must cause δn(fy) > δn−1(fy). Additionally, if lb(fz) is being
�xed at n − 1, then we have δn−1(fz) ≥ δn−1(fy). This leads to two subcases.

If δn−1(fz) ≥ δn−1(fy) and δn(fz) < δn(fy), we can consider z instead of x
and immediately generate a contradiction on z and y as the �rst case of our
proof applies (i.e.,m = n and i = n − 1).

Otherwise, if δn−1(fz) ≥ δn−1(fy) and δn(fz) ≥ δn(fy), we obtain by sub-
stitution δn−1(fx) = δn(fx) < δn(fy) ≤ δn(fz) = δn−1(fz). Recall that lb(fx) is
�xed at i , thus that we also have δi (fx) ≥ δi (fz). As δn−1(fx) < δn−1(fz), we can
then iterate our reasoning by contradiction on x and z. Note that as n−1 < m,
we have the guarantee that we will eventually fall in another subcase than this
one, and thus �nally generate a contradiction.

All subcases thus generate a contradiction, which proves the statement.
�

Lemma 3 (Nodes always use the fake nodes attached to them). The shortest
path to d from any real node r attached to a fake node fr which announces d in
G ′ is [r fr d].
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Proof. The statement holds if the fake node is locally scoped, as the fake cost
propagation procedure sets its cost to 2 and the topology is Fibbing compliant.

We now focus on globally scoped fake nodes.
Consider any pair of lower bounds lb(fx) and lb(fy). Let ix and iy be the

iterations at which lb(fx) and lb(fy) are respectively �xed during the fake cost
bounds propagation procedure. We denote the �nal value of δ (fx) (resp. δ (fy))
after the last iteration of the procedure as δf (fx) (resp. δf (fy)). Moreover, we
denote by Px (resp. Py ) the path [x fx d] (resp. [y fy d]).

By de�nition of the procedure, we have two cases.

• lb(fx) is �xed before lb(fy), that is, ix < iy . Assuming consistently
assigned fake path costs, we have cost(Py,G ′) = lbf (fy) + k with k ≥ 0, thus
cost(Py,G ′) ≥ lbf (fy). Additionally, the bounds propagation step of the proce-
dure ensures that lbf (fy) > lbf (fx) − dist(x, y,G). The right side of the previ-
ous inequality can be rewritten as cost(Px ,G ′) − k − dist(x, y,G). This implies
that lbf (fx) − dist(x, y,G) ≥ cost(Px ,G ′) − dist(x, y,G). Using all previous in-
equalities, we conclude that cost(Py,G ′) > cost(Px ,G ′) − dist(x, y,G).
• lb(fx) is �xed after lb(fy), i.e., ix > iy . This implies that δix (fx) ≤

δix (fy), thus that δf (fx) ≤ δf (fy) by using Lemma 2. We now express δf (fx)
and δf (fy) with respect to the cost of paths in G ′.

By de�nition,δf (fx) = lbf (fx) − dist(x, n,G), with n being the closest node
to x that is attached to a fake node. Consequently,δf (fx) ≥ lbf (fx) − dist(x, y,G),
i.e., δf (fx) ≥ cost(Px ,G ′)−k −dist(x, y,G). By using the consistently assigned
fake path costs de�nition, i.e.,k ≥ 0, we haveδf (fx) ≥ cost(Px ,G ′) − dist(x, y,G).

Similarly, we have δf (fy) = lbf (fy) − dist(y, z,G ′) for some node z; thus
δf (fy) = cost(Py,G ′) − k − dist(y, z,G ′). As both dist(y, z,G) > 0 and k ≥ 0,
we thus have δf (fy) < cost(Py,G ′).

Finally, we combine the previous inequalities around δf (fy) and δf (fx) to
obtain cost(Py,G ′) > δf (fy) ≥ δf (fx) ≥ cost(Px ,G ′) − dist(x, y,G).

Both cases prove that cost(Py,G ′) > cost(Px ,G ′) − dist(x, y,G ′), i.e., that
the path Px is always shorter for x to reach the destination, than going from x
to y and then using Py . The same argument can be applied to any other lower
bound lb(fy), upholding the conclusion that Px , i.e., [x fx d], is the shortest
path from x to d in G ′.

The statement then follows by applying the same argument to all nodes
x in G ′. �

Lemma 4 (The procedure does not induce any nexthop change). For any real
node n not attached to a fake node, if all_paths(n,d,D) is guaranteed not to con-
tain a node x attached to a fake node fx before the fake cost bounds propagation
procedure, then sp(n,d,G ′) is guaranteed not to contain x after the procedure.
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Proof. Using the formalization of the constraints on the lower bound, we have
dist(n, x,G) + lb(fx) > dist(n,d,G ′). We then have two cases.

• all_paths(n,d,D) crosses no node attached to a fake node. x thus has
a �xed shortest-path cost, and the statement then follows as the propagation
procedure guarantees that lb(fx) will either satisfy the inequality, or be re-
placed by a locally scoped fake node which would then not a�ect n.

• all_paths(n,d,D) crosses a node z attached to a fake node fz. We then
have dist(n,d,G ′) = dist(n, z,G) + lb(fz). By Lemma 3, and assuming consis-
tently assigned fake path costs, the statement then holds. �

Theorem 2 (The fake cost bounds propagation procedure is correct). If fake
path costs are consistently assigned,Merger correctly implements the input for-
warding dag D after the fake cost bounds propagation procedure.

Proof. Consider any real node r in G ′. We then have two cases.

• If r is not attached to any fake node, the assignment of lower bound
values before the propagation procedure ensures that paths including any
fake node connected to real ones not in all_paths(r,d,D) have a cost strictly
greater than dist(r,d,G ′). Lemma 4 then guarantees that r’s shortest path
sp(r,d,G ′) in the augmented topology will not traverse any fake node at-
tached to a real one not in all_paths(r,d,D). Per the de�nition of shortest-
paths, sp(r,d,G ′) can actually be written as the concatenation of P = sp(r, x,G ′)
and Q =[x fx d], with either: (i) Q , ∅ and x ∈ sp(r,d,G); or (ii) Q = ∅ and
r = d if no node in sp(r,d,G) is connected to a fake one. In either case, r’s
next-hop is the same as in the original topology. This is consistent with the in-
put forwarding DAG, given that Merger initially adds fake nodes to (at least)
all nexthop changing nodes.

• Otherwise, if r is connected to a fake node, then Lemma 3 holds. The
required nexthop is thus imposed via the fake path, yielding the statement.

�

Correctness of the merging procedure

We now prove that the merging procedure does not trigger violations of
previously-enforced forwarding dags. We begin by �rst proving an invari-
ant preserved by the procedure.

Lemma 5 (The merging procedure does not induce any nexthop change).
For any pair of real nodes (r, z) and any fake node fz attached to z and an-
nouncing a destination d , if we have dist(r,d,G1) < dist(r, z,G1) + lb1(fz) in
the topology G1 provided as input to the merging procedure, then we also have
dist(r,d,Gk ) < dist(r, z,Gk ) + lbk (fz) for any iteration k of the procedure.



3.3. TheMerger algorithm 47

Proof. Consider any iteration k of the merging procedure, and assume that
dist(r,d,Gk−1) < dist(r, z,Gk−1) + lbk−1(fz) held. At iterationk ,Merger picks
two fake nodes fa and fb, and attempts to merge fa into fb by performing the
three checks of the merging procedure.

• If the merging attempts fails, then no change has been applied to
Gk−1 has the set of fake nodes is unchanged and all fake cost bounds remain
the same. In that case, dist(r,d,Gk−1) < dist(r, z,Gk−1) + lbk−1(fz), directly
implies dist(r,d,Gk ) < dist(r, z,Gk ) + lbk (fz).
• Otherwise, fa is merged into fb. The candidate compatibility step sets

lb’(fb) such that dist(r,d,Gk−1) < dist(r, b,Gk−1) + lb′(fb). All other lower
bounds satisfy the corresponding inequality by hypothesis. By de�nition no
lower bound is decreased during the fake cost bounds propagation proce-
dure run in the network-wide feasibility step, i.e., lbk−1(fx) ≤ lbk (fx) for
any fake node fx. As Merger does not change link weights, we thus have
dist(r,d,Gk−1) = dist(r,d,Gk ) anddist(r, z,Gk−1) = dist(r, z,Gk ). Combining
all of these, this implies that at the end of the iteration k , for any fake node fz,
dist(r,d,Gk ) < dist(r, z,Gk−1) + lbk−1(fz) ≤ dist(r, z,Gk ) + lbk (fz), yielding
the statement. �

Theorem 3 (The merging procedure is correct). In an augmented topologyG ′

implementing a forwarding dag D for a destination d in a topology G, success-
fully merging two fake nodes together using the merging procedure produces an
augmented topology G ′′ which correctly implements D.

Proof. Consider two fake nodes inG ′ fa and fb, such that the merging proce-
dure successfully merged fa into fb to produce G ′′. Let a (resp. b) be the real
node to which fa (resp. fb) is attached.

For any real node r, one of the following cases holds.

• sp(r,d,G ′) includes fa before the merger, i.e., r=a or r is one of the
ancestors of a in D which is not attached to a fake node. The candidate com-
patibility check then ensures that dist(r, b,G ′′) + lb′′(fb) < dist(r,d,G), i.e.,
the path created by reaching y from r and then going through fy is shorter
than r’s original igp shortest-path. Additionally, initial fake cost bounds prop-
agation ensures that we have dist(r,d,G0) < dist(r, x,G0) + lb0(fx) for any
fake node fx < {fa, fb} before the �rst execution of the merging procedure.
Lemma 5 then guarantees that this property is preserved in subsequent merg-
ing attempts, i.e., that dist(r,d,G ′′) < dist(r, x,G ′′) + lb′′(fx) holds. Combin-
ing both inequalities, we conclude that sp(r, y,G ′′)+[b fb d] is guaranteed to
be the post-merging shortest-path of x. Finally, the shortest-path compliance
check guarantees that sp(r, b,G ′′) = sp(r, a,G ′′) + sp(a, b,G ′′), thus r has the
same set of nexthops in G ′′ and in G ′.
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• sp(r,d,G ′) includes neither fa nor fb before the merger. We then have
two subcases: (i) Either r is attached to a locally scoped fake node. r then
keeps using this fake node as the associated total fake path cost (2) is always
the lowest; or (ii) r implements its required nexthops in D by according to its
shortest-path towards d in G ′′ (with or without traversing a fake node). By
hypothesis as the merging attempt succeeded, the fake cost bounds propaga-
tion ran at the end of the merging procedure was then successful. Theorem 2
then implies that all fake cost bounds network-wide have been adjusted to
preserve the required nexthops of r.

In both cases, r has the same nexthops in G ′ and G ′′, which proves the
statement. �

3.4 Evaluation

This section presents experimental results con�rming the feasibility of Fib-
bing. More speci�cally, we evaluate Simple and Merger (§3.2) according to two
criteria. First, we record the time they take to compute an augmented topol-
ogy for a given requirement (§3.4.1), and con�rm that a Fibbing controller can
quickly compute augmented topologies in reaction to network events. Then,
we show that our optimization algorithms e�ciently reduce the size of the
augmented topology (§3.4.2), preserving the scalability of the underlying igp
by lowering the control-plane overhead.

Our evaluation is based on simulations performed on realistic isp topolo-
gies [SMW02], whose sizes range from 80 nodes to over 300, with up to 2 000
links. We generated between 100 and 500 di�erent forwarding requirements
for each of these topologies, depending on their size. Generating one such for-
warding requirements is a two steps process. First, we select a random node
in the topology, to which we attach a particular destination pre�x. Then, we
introduce a controlled amount of random shortest-path violations (i.e., nodes
whose set of nexthops has been changed in the generated requirement dag),
such that the resulting set of forwarding paths towards the destination is still
loop-free.

These benchmarks are performed using naive implementations of Simple
andMerger in Python, spanning across about 1700 lines (comments included).
As such, they should only be taken as baseline and could vastly be improved
(e.g., by switching to a more e�cient language, caching intermediate com-
putations more aggressively, or parallelizing some parts such as the merging
attempts).
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Figure 3.13: Simple and Merger quickly implement a forwarding requirement.

3.4.1 Fibbing augments network topologies within ms.

Fig. 3.13 plots the distributions of the time taken by Simple and Merger to
compute an augmented topology (on the y-axis), against the number of nodes
whose desired nexthops violate the original igp shortest-paths (on the x-axis).
Boxes contain the second and third quartiles, while and whiskers denote the
minimal and maximal values. This graph only displays results from the bench-
marks performed on the largest Rocketfuel topology (AS1239).

Simplewas able to compute one per-destination augmentation in millisec-
onds, varying from 0.5ms to 8ms. As expected, using Merger to implement
the requirements was comparatively slower as it resulted in running times in
hundreds of milliseconds. Yet, these running times still allow using Merger
to optimize augmented topologies in near real-time. Note that the execution
time for both algorithms does not vary much with the number of shortest-
paths violations.

3.4.2 Fibbing e�ectively optimizes augmented topologies.

Fig. 3.14 compares the relative size of the augmented topology (on the y-axis)
between Simple and Merger, depending on the number of shortest-paths vio-
lations (on the x-axis), across all topologies. More precisely, the y-axis displays
the ratios between the total number of fake nodes in the augmented topolo-
gies, and the total number of nexthop changes (which tends to be greater than
the number of shortest-path violations due to equal-cost paths). The boxplots
display the second and third quartiles, as well as the overall minimum and
maximum values across all experiments.

On one hand, Simple always adds one fake node per nexthop change
and is thus a baseline on the number of fake nodes needed. On the other
hand, Merger was able to optimize some of those fake nodes across all exper-
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Figure 3.14: Merger reduced the augmented topology in all experiments.
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Figure 3.15: The cross-destination optimization algorithms drastically reduce
augmented topologies implementing more than one forwarding dag.
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iments. This resulted in augmented topologies smaller by about 25% in the
average case, and up to 66% in the best case (i.e., Merger produced and aug-
mented topology containing 44% of the fake nodes placed by Simple). Note
that Merger’s e�ectiveness tends to decrease as the number of shortest-path
violations grows. This is expected as requiring more nexthop changes im-
plicitly reduces the likelihood of Merger �nding pairs of fake nodes that: (i)
meet the shortest-path compliance criteria; and (ii) have compatible fake cost
bounds despite the increasing amount of equal-cost constraints.

Finally, Fig. 3.15 con�rms the e�ectiveness of our cross-destination opti-
mizations algorithms (§3.2.4). To that end, it compares the cumulative distri-
bution function (cdf) of the relative size of the augmented topology (on the
x-axis) computed by Simple,Merger, and the cross-destination algorithms ap-
plied after Merger. More speci�cally, the plot aggregates the results of bench-
marks concurrently implementing a random number of forwarding require-
ments on the same initial topology (between 1 and 100).

We see that in 75% of those benchmarks, the cross-destination optimiza-
tions were able to reduce the size of the augmented by at least an extra 20%
with respect to Merger, which itself was using 32% less fake nodes than Sim-
ple. As the number the of concurrent requirements grows, so does the opti-
mization gain of the cross-destination algorithms, as half of all experiments
sees a gain of 31% less fake nodes compared to Merger, up to 44% in 25% of the
experiments. More generally, in a network with L physical links, the cross-
destination algorithms admit an upper bound on the total number of fake
nodes equals to 2 × L regardless of the number of forwarding requirements
forwarding dags or of the number of nexthop changes (i.e., one fake node for
each direction of every link). In contrast, Simple and Merger only provide an
upper bound on a per-destination basis.

3.5 Using Fibbing jointly with other protocols

igps are seldom the only routing protocols in use in a network, and often inter-
act with the other ones in a way or another (sometimes unexpectedly [GW02b]).
Fibbing thus inherits from these interactions. More speci�cally, using Fibbing
has two e�ects on the underlying igp topology (i.e., the augmented topology):
(i) some destinations use di�erent shortest-paths; and (ii) the cost of these al-
tered paths is lowered. As a result, any protocol depending on the path com-
puted by the igp, or on the cost associated to its routes, is also a�ected by the
changes induced by Fibbing.

In this section, we present how Fibbing can leverage these e�ects on the
igp to control the forwarding behaviors of other protocols. We �rst discuss
how Fibbing achieves a direct control over the paths used by any protocols
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Figure 3.16: Fibbing controls the paths of tunnels building overlay networks.

building an overlay on top of the igp (§3.5.1), such as ldp or gre. In particular,
we analyze the interactions between Fibbing and the bgp, highlighting how
Fibbing controls the paths followed by transit tra�c (§3.5.2) and how Fibbing
enables an indirect control over the result of the bgp decision process.

3.5.1 Fibbing controls the routes used by overlay networks

Overlay networks are virtual network topologies built on top of an under-
lying (physical) topology. There are many use-cases for such overlay, rang-
ing from multiplexing di�erent data-planes on the same infrastructure (e.g.,
routing mpls packets in ip networks using ldp), to creating virtual networks
spanning between multiple data-centers and isolating them across customers
(e.g., nvo3 [rfc8151], gre [rfc2784], vxlan [rfc7348], layer-2 vpn [rfc4664]),
or even relaying application data across multiple logical nodes using proxies
(e.g., ssh gateways, http load-balancers). In each of these cases, the tra�c be-
longing to the overlay network is encapsulated, and then forwarded between
the virtual nodes over a well-de�ned set of paths in the underlying topology,
which we call tunnels. If the underlying topology is an ip network running an
igp, then the encapsulation speci�es a source and a destination ip addresses
that will act as tunnel endpoints, and the tunnels follow the shortest-paths
between these endpoints.

Fibbing explicitly controls all underlying paths building up overlay net-
works. Indeed, as tunneling protocols rely on the igp to determine the actual
the paths between two tunnels endpoints, controlling those paths with Fib-
bing is achieved by specifying forwarding requirements towards each end-
point, as for any other destination. Such endpoints can be any ip address re-
solvable by the igp, ranging from router loopbacks (e.g., used by ldp to re-
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solve mpls labels), to servers’ ip addresses (e.g., for application proxies, gre),
including virtual machines’ addresses. Additionally, if the network con�gu-
ration allows it, multiple tunnels can be re-routed at once using Fibbing by
specifying requirements towards the pre�x aggregating all endpoints (e.g., re-
routing all virtual machines hosted on the same rack, assuming they all share
a common pre�x). Finally, note that the requirement language compilation
process (§3.1.1) guarantees that Fibbing never unexpectedly alters the paths
followed by tunneled tra�c, i.e., it only does so if an endpoint’s ip is part of
the requirements’ destination pre�xes.

For example, consider the igp topology shown on the left part of Fig. 3.16,
and hosting multi-tenants data-centers linked to routers a, c, and d. In these
data-centers, two di�erent customers have built an overlay connecting servers
which implements the di�erent processing steps of some data-intensive appli-
cation. Assume that due to these customers, the operator of the network then
detects that the link (a, d) is congested due to it being part of both overlays.
The operator can then use Fibbing to re-route one of the tunnels implement-
ing [ax dx ], by specifying that tra�c towards the ip address of one the tunnel
endpoints on d should be sent over an alternate path(e.g., [a b d]). Accord-
ingly, the controller will inject one fake node in the igp to implement it. This
causes the two tunnels connecting a to d to follow di�erent igp paths, while
leaving their overlay topologies unchanged. Note that this process made no
assumption on the actual protocol used to build the overlay.

3.5.2 Fibbing in�uences the bgp decision process

bgp routes transit tra�c entering the network by �rst selecting an egress
router and then relying on the igp to forward it internally towards that egress,
possibly encapsulated. bgp thus implicitly builds an overlay network, creating
a fullmesh between all ingresses and egresses, dedicated to transit �ows. As
shown earlier (§3.5.1), specifying forwarding dags towards those egresses (i.e.,
routers’ loopback if the bgp routes are announced using the next-hop-self

option) then controls the paths along which transit �ows are forwarded.
The interactions between bgp and the underlying igp, however, go beyond

the paths followed by transit tra�c. Indeed, every bgp router directly taps into
the igp state to extract the internal path cost to reach bgp egresses. These costs
are then re�ected in the med attribute (exported to other ases the to in�uence
their preferred ingress routers), and also used as one of the later steps of the
bgp decision process. Uncontrolled, this interaction between bgp and the igp
is a well-known source of issues (e.g., forwarding loops, route oscillations)
and has been widely researched [GW99; GW02a; GW02b; Van+13].

Fibbing controls transit paths. Consider the example network shown
on Fig. 3.17. In this, network, two routers (d and z) have established an ebgp
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ing the cost of the desired path, hence in�uences the bgp decision process.

session towards as y. In as x, all routers are part of an ibgp fullmesh. Assum-
ing that no particular bgp �lters are in use, all routers thus receive two routes
towards the pre�xes announced by as y and prefer the one with the closest
nexthop. In this case, a decides to use z as the igp cost of [a y z] (20) is lower
than the one of [a b c d] (24). Similarly, b opts to use d as egress router.

For operational reasons (e.g., scheduled maintenance, tra�c engineering),
the operator of this network is tasked to divert the transit tra�c crossing
router c, i.e., to use the path [b x d] instead. Upon reception of this new for-
warding requirement, the Fibbing controller then implements it by injecting
a globally scoped fake node fb announcing a route towards d, attached to b,
as shown on Fig. 3.18a. While successfully steering the transit tra�c between
b and d, this change may however have additional side e�ects.

Fibbing controls the bgp egress selection process. Recall that the
total fake path cost announced by a fake node is constrained by an upper
and a lower bound, whose values ensure that the forwarding requirements
are implemented properly. In this example, ub(fb)=14 guarantees that b will



3.5. Using Fibbing jointly with other protocols 55

always prefer the path going through fb and lb(fb)=2 is enough to guarantee
that no node other than b and a (as b is its original igp nexthop towards d)
uses fb. Note that both of these values only consider the impact of fb in the
forwarding dag towards d. While su�cient to compute internal paths, this is
no longer true for transit tra�c. Indeed, in the presence of fb, a’s bgp decision
process compares the relative costs of [a y z] and [a b fb] and forwards transit
tra�c along the path with the lowest cost. Compare two possible fake path
costs for fb, shown on Fig. 3.18a and Fig. 3.18b. In both cases, the forwarding
requirement is implemented successfully. However, as shown on Fig. 3.18b,
selecting the lower bound as fake path cost for fb also causes a’s bgp decision
process to prefer to use d as egress router instead of z. In other words, the
fake path cost of fb controls both the path of the transit tra�c and which
ingress nodes will select this path to forward transit tra�c.

Fibbing enforces a ranking between egresses. Consider a networkG
with N routers, among which there are E border routers. Let fne be a fake
node attached to router n and required to implement a forwarding dag De
towards a bgp egress e ∈ E (i.e., fne announces one of e’s addresses). Let
Pn ⊆ E be the desired set of egresses that n should prefer over e. Computing
the fake path cost for fne requires to add the following two sets of constraints
to the formalization presented in (§3.3.3)3

First, we constrain the fake bounds of fne according to the desired result
of n’s bgp decision process. More precisely, any egress router f ∈ Pn con-
strains the lower bound of fne such that the fake cost of fne will be higher
than the cost to reach f, i.e., lb(fne ) > dist(n, f,G ′). Similarly, any egress f <
Pn, f ∈ N constrains the upper bound of fne to ensure that bgp will pre-
fer to use n over f, i.e., ub(fne ) < dist(n, f,G ′). Note that depending on the
required forwarding dag towards f, dist(n, i,G ′) is either a constant value
(the path from n to f crosses no node with a fake node), or also depend
on the fake cost of another fake node fg attached to router g. In the latter
case, we express dist(n, f,G ′) according to the fake cost bounds of fg, i.e.,
dist(n, g,G) + lb(fg) ≤ dist(n, f,G ′) ≤ dist(n, g,G) + ub(fg).

The second set of constraints ensures that fne does not introduce un-
wanted bgp nexthop changes for any other router r ∈ N . If r is an ancestor
of n in De and n is the �rst node in sp(r, e,De ) that is attached to a fake node
announcing e, then its �nal shortest-path cost towards e depends on the cost
of fne . The upper and lower bounds of fne thus need to take into account the
egress preferences of r, namely dist(r, n,G) + lb(fne ) > dist(r, f,G ′) for any
f ∈ Pr or dist(r, n,G) + ub(fne ) < dist(r, g,G ′) for any g < Pr , e ∈ N Other-

3For simplicity, we assume that only one egress can be preferred at a given time, i.e., routers
do use the add-path capability [rfc7911]. The formulation can however be extended to enable
“equally-preferred” egresses by ensuring that their �nal path costs towards di�erent egresses
are the same.
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wise, as r either has its own fake node or is not an ancestor of n, assuming
that the fake cost of fne enables to implement De , then r’s shortest-path to-
wards e is, by de�nition, una�ected by fne . As such, its preferred bgp egress
is unchanged, and r thus induces no additional constraint.

On the example of Fig. 3.18a, beside the constraints on the lower and up-
per bound needed to ensure that [b x d] is used instead of [b c d], applying
the above formulation yields the following additional constraints on the fake
cost bounds of fb: (i) ub(fb) < 25, to ensure that b selects d as egress; and (i)
9 + lb(fb) > 20, to ensure that a’s bgp decision process keeps using z over d.
Changing this latter constraint to 9+ub(fb) < 20, enforces that the preferred
egress of a should be changed to d, and the result shown in Fig. 3.18b.

Fibbing bgp egresses has some control-plane overhead. While Fib-
bing is a good �t to alter few paths used for transit tra�c and control the
preferred egress routers, (ab)using it at large-scale faces three sources of over-
head, challenging the scalability of the approach.

1—Controller overhead. When used towards E bgp egresses, Fibbing, our
formulation requires considering at least E constraints on every node in the
network, i.e., the augmentation problem grows quadratically harder in the
number of bgp egresses. As fake nodes have constraints recursively linking
to other fake nodes across multiple dags, simple greedy heuristics like the
Merger algorithm are less e�cient at scheduling tentative merges. As a result,
e�ciently reducing the size of the augmented topology imposes to fallback to
other approaches with a drastically higher computation cost on the controller,
e.g., solving it using ilp formulation is NP-Complete [Coo71].

