
On Improving the Efficiency and Manageability of NotVia

Ang Li§ Pierre Francois† Xiaowei Yang§∗

§ Dept. of Computer Science
University of California, Irvine

{angl, xwy}@uci.edu

† Dept. of CSE
Université catholique de Louvain

pfr@info.ucl.ac.be

ABSTRACT

This paper presents techniques that improve the efficiency

and manageability of an intra-domain IP Fast Reroute (IPFRR)

technique called NotVia. NotVia is designed to provide IP

fast reroute service upon any single link or node failure for

all destinations in an intra-domain network. However, Not-

Via has a significant computational cost to restore its state

upon topology changes, which slows down the recovery of

the IPFRR service itself. NotVia also increases the intra-

domain forwarding table sizes, and poses new challenges to

network management, as routers are unaware of the links and

nodes (hence the amount of traffic) that they actually protect.

This paper introduces the NotVia aggregation and prioritiza-

tion techniques to reduce the computational costs and the

forwarding table entries dedicated to maintaining the Not-

Via state, and a novel algorithm rNotVia that improves the

manageability of NotVia. We use simulations to evaluate

these techniques on real ISP topologies as well as on ran-

domly generated topologies. The results show that the com-

putational costs dedicated to restore the NotVia state and the

forwarding table size increments are reduced to a fraction of

their previous values on various topologies, suggesting that

the techniques proposed in this paper make NotVia a more

efficient and easy-to-manage IPFRR solution.

1. INTRODUCTION

The trend of digital convergence calls for highly re-
liable IP networks. Service disruptions as short as a

∗A. Li and X. Yang are partially supported by NSF award
0627166. P. Francois is supported by Cisco Systems. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) or origina-
tors and do not necessarily reflect the views of Cisco Systems
or NSF.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNext’07, December 10-13, 2007, New York, NY, USA.
Copyright 2007 ACM 978-1-59593-770-4/07/0012 ...$5.00.

few hundred milliseconds may lead to user-perceivable
quality degradation for real-time applications such as
IPTV or VoIP [9, 20]. Yet traditional network failure
recovery at best takes on the order of a few hundred
milliseconds [15, 19, 31].

IP Fast Reroute (IPFRR) is an emerging technology
that aims to recover IP forwarding service as soon as a
failure is detected using IP-based schemes. IPFRR has
significant advantages over traditional network recov-
ery. First, it reduces service disruption time, because
a router can locally recover its forwarding service as
soon as it detects a failure, instead of relying on dis-
tributed routing convergence. Second, it allows routers
to suppress transient failures to improve routing sta-
bility. Routers can delay the dissemination of failure
information in hope that transient failures (e.g. link
flappings due to environmental noise) may shortly re-
cover on their own. Third, IPFRR does not require a
network to support MPLS. This reduces both the man-
agement and upgrade overhead for networks that do not
currently use MPLS.

IPFRR has gained much attention from both indus-
try and academia due to its attractive features. Recent
discussions at IETF [28] suggest that a combination of
Loop-Free Alternates (LFAs) and NotVia addresses be
one of the most promising techniques for standardiza-
tion. This is because the combination can provide pro-
tection paths for all destinations upon any single link
or node failure in a network. Loop-Free Alternate is a
lightweight technique that pre-computes alternate next
hops if they exist. A router forwards packets via an
LFA next hop if its shortest path next hop fails. How-
ever, there is no guarantee that LFAs exist at any router
for all destinations. As ISPs desire to offer predictable
services, NotVia is introduced to complement LFAs to
achieve full failure coverage. If a router does not have
an LFA next hop when the link to its shortest path
next hop fails, a special address: a NotVia address, is
assigned to the shortest path next hop. All routers in
the network compute a next hop to reach the NotVia
address by removing the failed link. Upon a failure,
packets are encapsulated using the NotVia address and

1

sent along a protection path that does not use the failed
link to reach the next hop. Node failures are handled
in a similar fashion.

The NotVia technique introduces nontrivial compu-
tational and memory overhead. Computing paths for
NotVia addresses is time consuming, as each NotVia
address requires a shortest path tree (SPT) computa-
tion on a different network topology. Once a topology
change happens, all routers need to compute as many
SPTs as the number of directed links not fully protected
by LFA in the network to restore the NotVia state. In
addition, each NotVia address increases a router’s IGP
table size by one. Furthermore, the computations pro-
vide no information on which links/nodes a router pro-
tects. This situation increases the difficulty for network
management, as the network operator cannot predict
traffic load on a router or link when a failure occurs. In
the case that a router or link cannot handle the over-
load caused by IPFRR, packets will be dropped and the
effort of IPFRR becomes futile.

The goal of this paper is to improve the efficiency
and manageability of NotVia. We identify two effective
techniques: address aggregation and prioritized NotVia
computation to reduce the time required to restore the
NotVia state for failure protection and the forwarding
table sizes. In addition, we propose a novel algorithm
called rNotVia that allows a router to efficiently com-
pute the set of links and routers it protects.

The main contributions of this work are the Not-
Via aggregation and prioritization techniques that make
NotVia more efficient, and the rNotVia algorithm that
makes it management-friendly. A secondary contribu-
tion is our experimental evaluation on the performance
of the LFA and NotVia based IPFRR framework. We
evaluate our improvements and rNotVia on real ISP
topologies ranging from small to large tier-1 ISP as well
as randomly generated topologies using BRITE [26].
We quantify computational costs dedicated to restore
the NotVia state as well as the forwarding table size in-
crements. To the best of our knowledge, we are the first
to conduct an evaluation on the overhead of NotVia.
The results show that without our proposed improve-
ments, NotVia computations may take more than 2 sec-
onds on modern processors (Pentium D, 3.4GHz) and
the NotVia address entries may increase the forwarding
table sizes of large ISPs by nearly one thousand. With
our improvements, both computational costs and for-
warding table size increments can be reduced to a frac-
tion of their previous values, especially on large topolo-
gies. This suggests that the techniques we propose are
likely to work well in practice.

The rest of this paper is organized as follows. § 2
presents background information on the IPFRR frame-
work. § 3 describes the techniques we use to improve
NotVia. § 4 specifies the rNotVia algorithm that allows

a node to obtain the protection path information. § 5
presents the evaluation. § 6 compares and contrasts our
work with related work. § 7 concludes the paper.

Failure

happens

Protection

starts

LSA

announced

Routing Converged

& Protection ends

Protection

restored

t0 t1 t2

Service disrupted

Figure 1: This figure shows the various events triggered

by a failure and their time line.

2. BACKGROUND ON IP FAST REROUTE

In this section, we first provide the background in-
formation on the current IPFRR framework. We then
describe how NotVia works in detail, and analyze its
overhead and limitation.

2.1 Overview

The goal of IPFRR is to locally recover IP forwarding
service before routing convergence. Figure 1 depicts
various events triggered by a failure. The time period
t0 is the failure detection time at a router, and t1 is
the routing convergence time. With traditional network
recovery, forwarding service may be disrupted for a time
period of t0 + t1.

