
UNIVERSITÉ CATHOLIQUE DE LOUVAIN

ÉCOLE POLYTECHNIQUE DE LOUVAIN

DÉPARTEMENT D’INGÉNIERIE INFORMATIQUE

On monitoring large-scale

Wireless Mesh Networks

Promoteur:

Prof. Olivier Bonaventure

Lecteurs:

Prof. Yves Deville

Dr. Benoit Donnet

Mémoire présenté en vue de l’obtention du grade de

master ingénieur civil en informatique option

networks and telecommunications

par Gregory Detal

Louvain-la-Neuve

Année académique 2008-2009

Acknowledgments

I wish to especially thank Prof. Olivier Bonaventure for giving me the great

opportunity to work on this project. I would like also thank him for providing the

necessary assistance during all those months.

I would like to thank Benoit Donnet for all his readings and useful corrections,

without that I could not have completed this project.

I am also pleased to thank Delphine Vandresse, for all her support and encour-

agements all along this work.

I finally want to thank my parent for their help and support throughout my

studies.

i

Abstract

T
hese last years have seen the emergence of Wireless Mesh Networks (WMNs),

a technology for providing cost effective broadband Internet access. Typically,

a WMN follows two objectives: offer connectivity to end-users (i.e., wireless clients)

and form a self-organized wireless backbone. However, due to the highly dynamic

characteristic of wireless devices, it is difficult to ensure if those two objectives are

met by the WMN. Monitoring a WMN is thus a key issue for network deployers.

In this work, we define three major objectives that a monitoring tool has to

respect in order to facilitate the network deployers’ life. First, to provide a real-

time monitoring, the basis of all monitoring. Second, to avoid monitoring overheads,

as the wireless capacity is limited, we prefer to limit the interference with the client

traffic. Third, being able to validate a network status, as due to the dynamic

characteristic, the routing protocols may not accurately represent the topology. In

particular, based on the latter objective, we provide an efficient algorithm for testing

paths in a WMN. We introduce the topology coverage, which is a way to cover the

topology graph with path, i.e., all links of the network is covered with at least one

path, in order to test them and accurately evaluate the network status.

In this thesis, we evaluate our solution on two aspects. First, we demonstrate on

generated topologies the efficiency of our topology coverage. In particular, we show

that our algorithm behaves well with all possible simulated topologies and has take

a reasonable amount of time to compute a solution, less than 100 seconds for a 250

nodes network. Second, we construct a small testbed and deploy a prototype of our

solution. We perform a set of experiments and show the usefulness of our solution

when the routing protocols does not detect failures.

ii

Résumé

C
es dernières années ont vu l’émergence des Réseaux Sans-fils Maillés (RSM),

une technologie fournissant un accès rentable à l’Internet haut-débit. Habitu-

ellement, un RSM suit deux objectifs: offrir la connectivité aux utilisateurs finaux

(c’est-à-dire, des clients sans-fils) et forme un ‘backbone’ auto-organisée. Cependant,

en raison de la caractéristique très dynamique des RSM, il est difficile de s’assurer

si ces deux objectifs sont atteints par le RSM. Monitorer un RSM est donc un enjeu

essentiel pour les exploitants de réseau.

Dans ce travail, nous définissons trois objectifs principaux que se doit d’implé-

menter un outil de monitoring, afin de faciliter la vie des responsables des réseaux.

Premièrement, de permettre un monitoring en temps-réel, la base de tout moni-

toring. Deuxièmement, d’éviter les ‘overheads’, comme la capacité du sans-fils est

limitée, nous préférons limiter les interférences avec le trafic client. Troisièmement,

être capable de valider un état de réseau, en raison de la caractéristique dynamique,

les protocoles de routages peuvent ne pas représenter correctement la topologie. En

particulier, basé sur ce dernier objectif, nous fournissons un algorithme efficace pour

tester les chemins d’un RSM. Nous introduisons la couverture de réseau, qui est un

moyen de couvrir un graphe de topologie avec des chemins, c’est-à-dire, que chaque

lien soit couvert par au moins un chemin, dans le but de les tester et évaluer avec

précision l’état du réseau.

Dans ce travail de fin d’étude, nous évaluons notre solution de deux manières

différentes. Premièrement, nous démontrons, sur des topologies générées, l’efficacité

de notre couverture de réseau. En particulier, nous montrons que notre algorithme

se comporte bien dans avec toutes les différentes topologies simulées et qu’il prend

un temps raisonnable pour calculer une solution, moins de 100 secondes pour un

réseau de 250 noeuds. Deuxièmement, nous construisons un petit banc d’essai et

déployons un prototype de notre solution. Nous réalisons un ensemble d’expériences

iii

iv

et montrons l’intérêt de notre solution quand les protocoles de routages ne détectent

pas les erreurs.