2—igp overhead. Beside being hard to compute, merging fake nodes is also
less unlikely to happen. Indeed, as fake cost bounds are more constrained, the
likelihood of successively merging the same fake node multiple times into its
nexthop diminishes. Worse, experimental results showed that complex for-
warding requirements tended to only be implementable using locally scoped
fake nodes, preventing any optimizations. As such, augmented topologies im-
plementing many requirements for transit tra�c tend to be very large, with
up to N ∗ E fake nodes in the absolute worst case (with N ≥ E the total
number of bgp routers).

3—bgp overhead. Let fn be a fake node attached to a router n, and im-
plementing a path towards a preferred egress router e . We distinguish three
levels of bgp control-plane overhead induced by fn. First, if fn adds an equal-
cost path towards e , then it does not result in any bgp control-plane activity.
Instead, if fn causes n to see a decrease of its igp cost towards e but e was
already the preferred bgp egress, then fn causes bgp update messages to be
sent over n’s ebgp session, if any, re�ecting the changes in the med attribute.
Finally, if fn changes the bgp nexthop of n, then update messages are sent
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over all n’s ebgp and ibgp sessions.

3.6 Discussion

This section covers qualitative aspects of Fibbing that go beyond the raw ca-
pabilities presented in previous sections. More speci�cally, we �rst highlight
how Fibbing is naturally suited to drive incremental sdn deployment in ex-
isting networks (§3.6.1), then we discuss several high-level concerns raised by
the community about the practicality of Fibbing (§3.6.2).

3.6.1 Fibbing enables incremental sdn deployment

The advent of sdn [FRZ13] makes it clear that network operators want their
networks to be more programmable and easier to manage centrally. However,
very few of them are able to deploy sdn using a clean-slate approach [Jai+13;
Hon+13], notably due to the prohibitive cost of such approach. Instead, most
networks rely on an incremental sdn deployment, where subset of devices
will be upgraded at a time, gradually increasing sdn capabilities over time.

From a high-level viewpoint, Fibbing provides an api to program paths in
an underlying igp, i.e., fib entries, from a logically centralized controller. As
such, Fibbing enables to control existing networks as if they were using fully-
�edged sdn protocols. Consequently, Fibbing is a prime candidate to drive
incremental sdn deployment in existing networks. More precisely, according
to the classi�cation presented in [VVB14], we distinguish two types of hybrid
sdn models in which Fibbing naturally �ts.

1—Integrated hybrid sdn. Fibbing lets operators plan the deployment
of sdn in their existing network in two main steps. First, operators should
update their control-plane in order to ensure that the igp topology is Fibbing-
compliant (§3.2.2). Then, management tools in the network can be upgraded
to use the Fibbing controller instead of directly recon�guring routers. Note
that once this step is complete, the network can be fully operated as a sdn,
keeping in mind the inherent limitations of the igp, such as destination-based
forwarding only, or the impossibility to express packet rewriting rules. From
then on, operators can then start to progressively upgrade network devices to
sdn-capable ones, transitioning the network to a service-based hybrid sdn.

Note that due to the programming capabilities it enables, incrementally
deploying sdn using Fibbing maximizes the e�ciency of the non-upgraded
routers. This is in stark contrast to classical deployment strategies that treat
the igp routers as uncontrollable devices [Lev+14; Pou+17; Xu+17]

2—Service-based hybrid sdn. Such a network is composed of a mix of
pure igp routers, and sdn-enabled ones. In such a network, Fibbing can then



58 Chapter 3. Flexible intra-domain routing with Fibbing

be used by the sdn controller as an api to control the non-upgraded routers,
improving the overall �exibility of the network. Additionally, carefully se-
lecting the location of the sdn devices is key to maximize their utility. For
example, placing such sdn devices at the edges of the network would enable
a controller to use them to classify the tra�c and then encapsulate it, increas-
ing the expressiveness of the Fibbing controller as this encapsulation would
enable it to side-step the limitations of igps.

3.6.2 Practical considerations

Past discussions about Fibbing with researchers and operators often brought
up a similar set of high-level concerns regarding the practicality of Fibbing,
and its suitability as sdn. We hereafter qualitatively describe key points ad-
dressing such concerns.

Fibbing is a long-term solution. Beside enabling a low-cost incre-
mental deployment, Fibbing enables a �exible and scalable network archi-
tecture (§3.6.1). Indeed, major industry [T K14] and academic actors [Cas+12;
She14] advocate for an architecture where �ne-grained sdn functionality is
deployed at the edge, and solutions like Fibbing in the core. More impor-
tantly, as it combines the best of centralized control (manageability, �exibil-
ity) and distributed routing (resiliency, scalability), we believe that Fibbing
�ts the needs of the network core better than other approaches. Finally, even
in pure-sdn networks, Fibbing can still �ank the sdn control-plane with an
igp in order to provide a fast and scalable failure recovery mechanism [TV14],
providing some backup policy guarantees.

Fibbing keeps operators’ ability to troubleshoot networks intact.
Fibbing leverages “tried and true” protocols, which carries several advantages.
First, the implementations of igps on routers are mature and their eventual
bugs are well-documented by router vendors. Second, as these protocols are
well-known among operators, troubleshooting them �ts their mental model,
easing up the task. Additionally, as Fibbing relies on standard igp messages
(which can always be traced back as created by the controller (§4.1)), it is com-
patible with existing management, monitoring, and debugging tools. More-
over, Fibbing leverages simple igp con�gurations (§3.3.3) (i.e., links and weights),
which are designed to be understood by humans. Finally, the Fibbing con-
troller can be used as an additional source of truth to ease up debugging, for
example to map injected fake nodes to the requirements they implement.

Fibbing simpli�es the control-plane. On one hand, enabling to pro-
gram arbitrary paths on a per-destination basis, Fibbing enables to simplify
the protocol stack used in today’s networks (e.g., replaces rsvp-te). Beside
reducing operational complexity, this also reduces the risk of human errors
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when con�guring devices. On the other hand, predicting the result of a par-
ticular igp message (i.e., fake node) on the routers’ fib is simple. Additionally,
as computationally complex tasks such as path computation, topology main-
tenance and installation of fib entries are o�oaded to the routers, the design
of the Fibbing controller (§4.2) is signi�cantly simpler than for other sdn pro-
tocols (e.g., [onos; Kop+10; Floodlight; Fos+13]).

Fibbing has no impact on security. Fibbing is not an attack on the igp
(as opposed to [Nak+13]). The fake nodes injected by the controller are part of
the igp topology, and should be accepted by routers without causing stability
issues (§4.1). Additionally, igps traditionally support the authentication of their
control-plane message (e.g., using md5-based authentication [rfc2328; Cisb;
Juna]), which can also be supported by the controller.

Fibbing partially supports middleboxes chaining. On its own, Fib-
bing is unable to program paths that loop over themselves, and as such would
not be able to implement chains of middleboxes requiring such loops [Qaz+13;
Fay+14]. Instead, implementing such chains with Fibbing requires some sup-
port from routers to break the loops in sub-paths (e.g., by swapping encap-
sulation, leveraging policy-based routing to match on the input interface in
addition to the destination ip address [Cise; Junb]), which can be provisioned
centrally using bgp Flowspec [rfc5575; Cisf; Junc], or leveraging sdn-enabled
nodes in a service-based hybrid sdn (§3.6.1).

3.7 Related Work

Fibbing contributes to the larger debate opposing fully distributed routing
protocols to sdn protocols. More speci�cally, Fibbing performs a tradeo� be-
tween the centralization of routing decisions and the distribution of route
computation. We can compare Fibbing to three main categories of earlier
work towards achieving a centralized control over the behavior of the net-
work.

Centralized control through routing protocols (re)con�gurations.
As the individual router con�gurations de�ne the overall behavior of a dis-
tributed routing protocol, managing these con�gurations from a centralized
system enables to e�ciently implement global requirements.

In [FT00; FRT02], such a system is used to implement complex tra�c en-
gineering policies in igps by performing a global optimization of link weights
in order to approximate a solution to the Multi-Commodity Flow (mcf) prob-
lem. Comparatively, Fibbing is more general, as beside tra�c engineering,
it also enables to implement any forwarding paths on a per-destination ba-
sis, and this support more use-cases than pure te. Furthermore, as this extra
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�exibility controls the fractional splitting ratios used to perform uneven load-
balancing, this enables Fibbing to implement a (near) optimal solution to the
mcf problem [NKR13; SGD05].

More recently, Propane [Bec+16] provides a high-level language to ex-
press global objectives on the expected tra�c �ows in backbone networks or
datacenters, automatically synthesized to bgp con�gurations. Compared to
Fibbing, Propane su�ers from three limitations: (i) while more expressive, its
compilation process is order of magnitude slower, hurting its ability to react
to online events; (ii) Propane relies on an external protocol (e.g., netconf or,
yang) to actually push these con�guration �les on a per-router basis, causing
a scalability bottleneck on the controller as it needs to con�gure each device
individually; and (iii) Propane produces con�gurations that require operators
to “trust” the compiler as they cannot be understood as-is, impacting their
ability to troubleshoot the network.

Centralized control by leveraging routing protocols messages.
The Routing Control Platform (rcp) [Cae+05] is a logically-centralized plat-
form that uses bgp to install forwarding entries into routers. More precisely,
a controller establishes an ibgp session with all routers in the as, through
which it then receives routes from other ases as well as send routes that will
be the ones preferred by the routers. Similarly, [Ver+07] presents the Intel-
ligent Route Service Control Point (irscp), which improves rcp by enabling
to control a ranking between egresses for each router, at scale. Both of these
approaches require the controller to program the routes on all routers. Fur-
thermore, routers completely rely on the rcp controller to be able to maintain
up-to-date forwarding tables. In contrast, Fibbing can adapt the forwarding
behavior of many routers at once (i.e., using a globally scoped fake node). Fur-
thermore, as Fibbing lets routers compute on their own the content of their
fib, the failure of the controller is comparatively less impactful than in rcp,
as routers always can fallback to the default igp paths.

Another approach to tweak the igp topology is presented in [Car+15],
where sdn switches are placed at speci�c locations in order to partition the
igp topology. As a result, these switches are then able to control the �ooding
procedure of the igp, selectively isolating parts of the network and controlling
route redistribution between the partition. Omitting practical considerations
that would restrict the set of possible locations for those switches, Fibbing
goes beyond this approach as it can change any path in the network (whereas
the internal paths in the partitions created by [Car+15] are never changed).
Finally, we argue that partitioning a network and actively controlling the re-
distribution across partitions poses inherent resiliency challenges, which are
not applicable to Fibbing.
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Centralized control by programming forwarding tables.
The Software-De�ned Networking paradigm revolves around a centralized
controller, directly programming entries in the routers’ forwarding tables,
possibly reacting to the reception of speci�c packets. Several protocols ex-
ists to that end (e.g., Open�ow [McK+08], P4 [Bos+14], I2RS [rfc7921]), with
di�erent set of tradeo�s (e.g., targeting legacy hardware, supporting state-
full processing logic). While more �exible than Fibbing, these protocols suf-
fer from the same set of drawbacks, namely scarifying the scalability and re-
siliency of distributed protocols by putting the sdn controller in charge of
maintaining all fib entries on every router in the network.

Segment Routing (sr) [rfc8402] revisits the source-routing paradigm by
encapsulating packets with an ordered list of nodes that should be crossed
before the packet is delivered to its destination. It relies on a centralized con-
troller to program ingress routers such that they properly classify ingress
tra�c and apply the proper encapsulation header. While both sr and Fibbing
rely on an underlying igp to forward the tra�c, Fibbing lowers its data-plane
overhead by programming paths directly in the control-plane. We argue that
both approaches are complementary, as sr coupled with its Network Frame-
work [Fil+18] perfectly �ts the �ned-grained sdn capabilities at the network
edge presented in (§3.6.2).

Finally, Fibbing takes inspirations from Merlin [Sou+14] to capture oper-
ators’ forwarding requirements. The mechanism satisfying them is, however,
entirely di�erent. We stress that our main contributions are the Fibbing tech-
niques and algorithms, while the language only serves to encode forwarding
dag in a human-friendly way.
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4Fibbing real networks

We now present an implementation of Fibbing in a real igp (ospf), compatible
with Commercial O�-The-Shelf (cots) routers. More precisely, we begin by
specifying how fake nodes and links can be represented (§4.1) in ospf, lever-
aging its protocol speci�cation [rfc2328]. Then, we present the key components
that are required to design and implement a Fibbing controller (§4.2) for ospf.
We con�rm the scalability of the approach through measurements performed
on real routers showing that Fibbing imposes almost no overhead (§4.3). Fi-
nally, we discuss the impact of failures (§4.4), and demonstrate that Fibbing
can perform real-time tra�c engineering in a case study (§4.5).

4.1 Fibbing ospf networks

Open Shortest-Path First (ospf) is a link-state igp explicitly designed to op-
erate in ip networks. Being almost 30 years old, its speci�cations have been
through three major versions [rfc1131; rfc2328; rfc5340] and are completed
by over 50 protocol extensions. Leveraging these speci�cations, we describe
in this section how Fibbing can be implemented in a vanilla ospf network.
More precisely, we begin by introducing the core features that enable ospf to
establish a synchronized view of the network state across all routers (§4.1.1).
Then, we show how Fibbing concepts such as fake nodes and fake links can
be implemented according to the protocol speci�cation (§4.1.2). Finally, we
discuss the limitation of our approach and possible protocol extensions that
would improve ospf’s support for Fibbing (§4.1.3).

Unless speci�ed otherwise, this section focuses on ospfv2 [rfc2328], in-
stead of ospfv3 [rfc5340]. While ospfv3 is the latest version, ospfv2 has the
most mature open-source implementations [Quagga; bird], is widely deployed,
and is still actively developed, i.e., new protocol extensions such as Segment
Routing are developed for both ospfv2 and ospfv3. Furthermore, all proto-
col features used to implement Fibbing in ospfv2 networks are also found in
ospfv3.

63
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4.1.1 Building a shared view of the network with ospf

Two primitives are at the core of ospf to build its link-state database, namely
an adjacency detection mechanism to infer the state of a routers’ links, and
the �ooding procedure to share this state with all other routers, synchronizing
their link-state databases. We now describe both primitives, and then present
key type of information found in a link-state database and how these can be
used to build a view of the network topology.

Adjacency detection. In ospf, routers send hello pdus towards an ip
multicast address over all their links1. This process enables any ospf router
to detect the presence of other ospf routers connected on the same layer-2
domain. If multiple routers are connected over a broadcast domain (e.g., eth-
ernet), then one of them will be elected as Designated Router (dr), which is
the sole router that will �ood status information about that link, reducing
control-plane churn. Beside automatically establishing full adjacencies (over
which the link-state databases can then be synchronized), this mechanism
also provides a failure detection mechanism. Indeed, if a router a stops re-
ceiving hello pdus from one of its neighbor n for an extended amount of
time (e.g., three times the hello-interval), it can then assume either that n has
failed, or that a link between a and n is down.

Flooding procedure. Flooding ensures all routers share the same view
of the network by having each router broadcast its local state over each of its
adjacencies, and also relay the state it learned from one of its neighbors to its
other ones. ospf names such pieces of the global network state “Link State
Advertisements” (lsas). All types of lsas share a common header, visible in
the �rst half of the pdu depicted in Fig. 4.1, whose main �elds are:

� Age. A measure of the time (in seconds) since the lsa was originated.
When this value reaches max-age (usually 3600s), the lsa is then evicted
from the link-state database;

� Type. The type of information carried by the lsa;
� Link id. The portion of the as described by the lsa, its exact semantic

depends on the Type �eld;
� Advertizing router. The ospf router-id of the router that originated

the lsa, i.e., it is not changed when the lsa is �ooded by other routers.
� Sequence number. Successive instances of a lsa sent by the same

router, of the same type, and having the same link id, are given suc-
cessive sequence number. Routers only use the newest version of a lsa
computing the content of their rib.

1In ipv4, 224.0.0.5 is reserved for all ospf routers and 224.0.0.6 for all Designated Routers.
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Figure 4.1: In ospfv2, as-external lsas announce an ipv4 pre�x reachable
through the igp nexthop speci�ed by the Forwarding address �eld.

Whenever a router receives a lsa, it �rst checks in its link-state database
whether it already had the same one (i.e., same advertizing router, type and
link id). If that’s the case, and if the sequence number of the received lsa
is older than the one in its database, it then drops it. Otherwise, this lsa is
either a brand-new one or a newer version, and it is installed in the router’s
link-state database before being �ooded to its neighbors.

The link-state database. The network state is composed of di�erent
sets of information, e.g., the routers present in the topology, the status of
their links and adjacencies, or the pre�xes reachable using the igp. There-
fore, ospf de�nes several types of information that can be �ooded by routers.
To implement Fibbing in ospf networks, we will use three types of lsas:

� Type=1: A Router lsa announces the presence of a given router in the
igp topology. Additionally, it also lists all stub networks directly con-
nected to the router (i.e., layer-2 domains without any other router),
point-to-point adjacencies, and interface connected to a broadcast layer-
2 domain, each of them with a particular cost (i.e., directed link weight).
In Fig. 4.2, a, b, and c each originate one such lsa.

� Type=2: Network lsas list all routers that have established adjacencies
over a broadcast link, as well as the ip pre�x of that link. It is only gen-
erated by the Designated Router of the link. In Fig. 4.2, assuming that
a was elected as dr for the link (a, b), a will then generate a network
lsa containing the pre�x x.y.z.0/p, and listing both a and b as being
connected to that broadcast domain.
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Figure 4.2: Each type of lsa represents a speci�c element of the network.

� Type=5: as-external lsas provide reachability information towards pre-
�xes coming from another protocol (e.g., a default route coming from a
bgp border router). Fig. 4.1 shows the layout of such lsa, which we illus-
trate based on the example shown on the right of Fig. 4.2. ospfv2 follows
classful addressing conventions, hence encode the external pre�x host
bits (i.e., “blue”) in the link id while the actual pre�x length is encoded
as a network mask (e.g., 255.255.0.0 to denote a /16). The forwarding ad-
dress (fa) �eld designates a router towards which tra�c towards the
blue pre�x should be forwarded (i.e., c). When creating a route r from
this lsa, routers will �rst query their ospf rib to identify a route r ′ able
to forward lsa’s fa, then their fib as a fallback. If no such r ′ is found,
then the lsa is ignored. Otherwise, the nexthop of r is set to the nex-
thop of r ′. Finally, the metric �eld (5) denotes the cost of the route. If
the E bit is unset (E=0), this cost is absolute. If instead the E bit is set
(E=1), then the cost of the route is the sum of the igp shortest-path cost
towards the fa and of the metric �eld.

Routers construct an up-to-date view of the network graph in two steps.
First, they add one node for each router lsa. Second, they add one edge per
point-to-point link between routers, and convert network lsas to a full mesh
of edges between the routers they contain. Finally, to derive the content of
their ospf rib, routers then iterate over all lsas and compute the total metric
to reach the pre�x(es) they contain (e.g., the shortest-path cost to reach their
advertizing router for router and network lsas). Then, they apply the ospf de-
cision process. More precisely, if multiple lsas announce the same pre�x, the
router selects its best route by �rst preferring those corresponding to internal
routes (i.e., created from router and network lsas) to those corresponding to
external routes (i.e., as-external lsas, and other types not mentioned here)2,
then �nally selecting those with the smallest metric.

Note that in the network graph computed by ospf routers, links are ospf
adjacencies, i.e., they may in reality map to a path made of multiple layer-2
links and switches. Additionally, as links cost are announced independently
by each router, on a per interface basis, edges are always directed. For clarity

2Strictly-speaking, routers also di�erentiate between the metric types when comparing
as-external lsas, preferring those whose E bit is unset.



4.1. Fibbing ospf networks 67

in the �gures, we represent with undirected edges links whose costs are the
same in both direction (this has always been the case so far except for the
fake shortcut shown in Fig. 3.10b).

4.1.2 Injecting fake nodes and links in OSPF

Implementing an augmented topology in an ospf network, requires to specify
a mapping between concepts speci�c to Fibbing (e.g., fake nodes) and features
supported by the message used by ospf to distribute topology information,
i.e., lsas. This mapping comes with two constraints.

First, to ensure stability of augmented topologies, the lsas injected by
Fibbing must not be considered as an attack or miscon�guration by the ospf
routers. Indeed, trying to impersonate routers to overwrite link-state database
entries will result in the impersonated router “�ghting back” (i.e., sending
newer lsas to overwrite our injected lsas) or potentially even erase its routing
table, turning it into a blackhole [Nak+13]. As a result, the Fibbing controller
must behave as a normal ospf router, hence must possess its own router-id

that will be set as advertizing router in the lsas it injects, and establish at least
one ospf adjacency to connect to the igp.

Second, to ensure that Fibbingworks with current, unmodi�ed, ospf routers,
our controller must only use �elds found in standard lsas, and rely on their
speci�cations (i.e., respect their speci�c semantic, as well as the general ospf
decision process). More importantly, this precludes the use of Opaque-lsas
(or their newer tlv variants [rfc7684]) which are the traditional way to de-
ploy protocol extension. Indeed, these, by de�nition, require ad-hoc support
on the routers and are thus not backward-compatible.

Accounting for the above two constraints, we implement Fibbing in ospf
by leveraging the forwarding address (fa) found in as-external lsas (see §4.1.1).
More precisely, recall that the semantic of that �eld enables a router to an-
nounce a route towards a given pre�x, mapped to a given ip nexthop, with a
total cost depending on its location in the topology if its E bit is set. In other
words, as-external lsas enable to distribute arbitrary routes whose nexthops
are recursively resolved. This type of lsa thus corresponds to the mapping
information (§2) needed to translate a fake node to a real nexthop. We exper-
imentally con�rmed that our use of as-external ospf lsas to inject Fibbing
fake nodes and links in a topology was working using physical Juniper and
Cisco routers. We now describe how to use as-external lsas to implement the
primitives of Fibbing, enabling to deploy augmented topologies in existing
networks.

Implementing globally scoped fake nodes. Let G ′ be an augmented
topology containing a globally scoped fake node fr. Assume that fr is attached
to a real router r, has a total fake path cost of c , announces a pre�x p, and
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has mapping information such that n should be used as real nexthop when r
forwards tra�c towards p. A Fibbing controller can then implement this fake
node using an as-external lsa with the following properties (i) p’s host bits
and pre�x length are encoded as link id and host mask; (ii) the forwarding
address is set to an ip address of n belonging to an interface connected to a
broadcast domain, hence part of a pre�x announced by a network lsa3; and
(iii) the E bit is set to 1, and the metric is then set to c − dist(r, n,G ′).

The controller then originates this lsa, �ooding it through the ospf do-
main to ensure its presence in every routers’ link-state database, i.e., be glob-
ally visible and a�ect all desired ribs (at least the one of r). Upon receiving
this crafted lsa, n will re-�ood it to its neighbors and install it in its link-state
database as it has an advertizing router di�erent from himself. However, when
computing its route towards p, it will then ignore this lsa as resolving up the
forwarding address will not yield a nexthop.

Implementing locally scoped fake nodes. On the wire, we imple-
ment locally scoped fake nodes exactly as the globally scoped ones. Restrict-
ing their use to only the target node is, however, more challenging. To guar-
antee the consistency of link-state databases across routers, ospf forbids from
excluding speci�c lsas from the �ooding process, i.e., over a given adjacency,
all known lsas are either �ooded or none at all are. Consequently, a locally
scoped fake node implemented by a lsa will always be in every router’s link-
state database. Fortunately, despite this limitation, locally scoped fake nodes
can still be implemented.

Recall that an as-external lsa can only be used if its forwarding address
yields a routing table entry. We exploit this in two steps. First, during the
initial re-con�guration of the network to make it Fibbing-compliant (§3.2.2),
we subnet an unused ip pre�x P such that every link connected to a broad-
cast domain has an additional ip pre�x. This enables router interfaces in the
broadcast domain to receive additional addresses from that subnet, which we
call private addresses. In parallel, we also �lter the routes in the ospf rib (i.e.,
using a distribute-list) to deny the installation of any route for P or its sub-
nets in the ospf rib [Cish; June] (§1.1). Second, when injecting a locally scoped
fake node whose goal is to set the nexthop of a router r to n, we then use as
forwarding address an ip address of n in its private subnet over the link (r, n).
On one hand, due to the static route �lter con�gured earlier, no router in the
network will have a route in its ospf rib able to resolve the fa of the newly

3This restriction comes from conditions in the ospf speci�cations determining the valid-
ity of a forwarding address, as well as additional restrictions applied by vendors [Cisg]. This
thus directly prevents from using a router’s loopback address as forwarding address as it will
never be part of a broadcast domain hence included in a network lsa. As such, controlling the
paths followed by tunnels (as presented in §3.5.1) requires to establish them using ip addresses
belonging to physical interfaces.



4.1. Fibbing ospf networks 69

injected lsa. On the other hand, as r is directly connected to n, it will then
have an entry in its fib for the private address, i.e., it has an additional source
of knowledge about that particular subnet of P . Consequently, no router but
r will be able to use the lsa corresponding to the locally scoped fake node,
despite it being present in every link-state database.

For example, assume that we de�ned the private address range dedicated
to Fibbing as 10.0.0.0/24, and that we allocated 10.0.0.0/28 for the link (a, b)
on Fig. 4.2, thus enabling routers a and b to each receive 4 additional ad-
dresses4. Assuming that a’s private addresses belong to 10.0.0.0/29, if a Fib-
bing controller then injects an as-external lsa whose forwarding address is
10.0.0.1, then only b will be able to use it (using its directly connected route)
as: (i) a will ignore it as it is one of its own address; and (ii) c will not have a
route towards it as 10.0.0.0/28 will be �ltered out from ospf, and as c is not
directly connected to the broadcast domain formed by (a, b).