An ideal IPFRR solution is to reduce the service dis-
ruption time to as short as the failure detection time t0.
To achieve this goal, the IPFRR framework [29] requires
routers to pre-compute alternate forwarding paths that
do not use a failed link or node. We refer to such paths
as protection paths. The IPFRR framework also in-
cludes techniques that prevent micro-loops during rout-
ing convergence [6,12,14,32]. Therefore, packets can be
forwarded along the protection paths without looping
during the routing convergence time t1. Once rout-
ing has converged, routers can forward packets along
the normal forwarding paths on the new topology, and
IPFRR protection ends.

With IPFRR, the network also needs to recompute
the protection paths on the new topology after a topol-
ogy change. This is shown in the time period t2 in
Figure 1. Only after protection paths are restored, the
network is ready to protect another failure. Thus, re-
ducing the time spent on computing protection paths
is critical in improving the network’s ability to provide
fast reroute service when failures occur within short in-
tervals.

2.2 The NotVia Fast Reroute Scheme

NotVia [7] is a technique that provides protection
paths for any single link or node failure for all destina-
tions in an intra-domain network. NotVia is designed
to complement LFA: a NotVia protection path is used

2

Figure 2: This figure shows examples of the NotVia

protection paths in the Abilene topology. The numbers

next to a link are link costs. The solid line shows the

protection path from Denver to reach Kansas City when

the link to Kansas City fails, and the dotted line shows

the protection path from Seattle to Kansas City when

the Denver node fails.

when an LFA protection path does not exist. We first
briefly describe how a node computes a LFA protection
path, and then describe the NotVia protection path.

Let S denote a node that implements the NotVia fast
reroute scheme. Suppose S tries to protect its link S →
T that it uses to reach a destination d. S will first find a
Loop-Free Alternate next hop N that does not use the
link S → T to reach d. Formally, a Loop-Free Alternate
node N that protects the link S → T for destination d

is defined as

cost(N → . . . d) < cost(N → . . . S) + cost(S → . . . d)

where cost(X → . . . Y) is the shortest path cost from
node X to node Y [4]. This condition ensures that
packets with destination d rerouted to N will not be
forwarded back to S, and will eventually reach the des-
tination d.

For example, in Figure 2, Sunnyvale is a Loop-Free
Alternate next hop from Seattle to Indianapolis. If the
link to its shortest path next hop (Denver) fails, the
Seattle node can forward packets to Sunnyvale.

However, a node S may not have a Loop-Free Alter-
nate neighbor to protect all destinations it reaches via a
link S → T [13]. For instance, in Figure 2, Denver does
not have a Loop-Free Alternate to reach Indianapolis.
NotVia protection paths are used in this situation to
provide the IPFRR service.

A NotVia protection path is established by a special
type of address: the NotVia address. If a node S does
not have a Loop-Free Alternate neighbor to protect all
destinations it reaches via the link S → T , a NotVia
address NVS9T is assigned to node T and will be used
by T ’s neighbor S. S and all other nodes will compute a

Notation Meaning
NVS9T NotVia address for T to protect link S → T
NVS/→T NotVia address for T to protect node S

cost(S → . . . d) Shortest path cost from S to d
pNVS NotVia prefix for S in partial aggregation

Table 1: Summary on Notations

protection path to reach the NotVia address NVS9T by
removing the directed link from the neighbor S to the
node T . We refer to the neighbor node S as the head
node of the NotVia address NVS9T . When S cannot
reach T via the link S → T , it will encapsulate the
packets using the NotVia address NVS9T . As all nodes
have computed a path to reach this address without
using the link S → T , the packets will finally reach
T not via the link S → T . The packets will then be
decapsulated by T and forwarded normally afterwards.
Note that unlike LFA, NVS9T is unique to protect link
S → T regardless of the destination.

In Figure 2, a NotVia address NVDenver9Kansas will
be assigned to the Kansas City node for the neighbor
Denver as it does not have an LFA next hop to reach
Indianapolis. All routers compute a protection path to
reach the address NVDenver9Kansas by removing the
link from Denver to Kansas City. The protection path
from Denver to Kansas City is marked by the solid line
in Figure 2. When the Denver node detects a failure
to reach Kansas City, it will encapsulate a packet with
the address NVDenver9Kansas. This packet will be for-
warded along the protection path, i.e. Sunnyvale, Los
Angeles, Houston, and then Kansas City. At Kansas
City, the packet will be decapsulated, and forwarded
to its original destination. As can be seen, this packet
is successfully rerouted around the failed link between
Denver and Kansas City.

NotVia can also be used to protect node failures.
Similarly, if when a node S fails, and an upstream node
U of the node S (a node that uses S as its next hop)
does not have an LFA to reach a destination d, a Not-
Via address NVS/→T is assigned to S’s next hop T for
this d. All nodes compute a path to reach the address
NVS/→T of T by removing the node S. When U detects
the failure of S, and S’ next hop to reach destination
d is T , it encapsulates a packet destined to d with the
address NVS/→T . As all nodes compute the next hop to
reach this address without using the node S, the packet
will reach T not via the node S. Here it is possible
to have multiple NotVia addresses to protect the same
node failure, given the multiple next hops of the pro-
tected node towards different destinations.

We note that when a node protection NotVia address
is used, no additional NotVia addresses are required
to provide link protection. To reach a link-protection
NotVia address NVS9T , S can simply use the node-
protection NotVia address NVS/→T , and compute a next
hop to reach the address NVS/→T by removing the link
S → T , rather than removing itself. This is correct

3

because at any router on the protection path from S to
T (except S), the next hop to reach NVS9T is the same
as the next hop to reach NVS/→T . We provide a simple
proof for this in Appendix A.

When a node detects that it cannot reach a next hop,
it cannot immediately tell whether it is a link failure or a
next hop node failure. Therefore, it is recommended [7]
that a node U that cannot reach its next hop S should
always use a node-protection path to completely bypass
S if it can. That is, it should encapsulate its packets
with the node NotVia address NVS/→T to reach its next-
next hop T . A node will use a link-protection path
to reach its immediate next hop only when a node-
protection path to reach the next-next hop does not
exist.

As the same address NVS/→T can be used as both a
link NotVia address at the node S and a node NotVia
address at other nodes, we only use the notation NVS/→T

to represent a NotVia address in the rest of the paper.
It should be interpreted as not via the node S by all
nodes other than S, and not via the link S → T by the
node S.

Figure 2 shows an example of a node-protection Not-
Via path. If the Denver node fails, the Seattle node
can encapsulate its packets destined to the downstream
Kansas City with the NotVia address NVDenver/ →Kansas.
The protection path is shown as the dotted line in the
figure. Note that the solid line and dotted line over-
lap with each other from Sunnyvale to Kansas City, as
for the nodes on the protection paths, the next hops to
reach Kansas City without using the link from Denver
to Kansas City are the same as those without using the
Denver node.

NotVia addresses can be assigned to protect all nodes
from the failure of their neighbors. But only those as-
signed to protect nodes or links that are not protected
by LFA may be computed and actively in use. In this
paper, without specific notice, we use the term NotVia
addresses to refer to those that might be actively used
in a given network topology.