Contents

1 Introduction 1

1.1 Objectives . 1

1.2 Chapter overview . 3

2 Wireless Mesh Network 4

2.1 General overview . 4

2.2 Routing protocol families . 6

2.2.1 Proactive . 6

2.2.2 Reactive . 6

2.2.3 Hybrid . 7

2.3 Routing protocols . 7

2.3.1 BATMAN . 7

2.3.2 AODV . 9

2.3.3 OLSR . 11

2.3.4 MeshDV . 13

2.3.4.1 Routing protocol inside the backbone 14

2.3.4.2 Client management protocol 15

2.4 Comparison . 16

2.5 Conclusion . 18

3 Monitoring 20

3.1 Related works and existing solutions . 21

3.2 Objectives . 22

3.2.1 Real-time topology monitoring 22

3.2.1.1 The Management plane approach 23

3.2.1.2 The control plane approach 24

3.2.1.3 Evaluation . 24

v

Contents vi

3.2.1.4 In the OLSR case . 26

3.2.2 Limit the amount of monitoring messages 26

3.2.3 Validate network state viewed by Routing protocols 27

3.3 Characteristics to monitor . 28

3.4 Conclusion . 29

4 Topology coverage 30

4.1 Graph theory . 30

4.2 The topology coverage problem . 32

4.2.1 A relaxed problem . 33

4.3 A typical test . 35

4.4 Centralized Algorithm . 36

4.4.1 Algorithm behavior . 37

4.4.2 Algorithm complexity . 38

4.4.3 Possible heuristics . 39

4.4.4 Evaluation . 39

4.4.4.1 Topology models . 40

4.4.4.2 Results . 40

4.5 Decentralized Algorithm . 44

4.5.1 Graph partitioning . 44

4.5.2 Parallel computation & Leader election 44

4.5.3 Algorithm complexity . 46

4.5.4 Possible heuristics . 47

4.5.5 Evaluation . 47

4.5.5.1 Topology models . 47

4.5.5.2 Results . 50

4.6 Conclusion . 57

5 A practical application 59

5.1 Testbed . 59

5.1.1 Material . 59

5.1.2 Environment . 60

5.2 Architecture & roles . 60

5.2.1 The sniffer . 61

5.2.2 The topology server . 62

Contents vii

5.2.3 The leader . 62

5.2.4 The pinger . 63

5.3 Configuration . 63

5.3.1 The routers . 63

5.3.1.1 Base configuration . 63

5.3.1.2 Hardware & software Limitations 64

5.3.1.3 Interfaces configuration 64

5.3.1.4 Behavior configuration 65

5.3.1.5 OLSR configuration . 65

5.3.2 The sniffers . 66

5.4 Implementation . 66

5.4.1 Application Programming Interface (API) 67

5.4.2 Details & functionalities . 68

5.4.2.1 The sniffd . 68

5.4.2.2 The monitor . 70

5.4.2.3 The leaderd . 70

5.4.2.4 The pingd . 71

5.5 Review & tests . 72

5.5.1 Evaluation . 72

5.5.2 Node down . 73

5.5.3 Packet loss . 74

5.5.4 Delay . 75

5.6 Conclusion . 76

6 Conclusion and future work 77

6.1 Further work . 79

Bibliography 80

Appendices

A Decentralized Algorithm: Evaluation 86

A.1 Heuristics evaluation . 86

A.1.1 Regular networks . 86

A.1.2 Structural generators . 88

A.1.3 Degree-based generators . 89

Contents viii

A.2 Coverage quality . 90

A.2.1 Regular networks . 90

A.2.2 Structural generators . 91

A.2.3 Degree-based generators . 92

B A practical application & simulation: Source code 93

List of Figures

2.1 Infrastructured/backbone WMN example. 5

2.2 BATMAN – example of flooding OGM when a new node (A) joins, each

number representing a step . 8

2.3 AODV – Route request example. 10

2.4 OLSR – Broadcasting packet in a wireless mesh network originated from

the center node. 12

2.5 OLSR – Broadcasting packet in a wireless mesh network from the center

using a selection of MPRs (represented in black). 12

2.6 MeshDV – CREQ example. 16

3.1 Network Architecture with active monitoring. 24

3.2 Network Architecture with passive monitoring. 25

4.1 The P4-decomposition for an exact cover of the graph. 31

4.2 The (2,4)-decomposition for an exact cover of the graph. 31

4.3 Shortest path forwarding – example topology and corresponding forward-

ing tables. Each row of the table give the next-hop to reach a node. . . . 33

4.4 Example topology graph with four possible route. 38

4.5 Algorithm search example for Fig. 4.4. 38

4.6 Waxman – Number of paths used to cover a graph when the number of

edges varies and the number of nodes is fixed. 41

4.7 Waxman – Number of edges covered by at least 2 paths, i.e., over-covered,

when the number of nodes is fixed. 41

4.8 Waxman – Average number of paths per edges with the hbasic heuristic. . 42

4.9 Waxman – Maximum number of different measurement paths starting at

each node. 42

4.10 Waxman – Average computation time w.r.t. the number of nodes. 43

ix

List of Figures x

4.11 Waxman – Average computation time w.r.t. the number of edges (n = 120). 43

4.12 Waxman – Average All-Pairs Shortest Paths computation time w.r.t. the

number of nodes. 43

4.13 Partitionning of a 25 nodes manhattan grid into 3 parts. 45

4.14 Partitionning of a 24 nodes random topology into 5 parts. 45