Enabling cross-destination optimizations. The �rst type of cross-
destination optimization (§3.2.4) merges multiple fake nodes into a single one,
announcing all their destinations at once. This is impossible to achieve in
ospf, as there are no ways to insert multiple destination pre�xes in a sin-
gle as-external lsa5. Note that we can nevertheless limit some control-plane
overhead when injecting several lsas by batching up to 40 of them in a single
ospf ls-update message sent to the controller’s neighbor (§4.3.2).

The second type of cross-destination optimization creates fake shortcuts,
i.e., overrides the metric of a link in a given direction. Such shortcut cannot
be implemented by injecting a lsa. Indeed, this would require the Fibbing
controller to impersonate a router to send a crafted router lsa with a modi-
�ed link metric, hence triggering the �ght back mechanism of the imperson-
ated router, thus creating instability in the network. Instead, we argue that
such feature should be implemented by enabling the Fibbing controller to re-
motely recon�gure the interface metric of the target ospf router (e.g., using
netconf [rfc6241]), eventually prompting it to renew its own router lsa with
the updated metric.

4.1.3 Limitations and possible igp extensions solving them

Our approach to implement Fibbing with ospf has two major limitations.

4 (232−28) − 2, as ipv4 requires to reserve the network and broadcast subnet addresses.
5A feature of ospfv2, removed in ospfv3, enables to specify di�erent host mask values,

depending on the tos associated with the route. Regardless of the fact that announcements
would then be scoped by tos values, it does not enable to change the host bits of a pre�x, i.e.,
it would enable to announce routes towards a.b.c.0/24 and a.b.0.0/16 in the same lsa, but
not a.b.c.0/24 and x.y.z.0/24 hence be too restrictive for the cross-destination optimization
algorithm.
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Figure 4.3: This requirement cannot be implement in ospf with a globally
scoped fake node, as a uses it by forwarding tra�c on its shortest-path to b.

1. Pre�x compatibility. The ospf decision process heavily restricts the
set of pre�xes that can be re-routed using Fibbing. More precisely, Fibbing can
only alter paths towards pre�xes that were announced in the igp using as-
external lsas in which the E bit was set. Consequently, this prevents us from
using Fibbing to alter the path towards pre�xes assigned over a link between
two routers (i.e., network lsas), or to stub networks (that were announced in
router lsas).

A work-around consists in con�guring every router such that it redis-
tributes all its directly connected routes in ospf using as-external lsas (i.e.,
redistribute connected <metric>). While this enables Fibbing to control all pre-
�xes announced in ospf using router and network lsas, this comes at the
expense of an increased link-state database size.

2. Globally scoped fake nodes. Due to the semantic of the forwarding
address �eld, globally scoped fake nodes in an augmented topology are trans-
lated to fake destination announcements in ospf. In essence, this merges the
fake node into its associated nexthop. This has two consequences.

First, this imposes to adapt the formulation of the constraints on a fake
node’s cost bounds in the Merger algorithm (§3.3.3). Consider the fake ospf
destination attached to the router b in Fig. 4.3a, which is needed to change
a’s nexthop towards the blue pre�x. To guarantee that a will prefer to use the
fake destination instead of d , the constraint on its upper bound thus needs
to be changed to ub(fa) < dist(a,d,G) − dist(a, b,G). Similarly, the lower
bound constraints inequalities become lb(fa) > lb(fn) −dist(n, b,G), for any
other node n using a fake node fn (note that the constraint now depends on
dist(n, b,G) instead of dist(n, a,G), as the fake destination is attached to b).

Second, the location of these fake destination announcement (i.e., directly
attached to the target nexthop) violates Theorem 1. Indeed, ospf �rst com-
putes paths between routers, and then creates routes for pre�xes by map-
ping them to their advertizing router and using its previously computed nex-
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thop. Consequently, to identify the route for the forwarding address of fa in
Fig. 4.3a, router a will query its ospf rib, and eventually �nd a route towards
router b. However, as it was created by ospf, this route follows the shortest-
path from a to b, i.e., uses c, which violates the requirement as shown on
Fig. 4.3b. More generally, this forwarding requirement is impossible to imple-
ment using globally scoped ospf fake destinations. Note that this issue does
not apply to locally scoped fake destinations. Indeed, as these use forwarding
addresses that are �ltered out of the ospf rib, and resolved using directly con-
nected routes present in the fib, these are thus bound to use speci�c egress
interfaces as nexthop. As such, we overcome the limitations of globally scoped
fake destinations with locally scoped ones when needed.

Extending igps to cleanly support Fibbing. Our implementation of
Fibbing in ospf relies on the presence of forwarding addresses in the proto-
col speci�cations. Unfortunately, other link-state igps, such as is-is [rfc1142],
have no equivalent mechanism. Enabling to use Fibbing in other protocols,
or overcoming the limitations of the current ospf implementation, thus re-
quires to design a protocol extension. Enabling fully-�edged Fibbing would
require two primitives from such extension: (i) creating virtual nodes, able to
announce destination pre�xes at speci�c metrics with speci�c “priority” in
the igp decision process; and (ii) a mechanism to create directed links from
speci�c egress interface of real routers, towards such virtual nodes. Support
for these functions can be added to protocol speci�cations without impact-
ing current functionalities (e.g., using the dedicated extension mechanisms
such as is-is tlvs), and deployed through router software updates. Backward
compatibility with non-upgraded routers is easily achieved as those routers
would: (i) not announce their support for such extension; and (ii) ignore the
unsupported lsas, while still �ooding them throughout the igp. Our place-
ment algorithms can account for them by considering that their nexthops
will never be changed by any fake node.

4.2 Implementing a Fibbing controller

We built a complete prototype controller, that interfaces with the algorithms
implemented and evaluated earlier (§3.4), able to implement forwarding re-
quirements in real ospf networks. The core logic of our controller, as well as
its high-level interfaces are written in about 2200 lines of Python (comments
included). Additionally, we extended Quagga [Quagga] with about 400 lines
of C code, enabling our controller to interact with existing link-state routing
protocols and thus cots routers.

This section �rst presents the general architecture of our prototype (§4.2.1).
Then, we describe how Fibbing can be made resilient against a controller fail-



72 Chapter 4. Fibbing real networks

Requirements
parser

Augmentation
solver

Path manager

Fake node
mapper

Topology
builder

Event manager

ospf interface

In
je
ct

no
de

A
dv
er
ti
ze

ls
a

ls
db

up
da

te
ig
p
gr
ap

h

(a) Our Fibbing controller exposes a high-level
path manager framework to applications.

A

B

C

... ...

v

v1

v2v3

Primary
router-id

Real router
ospf adjacency

Secondary router-id’s

Fi
bb

in
g

co
nt
ro
lle
r

(b) The controller is perceived as a
cluster of routers in the ospf topology

Figure 4.4: Through its ospf adjacency with a router, our Fibbing discovers the
network topology and injects lsas to implement forwarding requirements.

ure by distributing it across multiple replicas (§4.2.2).

4.2.1 Architecture of our Fibbing controller

Our prototype controller is composed of three main components, layered on
top of each other and shown on Fig. 4.4a. As injecting a fake node requires our
controller to participate as a router in the ospf topology, these components
act as interfaces between high-level Fibbing requirements and the underlying
igp. We now describe in more details each of these components.

Path manager. This is akin to the northbound interface of traditional
sdn controllers. The path manager is a Python framework enabling applica-
tions to express forwarding requirements that should be implemented in the
network. More speci�cally, we provide a parser that translates requirements
expressed in the language presented in (§3.1.1) into forwarding dags. These
dags can then be fed as input to an augmentation solver, which executes either
the Merger or the Simple implementation (§3.4) to compute the set of required
fake nodes and links. This set of fake elements can then be compared to those
already injected in the network, leading to requests to the lower layers of the
controller to add or remove particular fake nodes.

This path manager receives the complete igp topology from the lower lay-
ers of the controller, and is noti�ed whenever the network topology changes.
This enables applications leveraging the path manager to de�ne custom reac-
tions to network events. Possible reactions could be to leverage delta-databases
to react to a pre-computed network failure and ensure a fast recovery, to
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change the set of forwarding requirements depending on the network topol-
ogy, or even simply to raise an alarm in the network management system.

Eventmanager. The event manager in our controller is written in Python.
It exposes a json-rpc interface, enabling the path manager to trigger the in-
jection or the removal of a fake node, as well as to receive network topology
changes. Two components are in charge of these tasks.

First, a fake node mapper translates fake nodes and links received from
the path manager to their equivalent ospf lsas. More precisely, it �rst se-
lects the forwarding address that matches both the fake node scope and the
desired nexthop, and it then selects a suitable ospf router-id for the lsas. In-
deed, ospfv2 forbids a router from advertising the same pre�x in multiple as-
external lsas, viewing them as duplicate and ignoring all of them but the most
recent one6. Supporting complex requirements that need multiple fake nodes
(e.g., see the motivational example in Fig. 2.2a) thus requires our controller
to advertize the successive lsas corresponding to these fake nodes, using the
same pre�x but di�erent router-id’s. Finally, the fake node mapper translates
the fake path cost to the desired metric (§4.1.2), and sets the age of the lsa. We
inject a fake node in an underlying topology by using a low age value. Con-
versely, the fake node mapper removes a fake node by re-advertizing it with
an age set to max-age (i.e., 3600), e�ectively �ushing it from every routers’
link-state database (lsdb) (§4.1.1).

The second component of the event manager is the topology builder. This
component watches for changes in the lsdb maintained by the ospf interface
from which it can build an up to date view of the network topology. Indeed,
the �ooding procedure of ospf guarantees that every router will eventually
have the latest version of the lsas originated by all other routers in the net-
work in its lsdb. Analyzing its lsas (§4.1.1) is thus su�cient to derive the cur-
rent network state, and detect changes that should be sent to the path man-
ager. In other words, relying on the igp enables our Fibbing controller to have
built-in topology discovery and failure detection mechanisms.

ospf interface. This component leverages a modi�ed version of Quagga
to establish an ospf adjacency with at least one router in the network. Using
this adjacency, our controller then joins the �ooding domain, receiving and
storing in its lsdb a copy of every lsa.

To support the multiple router-id’s required by the fake node mapper, the
ospf interface exposes the controller to the ospf network as a small cluster
of virtual routers, visible on Fig. 4.4b. To that end, it originates during its ini-
tialization one router lsa per desired router-id. Then, it minimizes the overall
number of adjacencies having to be established with the real routers, by link-

6Note that this is no longer the case in ospfv3, which would then simplify this part of our
controller implementation.
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ing all virtual routers in a full mesh, described by a single network lsa, and
�nally establishing a single adjacency between one of the virtual routers and
the physical neighbor of the controller. This adjacency de�nes the primary
router-id of our controller. Once completed, this bootstrapping phase enables
our controller to inject multiple lsas announcing the same pre�x, using these
provisioned router-id’s. Note that the number of virtual routers can be easily
adjusted at runtime. For example, the controller shown in Fig. 4.4b is able to
inject up to four fake nodes announcing the same destination pre�x. Assum-
ing that this controller receives a forwarding requirement needing �ve fake
nodes to be implemented, it would then �rst allocate a new virtual router (i.e.,
generate a new router lsa and update the network lsa), and then would in-
ject the lsa corresponding to the �fth fake node using the newly provisioned
secondary router-id.

4.2.2 Distributing the controller

The Fibbing controller introduces a single point of failure in a network. To
protect against such failure (e.g., crashes due to software bugs, hardware fail-
ures), our controller can be distributed across multiple nodes.

More precisely, we run multiple copies of our controller software, at dif-
ferent locations in the network. Leveraging the underlying igp, no state needs
to be synchronized between the controller replicas besides the input forward-
ing requirements to achieve an eventually consistent distributed system. In-
deed, all our algorithms are deterministic. As the network topology across all
controller replicas is eventually consistent thanks to the �ooding procedure,
these replicas thus all compute exactly the same augmented topology.

A naive approach would leverage this eventual consistency by having
each replicas always implementing every forwarding requirement. Beside in-
troducing some overhead during the �ooding procedure as more lsas would
be originated and eventually discarded, this would also introduce small in-
stabilities during network convergence as the replicas might become slightly
out-of-sync.

Instead, we limit control-plane overhead using a simple primary-backup
architecture, where only one replica actively sends lsas, coupled with an in-
expensive leader election process. Recall that ospf de�nes a router-id as being
an opaque 32bits identi�er. We statically allocate a range of router-id’s that
can be used as primary router-id of Fibbing controllers, such as each replica
can receive a unique primary router-id, and another range for secondary
router-id’s, shared across replicas. Leveraging this, a replica can then discover
all the other ones by inspecting its network graph, looking for router-id’s
matching the reserved range of primary router-id’s. If multiple replicas are
present at the same time, we de�ne the leader as the one with the small-
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est primary router-id. If the controller elected as leader were to fail, its ospf
neighbors would then eventually detect it and �ood the information in the
network. This would result in every other replicas learning about the fail-
ure, eventually electing a new leader which would resume implementing the
forwarding requirements.

4.3 Fibbing ospf scales

To implement its requirements, a Fibbing controller injects crafted lsas in
the ospf network. As complex requirements may require a large number of
such lsas, this section evaluates two possible bottlenecks that would hinder
Fibbing’s scalability. First, as these lsas increase the size of every routers’
lsdb, we measure (§4.3.1) on real routers the cpu and memory usage overhead
induced by Fibbing, and its impact on ospf convergence speed. Second, we
evaluate the performance of our controller (§4.3.2) when it needs to inject large
numbers of lsas (e.g., when reacting to failures).

Our experiments demonstrate that Fibbing scales, as it has a negligible
impact on router’s performance, and as our controller can trigger large topol-
ogy updates in milliseconds.

4.3.1 Fibbing has no practical overhead on real routers.

We performed our measurements on two di�erent routers: (i) a recent Cisco
ASR9K running IOS XR v5.2.2, equipped with 12gb of dram assigned to the
routing engine and Typhoon-based linecards; and (ii) a 7 years old (at the
time) Juniper M120 running JunOS v9.2, equipped with 2gb of dram. Being
aggregation routers, these devices are representative of edge devices com-
monly found in service provider networks. Both routers exhibited similar
performance trends, and we report hereafter the ones collected on the Cisco
device.

Fibbing has close to no cpu or memory overhead on routers. In a
�rst set of experiments, we measured the resource usage on a router caused
by an increasing number of fake nodes, announcing di�erent destinations.
Table 4.1 shows the memory usage of fake nodes implemented as ospf as-
external lsas. Two distinct memory structure are impacted by the presence
of fake nodes: (i) the rib, has it has to register the new routes created by the
lsas; and (ii) the memory consumed by the ospf process itself, as it has to
keep every lsa in its lsdb. Even with a huge number of fake nodes (100 000),
the total overhead on both processes was only 154mb—a small fraction of the
total memory available. Additionally, the rib size increase only happened as
a result of our experimental setting, as the router started with an empty rib,
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Fake node count rib size (mb) ospf memory (mb)

1 000 0.09 0.56
5 000 1.58 5.19

10 000 3.56 10.96
50 000 19.67 56.37

100 000 39.78 113.17

Table 4.1: Huge augmented topologies have a very limited memory overhead.

Fake node count fib update duration (s) Average time/entry (µs)

1 000 0.89 886.00
5 000 4.46 891.40

10 000 8.96 894.50
50 000 44.74 894.78

100 000 89.50 894.98

Table 4.2: Programming fib entries in a router with Fibbing is fast, sub 1ms.

i.e., Fibbing actually added routes towards previously unknown pre�xes. In a
scenario where Fibbing is used to re-route existing pre�xes over new paths,
the size of the rib would stay constant as the routes created by Fibbing would
replace the previous ones.

In parallel, we sampled the cpu utilization7 of the router every �ve sec-
onds immediately after we started injecting fake nodes. The utilization was
systematically low, at most 4%. This covers the processing of the received
lsas, fib updates, and re-�ooding process.

Fibbing quickly programs forwarding entries. The second set of ex-
periments measured the time required by a router to update its fib in reaction
to received lsas, i.e., measure the speed at which their fib can be programmed
by the Fibbing controller. Table 4.2 shows the total time taken by the router
to update its fib, depending on the number of injected number of fake nodes,
each announcing di�erent destinations. In each experiment, we measured the
total installation time by recording the timestamps at which the �rst and last
fib entries where updated. On average, the time to process and install one
fib entry was constant (around 900µs), independently of the total number of
updated entries. This is several orders of magnitude better than many most
OpenFlow switches [Jin+14; Rot+12]. As the installation of fib entries is dis-

7As reported by the router operating system, i.e., as a usage percentage covering the last
minute.
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tributed, naturally parallelized across all routers, Fibbing is thus able to pro-
gram 1 000 of network-wide fib entries within a second.

Fibbing has no impact on ospf convergence time. Finally, our last
experiments measured the impact of Fibbing (i.e., the presence of additional
as-external lsas) on the convergence time of routers. To that end, we mea-
sured the total fib update time when failing a link, causing the router to lose
of all its routes and thus to recompute an alternate nexthop for all of them.
By comparing the measured time when the alternate nexthop was due to lsas
injected by Fibbing, to the one when Fibbing was not in use, we can then eval-
uate the total overhead of Fibbing when computing a complete rib, i.e., com-
puting the shortest-paths towards every pre�x. As in previous experiments,
we repeated our measurements for a growing number of destinations (from
100 to 100 000). In every experiment, the presence of lsas injected by Fibbing
did not have any visible impact. The total convergence times with or without
Fibbing were systematically within 4ms, with the router being even faster to
converge in the presence of Fibbing in some cases.

This result can easily be explained as ospf operates a clear distinction
between the inter-router paths, and the actual routes in a network. As such,
routers derives the content of their rib in two steps: (i) they �rst compute
the shortest-paths between routers; and (ii) they walk through every pre-
�x announcement contained in their lsdb, applying the ospf decision pro-
cess (§4.1.1) to identify the preferred one and creating the corresponding routes.
Consequently, while Fibbing might slightly increase the second phase of this
computation, the total duration is still dominated by the shortest-path com-
putation8.

4.3.2 Our controller e�ciently injects large topologies

To e�ciently implement large augmented topologies, our Fibbing controller
has to be able to inject large numbers of lsas in a short amount of time.

To achieve this, our controller minimizes the per-lsa transmission over-
head to the minimum. Indeed, lsas are carried between routers in lsupdate
messages, themselves included as payloads of ip packets. As such message
can contain up to 40 as-external lsas at once, our controller packs successive
lsas whenever possible. Additionally, ospf ensures the reliability of its �ood-
ing procedure by requiring neighbors to send acknowledgments for every
received lsa. Batching together lsas thus also limits the number of packets
containing such acknowledgments that are received and must be processed
by our controller.

8Recall that computing the shortest-path between two nodes using the Dijkstra algorithm
has a time complexity in O(e + nloд(n)), in a network with n nodes and e edges.
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Figure 4.5: Our controller programs large topologies in milliseconds.

Fig. 4.5 shows the results of experiments where we recorded the time
taken by our controller to inject up to 10 000 lsas through an ospf adjacency
with a Cisco C7018 router. More precisely, the plot shows the time di�erence
between the timestamp at which a request to inject lsas was received by the
fake node mapper, coming from the path manager of the controller (§4.2.1),
and the timestamp at which the last lsupdate message was sent, implement-
ing the request. We see that our controller was able to inject up to 10 000 lsas
(hence batched in 250 lsupdate messages) in less than 30 ms. Note that we
never observed lsa retransmissions in our experiments, indicating that the
router had no issue to cope with the sending rate of our lsas.

4.4 Dealing with failures

Withstanding failures is critical for any network architecture. This section
analyzes the impact of using Fibbing when facing di�erent kinds of failures.
More speci�cally, we distinguish between failures a�ecting the network itself
(i.e., routers and links) from those a�ecting the controller. We �rst describe
the reactions of Fibbing to non-partitioning failures (§4.4.1), as those are by
far the most common failure cases [Mar+08], then discuss how failures in-
ducing network partitions a�ect the forwarding requirements implemented
by the controller (§4.4.2). Finally, we conclude by an experiment (§4.4.3) which
con�rms the previous claims, by demonstrating that Fibbing is resilient to
failures and recovers from them gracefully.
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4.4.1 Fibbing quickly reacts to non-partitioning failures

Non-partitioning network failures impact tra�c �ows in three di�erent ways.
First, some �ows will be una�ected by the failures as their pre-failure

forwarding paths do not cross any failed network element. Note that this does
not preclude them from experiencing some service degradation as some other
�ows could be re-routed over their links, potentially congesting them.

Second, �ows for which no Fibbing requirements have been speci�ed rely
on the igp to establish a new path, without any action from the Fibbing con-
troller. Tuned properly, igps have been showed to react extremely quickly
to network failures, achieving sub-second convergence even in large net-
works [Fra+05], and leveraging advanced features commonly supported by
current routers such as Loop-Free-Alternates (lfa) [rfc6571] and ip fast-re-
route techniques [RI07; rfc5714].

The remaining �ows have pre-failures paths controlled by Fibbing, and
now crossing failed network elements. This requires the Fibbing controller
to react as soon as it detects the failures, both to remove possible blackholes
or loops due to previously injected lies [VVR14], and to avoid requirement
violations due to the new igp paths. Theoretically, the total failure recovery
time is equal to the sum of three terms: (i) the time taken by the controller
to detect the failure; (ii) its reaction time; and (iii) the time taken by the igp
to converge once the controller has injected new lsas implementing its reac-
tion. The time to detect the failure is bounded by the IGP convergence time,
as �ooding is faster than re-convergence. Our earlier measurements showed
that the controller reaction time could be extremely small using the Simple
algorithm (§3.4), and that the injection time was negligible. As such, the total
recovery time for �ows controlled by Fibbing is twice the IGP convergence
time, thus below 2 seconds [Fra+05]. Additionally, as routers typically delay
their shortest-path recomputation by a few tends of milliseconds when re-
ceiving new lsas9, our controller could in similar cases injects its reaction
lsas before the beginning of the �rst igp convergence, further reducing the
recovery time.

Controller failures lead to two di�erent cases. If all controller replicas have
failed, the consequence to the �ows controlled by Fibbing are the same as if
the network was experiencing a partition separating the controllers from the
rest of the network, and are covered in the next section (§4.4.2). Otherwise, at
least one or more replica is still running. We then distinguish two cases. Either
the failed controllers were backup replicas, in which case, �ows controlled by
Fibbing do not experience any disruption. Or the failed controllers include the
primary one, in which case the leader election procedure (§4.2.2) guarantees

9This re�ects the fact that single topology changes usually results in multiple lsas being
sent, e.g., a failed link causes at least two routers to report it.
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that a new controller will eventually take over. Note that this leader election
might cause some Fibbing lsas to expire, violating the requirements they were
implementing during a short time window. We argue that the short election
duration, i.e., the time to detect the controller failure and the �ooding delay,
makes this unlikely at best and constrains the duration of such disruptions to
twice the igp convergence time at worst (< 2s).

4.4.2 Fibbing supports both fail-open and fail-close semantics

While very unlikely, catastrophic events such as the simultaneous failure of
all controller replicas or a network partition isolating some routers from all
controllers may still happen.

Unlike pure sdn solutions that leave the network uncontrolled in those
cases, potentially turning it into a giant blackhole, Fibbing instead delegates
by default the control to the underlying igp. Indeed, recall that each lsa con-
tains an age �eld (§4.1.1), set to be incremented every second by routers until it
reaches the max-age value, causing it to expire and be ignored when computing
the rib. When a network partition occurs, lsas injected by the Fibbing con-
troller will then eventually expire and let the igp in the partition restore the
connectivity on its own, if possible. The Fibbing controller explicitly controls
this �eld, and thus controls the speed at which the tra�c will be handed back
to the igp. Faster hand-overs (high age values) come at the cost of additional
control-plane overhead as the lsas have to be refreshed more often.

Leveraging this, Fibbing implements in the default case a fail-open failure
semantic, best suited to non-critical requirements such as tra�c engineering.
Under this failure model, the corresponding destination pre�xes are part as
usual of the original igp topology, and connectivity is restored by the igp after
the con�gured delay. For more stringent requirements, such as security ones
(e.g., �rewall traversal), Fibbing can instead implement a fail-close semantic.
In that case, the corresponding destination pre�xes are not part of the original
igp topology, but introduced by the lsas injected by the Fibbing controller.
When a partition occurs, these lsas will eventually disappear, blackholing
the associated pre�xes.

4.4.3 Our Fibbing controller gracefully handles failures

To demonstrate the failure resiliency of our controller, we emulated in gns-
3 [gns3] the network shown in Fig. 4.6a, using images of Cisco IOS 12.4.
In this network, two Fibbing controller replicas Ca and Cb are connected to
routers a and b. Initially, the replica elected as leader is Ca . We connect two
iperf [iperf] sources to a, and the corresponding sinks behind d. All links
are con�gured with a maximal rate of 1 mb/s. Finally, we con�gure our con-
troller replicas such that: (i) �ow 2 has a fail-close failure semantic, and has
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Figure 4.6: Fibbing successfully implemented fail-close and fail-open failure
semantics, and gracefully recovered upon the restoration of the connectivity.
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Figure 4.7: Measured throughput variations during multiple links failures and
restorations

to cross link (c, d); and (ii) �ow 1 has a fail-open failure semantic, and should
preferably reach d via a, in order to maximize the throughput of both �ows.
Note that due to the fail-close failure semantic, the only lsa mentioning �ow
2 is the one implementing fc2. We then con�gured a static route on d to for-
ward the destination pre�x of �ow 2 to the connected iperf sink, without
redistributing it in the igp.

Starting from a state in which both replicas and all links are up, we suc-
cessively failed in this experiment (i) Ca at time t = 15; (ii) the link (a, b) at
time t = 35s; ; and (iii) link (b, d) at t = 60. Finally, we re-establish both failed
links, one at the time (at t = 110 and t = 145).