2.3 NotVia Overhead

NotVia introduces non-trivial computational overhead.
After a topology change, the network needs to update
forwarding entries of normal IP addresses as well as
the NotVia address entries. Only after all those en-
tries are updated, the network can fast reroute traf-
fic without causing loops or packet drop when another
failure occurs. For each NotVia address, a node must
compute a shortest path tree on the network topology
without a NotVia node or link. According to analysis
on real ISP topologies [13], over 40% links and nodes
are not protected by Loop-Free Alternates. For a large
Tier-1 ISP hundreds of NotVia addresses are needed for
those unprotected links and nodes, and thus hundreds

of shortest path tree (SPT) computations are needed.
Although each SPT computation can be optimized by
using the incremental shortest path first algorithm [17]
and early terminating the calculation once the destina-
tion is reached, this overhead may still become a prob-
lem for large networks. NotVia also increases the for-
warding table size by adding additional NotVia address
entries. Furthermore, after a topology change, a link
or node that is previously protected by a Loop-Free Al-
ternate may not be protected any more and vice versa.
A router may need to send out link state announce-
ments to inform others to compute for necessary NotVia
addresses or to avoid computing for unnecessary Not-
Via addresses. This incurs message overhead. If this
overhead is high, it may delay the restoration time of
NotVia protection paths. We evaluate this overhead in
Section 5.

2.4 Difficulty to Predict NotVia Traffic

The current design of NotVia does not provide a
router the information on whether it is on a protec-
tion path of a NotVia address. Without this infor-
mation, a router cannot export this information to its
Management Information Base [25]. Consequently a
network operator has little knowledge on how traffic
will be rerouted when a failure occurs. If rerouted
traffic passes through a congested link, it may still be
dropped, rendering IPFRR futile. On the other hand,
if a network operator has the information on what Not-
Via addresses a router protects, he can adjust OSPF
weights [11,21,30] or use other traffic engineering tech-
niques [10, 18] to avoid rerouting protected traffic to a
congested link. Although the protection information
can be provided by some offline management tools such
as running protection simulation on real topology, we
argue that enabling routers to generate this informa-
tion has two advantages: (1) routers can update the
protection information immediately after the topology
change, while offline approaches work only when sta-
ble topology information is available; (2) letting routers
know the protection information opens room for further
features such as automatic protection path adjustment.
Thus, it is valuable to provide a router the information
on which NotVia addresses it protects.

In the following sections, we describe our techniques
that reduce the overhead of NotVia, and an algorithm
rNotVia that allows a router to efficiently compute the
set of NotVia addresses it protects.

3. IMPROVING THE EFFICIENCY OF

NOTVIA

In this section, we describe techniques that reduce the
time it takes to recompute NotVia entries. Those tech-
niques can also reduce the number of NotVia address
entries in a router’s forwarding tables.

4

3.1 NotVia Aggregation

The first technique is NotVia aggregation. It is based
on the intuition that next hops for the NotVia addresses
of a node might be the same as the next hops for the
regular IP addresses of the node, because they are com-
puted from topologies only differing by one link or node.
A node R can efficiently determine whether the next
hop to a node T ’s regular IP address and the next hop
to a NotVia address NVS/→T of T are the same by ex-
amining whether the link S → T is on its shortest path
to a destination. If it is not, then the two entries at
R must have the same next hop. Thus, if the NotVia
address NVS/→T is assigned from the node T ’s regular
IP address space, it can be aggregated into T ’s regular
entry at R. R does not need additional NotVia com-
putations or forwarding table entries for this NotVia
address of T : NVS/→T , as regular routing convergence
will compute a next hop to reach T ’s regular IP ad-
dress prefix. This technique also reduces the additional
NotVia entry NVS/→T in a node’s forwarding tables.

In Figure 2, if the NotVia address NVDenver/ →Kansas

is allocated from the regular IP prefix of the Kansas
City node, then the Houston node can aggregate this
address into the IP prefix of the Kansas City node, and
does not need additional computation to set the next
hop for the NotVia address.

NotVia aggregation requires that each router be con-
figured with an IP prefix that covers both its inter-
face addresses and NotVia addresses. Network operator
might need to renumber a router to satisfy this require-
ment. Although we think it can be done in practice,
it is possible that network operator prefers to allocate
NotVia addresses from a separate NotVia prefix, not
to mix them with the regular IP addresses of a router.
In this case, a neighbor-specific NotVia address is allo-
cated from this NotVia prefix. All other nodes set the
next hop to the NotVia prefix of this node to be the
same as the next hop to the regular IP prefix of the
node. An entry for a neighbor-specific NotVia address
of the node is aggregated into the NotVia prefix entry if
they have the same next hop. We refer to this technique
as partial aggregation.

In the previous example, suppose the node at Kansas
City decides to use a separate prefix pNVKansas for Not-
Via addresses. It will allocate all its NotVia addresses
(NVDenver/ →Kansas, NVIndianapolis/ →Kansas, etc.) un-
der this prefix. Thus Houston node can aggregate the
addresses NVDenver/ →Kansas and NVIndianapolis/ →Kansas

into pNVKansas, and does not need additional compu-
tation to set the next hop for pNVKansas.

With partial aggregation, the number of NotVia com-
putations can still be reduced, as no additional compu-
tations for the NotVia prefix or the aggregated NotVia
addresses are needed. The reduction of forwarding ta-
ble sizes is less than that of full aggregation, as each

NotVia prefix requires an additional entry.

3.2 Prioritized NotVia Computation

The second technique, prioritized NotVia computa-
tion, is designed to shorten the time it takes for the
network to restore the NotVia state needed for failure
protection after a topology change. The shorter the
restoration time is, the sooner a network can recover its
protection service, i.e., t1+t2 will be shorter in Figure 1.

The prioritization technique makes a node compute
NotVia addresses in the order of their “closeness” to it.
“Closeness” is defined in terms of hop count. Intuitively,
in a well-engineered network, nodes on the protection
path to a failure should be close to the failure. We
define those NotVia addresses for which a node is on
the protection paths as necessary NotVia addresses to
the node. To recover the IPFRR service, a node should
update the entries for necessary NotVia addresses at
first. As the number of necessary NotVia addresses
for a node is much smaller than the total number of
NotVia addresses, the gain of favoring the computation
of the necessary ones can be significant. This is be-
cause only necessary entries matter for the restoration
of the IPFRR service. If a new failure occurs before a
router finishes computing all NotVia addresses, and all
necessary NotVia entries have already been updated,
packets encapsulated with NotVia addresses can still
reach their destinations using the updated protection
paths. Therefore, although prioritization does not re-
duce the total amount of NotVia computations, it im-
proves the protection path’s restoration time, thereby
the network’s reactivity to failures.