4.15 Manhattan topology. 48

4.16 Fully connected topology. 48

4.17 Hypercube topology (n = 3). 48

4.18 Coverage time box-plot for each topology models (hovercover). 51

4.19 Computation time cumulative distribution (all models together). 51

4.20 Waxman – Number of paths used to cover (hovercover), comparison of the

two algorithms. 53

4.21 Waxman – Maximum number of path covering each edges (hovercover),

comparison of the two algorithms. 53

4.22 Waxman – Average number of different paths starting at each node. . . . 53

4.23 Waxman – Maximum number of different paths starting at each node,

comparison of the two algorithms. 53

4.24 Waxman – Average number of times each edges is over-covered. 54

4.25 Waxman – Number of paths used to cover the topology graph. 54

4.26 Waxman – Average computation time w.r.t. the number of nodes for

cluster size ∈ [10,20,40] nodes with hovercover. 55

4.27 Waxman – Path length distribution for cluster sizes ∈ [10,20,40] nodes

with hovercover. 55

4.28 Waxman – Comparison of the number of paths when the three heuristics

are used. 56

4.29 Waxman – Comparison of the Maximum number of paths starting at

each node when the three heuristics are used. 56

4.30 Waxman – Comparison of the Maximum number of paths covering each

edge when the three heuristics are used. 56

4.31 Waxman – Length distribution of path used to cover the graph. 56

5.1 The Accton MR3201A router. 60

5.2 Testbed – Routers and Sniffer positioning in the Reaumur building. . . . 61

5.3 State of the testbed view by the application. 73

5.4 State after the reboot of one node. 73

List of Figures xi

5.5 State after the simulation of 70% packet loss. 75

5.6 State after the simulation of an increasing of 1000ms in the delay on one

node. 75

5.7 Probing delay evolution when an increase of 100ms delay is applied (at

400sec). 76

A.1 Manhattan – Comparison of the Maximum number of paths covering

each edge when the three heuristics are used. 87

A.2 Hypercube – Comparison of the Maximum number of paths starting at

each node when the three heuristics are used. 87

A.3 Full mesh – Comparison of the number of paths when the three heuristics

are used. 87

A.4 Full mesh – Comparison of the Maximum number of paths starting at

each node when the three heuristics are used. 87

A.5 Hierarchical Top-Down – Comparison of the number of paths when the

three heuristics are used. 88

A.6 Hierarchical Top-Down – Comparison of the Maximum number of paths

starting at each node when the three heuristics are used. 88

A.7 Hierarchical Top-Down – Comparison of the Maximum number of paths

covering each edge when the three heuristics are used. 88

A.8 Hierarchical Top-Down – Length distribution of path used to cover the

graph. 88

A.9 BA – Comparison of the number of paths when the three heuristics are

used. 89

A.10 GLP – Comparison of the Maximum number of paths starting at each

node when the three heuristics are used. 89

A.11 GLP – Comparison of the Maximum number of paths covering each edge

when the three heuristics are used. 89

A.12 GLP – length distribution of path used to cover the graph. 89

A.13 Manhattan – Maximum number of different paths starting at each node. 90

A.14 Hypercube – Average number of times each edges is over-covered. 90

A.15 Full mesh – Average number of different paths starting at each node. . . . 90

A.16 Full mesh – Average number of times each edges is over-covered. 90

A.17 Hierarchical Top-Down – Average number of different paths starting at

each node. 91

List of Figures xii

A.18 Hierarchical Top-Down – Maximum number of different paths starting

at each node. 91

A.19 Hierarchical Top-Down – Average number of times each edges is over-

covered. 91

A.20 Hierarchical Top-Down – Number of paths used to cover the topology

graph. 91

A.21 BA – Average number of different paths starting at each node. 92

A.22 GLP – Maximum number of different paths starting at each node. 92

A.23 GLP – Average number of times each edges is over-covered. 92

A.24 BA – Number of paths used to cover the topology graph. 92

Chapter 1

Introduction

W
ireless Mesh Networks (WMNs) [AWW05] have witnessed a tremendous

growth over the last years. A WMN is a communication network involving

radio nodes organized in a mesh topology. The main objective of WMNs is to of-

fer connectivity to end-users, which can be laptops, cell phones, etc. To offer this

connectivity, a WMN deploys a self-organized backbone composed of two kind of

nodes: routers and gateways.