Fig. 4.7 shows the evolution of the reported iperf throughput during the
experiment. In this plot, we see that the failure of the controller replica elected
as leader (Ca ) (Fig. 4.6b) has no impact on the forwarded �ows. Indeed, as a
quickly detects that Ca is unreachable and �oods this information, Cb then
detects the failure of its leader. Consequently, Cb starts refreshing the lsas
originally injected by Ca , preventing any disruption. When (a, b) fails, Cb
then needs to remove fc1 as it is creating a forwarding loop between a and c
(Fig. 4.6c), hence blackholing the tra�c of �ow 2 at t = 35s in Fig. 4.7. The
time to detect the failure and remove fc1 was approximately 1s , causing both
�ows to be routed along (c, d) at t = 36s (Fig. 4.6d). Note that this time can
be lowered by using fast failure detection mechanisms (e.g., bfd [rfc5880]),
disabled in this experiment. The failure of (b, d) results in a network parti-
tion (Fig. 4.6e) preventingCb from controlling routers a, c and d. After about
5s (t = 65s), the lsa injected to enable routers to forward �ow 2 expires,
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blackholing it as required by the fail-close failure semantic (Fig. 4.6f). In con-
trast, as �ow 1 is con�gured with a fail-open semantic, the igp has su�cient
knowledge to forward it without the Fibbing controller. Restoring (b, d) at
t = 110s enables Cb to re-take control of the network, hence it re-inject fc2
to enable routers to forward �ow 2 (Fig. 4.6d). Finally, when (a, b) eventually
comes back at t = 145s, Cb re-optimizes the distribution of both �ows over
the available paths (Fig. 4.6b).

4.5 Fibbing enables real-time tra�c engineering

We conclude this chapter by demonstrating a practical application of Fibbing,
where we use our controller to dynamically react to unexpected tra�c surges.

Bandwidth-intensive applications (e.g., video streaming) impose
hard-constraints on the performance of networks (e.g., on available band-
width, on queue sizes, and/or on loss rates) to ensure a good quality of experi-
ence for their users. To guarantee good network performance, operators typ-
ically optimize their network using tra�c engineering techniques [Wan+08]
(te). Traditionally, these te schemes pre-compute a network con�guration
for a predictable load (e.g., using tra�c matrices). Unfortunately, this is inef-
fective in the events of �ash crowds [Ari+03]. For example, a sudden surge of
tra�c due to content shared over social networks could induce congestion,
leading to service outages. Operators can thus either vastly over-provision
their networks, hindering their pro�tability, or be at risk of service disrup-
tion.

Consider the network shown on Fig. 4.8a. In this network, two video
servers (s1 and s2) are hosting content seldom accessed by clients located be-
hind router d. As a result of a te optimization, the operator of this network
set the links weights in the network to 1, except for links (x, d), (c, d), and
(z, d). Such a network would su�er from two ine�ciencies in the events of
a �ash crowd generating tra�c from the servers to d: (i) many links would
never be used; and (ii) all �ows would systematically traverse the same path,
competing for bandwidth

Fibbing provides better tools to react to �ash crowds. Indeed, as it enables
to program paths, on a per-destination basis, within milliseconds, it is thus
able to react in near real-time to tra�c demand �uctuations. We demonstrated
this by emulating the network from Fig. 4.8a. In this network, we connected
a Fibbing controller to y. We developed an application running on top of the
controller that monitors link loads in the network using snmp, and is also noti-
�ed by the video servers when they start or stop streaming content to a client.
As it receives the up-to-date igp topology from the controller, our application
can then track the tra�c demands, compute the overall network load, and op-
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timize it [NKR13] if some link excess a con�gured threshold (35 mb/s in our
experiment, with links con�gured with a maximal rate of 40 mb/s). Then, we
simulated a �ash crowd by progressively adding clients connected behind d
and downloading videos from s1 and s2, and recorded the tra�c crossing the
three links connected to d. Fig. 4.9 plots the measured tra�c volumes during
our experiment.

Originally (t = 1s), a single client connects to s2 and downloads a video
(Fig. 4.8a. At t = 11s, we started to add 29 more clients requesting videos from
s2. Eventually, these clients caused (c, d) to exceed the 35 mb/s threshold. In
reaction, the Fibbing controller application started to load-balance at t = 20s
the generated tra�c over two paths (Fig. 4.8b). At t = 33s, we then started 30
more clients con�gured to request videos to s1, causing �rst (x, d) then (c, d)
to exceed 35 mb/s. To minimize the maximal link load, our controller then re-
acted at t = 38s (Fig. 4.8c) and introduced uneven load-balancing on a. This
split 2/3 of tra�c from s1 to d over (a, y) and the remaining 1/3 over (a, b).
During this experiment, all clients experienced smooth video playbacks, as
Fibbing temporally tripled the available bandwidth between d and the video
servers. We performed the same experiment without Fibbing which, as ex-
pected, saw all the clients experiencing playback stutters, as (b, c) became
congested after 20s.
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5Summary

Centralizing routing decisions meets the �exibility needs of network opera-
tors, but often sacri�ces the robustness and scalability of distributed proto-
cols. In this part, we presented Fibbing, an architecture that achieves both �ex-
ibility and robustness through central control over distributed routing. Fib-
bing is expressive, and enables operators to easily implement tra�c engineer-
ing schemes, on-demand load-balancing, or provision backup routes, with ad-
vanced failure semantics. Fibbing comes with algorithms that automatically
translate high-level forwarding objectives to low-level primitive constructs
exposed to routers. We showed that we could achieve this at scale, enabling
Fibbing to be used in large networks. Fibbing works with any unmodi�ed
commercial router supporting ospf, and has little performance overhead.

Both our implementation of the Fibbing algorithms and of the Fibbing
controller have been released publicly, under an open-source license1. These
have been successfully re-used and extended by students and researchers
alike, con�rming their maturity [CRS16; Zan+18; Arr16; Mol16]

Fibbing opens up several research perspectives. First, as Fibbing com-
bines centralized routing decisions with distributed route computation, new
research could investigate alternate tradeo�s (for example, would there be
any bene�ts in partially distributing the Fibbing requirements?). A second
direction would be to explore how Fibbing could bene�t from (or bene�t to)
newer, actively developed protocols, e.g., Segment Routing [rfc8402], Flexi-
ble igp algorithms [Pse+18], or Multiple Topology Routing (mtr) [rfc4915],
or from alternate routing platforms such as OpenR [openr]. Finally, a third
thread of research would be to explore how Fibbing could be integrated with
monitoring infrastructures, enabling self-driven networks.

1Available at https://github.com/fibbing.
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Part III

Enabling �ned-grained
network monitoring





6Deterministic tra�c
sampling in transit networks

In this chapter, we present a monitoring framework, Stroboscope, that com-
bines the visibility of tra�c mirroring with the scalability of tra�c sampling.
We �rst motivate (§6.1) why existing monitoring techniques are unable to pro-
vide �ned-grained measurements in isp networks. Then, we present a high-
level overview (§6.2) of our framework, highlighting the key steps and chal-
lenges of our approach. Next, we formulate practical algorithms to: (i) adapt
monitoring queries depending on the network state as well as estimate un-
known tra�c demands in real time (§6.3); (ii) compute optimally placed mir-
roring rules (§6.4); and (iii) schedule mirroring actions to adhere to a given
budget (§6.5). Afterwards, we present a full implementation (§6.6) of Strobo-
scope, detailling di�erent techniques to collect tra�c slices. To demonstrate
its scalability and practicality, we evaluate our framework using through bench-
marks, simulations, and tests on Cisco routers (§6.7). We then conclude by
showing practical examples using Stroboscope to collect �ne-grained mea-
surements (§6.8). Finally, we compare Stroboscope to alternative monitoring
frameworks (§6.9).

6.1 Motivation

While essential to e�ciently operate a network, acquiring an accurate and
�ne-grained visibility over the tra�c is challenging in isp networks. First,
as they do not control the end-hosts, they depend on in-network solutions
(e.g., middbleboxes, or directly on routers). Second, due to the available mon-
itoring tools (e.g., NetFlow [rfc3954], sFlow [rfc3176]) and the tra�c volume
they carry, operators rely on packet sampling. By design, sampling provides
no guarantee on which tra�c �ows will be sampled, by which router and at
what time, as only few packets are randomly sampled (e.g., 1 out of 1024). Ex-
cept for few heavy-hitters [Zha+04], even minutes-long collections of random
samples typically provide coarse-grained and inaccurate bandwidth estima-
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tions for the large majority of the pre�xes. Moreover, the likelihood of ran-
domly sampling the same set of packets at di�erent places as they traverse the
network is extremely low. As such, analyzes consisting of measurements from
di�erent routers are inherently limited—e.g., comparing measurement times-
tamps estimate latencies is unreliable at best, estimating forwarding paths by
checking which routers saw the same �ow 5-tuples might hide seldom used
paths or routing oscillations. Consequently, reasoning on any network-wide
forwarding behavior using random sampling is impossible. As such, these
techniques are only used to provide bandwidth estimates, which causes isp
networks to su�er from an extremely poor visibility.

We experimentally con�rmed these limitations by analyzing NetFlow data
collected by hundreds of routers in a Tier-1 isp. We looked at 10 minutes-long
collection windows, and counted the number of NetFlow records associated to
every pre�x from the entire bgp table in such windows. We observed that the
vast majority of pre�xes (65%) have no record at all (i.e., are “invisible” from
NetFlow’s point of view)1. 15% of the pre�xes have only 2 NetFlow record in
those 10 mins, and only 10% of all pre�xes have more than 30 records. Worse,
75% of these observed �ows were only reported by a single router, making
it impossible to reliably track �ows network-wide, even for the largest heavy
hitters.

isp operators are thus incapable of answering practical questions such as:

� “What is the ingress router for a given packet seen at a speci�c node?”

� “Which paths do the tra�c follow?”

� “Is the network-wide latency acceptable?”

� “Is tra�c load-balanced as expected?”

Answering these questions using a combination of control-plane mea-
surements (e.g., retrieving all routing tables) and active measurements (i.e.,
probing) is insu�cient for at least two reasons. First, control-plane measure-
ments may not re�ect what is happening on the data-plane (e.g., software
bug, degraded optical link causing framing errors and packet losses, or par-
tial failure of a link bundle). Second, guaranteeing that active measurements
are representative of the performance experienced by real user tra�c is chal-
lenging in the presence of stateful middleboxes (e.g., �rewall, tra�c shapers)
and Di�Serv [rfc2474] as it requires generating tra�c closely mimicking the
user one.

1This is expected for two reasons: (i) most of those pre�xes were likely to not have any
tra�c at all transiting through the network; and (ii) the few that did have tra�c were small
enough to not be sampled as the routers have a sampling rate of 1 packet out of every 1024.
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Stroboscope. This chapter presents Stroboscope, a scalable monitor-
ing system that complements existing tools like NetFlow, by enabling �ne-
grained monitoring of any tra�c �ow. Stroboscope exploits the possibility
to extract small tra�c samples (i.e., tra�c slices) programmatically, by acti-
vating and deactivating tra�c mirroring for any destination pre�x, up to a
single ip address, network-wide, and within milliseconds. Our tests con�rm
that this possibility is available today, on cots routers, making Stroboscope
immediately deployable.

By coordinating packet mirroring across routers, Stroboscope implements
deterministic packet sampling: it collects copies of the same packets from mul-
tiple locations, during a given time window. This enables Stroboscope to fol-
low such packets as they cross the network, hence to precisely measure net-
work behaviors such as forwarding paths, one-way delays and load-balancing
ratios, as experienced by the actual user packets. Tra�c slices with no packets
are also informative. Indeed, as these signal the absence of tra�c, they enable
Stroboscope to derive additional forwarding properties such as packet losses
or isolation across regions.

6.2 Stroboscope

This section presents a description of Stroboscope, highlighting the di�erent
components of our monitoring framework. As visible on Fig. 6.1, Stroboscope
layers two sets of building blocks. First, a compilation layer translates moni-
toring queries (§6.2.1) given by the operator into a schedule (§6.2.2) of low level
mirroring actions. Beside providing accuracy guarantees on the measure-
ments collected by Stroboscope, this compilation also ensures that the over-
head of Stroboscope (e.g.,, bandwidth usage) falls within an operator-de�ned
monitoring budget. Second, a runtime (§6.2.3) layer executes the schedule com-
puted by the compilation process. As it starts collecting measurements, Stro-
boscope can then answer the operator’s queries. Additionally, this runtime
layer ensures that Stroboscope’s guarantees are preserved even when facing
unexpected events (e.g.,, routing changes, or �ash crowds).

We now intuitively illustrate all components of the Stroboscope frame-
work on a running example, shown on Fig. 6.2. More precisely, we consider a
network operator who suddenly receives reports from some of its customers
that a pre�x (1.2.3.0/24) cannot be reached through its infrastructure. To trou-
bleshoot these reports, the operator wants to use Stroboscope to: (i) check
that the corresponding tra�c �ows follow the expected paths; and (ii) mea-
sure key performance indicators, such as packet loss rates and path latencies.
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6.2.1 Expressing monitoring queries

Stroboscope de�nes a small, sql-like, language that lets operators specify
their monitoring goals through a succession of high-level queries.

((mirror | confine) <pre f ixes> on <paths> )+
using <Gbps> during <sec> every <sec>

Monitoring queries are de�ned on a per pre�x basis. For each set of ip
pre�xes (up to a single address), a query then speci�es whether tra�c should
be mirrored (mirror) or con�ned (confine). Additionally, the operator also
speci�es where this tra�c should be mirrored (or the region in which it should
be con�ned) by specifying a set of nodes using the on operator. For conve-
nience, the→ operator can be used to indicate that this set of nodes should
be dynamically computed according to the paths used by the routing proto-
cols (e.g., a→ b denotes all paths from a to b). mirror and confine queries
di�er in when they mirror tra�c: the former continuously mirrors tra�c as
it �ows across the speci�ed nodes, while the latter only mirrors tra�c that
leaves a speci�ed region. Combined with the use of the→ operator, these
two mirroring modes let operators verify that the behavior of the data-plane
matches the one reported by the control-plane, e.g., a mirror query detect-
ing that a tra�c �ow is forwarded on paths other that those computed by
the control-plane likely indicates either that a re-convergence is happening
or that some fib corruption is happening.

Finally, operators specify a monitoring budget as a set of constraints on:
(i) the maximum rate of mirrored tra�c (using) allowed; (ii) the duration
of any measurement campaign (during); and (iii) the frequency at which a
measurements campaign should be repeated (every).

Coming back to our example, the operator can instruct Stroboscope to
mirror tra�c along all igp paths between a and d using a mirror and a→
construct (see Fig. 6.2b). Additionally, a confine construct is speci�ed to
verify that these paths are the only ones carrying tra�c towards 1.2.3.0/24

(i.e., that the mirror queries see the complete tra�c towards that pre�x).
While simple, our language supports several practical use cases. Among

others, mirror queries enable network-wide path tracing, i.e., following a
given packet as it traverses a sequence of nodes. Packet copies can then be
analyzed by monitoring applications to estimate data-plane performance, like
packet loss or path latency, or to inspect packet payloads. confine queries
are especially useful to detect unwanted forwarding behavior, (e.g., tra�c
shifts, security policies) at runtime, and to complement information from
mirror queries (e.g., on paths not taken by given tra�c �ows). Finally, its
simplicity enables our language to be easily integrated with automated net-
work monitoring solutions, which generate new queries dynamically on be-
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half of the operator to perform more complex analyzes (e.g., monitoring a
large ip pre�x by iterating through its sub-pre�xes).

6.2.2 A three-staged compilation process

Given a high-level query, determining which �ows to mirror, where and when
is both hard and potentially dangerous. Aggressive mirroring strategies can
lead to signi�cant congestion (e.g.,, if many routers mirror tra�c for pop-
ular destinations) and inaccurate results (e.g.,, if congestion a�ects the mir-
rored tra�c). Conversely, conservative strategies can lead to poor coverage
and slow answers.

Stroboscope tackles those challenges on behalf of operators. From high-
level queries, Stroboscope derives measurement campaigns, i.e., schedules of
mirroring rule (de-)activations that: (i) provide strong guarantees on budget
compliance; (ii) maximize accuracy by activating mirroring rules as often as
possible; (iii) minimize the number of mirroring locations to both lower the
mirrored tra�c volume and decrease the control-plane overhead. Stroboscope
derives these measurement campaigns in three successive steps, each address-
ing a di�erent aspect of the problem.

1. What? Resolving high-level queries (§6.3). Stroboscope begins by
translating all input queries into concrete ones, de�ned on actual paths and
�ows. To this end, it collects routing (e.g., igp and bgp) feeds, enabling it to
keep an up-to-date view of the forwarding paths de�ned by the control-plane,
as well as the location of pre�x announcements (e.g., bgp border router). In
parallel, it collects NetFlow data when available and maintains a measurement
database, storing results from past measurement campaigns. Based on this
information, Stroboscope then estimates per-pre�x tra�c volumes, which it
passes along the concrete queries to the next compilation step.

In our example, Stroboscope estimates the tra�c demand for 1.2.3.0/24 to
be 5 Mbps. Resolving [a→ d] then yields two paths, [a b c d] and [a l c d],
causing (Q2) to be split into two subqueries (Q2a, Q2b), one for each actual
path. Note that the con�ne query is not split due to its semantic (i.e., it does
not track a packet along speci�c paths).

2. Where? Optimizing mirroring locations (§6.4). Second, Strobo-
scope selects mirroring locations to answer the di�erent queries. While a
strawman approach would place such rules on every node speci�ed in the
input queries, this would cause the mirrored tra�c to consume large amount
of tra�c, likely exceeding the monitoring budget. Instead, Stroboscope mini-
mizes the total number of mirroring rules by optimizing their locations using
two provably correct algorithms. Doing so, it minimizes the mirrored tra�c
and the control-plane overhead to deploy them.
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The �rst algorithm (§6.4.1) optimizes the placement of mirror queries.
The key insight is to leverage properties of the complete network topology
to prune mirroring rules. For instance, for Q2a in Fig. 6.2b, no mirroring rule
is required on router c, as c is the only 1-hop path between b and d. Conse-
quently, by comparing the ttl of packets mirrored at b and d, we can infer
whether the tra�c traversed c without actually mirroring there.

The second algorithm (§6.4.2) place mirroring rules for confine queries.
The key insight is to place heavily rate-limited mirroring rules all around the
region speci�ed in the query. This way, confine queries do not mirror any
tra�c by default, and only few packets per location are mirrored when the
queries are violated. Our algorithm minimizes the number of surrounding
rules by placing as close as possible to the egress routers of the monitored
pre�x. For example in Fig. 6.2b, the algorithm places only one mirroring rule
on P for (Q1) to detect possible packets crossing [a b] and leaving the network
at E1 or E2.

3. When? Scheduling mirroring actions (§6.5). Finally, Stroboscope
assembles a measurement campaign by scheduling mirroring actions (i.e.,
mirroring rule (de-)activation) over time. This schedule spreads these actions
according to the estimated tra�c volumes to meet the budget, while at the
same time maximizes the monitoring accuracy by activating mirroring rules
as much as possible. Computing this is a variant of the bin-packing prob-
lem, which is NP-hard. To scale, Stroboscope encompasses fast approxima-
tion heuristics (O(n logn)where n is the number of queries) whose results are
close to optimal.

In our example, Q2a and Q2b in Fig. 6.2 cannot be scheduled at the same
time given the speci�ed budget of 15 Mbps. Indeed, with 4 di�erent mirroring
rules, they would require a total of 20 Mbps. Stroboscope therefore schedules
Q2a and Q2b each for half of the timeslots. In addition, as Q1 does not mirror
any tra�c unless a violation is detected, Stroboscope schedules Q1 for all the
timeslots, so that any violation to Q1 can be detected.

This compilation process results in a measurement campaign which
achieves deterministic sampling, i.e., packets for one speci�c query are mir-
rored from well-de�ned locations for a given amount of time, while adhering
to the monitoring budget.

6.2.3 Carrying out measurement campaigns

Stroboscope’s runtime (§6.6) executes the measurement campaigns,
(de-)activating mirroring rules according to the previously computed sched-
ule. As it receives mirrored packets, Stroboscope can then dynamically check
that its accuracy and budget guarantees are achieved.
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Meeting the monitoring budget requirements inherently depends on two
assumptions. First, Stroboscope checks the correctness of its demand estima-
tions by monitoring the total tra�c being mirrored and stops the measure-
ment campaign when detecting a budget violation. Such a premature termi-
nation is enforced within one schedule timeslot (a few milliseconds). Second,
as confine queries are not expected to mirror tra�c, and only require one
packet when violated, they are rate-limited. Similarly, to meet its accuracy
guarantees, Stroboscope monitors the routing protocols feeds and �ags mea-
surements collected during convergence (e.g., as the forwarding paths change,
some mirror queries might report false positive of packets “disappearing”).

Whenever Stroboscope detects that an assumption behind its guarantees
no longer holds, it then trigger a new compilation of the monitoring queries.

As the measurement campaign progresses, Stroboscope outputs a stream
of collected mirrored packets with their meta-data (e.g.,, timestamp, corre-
sponding query, router at which it was mirrored), meant to be processed by
the operators or external applications.

6.3 From abstract to concrete monitoring queries

To build a measurement campaign from high-level monitoring queries, Stro-
boscope begins by translating these queries to well-de�ned ones using knowl-
edge about the current state of the network. More precisely, it �rst ensures
that all input queries are de�ned over well-speci�ed paths and regions, by
translating all→ constructs found in the input queries (§6.3.1). Then, it esti-
mates the tra�c volumes of the monitored pre�xes (§6.3.2).

6.3.1 Resolving loosely de�ned regions

When writing monitoring queries (§6.2.1), operators associate a set of pre�xes
to a set of nodes, hereafter referred to as regions (i.e., connected components
of the network graph) for confine queries and paths for mirror queries.
To enable queries to dynamically adapt to changes in the routing control-
plane, hence its computed forwarding paths, the→ construct can be used
as a placeholder to denote those paths. More precisely, Stroboscope replaces
any expression s→t with the forwarding paths from router s to router t as
provided by the routing protocols (e.g.,, the igp) running in the network. If no
such path can be found, Stroboscope returns a compilation error. For example,
for the query (Q2) in Fig. 6.2b, [a→ d] is translated as [a b c d] and [a l c d],
assuming that the forwarding paths towards 1.2.3.0/24 are de�ned by the igp
and that all links in Fig. 6.2a have a cost of 1.

Whenever the→ operator is present at the start (resp. end) of a query,
Stroboscope replaces it with the set of all ingress (resp. egress) routers that
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receive tra�c for the pre�x in the query—e.g., leveraging bgp information if
present, or static knowledge of all network border routers. Using this fea-
ture, the queries from Fig. 6.2b can be generalized to encompass all paths
terminating in d (instead of those starting at a and ending at d) by replac-
ing [d→ d] with [→ d]. This would then enable the operator to discover on
the �y which ingresses are active. Those translations are updated at the start
of each measurement campaign, so that Stroboscope performs the following
measurements consistently with the latest available routing information, and
�ags the previous measurements if collected during routing changes.

6.3.2 Estimating tra�c volumes

Beside specifying how quickly a measurement campaign should complete,
the monitoring budget also speci�es a maximum amount of bandwidth that
can be used by the mirrored tra�c. To compute a measurement campaign
that adheres to this budget, Stroboscope thus needs information about tra�c
volumes for every pre�x speci�ed in the input queries. It is fundamentally
impossible to exactly know how much tra�c will be destined to any pre�x
ahead of measurements, i.e., any �ow can exhibit unexpected tra�c variation
at any point in time.

Stroboscope does not require exact tra�c predictions as it includes run-
time mechanisms bounding the amount of excessive tra�c (§6.5.2). However,
having tra�c estimates that closely match the real demands is highly desir-
able as it increases the likelihood that multiple queries can be scheduled in the
same timeslot. This maximizes their accuracy as they are scheduled more of-
ten, and decreases the chance that the schedule is infeasible—especially when
using heuristics (§6.5). To dynamically estimate the tra�c demand towards
one pre�x, Stroboscope leverages data collected in past measurement cam-
paigns towards that pre�x. Indeed, as Stroboscope’s measurements consist of
mirrored tra�c, during a well-de�ned time window, they can be used to de-
rive the tra�c volume transiting through the network during that particular
window. More precisely, Stroboscope stores in its measurement database the
peak tra�c demand measured over a customizable number of minutes (5, by
default). Stroboscope then uses such value as a conservative estimate of the
tra�c demand towards that pre�x.

If no such historical data is available, Stroboscope �rst attempts to lever-
age NetFlow data if available (or any other source of information). If there
are enough records (e.g., more than 30), collected during a reasonable time
window (e.g., 5 min), Stroboscope then uses the peak recorded value as traf-
�c estimate. Otherwise, Stroboscope assumes that the query will require the
complete bandwidth budget, and thus schedules it in its own slot. By analyz-
ing the resulting mirrored tra�c, Stroboscope will then be able to re�ne its
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tra�c prediction for the next measurement campaigns. We stress that the risk
of signi�cantly exceeding the budget by scheduling queries with no historical
data is limited for two reasons. First, as those target pre�xes are not present
in NetFlow records, they are likely to carry a limited amount of tra�c as they
generated few or no records over minutes of random sampling. Second, the
mirroring rules are only active during a single timeslot, limiting the duration
in which the mirrored tra�c would exceed the budget to tens of milliseconds
at most—about 25 ms in our current implementation (§6.7).

6.4 Optimizing mirroring location

Stroboscope optimizes the location of mirroring rules using two algorithms,
one per type of query. More speci�cally, mirror queries are optimized by the
Key-points Sampling algorithm (§6.4.1) while confine queries are handled by
the surrounding algorithm (§6.4.2). Each algorithm minimizes the number of
mirroring locations also providing high accuracy guarantees of the produced
measurements (e.g., packets violating confine queries are never missed).
Fewer mirroring locations (i.e., mirroring rules) come with two bene�ts: (i)
the cost of the query is minimized, enabling to schedule it more often; and (ii)
the control-plane overhead is reduced as fewer mirroring actions have to be
performed during the measurement campaign.