Closeness in our design is defined in terms of hop
count, not cost metrics. This is because the metrics
between core routers and access routers are often set to
be very large in real ISP networks so that access routers
do not provide transit service for other routers. The
consequence is that prioritization based on the link costs
will let a core router first compute NotVia entries for the
protection of distant core links and routers. However,
the core router has a low probability of actually being on
the protection path of these links and routers. Instead,
it has a high probability of being used to protect links
or routers co-located at the same PoP, and those links
and routers are closer to it than core links and routers
in terms of hop count, not cost metrics.

A router needs an additional shortest path computa-
tion to obtain distance information in terms of hops (as
the normal shortest path computation is cost based).
But this overhead is negligible compared to the over-
head of computing shortest path trees for all NotVia ad-
dresses. In our design, a router keeps a hop count based
shortest path tree in memory so that it does not com-
pute the hop count distances to all NotVia addresses
at failure time but instead approximate the ordering

5

Algorithm 1 How a node R computes the set of nodes
that will use R on their protection paths to reach the
NotVia address NVS/→T upon the failure of the node S.
S is also included in this set if it uses R to send traffic
towards NVS/→T upon the failure of S → T .

Require: G(E, V), link S → T , router R

1: G′ ⇐ G − link(S → T)
2: for N ∈ neighbor(S) do

3: G′ ⇐ G′ − link(N → S)
4: end for

5: unreached nbr ⇐ S + neighbor(S)
6: upstream nbr ⇐ unreached nbr

7: flag(R)
8: maxdist ⇐ 0
9: finished ⇐ false

10: while not(finished) do

11: p ⇐ next path from the priority queue of

rSPF (T, G′)
12: X ⇐ head(p)
13: if unreached nbr = ∅ and cost(p) > maxdist

then

14: finished ⇐ true

15: else

16: if X ∈ unreached nbr then

17: if cost(p) > maxdist then

18: maxdist ⇐ cost(p)
19: end if

20: unreached nbr ⇐ unreached nbr − X

21: end if

22: if flagged(nexthop(X, p)) then

23: flag(X)
24: end if

25: end if

26: end while

27: for N ∈ upstream nbr do

28: if linkweight(N → S) + linkweight(S → T) >

cost(N) then

29: upstream nbr = upstream nbr − N

30: end if

31: end for

32: return {U ∈ upstream nbr : flagged(U)}

using the topology before the change. After a topology
change, the router can carry out an incremental shortest
path first computation to compute the hop count based
distances, preparing the order of prioritization for the
next topology change.

4. OBTAINING PROTECTION PATH INFOR-

MATION

In this section, we describe the rNotVia algorithm
which allows a router to efficiently compute the set of
NotVia addresses it protects. This information is valu-
able for the purpose of network management, as de-

scribed in Section 2. We first describe a strawman ap-
proach and analyze its computational cost. Then we
present the more efficient rNotVia algorithm.

4.1 A Strawman Approach

A node R could obtain the information on whether it
is on the protection path of a NotVia address NVS/→T

by computing the shortest path tree rooted at a node
that will encapsulate packets with the NotVia address
NVS/→T . There are two types of nodes that may use the
NotVia address NVS/→T : the head node S of the NotVia
address NVS/→T to bypass the link S → T fails, and a
node U one-hop upstream to the head node S to bypass
S. By upstream, we mean a node U that uses S as the
next hop to reach T . Therefore, a node would have to
compute a shortest path tree rooted at each upstream
node U on a topology excluding the head node S, and a
shortest path tree rooted at the head node S excluding
the link S → T . Furthermore, a node R must know
the set of nodes {U} upstream to S to precisely deter-
mine whether it is on a protection path for the NotVia
address NVS/→T . This information needs to be precise
for the purpose of estimating the amount of rerouted
traffic when failures occur. However, the set {U} is
not generally available from the normal routing compu-
tation, as a node does not know other nodes’ shortest
paths. Obtaining this information may require an ad-
ditional shortest path computation for each neighbor of
the node S on the original topology without excluding
any link or node. Therefore, a node R may perform up
to 1+size({U})+size(neighbor(S)) rounds of shortest
path tree computations to determine whether it is on
the protection path of the NotVia address NVS/→T .

4.2 The rNotVia Algorithm

We design an algorithm, rNotVia, that allows a node
R to compute one single shortest path tree to determine
whether it is on the protection path of a NotVia address
NVS/→T . This is a significant saving compared to the
strawman approach. We describe the algorithm in three
steps. In the first step, we describe how to combine mul-
tiple NotVia computations for the upstream nodes {U}
to bypass the node S into one shortest path computa-
tion. In the second step, we describe how to combine
the NotVia computation to bypass the link S → T with
that of bypassing the node S. Finally, we describe how a
node can efficiently determine the upstream nodes {U}
without additional shortest path tree computations.

We can combine the multiple shortest path tree com-
putations rooted at each upstream node U into a single
shortest path tree computation by computing a reverse
shortest path tree [2]. The reverse shortest path tree is
constructed by using reverse shortest path first (rSPF)
algorithm. For each NotVia address NVS/→T , a node R

computes a shortest path tree rooted at the node T with

6

reversed link costs on the network topology excluding
the node S. It can be shown that the shortest path from
U to T on the network with normal link costs is the re-
verse path from T to U on the network with reversed
link costs. Thus, this computation allows the node R

to determine any upstream node U ’s protection path to
reach the NotVia address NVS/→T , and the cost of this
reverse shortest path computation is the same as that
of the normal shortest path.

The next step is to combine the shortest path tree
computation for the link failure case with the node fail-
ure case. Link failure and node failure require sepa-
rate computations because the shortest path trees are
based on different network topologies. For the link fail-
ure case, the topology is the original network topology
excluding the link S → T , and for the node failure case,
it’s the topology excluding the node S.

To combine the shortest path tree computations for
link and node failures, we modify the original network
topology as follows. We remove all directed links that
end at S, but keep all directed links that start from S

except the link S → T . On this modified topology, the
shortest paths of all nodes other than S is the same as
those in the topology with S removed, and the shortest
paths of S is the same as that in the topology with the
link S → T removed. Applying the reversed shortest
path computation on this modified topology, we can ob-
tain all shortest paths from all nodes upstream to S and
S to reach the NotVia address NVS/→T . Early termina-
tion and incremental shortest path first optimizations
described in Section 2 can be applied to this computa-
tion as well to further speed up the computation.

Finally, we use a simple comparison to obtain the set
of nodes {U}. For each neighbor N of S, if the sum
of the costs of the two links N → S and S → T is
less than or equal to the path cost from N to T in the
topology excluding the node S, then N may use S as
its next hop in the original topology. Thus N must
be considered as an upstream node of S. The path
cost from N to T in the topology excluding S can be
obtained from the reverse shortest path computation
described above. Thus, with at most one reverse short-
est path computation, a node can precisely determine
whether it is on the protection path of a NotVia address
NVS/→T . It is a significant saving in computation costs
compared to the strawman approach, which requires up
to 1+size({U})+size(neighbor(S)) rounds of shortest
path tree computations.

We use a slightly revised version of Dijkstra algo-
rithm (priority queue of the shortest paths instead of
the nodes) to take care of equal cost multi-paths (ECMPs).
In each round of the Dijkstra algorithm the current
shortest path started from the source is pop-uped from
the priority queue instead of the node with the smallest
distance. The algorithm works correctly even if there

are multiple protection paths from U to T with the
same cost. The pseudo-code of rNotVia is presented
by Algorithm 1, and its proof of correctness is given in
Appendix B.

4.3 rNotVia Computational Cost

A node needs to compute a reverse shortest path tree
for every NotVia address to determine the set of Not-
Via addresses it protects. We refer to this computation
as the rNotVia computation. The total cost is on the
order of (E ∗ SPT), where E is the number of directed
links unprotected by LFA, and SPT is the computa-
tional cost of a shortest path tree. This cost is on the
same order as the cost needed for a node to compute the
NotVia address entries, i.e., the normal NotVia compu-
tation.

We have considered to replace the normal NotVia
computation with the rNotVia computation. Both com-
putations allow a node on the protection path of a
NotVia address to compute the correct next hop, with
rNotVia having the additional benefit to allow a node
to determine to which NotVia addresses it is on the
protection path. However, experimental results show
that rNotVia computation is more expensive than the
normal NotVia computation (Section 5.5). This is be-
cause the incremental shortest path tree optimization
works more efficiently when a failure is far away from
the root [17]. However, in the rNotVia computation
case, the failure is always adjacent to the root of the
shortest path tree. Therefore, in our design, we use
the normal NotVia computation with aggregation and
prioritization to compute NotVia address entries, and
only use rNotVia computation as a background process
to provide information to the Management Information
Base.

5. EVALUATION

This section presents our evaluation on the practical-
ity of the NotVia IP fast reroute scheme. We evaluate
NotVia with and without our improvements, namely
NotVia aggregation and prioritization. We also evalu-
ate the efficiency of obtaining protection with the rNotVia
algorithm.

5.1 Methodology

We implement a simulator that simulates the NotVia
IPFRR scheme when a node or link fails in a network.
We do not use ns-2 because it is extremely time con-
suming to collect all data we need. However, the results
we obtain do not depend on simulators. They are de-
termined by topology properties. The source code of
our simulator is available at [1] for cross validation.

We run the simulator on five real ISP topologies as
well as randomly topologies generated by a widely used
topology generator BRITE [26]. The ISP topologies

7

include real IGP link weights, and range from small re-
gional ISPs to a worldwide tier-1 ISP. The number of
nodes in those topologies are 20+, 50+, 100+, 200+,
400+ respectively, and the number of directed links are
50+, 200+, 400+, 700+, 1600+ respectively. Due to
confidentiality, we cannot provide the exact numbers.
For the BRITE topologies, we fix the number of nodes
to 100, and vary other parameters. The random topolo-
gies are generated according to the Waxman model,
the Barabasi-Albert (BA) and Barabasi-Albert-2 (BA2)
model in BRITE.

For each topology, we collect the following statistics:
NotVia protection path restoration time. For

each link or node failure, our simulator simulates the
NotVia computations of each node in the topology. For
each node, we record the total amount of time it takes
for the node to finish updating its last necessary NotVia
address (a NotVia address for which it is on the pro-
tection path). No other delays (FIB installation delay,
failure detection delay, etc.) are introduced in the sim-
ulation because they are not affected by our proposals.
We use the incremental shortest path first and early ter-
mination optimizations in computing the next hop for
a NotVia address. We refer to this computation as the
optimized SPT computation. The longest time among
all nodes is used to estimate the network-wide NotVia
protection path restoration time. We compare the re-
sults with and without prioritization and aggregation.
In the case without prioritization and aggregation, we
compute NotVia addresses in a random order. Partial
aggregation and aggregation (Section 3) have the same
amount of saving in the NotVia restoration time. Thus
we do not differentiate them when presenting results on
the protection path restoration time.

Number of NotVia forwarding table entries.

We measure the number of forwarding table entries ded-
icated to NotVia addresses with aggregation, partial
aggregation, and without aggregation. This metric is
to show the memory overhead added by NotVia, and
how aggregation and partial aggregation can reduce this
overhead.

Number of NotVia announcements. For each
link or node failure, we record the total number of Not-
Via announcements flooded after a topology change.
NotVia announcements are used to signal which links
or nodes are not protected by loop-free alternates after
a topology change and vice versa. This metric does not
directly relate to our improvements, but affects the pro-
tection restoration time of the NotVia IPFRR scheme.
For stability reasons, routing protocol implementations
limit the rate at which link state announcements can
be fast flooded [8]. If there are too many NotVia an-
nouncements, they may not be rapidly flooded through-
out the network. Delayed announcements, rather than
NotVia computations, might become the bottleneck for

protection restoration. Thus, we use this metric to eval-
uate whether NotVia computations are the bottleneck
for protection restoration.

Protection information computation time. For
each router and each NotVia address we simulate the
time needed to compute whether the router is on the
protection path of this address. This metric shows the
efficiency of computing protection information for man-
agement purpose. In addition, to complement our claim
that rNotVia is not suitable for computing NotVia en-
tries because of its computational heaviness (Section 4.3),
we also simulate the time needed to compute an entry
for the address with optimized SPT computation and
compare it to that with rNotVia.

For most experiments, we only show results for link
failures. Node failures have similar results, and are
omitted due to space limitations. Full set of results
could be found in [24].

5.2 Protection Path Restoration Time

Figure 3 (a-c) shows the distributions of the num-
ber of optimized shortest path tree computations to
compute all necessary NotVia entries after a link fail-
ure with and without prioritization and aggregation for
three sample ISP topologies, and (d) shows the average
on all five ISP topologies. Figure 4 shows the results
for the BRITE topologies. For each type of BRITE
topology, we choose a sample topology to show. All
results are summarized in Table 3. As can be seen, pri-
oritization and aggregation can significantly reduce the
number of shortest path tree computations on both real
ISP topologies and randomly generated topologies. The
restoration time varies between different failures, this is
because the effectiveness of prioritization is topology de-
pendent. After a certain failure, if only few protection
paths are affected, the restoration time is more likely to
be short.

In Figure 3, many failures require zero computation
to restore protection, because those links are not on
any protection path. Thus, their failures do not alter
the existing protection paths.

Figure 5 and 6 show the distributions of the time
it takes to compute all necessary NotVia entries after
a link failure with and without prioritization for real
ISP topologies as well as randomly generated topolo-
gies. Those results provide insight on how time con-
suming NotVia can be without our optimization. The
computation is done on a Pentium D 3.40GHz PC. Y-
axes are the time measured in milliseconds and x-axes
are link indices.

We note that the shapes of the distributions in terms
of the number of shortest path tree computations (Fig-
ure 3 and 4) are different from that in Figure 5 and 6.
This is because the runtimes of the optimized shortest
path tree computations vary across nodes.