Stroboscope’s algorithms take as input the operator-speci�ed queries and
the complete network topology—i.e., including all links and nodes currently
down. This ensures that the algorithms always guard against all possible net-
work paths, and never select mirroring locations breaking the accuracy guar-
antees due to transient topology changes.

On one hand, a mirroring location pointing to an edge (n, m) de�nes a
mirroring rule that mirrors matching packets leaving router n through its
outgoing interface towards router m. On the other hand, a mirroring location
pointing to a node n de�nes a mirroring rule that mirrors matching packets
leaving router n regardless of its outgoing interface.

6.4.1 Key-points Sampling algorithm

The objective of mirror queries is to collect multiple copies of the same
packet as it traverses the network over the speci�ed path. Based on this, the
Key-points Sampling algorithm (kps) minimizes the number of mirroring lo-
cations needed to answer a given mirror query.

Goal. Given a mirror query on a path P , kps selects the minimal set of
routers which will capture tra�c following P which enables to decide for any
packet mirrored by the query whether it was forwarded along P or not.
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While the absolute minimum set of router to achieve this would be to
select both ends of the path, this is often insu�cient. Indeed, consider the
query (Q2) in Fig. 6.2a that mirrors tra�c along [a b c d]. Mirroring only at
a and d would prevent to distinguish packets forwarded over [a b c d] from
those �owing over [a l c d].

General solution. By default, kps returns all the routers in the path.
This guarantees that the resulting measurement campaigns track all packets
crossing any subset of routers in the path. Then, for each mirrored packet,
Stroboscope checks if there exists a sequence of routers such that the Time-
To-Live (ttl) of the packet found in multiple tra�c slices is decreased exactly
by 1 at each hop in the sequence. Assuming that every router decreases pack-
ets’ ttl by 12, the existence of such a sequence then unambiguously indicates
whether the packet followed the path or not.

Optimizations. To go beyond this general solution, and actually mini-
mize the number of mirroring locations, kps exploits the following theorem.

Theorem 4 (kps only needs to mirror the ends of paths of unique length).
Let a forwarding path P be the concatenation of sub-pathsQ1, . . . ,Qn . mirror
queries on P can be correctly answered by mirroring only on the endpoints si
and ti of all Qi such that no other forwarding path from si to ti has the same
length as Qi .

Proof. First, we show that if anyQ ⊆ P is the only path of length x fromp to s ,
we can always distinguish mirrored packets that have been forwarded overQ
by just mirroring onp and s . Let l be the length ofQ , and let tp and ts be the ttl
values of any packet mirrored fromp and s . Under the assumption that the ttl
is properly decreased (by one) at each forwarding hop, we can unambiguously
determine if the packet has been forwarded overQ : If ts = tp − l , thenQ must
be the traversed sub-path because Q is the only path of length l between p
and s by hypothesis.

The statement of the theorem then follows by noting that the same prop-
erty applies to any sub-path Qi , as well as to their concatenation—e.g., P . �

As an illustration, consider Fig. 6.2a. The path [a b c d] can be seen as the
concatenation of [a b] and [b c d]. As [b c d] is the only path in the topology
of length 3 from b to d, Theorem 4 states that we can omit c from the mirroring
locations. In other words, we can distinguish packets traversing [b c d] as the
only ones whose ttl in d is equal to their ttl in b minus 2.

Algorithm. Given a path P , kps iterates through all concatenations of
sub-paths Q ⊆ P that result in P , sorted in ascending order by the number of

2Which is the case if routers properly implement the speci�cations of ipv4, ipv6 and
mpls [rfc791; rfc2460; rfc3443].
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sub-paths composing each of them. For each concatenation, kps then veri�es
that Theorem 4 holds on all of its sub-paths. Checking whether a path [a . . . b]
is the only one of length l between a and d is done by performing a depth-
�rst search on the network graph, rooted at a, and with a maximal search
depth of l . As one given sub-path is likely to be present in multiple possible
concatenations, we cache the results of such searches to speed up the next
ones. If Theorem 4 holds on all sub-paths, kps then returns as set of mirroring
locations all endpoints of each sub-path.

For example, for the path [a b c d], kps �rst considers the concatenation
of sub-paths {[a b c d]} (i.e., the path itself). As shown above, Theorem 4 does
not hold for that path as it has the same length as [a l c d]. This causes kps
to then consider either [a b c][c d] or [a b][b c d]. As Theorem 4 applies for
the latter concatenation (and not for the former one as [a b c] has the same
length as [a l c]), this is thus the minimal concatenation. kps thus selects as
mirroring the three routers at the endpoints of its sub-paths, i.e., {a,b,d}.

kps is theoretically ine�cient, as any of the depth-�rst searches it runs
can potentially explore an exponential number of paths. However, our eval-
uation (§6.7.2) shows that kps takes milliseconds to process paths in real net-
works, due to their sparsity and the limited path lengths.

As the goal of mirror queries is to track a packet through the network,
they can only be applied on simple paths. As such, if the on operator of a
mirror query de�nes a region (either by hand, or due to the use of the→
construct resolving (§6.3) to multiple paths), we create one sub-query for each
path in the region, hence apply kps one each sub-query.

6.4.2 Surrounding algorithm

confine queries aim at catching packets exiting a given con�nement region
(i.e., connected component) of the network graph. To that end, Stroboscope
runs the surrounding algorithm to minimize the required mirroring locations.

Goal. Given a confine query on a region R, the surrounding algorithm
selects mirroring locations (edges or routers) such that no packet can cross a
link not belonging to the region without being mirrored.

One of the challenges faced by the surrounding algorithm is to avoid cap-
turing interfering tra�c, i.e., packets for the pre�x of the query which did not
originate from the con�nement region. For example, assume in Fig. 6.2 that
there exists a transit tra�c �ow towards 1.2.3.0/24 along the path [e1 p e2].
In such case, P cannot be selected as mirroring location for (Q1) as it would
incorrectly �ag packets following that path as leaving the con�nement region.

General solution. Given a con�nement region R, we de�ne the edge sur-
rounding E(R) of R as the set of directed edges (r, n) such that r ∈ R and n < R.
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about the correctness of the network, we can reduce the number of mirroring
locations and keep the same guarantees.
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By default, the surrounding algorithm returns as mirroring locations all edges
in E(R). Fig. 6.3a visualizes the output of this algorithm for the con�nement
region of (Q1) in Fig. 6.2.

We prove the correctness of the default output of the surrounding algo-
rithm using the following theorem.

Theorem 5 (The edge surrounding is su�cient to answer a confine query).
A confine query on a region R can be correctly answered if and only if the set
of mirroring locations is the edge surrounding of R.

Observe that the theorem intuitively holds because: (i) by de�nition, exiting
R implies that a packet is forwarded from a router in R to another outside R,
hence over a link in the edge surrounding; and (ii) only the packets exiting R
are mirrored using the edge surrounding. Leveraging these observations, we
prove Theorem 5 using the following lemma.

Lemma 6 (Mirroring rules on the edge surrounding answers a confine
query). Given a region R, its edge surrounding E(R) and any pre�x d , capturing
all packets with a destination address included in d and only those packets is
guaranteed if and only if mirroring rules matching d are active on every edge in
E(R).

Proof. We �rst show that all packets exiting R are captured if and only if
mirroring rules are placed on all edges in E(R). Consider any packetp entering
R through an ingress router i ∈ R. For p to exit R, there must be a node r ∈ R
which forwards p to a node o < R, using the edge (r, o). If mirroring rules
are active on all the edges in E(R), then p is detected, as the de�nition of both
E(R) and (r, o) implies (r, o) ∈ E(R).

Finally, consider a packetp is mirrored by a rule located on an edge (x, y) ∈
E(R). By de�nition of the mirroring rule: (i) p must have a destination address
included in d ; (ii) p must have crossed a node x ∈ R and be forwarded to a
nodey < R, by de�nition of E(R). This implies that only packets leaving R and
destined to the target pre�x are mirrored, which yields the statement. �

First optimizations. Mirroring the surrounding of a con�nement region
does not generate any mirrored packet if the tra�c is indeed con�ned to that
region. Nevertheless, minimizing the number of mirroring locations would
reduce both the control-plane overhead when activating the rule, and the time
needed to deactivate it when it starts mirroring tra�c.

Whenever available, the surrounding algorithm uses routing information
to reduce the number of mirroring locations. More precisely, knowing the
forwarding paths for the queried pre�xes can be used to safely push mirroring
locations one hop away, i.e., to move them from outgoing interfaces of routers
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in R to neighboring routers. For example in Fig. 6.3a, if no forwarding path
for 1.2.3.0/24 crosses f, then f itself can be used as a mirroring location (at
the router level), replacing the three mirroring rules previously located on the
edges (a, f), (l, f), and (c, f), as shown on Fig. 6.3b.

We de�ne the node surrounding N (R) of a region R as the set of routers
that are directly connected to at least one router in R and that are not part of
any forwarding path for the pre�x in the query. The surrounding algorithm
then selects as mirroring locations �rst all nodes in the node surrounding,
then all edges in the edge surrounding that do not end in a node belonging
to the node surrounding. Fig. 6.3b depicts the best case of this optimization,
where the location determined by the node surrounding completely replace
the need for location given by the edge surrounding.

We can prove the correctness of this extension by extending Theorem 5
to take into account that: (i) for any edge (n, m) removed from the mirroring
locations, m has been added to the mirroring locations; (ii) by the de�nition
of mirroring location, mirroring on a node is equivalent to mirroring on all
its outgoing edges; and (iii) by the de�nition of node surrounding, m is guar-
anteed to not be part of any forwarding path towards the pre�x of the query,
i.e., m will mirror tra�c only when it exits the con�nement region.

Optimal solution. The surrounding algorithm further reduces the num-
ber of mirroring rules in the guaranteed absence of forwarding anomalies3,
that is, no blackholes and no forwarding loops within the monitored network.

We de�ne a mixed-egress path for a region R as a simple path starting
from a router in R, traversing at least one router outside R and ending in any
egress point. Observe that in general, any packet exiting a region R either
reaches an egress point (including those in R), or is dropped before. In the
absence of forwarding anomalies, only the former case can happen. As such,
the following theorem holds.

Theorem 6. In the absence of forwarding anomalies, a confine query on a
region R can be correctly answered if and only if every mixed-egress path for R
contains at least one mirroring location. 4

The following lemma proves Theorem 6.

Lemma 7. In the absence of forwarding anomalies, any packet not con�ned to
a region R is guaranteed to be mirrored if and only if every simple path starting
from a node in R, traversing a node outside R and ending in any egress point
crosses at least one active mirroring rule matching the packet destination.

3This property can for example be checked by leveraging the results of other mirror
queries given as input to our system.

4Note that by their de�nitions, the edge and node surroundings guarantee that the condi-
tion of Theorem 6 holds.
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Proof. We separately prove su�ciency and necessity of the condition expressed
by the theorem.

Su�ciency: Proof by contradiction. Assume that some packets not con-
�ned to R are not mirrored despite mirroring rules placed according to the
condition in the statement. In the absence of forwarding anomalies, those
packets are guaranteed to be delivered to an egress point. Not to be con�ned
to R, they must follow a path [r1 . . . rn o1 . . . om . . . e] where e is an egress
point, nodes ri ∈ R ∀i = 1, . . . ,n, and nodes oj < R ∀j = 1, . . . , l . By hy-
pothesis, an active mirroring rule must be on this path and must mirror the
packets, contradicting the assumption that packets are not mirrored.

Necessity: Proof by contradiction. Assume that it is guaranteed to mirror
all packets not con�ned to R but that there exists a path P =[rm . . . o . . . e]
which does not have an active mirroring rule, where e is an egress point,
rm ∈ R, and o < R (possibly o = e). Consider now any path [r1 . . . rn rm]
wherem ≥ n, and ri ∈ R ∀i = 1, . . . ,m. This path must exist since a region is
de�ned as a connected component. Packets forwarded on the concatenation
of the previous two paths (i.e.,,[r1 . . . rn rm . . . o . . . e] ) are thus not con�ned
to R as they cross o < R. However, they are not mirrored as they exit the
region through P , which contradicts the assumption. �

To illustrate this theorem, consider the example in Fig. 6.3c. If nodes P ,
H , and F mirror tra�c, then no packet can exit the region [a b l c d] without
traversing some mirroring location, or incurring a forwarding-anomaly—e.g.,
looping on some routers to re-enter the region, or be incorrectly discarded by
an internal router.

Algorithm. Determining the default set of mirroring locations in the
presence and absence of interfering tra�c mainly requires computing edge
and node surroundings, respectively: both sets can be calculated by simply
iterating over all the links of the input network.

In the absence of forwarding anomaly, the surrounding algorithm returns
a minimal set of locations compliant with Theorem 6. To this end, it computes
a set of nodes disconnecting the input region from every egress. This is a vari-
ant of the minimal multi-terminals cut problem. As the cardinality of the node
surrounding provides an upper bound on the size of the cut to be computed,
Stroboscope solves this variant in polynomial time using the algorithm de-
scribed in [CLL09].

To further improve its e�ciency, Stroboscope however computes a tighter
upper bound by heuristically removing redundant elements from the node
surrounding. First, it initializes the cut to the node surrounding. For every
node n in the current cut, Stroboscope computes a simpli�ed graph that does
not include any node in the current cut except n, nor any link in the con�ne-
ment region. For example, when considering router u in Fig. 6.3b, the algo-
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rithm removes f, k, j, h, as they are in the node surrounding, and all the links
in the region [a b l c d]. On this simpli�ed graph, the algorithm computes the
connected component including n—which is, [u c] in our example. If there is
no path between any node in this component and an egress point (as it is for u
in our example), it then indicates that all mixed-egress paths must include at
least another router in the current cut. n is thus redundant, and can be safely
removed from the current cut.

6.5 Computing measurement campaigns

The two previous steps of the compilation pipeline de�ned the amount of
mirroring rules for each query (§6.4), as well the estimated tra�c volume
generated by the activation of one of those mirroring rule (§6.3). This sec-
tion presents the last stage of the compilation pipeline, which schedules the
queries over time to de�ne a measurement campaign. More precisely, Stro-
boscope maximizes the accuracy of measurements across queries by activat-
ing them as much as possible, while also taking into account the tra�c and
time budget. We �rst describe how Stroboscope computes a mirroring sched-
ule (§6.5.1), and then show how it adapts it at runtime (§6.5.2).

6.5.1 Scheduling mirroring rules

Answering monitoring queries requires to activate all its mirroring rules at
the same time, in order to ensure sound measurements. As such, Stroboscope
schedules mirroring rules on a per-query basis—i.e., either all mirroring rules
of a query are active at a given point in time, or none are. Any schedule com-
puted by Stroboscope is composed of a �nite number of timeslots, each con-
taining one or more monitoring query. A timeslot represents a time interval,
during which all of its associated queries are active. Timeslots do not overlap
with each other.

Stroboscope ensures that activating all queries within a timeslot stays
within the budget by assigning a cost to each of them. More precisely, this
cost re�ects the expected rate (e.g., 5Mb/s) of tra�c mirrored when the query
is active. On one hand, each mirror query has a cost corresponding to the
number of mirroring rules it requires (§6.4.1), multiplied by the estimated traf-
�c demand towards its pre�x (§6.3.2). On the other hand, the cost of any con-
fine query is set to zero as they are not expected to mirror any tra�c. Fur-
thermore, mirroring rules used by confine queries are heavily rate-limited,
hence at most a few packets per mirroring location are mirrored in the worst
case. As a result, Stroboscope always schedules confine queries in all times-
lots. Stroboscope’s scheduling problem then consists in assigning mirror
queries to every timeslot, so that the sum of the costs of all queries scheduled
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in a timeslot does not exceed the tra�c budget de�ned by the operator with
the using keyword.

Fig. 6.5 shows the di�erent steps followed by Stroboscope to compute a
measurement campaign. First, it derives the total number of timeslots, their
duration and spacing from the monitoring budget de�ned in the requirements
with the during keyword (§6.2.1) and latency estimates. Next, to scale to
many queries and schedule sizes, Stroboscope splits the scheduling problem
in two phases. It �rst computes a schedule of minimal duration, where each
query is scheduled exactly once. Then, it maximizes the usage of the budget
by replicating the minimal schedule as much as possible, hence maximizing
the overall measurement accuracy. This scheduling pipeline is modular, and
enables Stroboscope to switch between very fast but less optimized schedules
(e.g., to quickly add new queries to an existing schedule), and more optimized
ones with a slower computation (e.g., to maximize the measurement accuracy
of long-lived measurement campaigns).

Timeslot duration and spacing. In-network latencies impose two con-
straints on the timeslots composing the schedule. First, the duration of times-
lots has to be long enough to ensure that mirror queries can collect multiple
copies of the same packet mirrored from di�erent locations. This thus requires
the timeslots to be greater than the maximal latency observed over paths mon-
itored by mirror queries. This can either be con�gured statically, or dynam-
ically estimated using results from prior measurement campaigns (§6.8). Note
that the minimal timeslot duration is also constrained by the mirroring tech-
nique (§6.7.1). Second, to let in-�ights packets arrive at the collector at the end
of a timeslot, schedules generated by Stroboscope must include spacing be-
tween consecutive timeslots. This prevents mirrored tra�c generated by dif-
ferent timeslots from overlapping, which would violate the tra�c budget. We
conservatively set this spacing to the maximum router-to-collector latency.

Minimal schedule extraction. Stroboscope solves its scheduling prob-
lem by �rst computing a minimal schedule. More precisely, it assigns exactly
one timeslot to each query, with the goal of minimizing the number of times-
lots. This process is a bin packing problem, and therefore NP-hard. To quickly
approximate the schedule, Stroboscope �rst computes an upper bound on
the size of the minimal schedule, using the well studied First-Fit-Decreasing
heuristic—which has a worst-case time complexity of O(n logn) where n is
the number of queries, and has been shown to approximate optimum solu-
tions with a tight bound of ∼ 1.22opt [JG85]. Computing a more optimized
schedule can then be done by exploiting this upper bound to de�ne an Inte-
ger Linear Program (ilp), visible in Alg. 2, which will compute the optimal
bin-packing solution.

Note that if Stroboscope fails to compute such minimal sub-schedule, it
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Algorithm 2 ilp formulation to compute the minimal subschedule

minimize
S∑
s

Us (6.1a)

subject to
Q∑
q

(
Rqsaq

) ≤ BUs ∀s ∈ S, (6.1b)

S∑
s

Rqs = 1 ∀q ∈ Q, (6.1c)

Us ≥ Rqs ∀q ∈ Q,∀s ∈ S, (6.1d)
Us ≤ Ss ′ ∀s ∈ S,∀s ′ ∈ S, s < s ′ (6.1e)

Objective Function. Minimize the length of the sub-schedule

Parameters.

Q The set of all input queries;
S The set of all timeslots;
B The maximal available bandwidth in a single timeslot;
aq The cost of the query q.

Decision Variables.

Rqs Binary variable scheduling a query q in timeslot s when Rqs = 1;
Us Binary variable tracking if the timeslot s has any assigned query.

Constraints.

(6.1b) The total query cost in any timeslot is at most B
(6.1c) All queries are scheduled once
(6.1d) Track the number of used timeslots
(6.1e) Open timeslots in sequence (tie-breaking constraint)
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Algorithm 3 ilp formulation maximizing the monitoring budget utilization

maximize
[ Q∑

q

(
S∑
s

Rqs

)
wq + MΩ

]
(6.2a)

subject to
Q∑
q

(
Rqsaq

) ≤ βs ∀s ∈ S, (6.2b)

S∑
s

Rqs > M ∀q ∈ Q (6.2c)

Objective Function. Maximize the utilization of the budget, either by max-
imizing the number of allocations of some queries, according to their prefer-
ence level, or by spreading the budget across all queries (thus maximizing the
minimal allocation).

Parameters.

Q The set of all input queries whose cost enable them to be scheduled in at
least one timeslot;

S The set of all timeslots having enough available bandwidth to be assigned
at least one new query;

βs The available bandwidth in the timeslot s , i.e., βs ≤ B;
Ω Control whether all queries have a similar number of timeslots (high value)

or the absolute number of allocation should be maximized (low value);
wq The preference level of the query q;
aq The cost of the query q.

Decision Variables.

Rqs Binary variable scheduling a query q in timeslot s when Rqs = 1;
M Continuous variable representing the minimal number of slots allocated

to any query

Constraints.

(6.2b) The total query cost in any timeslot is at most βs
(6.2c) Track the minimal number of timeslots assign for any query
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Figure 6.4: Stroboscope scheduling algorithm.

Figure 6.5: By �rst computing a minimal schedule to meet the monitoring
budget and then expanding it to maximize the budget usage, the scheduling
pipeline of Stroboscope is �exible and can be used to compute either quick
approximations or optimized schedules.

then stops processing the monitoring requirements and reports an error to
the operator as it implies that the monitoring budget is too small to �t all
input queries.

Budget usage maximization. In the seconds phase, Stroboscope repli-
cates the minimal schedule as much as possible. This increases the number of
timeslots allocated to all queries uniformly, maximizing the overall measure-
ment accuracy. This replication might not fully utilize the monitoring budget.
For example, the schedule in Fig.6.5 encompasses 5 timeslots, which allows
to replicate its minimal schedule at most twice while wasting 1 timeslot. This
solution can be optimized further, �lling the remaining timeslot(s), using an-
other ilp (Alg. 3). More precisely, this last optimization makes a (con�gurable)
trade-o� between scheduling as many queries as possible using the remain-
ing budget available in each timeslot and scheduling in priority queries which
have been given a higher preference.

6.5.2 Adapting the schedule at runtime

The measurement campaign computed in the previous steps maximizes the
utilization of the monitoring budget based on tra�c estimates which can be
wrong (e.g., due to unpredictable tra�c variations). While estimation errors
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can balance across di�erent pre�xes, using a static schedule comes with the
risk of mirroring much more tra�c than the budget if the predictions are
greatly underestimating the actual tra�c volume for some pre�xes.

Stroboscope tracks the total amount of tra�c mirrored after every times-
lot. By comparing it with the budget for 1 second (e.g., 1Gb if the budget
is 1Gbps), Stroboscope can then assess whether it is over�owing the budget.
Whenever the total mirrored tra�c exceeds the 1-second budget, Stroboscope
stops the ongoing measurement campaign, waits for the remaining time in the
1-second interval while computing a new schedule using the update tra�c es-
timates, and �nally runs a new measurement campaign. For example, if it de-
tects that 1.1Gb of tra�c have been mirrored in 0.7 seconds, for queries with a
budget of 1Gb/s, Stroboscope immediately stops the measurement campaign,
waits for 0.3 seconds, and then starts a new campaign—which likely reduced
the amount of times the queries were scheduled to account for the previous
budget over�ow.

As the inter-timeslot spacing ensures that the collector receives all the
mirrored packets before starting the next measurements (§6.5.1)), the runtime
behavior just described yields the following property.

Property 2. Stroboscope exceeds the budget in any query for at most 1 timeslot
per measurement campaign.

Note that tra�c estimates are updated after the stopped campaign, so the
successive campaign is much more likely not to exceed the budget again.

6.6 Deploying Stroboscope in real networks

We built a complete prototype of Stroboscope in ∼ 5, 000 lines of Python
code, and 650 of C code. Our implementation covers the entire compilation
pipeline along with the logic to trigger mirroring rules on routers (Cisco or
Linux-based), as well as the benchmarks used in the evaluation (§6.7).

As the previous sections extensively described the various needed to build
a Stroboscope collector and also implement its compilation pipeline, this sec-
tion focuses one the last piece of the framework: the collection of tra�c
slices. We �rst present the general mechanisms used to mirror speci�c pack-
ets on routers, as well as how these are processed by the Stroboscope collec-
tor (§6.6.1). Then, we detail the two approaches supported by Stroboscope to
execute mirroring actions (i.e., mirroring rules (de-)activations), showcasing
their respective strengths and weaknesses (§6.6.2).
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6.6.1 Mirroring packets

Most commercial routers support packet mirroring capabilities [Cis16; Jun14].
At a high-level, such capabilities work in two steps, more-or-less �exibles de-
pending on the router vendor, os version, and hardware components. First,
they enable operators to specify how to identify packets that should be dupli-
cated, e.g., using route-maps. Then, as packets matching the mirroring crite-
ria are duplicated, they let operators specify how these duplicates should be
handled: sent as-is over a given interface (e.g., span), sent towards a virtual
interface designating a tunnel (e.g., gre), or delegated to a vendor-speci�c
protocol implementation (e.g., erspan).

Packet mirroring primitives are typically implemented in hardware. This
enables them to work at scale, able to duplicate tra�c at line rate without de-
grading the forwarding performance of the routers, i.e., with no e�ect on the
packets being mirrored [Vis+10]. A naive approach to implement Stroboscope
would thus consists on dynamically programming the mirroring criterias, in
order to temporarily match speci�c �ows hence create tra�c slices. Unfortu-
nately, most routers only support a limited amount of mirroring criterias (e.g.,
2 on our routers) that can be handled in hardware at the same time. Such a
naive approach would thus be unable to mirror more than 2 �ows at the same
time on any router, hence be heavily limited both on the number of queries
it could answer and on the accuracy of the measurements—i.e., the location
of mirroring rules would then become the primary bottleneck, instead of the
monitoring budget.

To overcome this limitation, Stroboscope trigger mirroring actions in two
steps. First, packet mirroring primitives are pre-con�gured to be always en-
abled, mirroring any packet carrying a mirroring tag (e.g., a speci�c ingress
vlan, dscp value, or �rewall mark). Generating a tra�c slice for a given �ow
can then be performed indirectly (i.e., without recon�guring the mirroring
primitive) by applying the proper tag to its packets (§6.6.2). We use di�er-
ent mirroring tag values, in order to handle di�erently packets answering a
mirror query from those answering a confine query. Indeed, as confine
queries only need a few packet to report a violation (and no packets in the
normal case), we heavily rate-limit them to minimize the risk of over�owing
the tra�c budget during unexpected tra�c shifts.