8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30

#
 o

f
S

P
T

 C
a
lc

u
la

ti
o
n
s

Link ID

NotVia
w/ prioritization & aggregation

(a) 20+ Nodes

 0

 100

 200

 300

 400

 500

 0 50 100 150 200

#
 o

f
S

P
T

 C
a
lc

u
la

ti
o
n
s

Link ID

NotVia
w/ prioritization & aggregation

(b) 100+ Nodes

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600 700 800

#
 o

f
S

P
T

 C
a
lc

u
la

ti
o
n
s

Link ID

NotVia
w/ prioritization & aggregation

(c) 400+ Nodes

 0

 200

 400

 600

 800

 1000

 1200

1 2 3 4 5

#
 o

f
S

P
T

 C
a
lc

u
la

ti
o
n
s w/ prioritization & aggregation

NotVia

(d) Avg. in five topolgies

Figure 3: The distributions and average of the number of shortest path tree computations needed to finish computing

all necessary NotVia addresses after a link failure. X-axes in (a-c) are failed link indices, and x-axis in (d) is the topology

index. Y-axes are the number of the optimized shortest tree computations, and are in different ranges for clarity. The

vertical lines in (d) show the standard deviations.

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160 180 200

#
 o

f
S

P
T

 C
a
lc

u
la

ti
o
n
s

Link ID

NotVia
w/ prioritization & aggregation

(a) Waxman

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160 180 200

#
 o

f
S

P
T

 C
a
lc

u
la

ti
o
n
s

Link ID

NotVia
w/ prioritization & aggregation

(b) Barabasi-Albert

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160 180

#
 o

f
S

P
T

 C
a
lc

u
la

ti
o
n
s

Link ID

NotVia
w/ prioritization & aggregation

(c) Barabasi-Albert-2

 0

 50

 100

 150

 200

 250

 300

 350

 400

Waxman BA BA-2

#
 o

f
S

P
T

 C
a
lc

u
la

ti
o
n
s w/ prioritization & aggregation

NotVia

(d) Avg. in three topologies

Figure 4: The same results as in Figure 3 for the random topologies.

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30

T
im

e
 (

m
s
)

Link ID

NotVia
w/ prioritization & aggregation

(a) 20+ Nodes

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200

T
im

e
 (

m
s
)

Link ID

NotVia
w/ prioritization & aggregation

(b) 100+ Nodes

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600 700 800

T
im

e
 (

m
s
)

Link ID

NotVia
w/ prioritization & aggregation

(c) 400+ Nodes

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 2 3 4 5

T
im

e
 (

m
s
)

w/ prioritization & aggregation
NotVia

(d) Avg. in five topolgies

Figure 5: The distributions and average of the time needed to finish computing all necessary NotVia entries after a

link failure on our test PC. This time affects how quickly NotVia protection paths can be restored. X-axes in (a-c) are

failed link indices, and x-axis in (d) is topology index. Y-axes are in unit of milliseconds, and are in different ranges

for clarity. The vertical lines in (d) show the standard deviations. Prioritization and aggregation reduce the amount

of time to restore the protection paths.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
 (

m
s
)

Link ID

NotVia
w/ prioritization & aggregation

(a) Waxman

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
 (

m
s
)

Link ID

NotVia
w/ prioritization & aggregation

(b) Barabasi-Albert

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160 180

T
im

e
 (

m
s
)

Link ID

NotVia
w/ prioritization & aggregation

(c) Barabasi-Albert-2

 0

 20

 40

 60

 80

 100

 120

 140

Waxman BA BA-2

T
im

e
 (

m
s
)

w/ prioritization & aggregation
NotVia

(d) Avg. in three topologies

Figure 6: The same results as in Figure 5 for the random topologies.

5.3 Forwarding Table Size

Figure 7 (a-c) shows the distributions of the number
of NotVia forwarding table entries without aggregation,
with partial and full aggregation on three sample ISP

topologies, ranging from the smallest one to the largest
one. Figure 8 shows the same results for the randomly
generated topologies. Y-axes are the number of NotVia
entries, and x-axes are node indices. Both the results
with aggregation and with partial aggregation reduce

9

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25

#
 o

f
N

o
tV

ia
 e

n
tr

ie
s

Node ID

NotVia
w/ partial aggregation
w/ aggregation

(a) 20+ Nodes

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140

#
 o

f
N

o
tV

ia
 e

n
tr

ie
s

Node ID

NotVia
w/ partial aggregation
w/ aggregation

(b) 100+ Nodes

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300 350 400 450

#
 o

f
N

o
tV

ia
 e

n
tr

ie
s

Node ID

NotVia
w/ partial aggregation
w/ aggregation

(c) 400+ Nodes

 0

 200

 400

 600

 800

 1000

1 2 3 4 5

#
 o

f
N

o
tV

ia
 e

n
tr

ie
s w/ aggregation

w/ partial aggregation
NotVia

(d) Avg. in five topologies

Figure 7: The distributions and average of the number of NotVia forwarding table entries. X-axes in (a-c) are router

indices, and x-axis in (d) is the topology index. Y-axes are the number of NotVia entries. They are shown in different

ranges for clarity. Both aggregation and partial aggregation reduce NotVia’s memory overhead, with aggregation

being more effective.

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90 100

#
 o

f
N

o
tV

ia
 e

n
tr

ie
s

Node ID

NotVia
w/ partial aggregation
w/ aggregation

(a) Waxman

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60 70 80 90 100

#
 o

f
N

o
tV

ia
 e

n
tr

ie
s

Node ID

NotVia
w/ partial aggregation
w/ aggregation

(b) Babarasi-Albert

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100

#
 o

f
N

o
tV

ia
 e

n
tr

ie
s

Node ID

NotVia
w/ partial aggregation
w/ aggregation

(c) Babarasi-Albert-2

 0

 50

 100

 150

 200

 250

Waxman BA BA-2

#
 o

f
N

o
tV

ia
 e

n
tr

ie
s w/ aggregation

w/ partial aggregation
NotVia

(d) Avg. in three topologies

Figure 8: The same results as in Figure 7 for the random topologies.

Topology Avg. # of NotVia LSAs
Link Failure Node Failure

ISP-1 0.07 0.08
ISP-2 0.80 0.81
ISP-3 0.44 0.54
ISP-4 0.87 1.44
ISP-5 1.27 1.00

Waxman 0.01 0.02
BA 0.01 0.02

BA-2 0.003 0.005

Table 2: Average numbers of Notvia link state an-

nouncements announced by all routers after a failure

on all five ISP topologies and three randomly generated

topologies.

the number of NotVia entries, especially in the large
tier-1 ISP network. The value with aggregation is only
a small fraction of the one without aggregation. Fig-
ure 7(d) and 8(d) show the average number of NotVia
entries for the five ISP topologies and the randomly gen-
erated topologies respectively. As can be seen, aggrega-
tion and partial aggregation can reduce the number of
NotVia entries in all cases.

5.4 Number of NotVia Announcements

Table 2 shows the average number of NotVia link
state announcements originated by all routers in the
network after a node or a link failure. The average is
taken over all link or node failures. As can be seen,
very few NotVia announcements are originated, indi-
cating that those announcements can be rapidly flooded
throughout the network. A router can receive all new
NotVia announcements before it starts NotVia com-

 0

 10

 20

 30

 40

 50

1 2 3 4 5

T
im

e
 (

m
s
)

oSPT
rNotVia
Strawman

Figure 9: Average time needed for a router to compute

whether it is on the protection path of a NotVia address.

X-axis is the topology index, and y-axis is the time in the

unit of milliseconds. rNotVia has much higher efficiency

than the strawman approach.

putations. Thus flooding NotVia link state announce-
ments is unlikely to be the bottleneck to restore NotVia
protections, and aggregation and prioritization will be
useful in improving the protection restoration time.

5.5 Efficiency of rNotVia

Figure 9 shows the average time for a router to com-
pute the protection information for a NotVia address,
i.e., to examine whether it is on the protection path of
the address. The average is taken over all routers and
all NotVia addresses in the network. We can see that
rNotVia requires much less time than the strawman ap-
proach. “oSPT” in the figure shows the average time
for a router to compute a NotVia entry with optimized
SPT algorithm. As can be seen, rNotVia is generally
heavier than optimized SPT because of the reason we
explained in Section 4.3. Thus we only propose to use

10

Topology # of Nodes # of Links Restoration Time(ms) Number of SPTs Number of NotVia Entries
Optimized Current Optimized Current w/ Aggregation w/ Partial Current

ISP-1 20+ 50+ 0.6 1.9 7.3 26.6 5.03 16.0 24.0

R
e
a
l ISP-2 50+ 200+ 7.9 17.2 16.7 44.4 13.4 53.6 61.0

ISP-3 100+ 400+ 10.8 64.2 23.3 160.6 17.2 101.1 215.0
ISP-4 200+ 700+ 20.4 214.5 28.3 308.8 40.1 236.1 488.0
ISP-5 400+ 1600+ 68.6 876.7 39.0 547.0 49.9 445.0 940.0

Waxman-1 100 400 13.4 68.0 30.1 212.7 15.8 106.9 155.0
BA-1 100 394 23.5 74.8 38.2 188.8 11.5 90.4 129.0

R
a
n
d
o
m BA2-1 100 354 8.0 53.9 19.1 167.5 5.4 52.7 73.0

Waxman-2 100 600 8.2 46.8 18.2 129.9 15.5 80.0 102.0
BA-2 100 588 18.7 67.8 28.8 140.4 12.7 61.4 72.0
BA2-2 100 762 8.4 40.0 13.4 78.1 6.5 34.4 37.0

Table 3: Summary of Simulation Results on All Topologies

rNotVia for management purpose. Results with ran-
dom topologies are similar and omitted due to space
limitation.

5.6 Summary

Table 3 summarizes the results on all topologies, in-
cluding the average protection restoration time and the
average forwarding table entries dedicated to NotVia
addresses. As can be seen, in all topologies, the pro-
posed aggregation and prioritization techniques reduce
the computational overhead as well as memory overhead
of NotVia.

6. RELATED WORK

Francois et al. [13] and Gjoka et al. [16] evaluated
the failure coverage of different IPFRR solutions, while
this work improves and evaluates the specific technique
NotVia.

Other work [3,5,22,27] provides different IPFRR so-
lutions. Among them, Uturn [3] and tunnels [5] do
not provide full coverage for single failures. Failure In-
sensitive Routing [27] provides full coverage for single
failures on symmetric networks, and requires interface-
specific forwarding tables. Multiple topology configu-
rations (MRC) [22] are similar in spirit to NotVia ad-
dresses. Each topology configuration is computed by
removing protected links or nodes from the original
topology. Different from NotVia, a topology configu-
ration may remove multiple links and nodes. MRC is
able to use the same topology configuration to protect
multiple links, thereby reducing the number of forward-
ing table entries to store protection paths. However, its
worst case computational overhead is even higher than
NotVia.

FCP [23] explores a design point that assumes pack-
ets can carry failure information in their headers and
routers can perform on demand shortest path compu-
tations based on the failure information. With these
assumptions, routers can fast reroute packets around
multiple failures without requiring consistent routing
state. The NotVia scheme we explore does not require
on demand shortest path computations, and does not
alter the IP header format.

7. CONCLUSION

This paper presents techniques that reduce the over-
head of the NotVia IP Fast Reroute scheme. NotVia
is currently being debated at IETF as a candidate for
standardization. However, the computational and mem-
ory overhead of NotVia have cast some doubts on its
practicality. Our techniques, NotVia aggregation and
prioritized NotVia computation, are based on the sim-
ple intuitions that protection paths computed for Not-
Via addresses may overlap with normal forwarding paths,
and are also likely to be local to the failures. We evalu-
ate these techniques on real ISP topologies ranging from
small ISPs to a large tier-1 ISP and randomly generated
topologies. The results show that our techniques can
effectively reduce the NotVia protection path restora-
tion time and the forwarding table entries dedicated
to NotVia addresses, especially on large ISP networks.
We also present an algorithm rNotVia that allows a
router to efficiently determine whether it is on the pro-
tection path of a NotVia address. This information can
be used by network operators to estimate the amount of
rerouted traffic and to configure their networks from be-
ing overloaded by the rerouted traffic. We believe that
the techniques presented in this paper can significantly
improve the efficiency and manageability of the NotVia
IPFRR scheme, and this work is a step further towards
an efficient and easy-to-manage IPFRR solution.

Acknowledgements

We would like to thank the anonymous reviewers for
their comments, and Geoffroy Jennes, Frédéric Grignet,
Benoit Fondeviolle and Nicolas Simar for their help in
collecting ISP topologies.

8. REFERENCES
[1] Project Website. http://nds.ics.uci.edu/notvia.
[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. NETWORK

FLOWS: THEORY, ALGORITHMS, AND
APPLICATIONS. Prentice Hall, 1993.

[3] A. Atlas. U-turn alternates for IP/LDP Fast-Reroute. Internet
draft, draft-atlas-ip-local-protect-uturn-03.txt, Feb 2006.

[4] A. Atlas and A. Zinin. Basic specification for IP fast-reroute :
Loop-free Alternates. Internet draft,
draft-ietf-rtgwg-ipfrr-spec-base-06.txt, Feb 2006.

[5] S. Bryant, C. Filsfils, S. Previdi, and M. Shand. IP Fast
Reroute using tunnels. Internet draft,
draft-bryant-ipfrr-tunnels-02.txt, Apr 2005.

11

[6] S. Bryant and M. Shand. A framework for loop-free
convergence. Internet draft,
draft-bryant-shand-lf-conv-frmwk-03.txt, Oct 2006.

[7] S. Bryant, M. Shand, and S. Previdi. IP fast reroute using
notvia addresses. Internet draft,
draft-ietf-rtgwg-ipfrr-notvia-addresses-00.txt, Dec 2006.

[8] Cisco. IS-IS Fast-Flooding of LSPs Using the fast-flood
Command. Technical document,
http://www.cisco.com/univercd/cc/td/doc/product/software/
ios120/120newft/120limit/120s/120s27/fstfld.pdf, 2003.