Once created, mirrored packets are then forwarded towards the Strobo-
scope collector, alongside regular tra�c. Despite Stroboscope’s design revolv-
ing around adhering to a tra�c budget, mirrored packets should never be pri-
oritized over regular tra�c to minimize the risk of congestion induced by the
measurements. For each received mirrored packet, the Stroboscope collector
then extracts: (i) the router id that mirrored the packet (e.g., based on the
outer source ip address if using a gre encapsulation); (ii) the destination ad-
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dress of the mirrored packet (e.g., the inner destination address); and (iii) the
arrival nic timestamp. Based on this 3-tuple, Stroboscope is then able to iden-
tify which query caused this packet to be mirrored. At the end of the timeslot,
Stroboscope then walks through its scheduled queries, analyzing their traf-
�c slices (e.g., to �nd matching packets enabling to reconstruct forwarding
paths) and updating the tra�c statistics. Eventually, Stroboscope streams the
collected mirrored packets with all their meta-data (e.g.,matches across tra�c
slices, corresponding query, timestamp) to external monitoring applications
which can then post-process them—e.g., build time-series, inspect packet pay-
loads, or estimate latencies.

6.6.2 Carrying out mirroring actions

As described earlier (§6.6.1), Stroboscope triggers mirroring actions by apply-
ing (or removing) a mirroring tag to packets. Stroboscope comes with two
approaches to achieve this.

Tagging packets by their ingress interface. vlans encapsulate pack-
ets such that packets sent over the same physical link but using di�erent vlan
tags are processed by routers as if they were coming from di�erent layer-3
domains, i.e., vlans create multiple virtual interfaces multiplexed on a single
physical interface. We can use vlans as a way to encode multiple bits of infor-
mation, signaling whether a packet should be mirrored or not, and by which
type of query (confine or mirror).

We con�gure two additional vlans on every link in the network, and ad-
vertize them in the igp with a high metric to ensure that are unused by default.
Mirroring rules on all routers are then set to mirror all packets arriving at a
router from one of these vlans. Assume that we have packets towards a des-
tination d crossing a link a from a router x to a router y, which we want to
mirror at y. We then use Fibbing (§II) to start (resp. stop) mirroring these pack-
ets by re-routing x to forward d over the mirroring vlan. The duration of the
tra�c slice is then determined by the duration between the activation and
deactivation lsas sent by the Fibbing controller. This approach has two main
advantages: (i) the collector can activate up to 40 mirroring rules for a given
query using a single igp message (§4.3.2), enabling it to quickly (de-)activate all
mirroring rules within a timeslot; (ii) our measurements con�rmed that we
could precisely control the slice duration, capturing tra�c slices as small as
14 ms (§6.7). Unfortunately, this approach su�ers from two limitations. First,
as it relies on the igp to activate mirroring, it can thus only activate mirror-
ing on a per-destination basis5. Second, this approach implicitly relies on the
correctness of the control-plane. Activating mirroring by instructing around

5All our algorithms could be applied as-is to more precise types of �ows, i.e., mirroring
based on 5-tuples instead of destination pre�xes
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the target mirroring location to re-route tra�c is only correct if the tra�c
was already �owing through the underlying physical link, or if the node re-
routing the tra�c was seeing no tra�c at all for that pre�x (e.g., in the case
of a confine query). These conditions are challenging to verify in practice,
and constraint the type of measurements achievable by Stroboscope.

Tagging packets using a local-agent. A second, safer, approach con-
sist in instructing a local agent on the routers to (de-)activate mirroring by
using the dscp value of packets as mirroring tag. Indeed, routers often sup-
port scripting interfaces [Cisc; Jund], or event fully-�edged sdks [KAB09], en-
abling to provision custom con�guration actions or daemons on the routers.
Stroboscope leverages this by uploading on every router during a con�gura-
tion phase. Then, at runtime, the Stroboscope collector maintains ssh sessions
with each router, enabling it to communicate with every agent. When it wants
to update the set of active mirroring rules on a given router (i.e., at the start
of a timeslot), the collector then sends it an activation message containing: (i)
the list of �ows that should be mirrored (and which interfaces in the case of
mirroring rules located on edges); and (ii) the duration of the timeslot. This
local agent then updates an access-list (acl), in order to change the dscp value
of packets that should be mirrored. Then, it sets a timer corresponding to the
input duration. At the expiration of this timer, our agent then clears the acl
to stop all mirroring rules. Beside avoiding the drawbacks of the previous ap-
proach, this technique further reduces the number of control-plane mesages
(i.e., only one per timeslot, per router), and let routers autonomously deacti-
vate their mirroring rules. This last behavior provides a strong guarantee that
mirroring rules will never be active longer than a timeslot—e.g., the collector
crashing or becoming unreachable will not result in a complete network melt-
down.

While other techniques can be used to remotely con�gure an acl (e.g.,
bgp Flowspec [rfc5575], or Netconf [rfc6241]), keeping the added �exibility of
maching packets using acls, these do not provide the same safety guarantees
as they would require the collector to deactivate the mirroring rules.

6.7 Evaluation

This sections presents results obtained when submitting the key components
of Stroboscope to various benchmarks. More precisely, we �rst con�rm the
practicality of our approach using measurements performed on real
routers (§6.7.1). These measurements show that our implementation can ac-
tivate numerous mirroring rules in a short amount of time (e.g.,, consistently
with [BDL04]), and that it could precisely control the tra�c slice durations.
Then, we demonstrate that Stroboscope’s entire compilation pipeline (i.e., the
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placement algorithms (§6.7.2) and the scheduling pipelines (§6.7.3)) scales to
large numbers of queries. More precisely, we ran synthetic benchmarks on
realistic isp topologies to demonstrate that: (i) measurement campaigns can
be computed at a timescale suitable for online use; and (ii) the accuracy of
each query can be e�ciently maximized.

6.7.1 Real routers natively support tra�c slicing

We performed experiments using two physical routers (Cisco C7018) to asses
whether we could run Stroboscope at scale. To that end, we directly connected
these routers and con�gured one of them to mirror incoming packets, sending
the copies to the collector, while the other one was connected to a tra�c
generator.

Controlling slices duration. We �rst measured the level of control that
Stroboscope has over the duration of the tra�c slices it collects. To that end,
we successively tried to collect tra�c slice of increasing length, and mea-
sured how long was the resulting stream of mirrored packets. Fig. 6.6 shows
the measured duration of the tra�c slices when using the local agent to trig-
ger mirroring, depending on the speci�ed deactivation delay. Each experi-
ment was repeated 50 times. We see that the slice durations increase linearly
with the delay speci�ed to the agent, and that the minimal slice duration is
24 ms. Repeating the experiment using the other approaches resulted in simi-
lar measurements, although the minimum achievable tra�c slice in that case
was 14 ms.

Mirroring processing delay. Additionally, we also measured the time
needed by routers to mirror packets. To that end, we directly connected the
Stroboscope collector to the router mirroring the tra�c, and used the tra�c
generator to send tra�c to the collector. We then computed the delay be-
tween the arrival time of every packet and their mirrored copy. The mean
mirroring delay over roughly 100 000 measurements was µ = 2.6 µs , with
a standard deviation of σ = 1.6 µs . Such small values hint that our routers
mirror packets in constant time.

6.7.2 Optimizing mirroring locations is fast and e�cient

We benchmarked our placement algorithms on all Rocketfuel
topologies [SMW02] and on the largest topologies from the Internet Topol-
ogy Zoo [Kni+11]. We performed more than 4, 000 experiments for each al-
gorithm. We stress that the speed of these algorithms directly is key to enable
to adapt Stroboscope’s measurement campaigns at runtime (e.g., to react to
routing changes), as each query requires to run one of them once. Addition-
ally, their ability to minimize the overall number of mirroring rule is critical
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Figure 6.6: Local-agent running on Cisco routers (C7018) precisely control the
tra�c slice duration, and are able to collect slices as small as 24 ms.

to allocate more timeslots per query, hence to maximize their measurements
accuracy.

Key-points sampling (§6.4.1). We evaluate the algorithm by running
it on random shortest-paths (according to the igp weights for the Rocketfuel
topologies, and edge count on the Topology Zoo ones), and random deviations
from these (i.e.,, paths longer by up to 50% with the same end points).

Fig. 6.7a shows box plots of the measured execution time in function of
the input path lengths. As expected, the algorithm exhibits an exponential
behavior, yet still completes in milliseconds for path of realistic lengths. The
cdf on Fig. 6.7b quanti�es the gain brought by kps in terms of mirroring-
rule reduction. More precisely, we compute the optimization by comparing
the number of mirroring rules before running kps (i.e., one rule per hop) to
the one after executing kps. We see that ∼ 80% of the experiments resulted
in a gain of over 30%. kps returned only 2 to 4 mirroring rules in 64% of the
experiments.

Surrounding algorithm (§6.4.2). Similarly, we benchmarked the sur-
rounding algorithm using random connected components as con�nement re-
gions. Additionally, we randomly selected 25% of the nodes having 2 or less
outgoing edges as egress points (to ensure that the minimal surrounding had
to compute a non-trivial solution).

Fig. 6.8a shows the measured execution times, in function of the region
size. As the node and edge surrounding are almost the same algorithms (i.e.,
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(b) kps reduced the number of mirroring rules in all experiments.

Figure 6.7: The Key-points Sampling algorithm minimizes the number of mir-
roring rules in milliseconds, reducing their overall cost.
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roring rules.

Figure 6.8: By quickly minimizing the number of mirroring rules, the sur-
rounding algorithm reduces the control-plane overhead.
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the node surrounding �lters the results from the edge surrounding), we only
reports the results of the node surrounding. We observe that computing the
node surrounding runs in hundreds of microseconds, and is an order of mag-
nitude faster than the further optimized placement. Additionally, execution
times do not depend on the input regions but instead on the network size and
its average node degree. Fig. 6.8b shows the reduction in the number of mir-
roring rules compared to the edge surrounding. Both algorithms reduce the
number of mirroring locations by at least 30% in half of the experiments, and
the optimal one can provide an extra gain of 20%.

6.7.3 The scheduling pipeline is �exible

We conclude our evaluation by demonstrating the scalability and e�ciency
of our scheduling pipeline. To that end, we schedule an increasing number
of queries using both the more optimized scheduling pipeline and its approx-
imation. All queries have a random cost, normally distributed. Additionally,
we varied the monitoring budgets used such that each schedule has between
20 and 400 timeslots, with a maximal bandwidth set between 2 to 100 times
the average query cost.

Fig. 6.9a shows the running times of the optimized scheduling algorithm
and of its approximation. We con�rm that the approximated schedule can be
used to react to online events, as it is computed in microseconds. The large
variance of the optimized pipeline is due to the variation of the maximal band-
width usage across experiments. If this value is low, it increases the estimated
upper bound for the bin-packing problem, which makes computing an opti-
mized schedule exponentially slower. The optimized schedule, however, leads
to improved accuracy. Indeed, Fig. 6.9b depicts the cdf of the relative increase
of slot allocation (scheduling a query in a timeslot), when using the optimized
pipeline instead of the approximation. For about half of the experiments the
optimized schedule contains 15% more slot allocations than the approximated
one, up to 40% for 10% of the experiments.

6.8 Using Stroboscope in practice

This section presents our experience when using Stroboscope in networks
emulated using Mininet [LHM10]. We �rst describe monitoring applications
built on top of Stroboscope’s measurement stream, enabling to estimate loss
rates, load-balancing ratios and one-way delay in a transit network (§6.8.1).
Then, we report Stroboscope’s reaction when facing an unexpected tra�c
increase, experimentally validating its ability to adapt its schedule at run-
time (§6.8.2).
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Figure 6.9: Stroboscope can compute a quick approximated schedule, or one
that maximizes accuracy.
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Figure 6.10: Identifying packets present in multiple tra�c slices enables to
reason about network-wide behaviors.

6.8.1 Analyzing Stroboscope’s measurements

We emulated the network shown in Fig. 6.2a, and attached a Stroboscope
collector to router u. Then, we con�gured it using the queries visible on the
top of Fig. 6.2b. Finally, we con�gured all links to have a delay of 5ms and a
loss probability of 1%.

We now present three applications built on top of Stroboscope’s measure-
ments, which analyze the content of tra�c slices.

Estimating loss rates. Stroboscope estimates losses over paths by com-
bining mirror and confine queries. Indeed, there are only three possible
reasons causing a packet mirrored at the ingress of a path (a) to not have a
matching copy at the egress (d): (i) the timeslot completed before the packet
reached the egress, which only happens if no packet afterwards is seen at
both a and d; (ii) The confine query detected a violation; or (iii) the packet
was dropped.

Consider the example tra�c slices visible on Fig. 6.10, which are collected
to answer the mirror queries from Fig. 6.2b. We see that packet “5” was
found in the tra�c slices collected by a and b, but was never mirrored by d.
Assuming the confine queries did mirror any packet either, we can then
conclude that packet “5” was lost between routers b and d.

In our emulated network, we measured the rate on the path [a→ d] to
be 7%—slightly higher than the real value (5%) as some mirrored packets were
also dropped by the network.

Estimating load-balancing ratios. Most networks load-balance tra�c
across similar paths by enabling ecmp on the routers. Whenever a router has
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multiple possible equal-cost paths for a packet, it then hashes its header to
select a nexthop. ecmp hash function polarization [Cis13] causes suboptimal
network usage as it causes routers to only use a subset of the available equal-
cost paths. It is also hard to detect in practice. We con�rmed that Stroboscope
can easily detect such issues by computing perceived load-balancing ratios.
More speci�cally, the collector computes the ratio of matching packets seen
on all hops of a path (e.g., {a, b, d}), over those seen only at both endpoints
(e.g., {a, d}). This ratio can then be compared against the assumed number of
equal-cost paths between the two endpoints to detect whether hash function
polarization is occurring (e.g., it should be close to 50% if there are two paths).

Coming back to the example on Fig. 6.10, we see that packet “7” was only
seen in the tra�c slices of a and d. While this indicates that the packet was
successfully forwarded across the network, it also means that it followed an-
other path than the expected one (e.g., it might have transited through l).

In our emulated network, the monitored pre�x had a single �ow. This
caused the computed ratio to be about 90% (recall that there are losses in
the network. This unusual ratio should prompt the operator to observe more
closely the captured packet headers across the di�erent tra�c slices.

Estimating one-way delays. Stroboscope can estimate one-way delays
in a network without any form of clock synchronization between the routers
and the collector. Recall that beside the mirrored packets, Stroboscope’s mea-
surement stream also add meta-data, such as the time at which each packet
was received by the collected. Our third monitoring applications leverages
this timestamp to estimate one-way delays in the network in two steps.

First, Stroboscope estimates router-to-collector latencies. To that end, it
activates on each router a mirroring rule matching the router’s loopback ad-
dress. The collector then sends probes towards these loopbacks, and receives
mirrored copies echoed by the nic (i.e., without any intervention from the
routers’ cpu). Assuming that paths between the controller and the routers
are symmetrical6, Stroboscope then computes router-to-collector latencies by
comparing the time at which each probe was sent to the time at which its mir-
rored copy was received.

Second, Stroboscope estimates one-way delays over any given paths (e.g.,
[a→ d]) by using measurements from a mirror query in three steps. First,
Stroboscope builds a list of packets present in the tra�c slices of both end-
points. Then, for each such matching packet, it infers the time at which this
packet traversed each router by subtracting the router-to-collector latency
from the time at which the mirrored copy was received at the collector. Fi-

6For practical reasons, the loopback addresses used for this should be dedicated to this
monitoring application. As such, we can use Fibbing to re-route these speci�c addresses if the
default routes are not symmetrical.
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Figure 6.11: Stroboscope dynamically estimates tra�c demands and swiftly
reacts upon budget violation.

nally, Stroboscope can then compute the di�erence between these traversal
times.

Using this procedure, our monitoring application measured that the la-
tency of [a→ d] in the emulated network was 15ms, as expected.

6.8.2 Reaction to unexpected tra�c volume

Measurement campaigns are computed to ensure that they adhere to the mon-
itoring budget. Guaranteeing this in practice requires runtime mechanisms
which measure the current budget usage and adjust the measurement cam-
paign accordingly (§6.5.2). In a small emulated network, we con�gured Stro-
boscope to mirror a �ow of 1 Mb/s at two locations, using at most 5Mb/s. We
then started a tra�c generator for that �ow, and con�gured it to generate a
short-lived large of tra�c after a few seconds. We con�gured Stroboscope to
only take into account the last 5s of tra�c when estimating tra�c demands
(to speed up the experiment), and to use 40 timeslots of 25ms.

Fig. 6.11 shows the evolution of (i) the con�gured rate of the generated
tra�c; (ii) the predicted tra�c demand as computed by Stroboscope; and (iii)
the rate of mirrored tra�c. Initially, the prediction starts at the budget value,
causing little mirrored tra�c. After 1 s, the prediction is updated to re�ect the
last observed peak demand. This increases the amount of mirrored tra�c as
the query is scheduled more often (in all timeslots in this case). At t = 10 s ,
the real tra�c volume spikes, increasing the mirrored tra�c. Eventually, the
mirrored tra�c exceeds the predicted volume, and the measurement cam-
paign is then interrupted. A new schedule, with updated tra�c statistics is
then started at t = 11 s . However, as the generated tra�c volume kept in-
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creasing, this causes the query to immediately exceed the budget in a single
timeslot, halting the measurement campaign again. This causes the tra�c es-
timation from t = 12 s to t = 17s to be equal to the whole budget, hence
scheduling the query in a single timeslot. At t = 17 s , the last peak tra�c
rate is expunged from the measurement database. This causes Stroboscope
to update its prediction for the monitored �ow, scheduling the query in all
timeslots. In total, the mirrored tra�c exceeded the budget only during a sin-
gle timeslot (25ms).

6.9 Related Work

Network monitoring is an age-old topic, and has been extensively researched.
Stroboscope can relate to many previous work, which we can organize in six
threads of work.

Stream-basedmonitoring. One of Stroboscope’s goal is to stream mea-
surements collected at di�erent vantage points to monitoring applications.
This relates to Gigascope [Cra+03], a system providing a sql-like query lan-
guage to stream packet-based measurements from any router interface. Stro-
boscope goes beyond this by providing higher-level constructs such as path-
based queries and the ability to adhere to a monitoring budget, enabling to
coordinate measurements across multiple devices. Furthermore, Gigascope
supports fewer concurrent queries as changing the packet dissectors they ex-
ecute on the routers is slow.

Mirroring-based monitoring. Other approaches have been explored
to monitor networks using packet mirroring, often for a speci�c purpose—
e.g., [Vis+10] relies on packet mirroring to selectively monitor control-plane
tra�c. Table 6.1 compares Stroboscope to the two closest mirroring-based
systems, namely Ever�ow [Zhu+15] and Planck [Ras+14]. Stroboscope is the
only approach that automatically controls the tra�c volume generated by its
measurement, making it possible to deploe in isp networks.

Monitoring with programmable hardware. Programmable hardware
(e.g., P4 [Bos+14], OpenFlow [McK+08]) and virtual network devices (e.g.,
Open vSwitch [Pfa+15]) enable to program new monitoring capabilities on-
demand, directly in the network. For example, path queries can be performed
by encoding the path traversed by packets in the packets header [Kaz+13;
Nar+16]. Narayana et al. [Nar+17] introduce a performance query language,
Marple, interacting with a key-value store running on the switches.
SketchVisor [Hua+17] leverages virtual switches to sketch the tra�c. Basat et
al. [Ben+17] present a randomized constant time algorithm to identify hierar-
chical heavy hitters. NetQRE [Yua+17] uses regular expressions over packet
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Feature Str
obo

sco
pe

Ever�
ow [Zhu+15]

Planck [Ras+14]

Query-based mirroring 3 3 7

Monitoring on a budget 3 7 7

Runs on commodity hardware 3 3 3

Independence from active probing 3 7 3

Independence from header bits 3 7 3

Table 6.1: Stroboscopeis the only mirroring-based monitoring system which
is able to adhere to a budget.

streams to express �ow-level and application-level policies. As Stroboscope
exposes the mirrored packets to monitoring applications, the algorithms and
functionalities of these approaches could directly be built on top of Strobo-
scope’s measurements.

Monitoring�ow statistics. Many techniques compute aggregated statis-
tics directly inside the network before exporting them to a collector. Tradi-
tionally used in isp setups, NetFlow [rfc3954] provide coarse-grained �ow
statistics by randomly sampling tra�c. More recently, FlowRadar [Li+16] and
ProgME [YCM11] provide per-�ow packet counters. While these approaches
implicitly limit their monitoring overhead, they lack the capability of Stro-
boscope to track individual packets across the network, hence cannot reason
about network-wide behaviors (e.g., one-way delays, path tracing).

Data-center monitoring. Data-center network o�er additional degrees
of freedom compared to isp networks, such as controlling the end hosts or al-
most non-existent latencies. As such, many research contributions providing
�ned-grained visibility over data-center tra�c cannot be applied in isps. For
example, [Mos+16] collects �ne-grained statistics on the end hosts, [Guo+15]
leverages pings across end-hosts to estimate end-to-end latencies. In contrast,
Stroboscope is a more general in-network solution, applicable in any net-
work. Being modular, some of its building blocks could also be transferred to
other systems, e.g., it could be used to enable Ever�ow [Zhu+15] to control
its amount of mirrored tra�c.

NetworkVeri�cation. Verifying network correctness is a very active re-
search domain. More precisely, both the data-plane veri�cation
techniques [Mai+11; KVM12; Kaz+13; Khu+13; Lop+15; Sto+16] and the control-
plane ones [Fog+15; Gem+16; Wei+16; Bec+17] build a model of the network
on which they can then verify correctness properties. Stroboscope comple-
ments these approaches by enabling them to dynamically collect tra�c sam-
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ples, at controlled locations and times (e.g., to verify assumptions made by the
veri�cation model). Similarly, Stroboscope can also be used as a complemen-
tary source of data for network debugging tools in sdns [Wun+11; Han+14].



7Observing protocol
performance on the end hosts

This chapter presents Flowcorder, an enterprise network monitoring frame-
work to measure the network performance experienced by the end-hosts. We
begin by analyzing current enterprise network monitoring approaches, for-
mulating where they fall short and why they cannot work with recent trans-
port protocols (§7.1). Then, we describe how Flowcorder addresses the limi-
tations of previous approaches, by instrumenting the transport protocol im-
plementation on the end-hosts (§7.2). Flowcorder follows a generic approach
to export performance pro�le of connections by transparently extracting Key
Performance Indicators from existing protocol implementations (§7.3). We de-
scribe an application of our approach which realizes an event-based instru-
mentation of the Linux kernel tcp stack (§7.4). Next, we demonstrate the gen-
erality of the approach by extending it to support mptcp (§7.5). Afterwards,
we report the results of an evaluation which shows that Flowcorder imposes
little to no overhead on the end-hosts (§7.6). We conclude by highlighting in-
sights provided by Flowcorder when deployed in a campus network (§7.7), and
�nally compare Flowcorder to other approaches to which it can relate (§7.8).

7.1 Motivation

Network performance depends on a variety of factors such as link delays and
bandwidth, router bu�ers, routing or transport protocols. Some of these are
controlled by the network operators, others by the end-hosts. To detect po-
tential issues, and ensure their proper operations, most network operators
monitor a wide range of statistics on the health of their networks, which can
be classi�ed in three categories.

First, health metrics capture the status of network elements. Most net-
works record those using snmp, polling their devices every few minutes to col-
lect various statistics (e.g., link load, cpu usage, size of forwarding tables). Op-
erators often also collect tra�c statistics, usually using NetFlow/ipfix [San15;

129
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Hof+14; TB11]. These provide more detailed information about the �ows cross-
ing the network (e.g., layer-4 5-tuples, volumes in bytes and packet), and en-
able various management applications [Li+13] (e.g., identifying
heavy-hitters [GSF13], major source/destination pairs [YRW17], or detect-
ing DDoS attacks [Sek+06; Ste+15]). Finally, operators monitor key perfor-
mance metrics which are important for many end-to-end applications, such
as delays, packet losses, and retransmissions. On one hand, active measure-
ments techniques [Cisa; LCC09] collect these metrics by generating test tra�c
(e.g., pings). On the other hand, passive measurements [Fin+11; JTO10] infer
these performance metrics by analyzing the packets that traverse the net-
work (e.g., using network taps which maintain per-�ow states to accurately
measure Round-Trip-Times (rtt), retransmissions, packet losses and dupli-
cations [Mel02]).

Although widely deployed, passive monitoring su�ers from several im-
portant limitations. First, as link speeds increase, it becomes more and more
di�cult to maintain the per-�ow state that is required to collect detailed per-
formance metrics [Tre+17]. Second, as multipath protocol deployment in-
creases (e.g., mptcp [rfc6824] is used in iPhones [App17] and for other ser-
vices [BS16b]), passive monitors only see a subset of the packets belonging to
a connection. This compromises their ability to operate properly [Pea14]. Fi-
nally, the most important threat against the passive collection of network per-
formance metrics is the deployment of encrypted protocols, such as
qic [Lan+17]. qic replaces the http/tls/tcp stack with a simpler proto-
col that runs over udp. Google estimates [Lan+17] that qic already repre-
sents more than 7% of the total Internet tra�c. Recent measurements indi-
cate that content providers have started to deploy qic massively [Rüt+18].
The ietf is currently �nalizing a standardized version of qic [IT18]. From
a performance monitoring viewpoint, an important feature of qic is that
all the payload and most of the header of the packets are encrypted. This
prevents the middlebox ossi�cation problems that a�ect protocols such as
tcp [Hon+11; Pap+17], but it also greatly decreases the ability for network
operators to monitor network performance. This prompted some of them to
ask to modify qic to be able to extract performance information from its
headers [Emi+17]. The ietf answered those operational concerns by reserv-
ing one bit in the qic header (the spin-bit [Tra+18]), exposing limited delay
information. Furthermore, multipath extensions to qic have already been
proposed [Vie+18; DB17].