[9] N. Feamster and H. Balakrishnan. Packet Loss Recovery for
Streaming Video. In International Packet Video Workshop,
2002.

[10] S. Fischer, N. Kammenhuber, and A. Feldmann. REPLEX —
dynamic traffic engineering based on wardrop routing policies.
In CoNext, 2006.

[11] B. Fortz and M. Thorup. Internet traffic engineering by
optimizing OSPF weights. In INFOCOM (2), pages 519–528,
2000.

[12] P. Francois and O. Bonaventure. Avoiding transient loops
during IGP convergence in IP networks. In IEEE INFOCOM,
Miami, Florida, USA, Mar 2005.

[13] P. Francois and O. Bonaventure. An evaluation of ip-based fast
reroute techniques. In Co-Next, 2005.

[14] P. Francois, O. Bonaventure, M. Shand, S. Previdi, and
S. Bryant. Loop-free convergence using ordered FIB updates.
Internet draft, draft-francois-ordered-fib-01.txt, Mar 2006.

[15] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure.
Achieving sub-second IGP convergence in large IP networks.
SIGCOMM Comput. Commun. Rev., 35(3):35–44, 2005.

[16] M. Gjoka, V. Ram, and X. Yang. Evaluation of IP fast reroute
proposals. In IEEE Comsware, 2007.

[17] W. J. Goralski and H. Gredler. The Complete IS-IS Routing
Protocol. Springer, 2005.

[18] J. He, M. Bresler, M. Chiang, and J. Rexford. Towards
multi-layer traffic engineering: Optimization of congestion
control and routing. IEEE Journal on Selected Areas in
Communications, 2007.

[19] G. Iannaccone, C. Chuah, S. Bhattacharyya, and C. Diot.
Feasibility of IP restoration in a tier-1 backbone. IEEE
Network Magazine, Jan-Feb 2004.

[20] W. Jiang and H. Schulzrinne. Comparison and Optimization of
Packet Loss Repair Methods on VoIP Perceived Quality under
Bursty Loss. In NOSSDAV, 2002.

[21] D. Katz, K. Kompella, and D. Yeung. Traffic engineering (te)
extensions to ospf version 2. Technical report, Internet
Engineering Task Force, United States, 2003.

[22] A. Kvalbein, A. F. Hansen, T. Cicic, S. Gjessing, and O. Lysne.
Fast ip network recovery using multiple routing configurations.
In Infocom, 2006.

[23] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, ,
S. Shenker, and I. Stoica. Achieving convergence-free routing
using failure-carrying packets. In ACM SIGCOMM, 2007.

[24] A. Li, P. Francois, and X. Yang. On Improving the Efficiency
and Manageability of NotVia. Technical report,
http://www.ics.uci.edu/~angl/papers/notvia_report.pdf.

[25] K. McCloghrie and M. T. Rose. Structure and identification of
management information for TCP/IP-based internets. Request
for Comments 1065, Internet Engineering Task Force, Aug.
1988.

[26] A. Medina, A.Lakhina, I. Matta, and J. Byers. BRITE: An
Approach to Universal Topology Generation. In MASCOTS
2001, August 2001.

[27] S. Nelakuditi, S. Lee, Y. Yu, Z.-L. Zhang, and C.-N. Chuah.
Fast local rerouting for handling transient link failures.
IEEE/ACM Trans. Netw., 2007.

[28] rtgwg. IETF routing area working group meeting minutes.
http://www3.ietf.org/proceedings/06nov/minutes/rtgwg.txt,
Nov 2006.

[29] M. Shand and S. Bryant. IP Fast Reroute Framework. Internet
draft, draft-ietf-rtgwg-ipfrr-framework-06.txt, Oct 2006.

[30] R. Sridharan and C. Diot. Achieving near-optimal traffic
engineering solutions for current ospf/is-is networks, 2002.

[31] J.-P. Vasseur, M. Pickavet, and P. Demeester. Network
Recovery: Protection and Restoration of Optical,
SONET-SDH, and MPLS. Morgan Kaufmann, 2004.

[32] A. Zinin. Analysis and minimization of microloops in link-state
routing protocols. Internet draft,
draft-zinin-microloop-analysis-00.txt, Oct 2004.

APPENDIX

A. PROOF FOR CORRECTNESS OF PRO-

TECTION PATHS

Theorem A.1 Let R be a node in the network. If R is on any
protection path of link S → T , and R is not S, the next hop

calculated based on the topology removing the link S → T is the
same as the one calculated removing the node S.

Proof. Let costS9T (X, Y) be the shortest path length from
node X to Y removing the link S → T . As R is on the short-
est path from S to T removing the link S → T , and R is not
S, we have costS9T (R, T) < costS9T (S, T). Suppose S is on
the shortest path from R to T removing the link S → T , we
have costS9T (R, T) > costS9T (S, T), which contradicts with
our previous result. Hence S is not on any shortest path from R

to T removing the link S → T . Therefore, removing the node S

from the topology will not affect the shortest paths from R to T .
In other words, R’s next hop towards T without the link S → T

is the same as the one without the entire node S.

B. PROOF FOR CORRECTNESS OF RNOTVIA

Theorem B.1 Let R be a node, and S → T be any directed link
in the network. After running rNotVia based on S → T and
R, the returned result contains all nodes which will encapsulate

traffic with NVS/→T and send the packets via R.

Proof. We prove by analyzing the pseudo-code presented in
Algorithm 1.

1. At line 4, G′ is equal to G where the links from the neighbors
of S to S and the link S → T have been removed.

2. From 1, a shortest path from a node N 6= S to T in G′ does
not contain S as there is no link whose tail-end is S in G′.

3. From 2, the shortest path from a node N 6= S to T in G′

is the shortest path from N to NVS/→T , according to the
definition of NVS/→T .

4. From 2, the shortest path from S to T in G′ is the short-
est path from S to NVS/→T , according to the definition of
NVS/→T when as used by S for link protection.

5. At line 8, R is the only flagged node

6. At line 8, unreached nbr and upstream nbr contain the
nodes that may send traffic towards NVS/→T

7. The loop starting at line 10 terminates when unreached nbr

is empty and the next shortest path provided by the priority
queue of the rSPT computation is longer than any path from
a node in upstream nbr to T

8. From 7, the loop terminates when all the path from the
neighbors of S and S to T in G′ have been extracted from
the priority queue.

9. During the loop starting at line 10, the head of a path to T

is flagged only if its next hop is flagged.

10. From 9 and 5, a node is flagged only if one of its shortest
paths to T in G′ contains R.

11. From 8 and 10, each neighbor of S and S is flagged if its
shortest paths to T in G′ contain R

12. The loop starting at line 27, removes the nodes in upstream nbr

that are not using S to reach T in G. They will not send
packets with destination NVS/→T when S fails . S is re-
moved from upstream nbr if it will not send packets with
destination NVS/→T when S → T fails, i.e. S → T is not
used

13. From 12 and 11, the returned set of nodes contains the nodes
that will send packets with destination NVS/→T via R upon
the failure of S or S → T .

12