Losing the ability to monitor the performance of connection is problem-
atic painful for enterprise network operators. Indeed, as they have little to no
knowledge about the state of their isp network, troubleshooting connectivity
issues requires them to passively infer the performance of the network. More
precisely, if a user reports a partial outage, operators have to: (i) identify the
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set of �ows a�ected; (ii) identify which part of the enterprise network is af-
fected (e.g., which uplink if the network is multihomed); and (iii) characterize
the current and past performance of the a�ected services. Such information is
useful for more than troubleshooting. Indeed, collecting performance metrics
enable enterprise to evaluate the quality of the connection across providers,
verify slas, or e�ciently provision their network. If enterprise network op-
erators want to continue to collect performance metrics on the end-to-end
�ows of their users, they need a di�erent approach than passive monitoring
to be future proof.

Problem statement. How can we support the legitimate need of �ne-
grained performance information from enterprise network operators in presence
of encrypted, multipath protocols?

Key challenges. Designing a monitoring framework that answers this
question raises at least four challenges. First, this framework must accurately
depict the performance experienced by the end-hosts. This limits the appli-
cability of active measurements, as this might hide issues speci�c to the used
protocol (e.g., tcp rto). Second, it must support multipath protocols, and thus
monitor the performance of all paths used by a given connection. This limits
the possibility of using passive monitoring since this would require coordi-
nation among the monitors located on di�erent paths. Third, supporting en-
crypted protocols prohibits such framework from analyzing packet headers
or contents and prohibits the utilization of “transparent” proxies. Finally, it
should operate with a low overhead, limiting the generated statistics to the
minimum to establish a baseline for normal operation, while also enabling to
quickly capture and detect performance issues.

Flowcorder. We introduce Flowcorder, a novel enterprise network mon-
itoring framework which addresses the above challenges. The key insight be-
hind Flowcorder is to leverage the per-connection information that is already
maintained by the end-hosts themselves.

Instrumenting the transport stacks of the end-hosts enables Flowcorder
to compute Key performance Indicators (kpis) for each connection. By cap-
turing such kpis at speci�c moments of the connection life-cycle, Flowcorder
can then build performance pro�les of connections. Finally, Flowcorder aggre-
gates those pro�les and exports them over ipfix, integrating with existing
monitoring infrastructure and enabling analyzes across hosts, protocols, re-
mote services and/or isps.

7.2 Flowcorder

Many networks monitor their tra�c using in-network appliances that inspect
packets crossing them, and eventually export statistics to measurement col-



132 Chapter 7. Observing protocol performance on the end hosts

End-host

Router

Collector

�
Packet

Flow: �
Saw: 1pkt

(a) Most networks are monitored using passive
measurements made by the network devices.

�
Packet

Flow: �
Sent: 1pkt
RTO: 0

(b) With Flowcorder, end-hosts themselves
export connection performance statistics.
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TCP

MPTCP

DNS

Existing protocol
implementations

instrument(tcp_retransmit_timer,
struct tcp_sock *sk):
state[sk]->RTO =1;
state[sk]->RTT = sk->sr�_us;
bpf_perf_event_submit(state[sk]);

ebpf probe handler

Flowcorder
aggregation
daemon

established → established
stalls=1 proto=tcp
RTT=25ms connec-
tionID=[. . . ]

Connection performance profile

Export
measurements

to ipfix collector
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lectors using a protocol such as ipfix (Fig. 7.1a). While su�cient to track traf-
�c demands, or collect rough tra�c statistics through passive inference of the
connection states, these techniques hardly scale if the operators requires �ne-
grained performance measurements on a per-connection basis. Flowcorder
instead pushes the monitoring processes directly on the end-hosts (Fig. 7.1b).
By monitoring the per-connection states, Flowcorder can then record the per-
formance of the connections, as experienced by the end-users, and then ex-
port those over ipfix to complement existing measurement infrastructure.
The rest of this section illustrates the di�erent building blocks making up
Flowcorder, visible on Fig. 7.2. More speci�cally, we consider a network ad-
ministrator who wants to use Flowcorder to answer the following a high-level
question: “Which provider performs the best to synchronize �les with a remote
storage service accessed over tcp?”

Computing performance pro�les. The �rst step to answer this high-
level question is to identify kpis (§7.3.1) that enable to characterize the perfor-
mance of the instrumented protocol. Such kpis should contain general statis-
tics about the connection, as well as metrics indicating possible performance
issues, speci�c to the protocol.

For example, high-level kpis to answer our illustrative question could be:
(i) the number of bytes transferred and assumed to be lost; (ii) the amount of
reordering [Jai+07; AFT11; BS02] that occurred in the network; and (iii) signs
of bu�erbloat, such as the number of bytes received multiple times, thus sig-
naling a retransmission timeout on the sender, or times where the connection
stalled and was blocked from sending pending data for several rtts (tcp rto).

Continuously streaming the collected kpis is ine�cient as, beside wasting
resources, it might hide the key performance outliers in the noise generated
by the huge number of smaller variations. Instead, Flowcorder exports the kpis
of a connection only at speci�c moments in the connection lifecycle (§7.3.3).
In-between these exports, the kpis are bu�ered in a lightweight aggregation
daemon, local to the end-host. Once the decision to export the measurement is
made, this aggregation daemon computes a performance pro�le of the connec-
tion: statistics computed over kpis (e.g., moving averages, counter increases)
during well-de�ned moments of the connection life-cycle. The performance
pro�le is then serialized as an ipfix record and added in a pending ipfix mes-
sage bu�er. As we want to minimize the processing load on the collector and
take advantage of the features provided by ipfix, the message is only exported
once its size reaches the local mtu.

In our example, a connection towards the remote storage service that
would experience one retransmission timeout in its entire life-cycle would
generate four performance pro�les: (i) one describing the connection estab-
lishment; (ii) one describing the performance of the data transfer (e.g., aver-
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age rtt, byte counters, number of rto experienced) up to the rto; (iii) one
describing the performance while the connection is considered as lossy; and
(iv) a �nal one describing the performance since the end of the lossy state
and how the connection ended (e.g., did it abruptly end with a tcp rst?).

Collectingkpis. Under the hood, Flowcorder instruments existing trans-
port protocol implementations on the end-hosts. Many methods exist
to collect such statistics, such as extracting them from a general purpose log-
gers [ewt; ChroLog] or polling [rfc1157]. Instead, Flowcorder uses an event-
based method. More speci�cally, Flowcorder inserts ebpf probes at speci�c
code paths in the transport protocol implementations (§7.3.2). When the end-
host stack reaches one of these probes, the probe handler is executed, com-
putes kpis of the connection, exports them in an asynchronous channel to the
aggregation daemon, and then resumes the normal execution of the protocol
implementation. Beside minimizing the instrumentation overhead (§7.6), this
approach is also extremely �exible as it does not require any support from
the implementation (e.g., mibs), and is thus not restricted to a prede�ned set
of metrics, computed in an opaque manner.

In the example of Fig. 7.2, we see that one such probe has been setup to
intercept the expiration of the tcp retransmission timer. If any connection
experiences a rto, this handler then increases the kpi counting rto’s and
updates the connection’s rtt estimated by tcp, then exports it for processing
in user-space.

Analyzing performance pro�les. Flowcorder produces measurements
that can be collected, parsed and analyzed by any IPFIX collector supporting
custom Information Elements [rfc5610]. Performance pro�les are indepen-
dent views of the performance of a connection during a given window of
time, and one can be analyzed separately from the others belonging to the
same connection. These performance pro�les thus enable the network op-
erator to build several views of the network according to key metrics using
simple database queries, and to analyze them (§7.7).

For example, to answer his question, our network administrator could
compute generic statistics such as mean, variance and median of all perfor-
mance pro�les contained in a given time window, aggregated by provider, and
run hypothesis tests. These results could also be split based on the IP version,
or compared against the general trend to access all other remote services. Fi-
nally, beside numerical tests, one can also generate time series and plot them
in monitoring dashboards.
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KPI Description∑ ∗ Sent Data† sent towards the remote host∑
Received Data received and processed by the end host∑
Lost Data assumed to be lost in the network∑
Errors Data received corrupted

A‡RTT Mean Round-Trip-Time and variance (i.e., jitter)∑
Duplicates Received data already acknowledged∑
OFO Data received out-of-order

A OFO-dist Distance of out-of-order data from the expected one∑
Stalls Count when the connection delays the sending of any

pending data during several rtts

Table 7.1: Key Performance Indicators can answer most questions about trans-
port protocol performance

∗∑ denotes a counter over a time window
†Most kpis can be duplicated to track byte-counts and packets (’data’)
‡A denotes an average and a variance over a time window

7.3 Recording protocol performance

Flowcorder records performance pro�les of connections directly on end-hosts,
and exports them to a collector for further analysis. Achieving this requires
addressing three issues: (i)What should a performance pro�le contain to de-
scribe a connection and indicate performance issues (§7.3.1)?; (ii) How can
we collect these key metrics from the protocol implementations?; and (iii)
When should these pro�les be computed to maximize the accuracy of the
measurements while minimizing the overhead of Flowcorder (§7.3.3)?

7.3.1 Characterizing protocol performance

Connection-oriented transport protocols such as tcp maintain state and usu-
ally expose some debugging information ( e.g. struct tcp_info [ker] on Linux
or macOS). However, recording the entire state for each established connec-
tion is impractical. Most of this information is very speci�c to the protocol
implementation and does not always relate to connection performance. For
example, one can �nd the distance (in terms of tcp segments) between the
last out-of-order segment and the expected sequence number or the value of
the slow-start threshold in the struct tcp_info, both of which give almost no
insight to qualify the connection performance. Finally, while Flowcorder aims
to collect �ne-grained measurements about protocol performance as experi-
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enced by the end-hosts, recording every single data point would be counter-
productive, as the more critical observations will end up buried in a huge pile
of data.

Instead, we characterize protocol performance by recording the evolution
of Key Performance Indicators (kpis) during a connection. Example kpis are
listed in Table 7.1. Recording Sent and Received bytes quanti�es the volume
transported on a connection, while tracking the number of segments quan-
ti�es the packet rate (e.g., an interactive ssh session produces many small
tcp segments). Recording Lost segments or segments with a checksum error
(Errors), enables to qualify the path used by the connection. Tracking the evo-
lution of the rtt (and thus implicitly its jitter) can be used to estimate whether
congestion is building up in the network (and is the main source of informa-
tion of some congestion control algorithms such as bbr [Car+16]). Similarly,
recording the reception of segments containing already acknowledged data
is an indication that the remote host mistakenly assumed their loss, which
could be a sign of a possible bu�erbloat. Measuring the amount of packet re-
ordering is also useful, especially in the context of transport protocols, as its
occurrence often limits the maximum achievable throughput. Finally, record-
ing when a connection is prevented from making progress is a strong signal
that something bad happened in the network (e.g., triggering a tcp rto).

From these kpis, network administrators can then answer complex high-
level questions characterising the performance of the network, such as: (i)
what is the best response time that can be expected when connecting to a
remote server?; (ii) Is the connection suitable for bulk transfers?; or (iii) Is
the network congested?

7.3.2 Collecting KPIs from implementations

Recording the evolution of the kpis of a connection on the end-hosts requires
to extract them directly from the protocol implementation. Achieving this
is usually possible using poll-based techniques. For example, snmp can be
used to query the tcp Management Information Base (mib) [rfc4022]. Some
OS’es also de�ne APIs to retrieve information [ker; Ana], or log events to a
centralized journal [ewt] which can then be monitored.

These techniques however come with two limitations. First, the informa-
tion they give is limited to the explicitly de�ned metrics. For example, count-
ing tcp out-of-order packets, as well as characterizing their out-of-order dis-
tance is impossible on Linux with the existing api. Counting received dupli-
cates is not feasible either. Second, by requiring the monitoring tool to poll
them, getting more accurate information about performance changes imposes
a polling frequency and thus a high resource usage on the end-hosts. For
example, characterizing the connection establishment times requires to pre-
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cisely track the �rst few packets of a connection, which could be exchanged
within a few milliseconds.

To address these issues, Flowcorder bypasses these traditional techniques,
and directly instruments the protocol implementation at runtime.

Dynamic tracing using ebpf. Flowcorder leverages the existing dy-
namic tracing tools such as kernel probes [Gos05], or DTrace [CLS]. These
enable to insert lightweight probes at runtime at arbitrary locations in either
kernel (e.g., to instrument the tcp kernel implementation (§7.4)) or user-space
code (e.g., to instrument dns resolution routines, for which we present col-
lected measurements in (§7.7)), typically around function calls. Conceptually
similar to breakpoints and debugging watches, these probes automatically
call user-de�ned handlers before and after executing the probed instruction.
These handlers have complete access to the memory, as well as to the con-
tent of the cpu registers. More recently, the Linux kernel added code to de�ne
such handlers using extended Berkeley Packet Filters (ebpf) [IO ].

ebpf code is pre-loaded in the kernel using the bpf() system call. This
ebpf code is executed in an in-kernel virtual machine that mimics a RISC 64-
bits cpu architecture, with 11 registers and a 512 bytes stack. This code can
be interpreted, but many architectures include a jit that compiles the ebpf
bytecode to native machine code. Before accepting to load an ebpf code, a
veri�er ensures safety guarantees such as proof of termination (e.g., by limit-
ing the overall number of instructions and disallowing non-unrollable loops)
and checks memory-access. ebpf code executed within the kernel can asyn-
chronously communicate with user-space processes using perf events (FIFO
queues). Additionally, ebpf programs can de�nes maps, which let them main-
tain state in-between executions. When an ebpf probe handler is executed, it
receives an instance of the struct pt_regs, which describes the content of the
cpu registers when the probe was hit, including the value of the stack pointer.
This enables the ebpf handler to inspect the function arguments, or to explore
the memory of the instrumented code. These capabilities make ebpf a target
of choice to write probe handlers, as they guarantee that the handlers will
not cause crashes nor hang the instrumented code, while also enabling it to
compute complex statistics and easily report them to user-space.

This approach has at least �ve advantages. First, by leveraging state tran-
sitions that are internal to the implementation, it ensures an accurate trans-
lation to kpis. For example, by recording retransmission timer expirations, it
easily distinguishes between a connection that had no data to send for a while
and a connection that was stalled and had to wait a complete rto before send-
ing anything else. Second, it seamlessly adapts to settings local to the host—
for example, the tcp duplicate ack threshold, or the support for sack on a per
connection basis—that alter the behavior of the transport protocol. As such,
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Figure 7.3: Transport protocol �ows can be abstracted in a general FSM, where
state-transitions act as signal to compute performance pro�les.

it accurately captures the performance experienced by all instrumented end-
hosts. Third, as it implements a push-based model where the transport stack
itself calls Flowcorder, it minimizes the overhead on the end-hosts. Indeed,
as the probe locations guarantee that all kpi changes will be detected, this
avoids the need for constant, high-frequency, polling of the state-variables.
Fourth, as it enables to both read per-connection states and to compute ar-
bitrary statistics that can be stored in maps (thus de�ning custom ancillary
state), this approach is highly �exible, as it does not rely on speci�c sup-
port from the protocol implementation. Finally, it could also be applied to
encrypted transport protocols such as qic since it does not use the packet
data but instead the state-variables of the protocol implementation.

7.3.3 Creating performance pro�les

To use dynamic tracing and ebpf handlers to instrument a particular transport
protocol, one needs to pick probe insertion locations to catch updates to the
state of a connection. While a straw-man approach would pick the main func-
tions involved in every send and receive operation, and continuously stream
the connection kpis after each sent and received packet, this would impose
a high overhead without necessarily providing useful measurements. Indeed,
once the probes are inserted, their handlers are executed for every connec-
tion hitting that code path. Instead, we aim at recording the evolution of kpis
between key events in the connection life-cycle. To this end, we place probes
at locations that are seldom reached, yet catch all important events a�ecting
the connection, and record statistics describing the evolution of the kpis be-
tween two events. We call such set of statistics the performance pro�le of a
connection.

A �rst set of events are de�ned by the protocol speci�cations. Such spec-
i�cation is usually composed of two di�erent parts. The �rst is the syntax
of the protocol messages, which can be expressed informally with packet de-
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scriptions or more formally by using a grammar (e.g., abnf [rfc5234],
asn.1 [asn.1]). The second part of the speci�cation describes how and when
these messages are sent and processed. Most Internet protocols speci�ca-
tions use Finite State Machines (fsm) to represent the interactions among the
communicating hosts. Although implementations are usually not directly de-
rived from their speci�cation (e.g. for performance reasons or ease of main-
tenance), most implementations also include the key states and transitions of
the protocol speci�cations. For example, most tcp implementations include
the SYN_RCVD, SYN_SENT and ESTABLISHED state of the tcp speci�cations [rfc793].
While state transitions signal that a connection is making progress, not all of
them provide similar information (e.g., transitions into the tcp TIMEWAIT state
give no information on the connection besides that “it is about to close”). Ul-
timately, these fsm describe the life-cycle of a connection. They can thus be
abstracted by mapping their state and transitions to the three key phases in
a connection life-cycle: (i) the connection establishment; (ii) the exchange
of data; and (iii) the connection tear-down. These three stages enable us to
de�ne the abstract fsm visible on Fig. 7.3. When the state of a connection in
this simpli�ed FSM changes, it is a signal that Flowcorder needs to create a
performance pro�le for the connection. Performance pro�les should thus also
contain the start and end states corresponding to their transition, enabling to
compare the performance of connections for similar transitions (e.g., charac-
terize the connection establishment delay).

A second set of events that requires Flowcorder to generate a performance
pro�le are the functions in the protocol implementation that indicate that an
unexpected event occurred (e.g., a retransmission timeout). We model this by
a looping transition in the ESTABLISHED state in Fig. 7.3.

Finally, a third set of probe locations is de�ned by kpis that are not com-
puted by default by the protocol implementation. For example, metrics related
to reordering for the tcp instrumentation. Tracking these kpis then implies
to create an ancillary state for the connection (e.g., using an ebpf map), and
updating it as the connection advances.

Once exported by the ebpf handlers, these performance pro�les will even-
tually be received by an user-space aggregation daemon. This daemon then
serializes these pro�les to an ipfix record, adding in the process information
to identify both the connection (e.g., the tcp 5-tuple) and the network path
used (e.g., the egress interface and source address). This record is then even-
tually exported to the collector.
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7.4 Instrumenting the Linux TCP implementation

To demonstrate the applicability of our approach, we have applied it to the tcp
implementation of the Linux kernel. This is a high-performance and widely
used tcp implementation that has been tuned over more than a decade. We
�rst introduce the kpis building up the performance pro�les of tcp connec-
tions (§7.4.1). Then, we describe the various ebpf handlers that are used, and
illustrate their interactions (§7.4.2).

7.4.1 kpi selection

Instrumenting the Linux kernel tcp stack requires to map the chosen kpis
to tcp state variables. A tcp connection is represented in the kernel using
the struct tcp_sock. As-is, this structure already contains most of the kpis
presented in Table 7.1. For example, bytes_received tracks the received bytes;
srtt_us is a moving average of the estimated tcp rtt. Computing the statis-
tics to create a performance pro�le from these state variables thus requires the
ebpf handler to: (i) retrieve the address of the connection state from the pa-
rameters of the instrumented functions; (ii) copy the relevant state variables
from the kernel memory to the ebpf stack; and (iii) compute the statistics on
the evolution of the kpis that these variables represent.

Unfortunately, not all kpis from Table 7.1 are directly available in the tcp
implementation. More speci�cally, four kpis are missing. First, the number
of duplicate incast bytes (Duplicates) is never recorded. If a connection re-
ceives a segment already (partially) acknowledged, the implementation ig-
nores its payload. Second, the number of retransmission timeouts (Stalls) is
not recorded. Similarly, the number of bytes and packets that arrived out of
order (OFO) is not tracked. Finally, the existing reordering connection state vari-
able is not su�cient to represent the distance between out-of-order packets
(OFO-dist). Indeed, while it does express an out-of-order distance, it does so
in terms of number of MSS-sized segments, and represents only the value
computed for the last packet. Furthermore, it is clamped by a sysctl value.

Recording such ”custom“ kpis thus requires to create an ebpf map along-
side the probe handlers. This map can then be used to contain the ancillary
state for each monitored connection (i.e., map a connection state to a data
structure containing the value of the kpis not provided by the protocol im-
plementation). Managing this map has two implications. First, new entries
must be added for any connection that will be monitored. This is especially
important for connections initiated by the end-host itself. Indeed, if the tcp
syn they send is lost, the retransmission timer will expire, and the count of
connection stalls will need to be increased. This does not apply for inbound
connection requests, as creating state before their acceptance by user-space
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Probe location Pre Post Handler description

tcp_v[46]_connect �3 �3 Register a new connection attempt and ini-
tialize its ancillary state; export kpis to an
error state if the function returns an error
which indicates a cancellation of the con-
nection.

tcp_finish_connect �3 � Exports kpis indicating the establishment
of a new outbound connection.

inet_csk_accept � �3 Exports kpis for a new inbound connection
accepted by user-space.

tcp_set_state �3 � If a connection moves to TCP_CLOSE, com-
pute its �nal state and exports its kpis.

tcp_retransmit_timer �3 � Export kpis if the connection has stalled
and enters a lossy state once established.

tcp_fastretrans_alert � �3 If the connection congestion control state
moves back to TCP_CA_OPEN (e.g., has recov-
ered from an rto), exports kpis to mark the
end of the lossy state.

tcp_validate_incoming �3 �3 Detect incast duplicates; update the re-
ordering kpis if the packet enters the
ofo_queue.

Table 7.2: A few probes in the Linux TCP implementation act as events to
detect many performance changes.

application would provide a Denial-of-Service attack vector. Similarly, this
ancillary state must be purged when the connection is over. The second im-
plication of managing such ancillary state is that it imposes to insert ebpf code
at every location where one of its value needs to be updated. Fortunately, as
the missing kpis represent very speci�c behaviors, these only require to in-
strument two extra locations (see §7.4.2). Note that the overhead of storing
such ancillary is extremely low (i.e., less than 100 bytes per connections in
the current implementation).

7.4.2 De�ning probe locations

Table 7.2 lists the functions of the Linux kernel where we insert our probes as
well as their handler(s). These functions were chosen to minimize the over-
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head induced by the probes, i.e., they are never executed in the context of the
tcp “fast-path” processing. They fall into two categories.

First, we instrument the functions that correspond to state changes in the
tcp fsm (i.e., from tcp_v6_connect to tcp_set_state). These indicate changes
in the connection life-cycle and thus mandate computing kpis. Second, we
instrument functions that denote events which require us to update our an-
cillary connection state. More speci�cally, tcp_retransmit_timer let us track
expirations of the retransmission timer. If a connection experiences a RTO,
and its write queue is not empty or the user-space is blocked on a syscall,
then it means that the connection has stalled. tcp_fast_retrans_alert may sig-
nal that a connection has recovered from a RTO (i.e., that the network is stable
again) and moved back in the established state.

tcp_validate_incoming’s instrumentation is split into two handlers. First, it
detects whether an incoming segment has already (partially) been acknowl-
edged. Such a segment is an explicit signal that the other host experienced a
retransmission timeout. Second, if the function accepts the received segment,
this means that it is an out-of-order segment, and the handler updates the
statistics tracking the reordering. Furthermore, as both tcp_retransmit_timer

and tcp_fast_retrans_alert indicate that a signi�cant performance event has
occurred (a succession of losses in the network, and then a recovery), their
handler also export kpis. This eventually creates performance pro�les looping
on the ESTABLISHED state, enabling to describe the performance of the connec-
tion before, during, and after such transient events (e.g., a �ash crowd causing
congestion).

Collecting kpis for a new outbound connection. We now illustrate
how Flowcorder exports kpis describing the establishment of a new outbound
connection. In the example shown in Fig. 7.4, an application creates a regular
tcp socket. Then, it tries to establish a tcp connection with the connect() sys-
tem call. This system call is processed by the kernel, and eventually reaches
the tcp_v4_connect() function, for which Flowcorder had registered a probe.
This probe is executed before the instrumented function. It registers basic in-
formation about this connection establishment, such as its destination address
and the time at which it started. Then, the kernel executes the tcp_connect()

function, eventually sending a tcp syn segment. When the function exits, the
post handler is executed and immediately returns as the connection was suc-
cessfully initiated and the kernel switches to other tasks. Unfortunately, this
initial syn does not reach the destination. After some time, the retransmission
timer expires. This causes the kernel to execute the tcp_retransmit_timer()

function. Again, Flowcorder intercepts that call using a probe, which incre-
ments the number of stalls. The kernel then sends a second tcp syn.

When receiving the corresponding syn+ack, the kernel identi�es the tcp
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Kernel
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Figure 7.4: Abstract time-sequence diagram of the generated performance
pro�les of a TCP connection which loses its initial SYN, exchanges data, then
closes. With a few kernel probes, our eBPF handlers trace the entire connec-
tion life-cycle and report it to an user-space daemon.
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connection it corresponds to and reaches tcp_finish_connect(). As its corre-
sponding ebpf handler is awoken, Flowcorder marks the connection as estab-
lished, computes its kpis and sends them to the user-space aggregation dae-
mon using a perf_event. This daemon asynchronously fetches and analyzes
the kpis, builds the performance pro�le of this new connection and adds it in
its ipfix pending message bu�er to send it later to the collector. In parallel, the
tcp_finish_connect() kernel function completes and wakes up the application
which can use the connection.

If the network then behaves perfectly (e.g., no reordering, and no losses),
the probes placed in the kernel are never reached thus never executed for that
connection. Finally, when the application closes its socket, the kernel even-
tually calls tcp_set_state to move the underlying connection to the TCP_CLOSE

state. Flowcorder intercepts this call, computes the �nal set of kpis for this
connection, and exports a performance pro�le covering the entire connection
and reaching a �nal state describing how the connection ended (e.g., finished
if both tcp fin’s were received and acknowledged).

7.5 Extending Flowcorder to support MPTCP

mptcp is a new tcp extension which enables to operate a single tcp connec-
tion over multiple paths [rfc6824]. Two main implementations of this protocol
exists: the reference one in the Linux kernel [PBa] and one deployed by Ap-
ple on iOS [App17]. We now demonstrate the genericity of Flowcorder, by
enabling it to record performance pro�les of mptcp connections.

To instrument mptcp, a few architectural details have to be taken into
account. Despite being a relatively complex implementation (∼18kLOC), it is
heavily tied to the existing tcp implementation. At its heart, a mptcp connec-
tion operating over two paths is composed in the kernel of two tcp connec-
tions, and of one meta-socket. This meta socket is the one exposed to user-
space. It hijacks the socket api used by tcp (i.e., user-space programs use
mptcp by default). Sending data using mptcp requires to break the bytestream
received on the meta-socket into chunks with a mptcp sequence number (dss),
and then to send those over one of the sub�ows. The receiver’s meta socket
then reads the receive queues of its tcp sub�ows, and reassembles the original
bytestream thanks to the dss.

Instrumenting this implementation poses three challenges: (i) di�erenti-
ating between a new mptcp connection and regular tcp one can only be done
once the syn+ack has been received, since mptcp connection will contain
a dedicated option (mp_capable); (ii) mptcp sub�ows will trigger the same
ebpf probes as regular tcp connections as they are implemented in the ker-
nel using tcp connections; (iii) new sub�ows can be created directly by the
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meta-socket, without any action from the user.

kpis speci�c to mptcp. As mptcp sub�ows operate as regular tcp con-
nections, we use the same set of kpis as in §7.4.1 with one addition. When
a retransmission timeout occurs on a sub�ow, its unacknowledged segments
are retransmitted both on the sub�ow itself, as well as on another one (they
are reinjected on another sub�ow). We record the number of reinjections done
by a sub�ow in a new kpi present in the ancillary state of the mptcp sub�ows.

Recall that the meta-socket provides a bytestream service pretending to be
tcp. As such, it supports most of the kpis supported by tcp, with four tweaks.
First, as it gets its segments from underlying tcp connections, it cannot re-
ceive corrupted segments and has no concept of latency, removing those kpis.
Second, segments arriving out-of-order on the meta-socket no longer indicate
reordering happening in the network. Indeed, such reordering is handled by
the sub�ows themselves, as part of their vanilla tcp implementation. Instead,
reordering on the meta-socket is tied to the relative performance di�erence
between the sub�ows1. Third, duplicate incast segments on the meta-socket
indicate that the sender reinjected segments on another sub�ow as the du-
plicated ones timed out. Finally, retransmission timeouts at the meta-socket
level indicate that the connection is su�ering from head-of-line blocking (e.g.,
a lossy sub�ow prevents all others from making progress). As one of the more
common causes of such a behaviour are too small receive bu�ers, this de�nes
a new kpi speci�c to the meta-socket.

ebpf probes handlers. All probes de�ned in §7.4.2 also record the per-
formance of mptcp sub�ows as-is. In addition to them, we update the ancil-
lary state to track reinjection across sub�ows by instrumenting
__mptcp_reinject_data. Recording the performance of the meta-socket also re-
quires the addition of probes to record the expiration of its retransmission
timer (mptcp_meta_retransmit_timer). New sub�ows initiated by the instrumented
host are automatically detected by the probes handling the creation of tcp
connections. Detecting the creation of new sub�ows initiated by the remote
host (e.g., when operating as server) requires instrumenting
mptcp_check_req_child.

7.6 Flowcorder operates with little overhead

In this section, we begin by evaluating the overhead of Flowcorder when in-
strumenting the Linux tcp stack. We �rst run micro-benchmarks to estimate

1Consider two successive segments A and B, such that A comes �rst in the mptcp
bytestream. If B arrives before A on the receiver’s meta-socket, it then follows that: (i) A
and B were sent over di�erent sub�ows, as sub�ows guarantee in-order delivery; and (ii) the
sub�ow of B was “better”, e.g., had a lower latency, and/or fewer losses.
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(a) Flowcorder induces a small overhead when used over a link with no loss and
sub-ms RTT.

1 1.012 1.018 1.028 1.033

0%

50%

100%

No instr
umen

ta
tio

n

Flowcorder

Naiv
e instr

umen
ta

tio
n

Be�er

Normalized cost per byte transferred

Pe
rc

en
ta

ge
of

ex
pe

ri
m

en
ts

[%
]

(b) Introducing a 10ms RTT and 0.1% loss rate reduces the overhead by an order of
magnitude.
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(c) 30ms RTT and 1% losses cause overhead of Flowcorder to become negligible.

Figure 7.5: Analyzing the number of instruction executed to saturate a 10G
link shows that the overhead induced by the kernel probes is negligible, es-
pecially when the link exhibits losses or reordering.
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the overhead of Flowcorder in function of the characteristics of the underly-
ing network (§7.6.1). Then, we evaluate the application-visible performance
impact of instrumenting the tcp stack (§7.6.2). Finally, we conclude the sec-
tion by presenting how to evaluate that the performance pro�les produced
by Flowcorder are accurate, especially after kernel upgrades thus potential
changes in the instrumented protocol implementation (§7.6.3).

7.6.1 Instrumentation overhead

To estimate the overhead induced by the monitoring daemons as well as the
kernel probes injected in the tcp stack by Flowcorder, we execute a bench-
mark between two servers (each with 8-cores cpus at 2.5Ghz and 8G of ram)
and connected using 10G interfaces. Intuitively, the overhead of running Flow-
corder amounts to estimating how much extra work the machine being in-
strumented did to perform a given task. We use ntttcp [ntttcp] to initiate
multiple tcp connections from one server to the other, e�ectively saturating
the 10G link. For each experiment, we record how many bytes were success-
fully transferred, and use perf [perf] to record how many instructions were
executed during the experiment, as reported by the hardware cpu counters.
Each experiment ran for 60 seconds, in order to average out measurement
errors. We also varied the rtt applied over the link (from a few hundred µs
to 100ms), its jitter (10% of the rtt), as well as its loss rate (from 0 to 1% of
random losses). We performed 200 experiments per combination of rtt and
loss rate, and had Flowcorder enabled on the servers in half of those experi-
ments. Then, we compared the resulting cost (expressed as the average num-
ber of instructions executed on the servers, divided by the number of bytes
successfully transferred) of using Flowcorder. Using the number of executed
cpu instructions as metric has at least four advantages: (i) it is independent
of the precise duration of the experiment (i.e., coarse-grained timers have no
incidence on the results); (ii) it isolates the results from the transient states
of tcp congestion control; (iii) it is independent of the cpu frequency, which
is impossible to precisely control when running benchmarks; and (iv) it cap-
tures both the load induced by the kernel probes, and the load induced by the
user-space daemons aggregating kpis and exporting ipfix records. We show
a summary of the results in Fig. 7.5, which plots the cumulative distribution
of the fraction of experiments according to their normalized cost (i.e., we nor-
malize all costs by the lowest one).

When operating over a perfect link (Fig. 7.5a), we see that Flowcorder in-
creases by about 1.1% the number of instructions executed during a test. As
the experiments had almost no delay and no losses, this gives a baseline as
to how expensive it is to run Flowcorder, when all connections are processed
in the kernel fast path (i.e., the path levering as many optimizations as pos-
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sible, such as hardware o�oad or skb coalescing, which decreases the over-
all cpu cost of the connection) thus trigger as few events as possible. When
adding some delay (10ms of rtt, and 1ms of jitter), and a small random loss
probability of 0.1%, we see in Fig. 7.5b that this per-byte instruction overhead
decreases quite substantially, and is approximately 0.3%. Indeed, as segments
starts to arrive out-of-order, or are lost, the tcp stack begins to process these
segments in the slow path, which is much more expensive cpu-wise than the
load induced by Flowcorder. This impact is even more visible as we reach a
rtt of 30ms±3ms, with a loss rate of 0.5% (Fig. 7.5c) which puts the executed
instructions per byte successfully transferred overhead at only 0.06%.

This indicates that the relative cost of using Flowcorder decreases when
the network quality worsens, thus when Flowcorder starts to actually produce
performance pro�les. The handling of lost or out-of-order segments has a
much larger impact on the performance than the kernel probes inserted by
Flowcorder and associated monitoring daemons. The decrease in the number
of instructions per byte transferred between Fig. 7.5a and Fig. 7.5b is expected,
as increasing the rtt by several orders of magnitude increases the idle periods
of connections as they wait for acks.

We performed the same experiments when instrumenting the mptcp im-
plementation (§7.5), and observed similar results (albeit with a smaller over-
head as mptcp disables the kernel tcp fast path processing).

7.6.2 Impact on application performance

The previous section showed that Flowcorder was inducing some overhead
on the instrumented end hosts. In this section, we evaluate whether this over-
head can cause application-visible performance degradations. To this end, we
con�gure one host to run a http server. We then record the time to per-
form an http get to download a �le of a given size from the server. As we
saw in §7.6.1, the overhead of Flowcorder is maximum in a perfect network.
Both client and server are directly connected, and Ethernet �ow-control is
enabled to ensure the absence of losses. We simulate the client requests using
ApacheBench [apsf], with a variable number of parallel connections (up to
100). We repeated each experiment 2000 times (i.e., opened 2000 connections
for each response size), and half of those had Flowcorder enabled on the client.
We recorded for each experiment how quickly the connection completed (i.e.,
how long did it take to perform the TCP three-way handshake, the http get,
then download the response and close the connection), and the results are
visible in Fig. 7.6.

Fig. 7.6a shows the median overhead per response size, which is the ob-
served increase in completion time when the end hosts was being instru-
mented by Flowcorder. We see that as the size of the http response increases,
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(a) Flowcorder has a negligible overhead on the overall completion time when down-
loading a �le.
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(b) The instrumentation overhead is comparatively higher when downloading one-
byte �les.
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(c) Large transfers amortize the overhead as few performance pro�les are generated
per connection.

Figure 7.6: Using Flowcorder has almost no application-visible impact on the
performance of the Linux tcp stack.
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the overhead decreases. This result is expected. Indeed, recall that Flowcorder
generates at least two performance pro�les for each connection, and none in
the established state if there are no performance degradations. If the response
exceeds a few tcp segments, its completion time is thus dominated by the tcp
data transfer, and not by the execution of kernel probes. Fig. 7.6b thus shows
the absolute worst case for these experiments, as the response consists in a
single segment. We see that the median increase in the response time in that
case is about 0.15%. Fig. 7.6c shows the overhead with a 1GB response. We
note that the overhead there was about 0.03%. We also performed experiments
over a link with some delay and/or losses, and observed that the overhead in
those case was even lower as the response time was completely dominated
by the network characteristics.

These benchmarks, show that despite inducing some overhead, Flowcorder
has a very low (if not negligible) impact on the performance of connections
initiated by applications. This result also holds when instrumenting mptcp.

7.6.3 Ensuring accurate measurements

The content of the performance pro�les generated by Flowcorder, and thus
the accuracy of the measurements, clearly depend on the correctness of the
instrumentation of the protocol implementation.

Sources of measurement errors. As Flowcorder extracts most of its
kpis by performing raw memory reads directly in the per-connection states,
this extraction process it thus a �rst possible source of errors. Values could
be read at incorrect o�sets, or be decoded incorrectly (e.g., reading only the
�rst 32b of a 64b counter). The second source of possible errors are the as-
sumptions the probes make on the status of the connection. For example,
the tcp instrumentation assumes that a connection can be identi�ed by the
address at which its state resides, which is conveniently passed around as
struct sock *sk in most functions. If such assumption is wrong (or no longer
holds due to an update), then Flowcorder will produce incorrect measure-
ments as it might mix up connections, wrongly assume that a connection
received an out-of-order segment, . . . The third source of errors is the set of
probes and their locations. Indeed, as the implementation of the protocol im-
proves over time, the set of functions called for each event (e.g., received seg-
ments, timer expiration) and their relative order might change. The most ob-
vious e�ect of this on Flowcorder would be inconsistent performance pro�les
(e.g., increasing the number of bytes transferred of a closed connection), or
missed events (e.g., connections never appearing in logs, missed RTOs).

Preventing measurement errors. To prevent the �rst source of errors,
Flowcorder re-compiles its ebpf code every time its probes are inserted. As
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this compilation process directly happens on the instrumented machine, it
can use information local to the machine (e.g., headers matching the running
kernel, values in procfs to enable or disable the mptcp instrumentation). This
source of measurement errors is thus prevented by design. Incidentally, this
re-compilation process also ensures that probes are always inserted at their
proper locations, as their o�set are also dynamically computed during the
ebpf compilation.

To prevent the seconds and third type of errors, we built a test suite using
Packetdrill [Car+13]. Packetdrill enables us to test protocol implementation
using scripts which describe connections. More speci�cally, those scripts in-
ject crafted packets in a local interface at speci�c points in time, as well as
specify the content of packet(s) that should be sent by an implementation in
response to incoming packets or api calls. Packetdrill contains a set of edge
test cases for the Linux tcp implementation, and similar test cases for mptcp
are available [Sch]. As each test case depicts a well-de�ned connection, we
can statically predict the performance pro�les that should be produced by
Flowcorder when instrumenting that connection. This lets us build integra-
tion tests to validate that Flowcorder accurately instruments protocol imple-
mentations.

Using this test suite, we were able to ensure that Flowcorder accurately
instruments the tcp stack of the Linux kernel from v4.5 to v4.17, and mptcp
v0.93.

7.7 Flowcorder in a campus network

We now present measurements collected over one month with Flowcorder in
a campus network. We deployed Flowcorder in student computer labs, where
we run on every host monitoring daemons that instrument the Linux kernel
tcp stack, presented in (§7.4), as well as dns resolutions libraries. Each end-
host is dual-stacked and has public addresses.

Viewing the e�ects of Happy Eyeballs. Fig. 7.7a shows the repartition
of the tcp connections in function of the ip version used. We see that most
of the connections are established using ipv6. As major cloud services are
very popular amongst students and they all support ipv6, this could be due to
Happy Eyeballs [rfc6555]. We can con�rm that Happy Eyeballs indeed favors
connections over ipv6 by looking at Fig. 7.7b. It compares the median time
required to establish new tcp connections depending on the used address
family. More speci�cally, it only contains connections established towards
dual-stacked ases. We see that the time to open a new connection is similar
for both address families, despite ipv4 exhibiting many outliers. As Happy
Eyeballs gives ipv6 connections a head start of usually 300ms (although some
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(b) IPv4 and IPv6 have similar connection establishment delays, causing Happy-Eyeballs
to favor IPv6.
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(c) IPv4 connection su�er from a larger jitter.

Figure 7.7: Network performance insights provided by Flowcorder in a dual-
stacked, multi-homed, campus network.
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(d) A disproportionate amount of IPv4 connections experiences at least one initial syn
retransmission.
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(e) One large cloud service provider often routes requests towards datacenters inducing
large rtts.
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(f) An issue in one datacenter caused colocated service to present vastly di�erent response
time.

Figure 7.7: Network performance insights provided by Flowcorder in a dual-
stacked, multi-homed, campus network.
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have called to reduce it [BS16a]), this explains why ipv6 is almost always used
to reach popular services.

Comparing the performance of di�erent uplinks. Our network is
dual-homed. It uses di�erent uplinks for ipv4 and ipv6. We leverage Flow-
corder to analyze the di�erence between the two address families. Fig. 7.7c
shows the median jitter observed for tcp connections. We observe that the
jitter experienced by ipv4 connections is higher than for ipv6. This correlates
with the trend from Fig. 7.7b, where ipv4 showed more variations. Finally, to
better understand why the ipv4 connection establishment delay had a higher
variance, Fig. 7.7d shows the ratio of connections that were successfully es-
tablished after losing their initial tcp syn. We see that this mainly occurs only
for ipv4, which might point to an on-site issue with a �rewall or congestion
of the ipv4 uplink. Overall, these results show that ipv6 connections seem to
perform better than ipv4 connections in our campus. This is expected, as only
the ipv4 tra�c is shaped by our provider.

Comparing the performance of remote cloud services. Another us-
age for the measurements collected by Flowcorder is to compare the perfor-
mance when accessing di�erent cloud services. Indeed, as an isp might have
di�erent peering agreements with them, measuring the quality of the con-
nections towards those service can be a factor to decide whether to subscribe
to one service or another (or to select a di�erent ISP). For example, Fig. 7.7e
compares the median tcp rtt when accessing two popular cloud services.
For these services, a low rtt is key to ensure a proper level of interactivity.
We see that while both services tend to show similar rtt’s over ipv4, one of
them (PB ) performs much worse when accessed over ipv62. Keep in mind that
while Flowcorder uses tcp’s estimates to report rtt and jitter, this might not
completely re�ect the true values to reach the actual server, as there could be
middleboxes or tcp proxies present on the path, �ddling with segments.

Detecting a local operational issue. Beside providing external con-
nectivity, our campus network also hosts services such as a dns resolver or
institutional web servers. During our measurement campaign, students were
complaining that accessing those web servers was abnormally slow. As these
web servers are collocated with the dns servers, we can thus directly use
Flowcorder to compare their performance. Fig. 7.7f shows the median time
to establish a connection to any of these servers. Given that the servers are
located a few hundreds of meters away, 30ms to receive a syn+ack is a clear
performance anomaly, especially compared to the time required to receive
a dns reply. After talking with the network operators, we learned that this

2Further analyzes revealed that the provider’s dns was causing students’ requests to use
datacenters located on another continent.



7.8. Related work 155

problem was due to a faulty load-balancer that was �xed near the end of the
observation period.

7.8 Related work

Monitoring network performance is an age-old topic. Flowcorder draws from
three main threads of work.

Collecting transport performancemetrics. Passive inference of trans-
port protocol characteristics has been a primary source of measurements for
a long time, e.g., inferring per-�ow tcp states by analyzing packet headers
provided by a network tap (tstat [Mel02]), or correlating packet traces col-
lected on the end hosts (Deja-vu [Agg+11]). More recent approaches tailored
to data-centers (e.g., Trumpet [Mos+16], Dapper [GBR17]) perform such ana-
lyzes in real-time, at the edges of the network (i.e., access switches or virtual
machine hypervisors). While these techniques provide �ne-grained measure-
ments for tcp they will not be applicable to emerging encrypted protocols
such as qic.

Instrumenting the end-hosts. SNAP [Yu+11] or NetPoirot [Arz+16]
collect an enormous amount of statistics about tcp connections directly from
datacenter hosts. By collecting those on a central management system, they
can then correlate observations in order to identify the root causes of per-
formance issues (e.g., bottleneck switch or link, or miscon�gured of tcp de-
layed ack’s). Both tools poll event loggers (e.g., Windows EWT, or Linux
syslog) every few milliseconds. As such, they are restricted to the measure-
ments provided by those loggers (typically the tcp mib [rfc4022]), with a
higher cpu overhead than Flowcorder. Odin [Cal+18] is a framework injecting
javascript when serving client requests from cdn to perform active measure-
ments. While this approach collects performance metrics as experienced by
end-hosts, the measurements that it can records are, by design, much more
limited.

Instrumenting protocol implementations. Several tools provide some
visibility over the internals of the Linux tcp stack. tcpprobe [Theb] is a ker-
nel module which logs the evolution of the congestion control variable in
response to incoming tcp segments. tcp-tracer [Wea] reports the tcp state
changes (e.g., new→established) for all connections. bcc [Thea] provides
several small tools, enabling to log some aspects of tcp connections. All of
these tools use the same primitives to instrument the tcp stack (i.e.,, kprobes,
often combined with ebpf handlers), but they are not coupled with enterprise
management systems and only monitor very speci�c aspects of the protocol
implementation.
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8Summary

This part introduced two network monitoring frameworks, each tailored to
answer the speci�c needs of di�erent types of networks.

First, Stroboscope (§6) is an in-network solution to collect precise metrics
about tra�c �ows, with a controlled monitoring overhead. As such, Strobo-
scope is particularly well-suited to provide visibility over the tra�c of isp
networks. Stroboscope combines the visibility bene�ts of tra�c mirroring
with the scalability of tra�c sampling. As such, Stroboscope can monitor
tra�c �ows with very large tra�c volumes, while also enabling to reason
about network-wide behaviors. We implemented Stroboscope1, and show that
it scales well: it computes measurement campaigns for large networks and
query sizes in few seconds, and produces a number of mirroring rules well
within the limits of current routers. Stroboscope works on existing routers
and is therefore immediately deployable.

Second, we presented Flowcorder (§7), a monitoring framework which di-
rectly extracts Key Performance Indicators from the end-hosts. By directly
instrumenting protocol implementations, Flowcorder is able to collect �ne-
grained measurements transparently supporting fully-encrypted and multi-
path protocols. We presented an implementation of Flowcorder2for the Linux
kernel tcp and mptcp stacks, and are now extending our approach to instru-
ment qic libraries, as their implementations stabilize. We presented perfor-
mance insights provided by Flowcorder when deployed in a campus network.
Flowcorder operates with a negligible overhead, and integrates with existing
measurement collection infrastructure.

Both of these monitoring frameworks enable to collect �ne-grained mea-
surements about di�erent aspects of the networks. As such, one future re-
search direction would be to use their measurements to drive tight control-
loops. For example, Flowcorder’s performance pro�les could be used by an
enterprise network controller to optimize the content of dns replies. Such in-
tegration would enable to dynamically select the best performing provider or

1Available at https://github.com/net-stroboscope.
2Available at https://github.com/flowcorder.

157

https://github.com/net-stroboscope
https://github.com/flowcorder


158 Chapter 8. Summary

address family for a given service. Similarly, as Stroboscope enables to collect
end-to-end measurements on any path (including forwarding paths), it pro-
vides the necessary data to dynamically adjust the behavior of the network
to reach target Service-Level Agreement.

Finally, the measurements collected by both monitoring frameworks could
be processed by machine-learning algorithms. For example, Stroboscope ’s
monitoring queries could be automatically generated by such a system to con-
�rm the existence of a predicted network outage. Flowcorder’s performance
pro�les could be �ltered, in order to automatically highlight measurements
showing likely performance issues.



9Conclusion

Today’s networks are mostly static, as adapting them to new requirements
is complex and error-prone. Furthermore, they have little visibility over their
tra�c as they rely on random packet sampling. More speci�cally, isp net-
works are currently unable to measure network-wide behaviors, such as for-
warding paths, or one-way delays. In parallel, enterprise networks are losing
their ability to monitor the performance of their connections as newer, en-
crypted, and multipath protocols are deployed. As a result, today’s networks
are in�exible.

In this thesis, we explored how to improve their �exibility in two ways.
First, we developed a new control primitive, Fibbing, which enables to cen-
trally control the forwarding paths computed by distributed routing proto-
cols (§3). More precisely, we formulated provably correct algorithms that aug-
ment link-state igp topologies with fake nodes and links to implement for-
warding requirements. These algorithms scale to large topologies, and com-
plete in a time frame suitable for online use. Additionally, we discussed how
Fibbing interacted with overlay protocols (e.g., bgp, or mpls), as well as how
it could be used to enable incremental sdn deployment. Then, we presented
a complete implementation of a Fibbing controller which is able to program
paths in an ospf network made of commercial, unmodi�ed routers (§4). In par-
ticular, we showed how we could map Fibbing primitives to parts of the ospf
speci�cations, and identi�ed the key building blocks to be able to implement
a controller. We demonstrated that Fibbing induced almost no overhead on
real routers, and that our implementation supported advanced failure seman-
tics. Finally, we demonstrated the practicality of our implementation through
a case study where a Fibbing controller is used to implement real-time tra�c
engineering policies.

In a second time, we explore how to improve the �exibility of network
monitoring systems. First, we presented Stroboscope, a network monitoring
framework enabling isp operators to collect �ned-grained measurements (§6).
Stroboscope computes high-level queries into a schedule of low-level mirror-
ing (de-)activations, in order to collect small tra�c samples. To that end, it
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features a compilation pipeline with provably correct algorithms which opti-
mizes where and when to activate mirroring rules, in order to provide both
strong accuracy guarantees, and to adhere to a monitoring budget. We im-
plemented a complete Stroboscope prototype, and demonstrated that it could
work with today’s routers. Finally, we introduced Flowcorder, a monitoring
framework aiming at capturing the performance of protocols in enterprise
networks (§7). Flowcorder transparently supports encrypted and multipath
protocols, unlike traditional passive monitoring techniques. Flowcorder in-
struments protocol implementations on the end-hosts in a generic way in
order to collect Key Performance Indicators on a per-connection basis. These
kpis are aggregated into connection performance pro�les, and eventually sent
to an ipfix collector for analyzes. We presented a complete implementation
of Flowcorder which instruments the Linux tcp stack, and demonstrated its
extensibility by adding the support for mptcp. Flowcorder operates with al-
most no overhead on the end-hosts. We then presented hinsights provided by
Flowcorder when deployed in a campus network. We believe that both Stro-
boscope’s and Flowcorder’s measurements can be used to drive tight control-
loops for their respective kind of networks, as well as enhance their trou-
bleshooting capabilities.

Open problems

Along the way, several future research directions have been opened in this
thesis. First, Fibbing shows that some level of programmability can achieved
using distributed protocols. As such, future work could explore further the
primitives that can distributed in the igp (e.g., alternate path computation) and
those that should be kept centralized. Furthermore, as the industry as been
heavily deploying Segment-Routing, we believe that its interactions with Fib-
bing should be investigated further as both approaches can bene�t from one
another—e.g., sr could use Fibbing in lieu of binding segments to reduce the
label stack and ensure failure resiliency, while Fibbing could leverage sr to
express function chains.

Second, Stroboscope shows that by controlling its overhead, packet mir-
roring is a useful monitoring primitives. Further research could explore how
to enhance the current runtime aspects of Stroboscope, e.g., to implement
them on the router themselves. Additionally, integrating Stroboscope with
machine-learning systems could automatically generate monitoring queries,
enabling to monitor paths “about to have issues”.

Finally, Flowcorder shows that recent advances in os instrumentation can
be used to collect �ned-grained performance records of connections. Extend-
ing it to support a mature qic library implementation is one of the possi-
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ble future research direction. Another one could be to extend it to be able to
dynamically switch to more �ned-grained analyzes as it detects a potential
performance issue (e.g., start to monitor all incoming tcp segments once one
has been received out-of-order to detect whether the issue is sporadic or is
constant).
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