The emergence of WMN in the last years can be explained by its ease and sim-

plicity as it provides a self-configured network preserving connectivity in case of

network failure. The connectivity is maintained through the mesh character of the

topology that supplies great stability in case of changing conditions.

Likewise, integration is another reason of the popularity of WMNs. Mesh hard-

ware is typically small, noiseless, and easily encapsulated in weatherproof boxes.

This means it also integrates nicely outdoors as well as in human housing. It allows

one to cover a difficult area, e.g., offering Internet in an old building, a third world

city, building an enterprise networking, etc. All those case plead for an extension

and a development of WMNs.

1.1 Objectives

Handling and controlling a large-scale WMN is a difficult task. As everything is

changing very fast, understanding the source of the problem becomes very difficult.

1

1.1. Objectives 2

E.g., it is not obvious to understand that the source of a problem (e.g., loss of most

of the packets) is the distance between two nodes. It is even difficult if the routing

protocol does not detect the failure and still consider the link as usable.

The subject of our work is to provide a monitoring tool that will efficiently help

WMNs maintainers in their daily task and avoid them painful hours.

WMN monitoring and analyze has been a research topic these last years [SFQ+07,

GMCN08, NBB+07, NK08]. However some of them do not define clearly their mon-

itoring objectives. Therefore, we chose to define three objectives that are essential

to an efficient WMN monitoring tool. First, to provide a real-time monitoring, the

basis of all monitoring. Second, to avoid monitoring overheads, as the wireless ca-

pacity is limited, we prefer to limit the interference with the client traffic. And

finally, being able to validate a network status.

This latter objective is the main contribution of this work. The other objectives

have already been discussed previously [SGG+02, SG04, GMCN08]. As WMNs have

a highly dynamic characteristic, we need to validate the current network status, in

order to, e.g., validate the routing protocol configuration, the nodes positions, etc.

To fulfill this objective, we provide a contribution: the topology coverage. The topol-

ogy coverage is a way to cover a network topology graph with paths, i.e., all edges of

the network is covered with at least one path, in order to test them and validate the

network status. To find a topology coverage, we develop a centralized algorithm.

However, it comes with a major flaw: the computation time. It takes too much time

to find a solution. We, therefore, develop a decentralized solution based on graph

partition [KL70] in clusters. This latter algorithm presents a time saver compared

to the first one, while still keeping on average the same behavior.

To evaluate our solution, we construct a small testbed and deploy a prototype

of our solution. The prototype is a very simple graphic user interface, allowing to

visualize the topology and different problems. We perform a set of experiments and

show that, even if this implementation is not one of our goals, it provides an efficient

way to detect issues and help the maintainer solve them, especially when the routing

protocols does not detect those failures.

1.2. Chapter overview 3

1.2 Chapter overview

This report is divided in four chapters. The first one is an overview of WMNs. It

introduces in detail the WMN behavior and functionalities and explain four routing

protocols belonging to different families.

The second chapter fully describes three objectives for an efficient monitoring,

in order to facilitate the life of network maintainers by helping them understanding

the network behavior. These objectives are linked to the limited capacity of wireless

devices. The first objective is to provide an efficient real-time monitoring. The sec-

ond to limit the monitoring overhead. And the last, to validate the network status.

The third chapter develops the theoretical part of the report. As there are no

research about the latter monitoring objective, we decide to present a theoretical

contribution: the topology coverage. Deep analysis of the different algorithms is

performed in order to validate their efficiency.

The last chapter contains the description of a practical implementation of all

the objectives described in the second chapter. The application is tested, on a small

testbed, in order to visualize its correct behavior in face of changes.

We finally conclude this thesis by reminding its mean contributions and discern-

ing potential future directions.

Chapter 2

Wireless Mesh Network

2.1 General overview

W
ireless mesh networks (WMNs) [AWW05] are a special type of commu-

nication network involving two kind of radio nodes: mesh routers and mesh

clients. Mesh routers are those with a limited mobility and form the mesh backbone,

while mesh clients can be either stationary or mobile and can form a mesh network

among themselves and with mesh routers. Theses two types of nodes are connected

wirelessly and together compose the mesh topology. The coverage area depends on

nodes transmission range and is sometimes called the mesh cloud. A WMN can be

viewed as a subset of mobile ad-hoc networking [LH98] (MANet) where the nodes

are not free to move arbitrarily. Thus, the infrastructure is more or less static and

has a low dynamic aspect.

Recently, there has been a real interest in WMNs technology, mostly because

it provides an infrastructure where nodes auto-establish and maintain connectivity

between themselves as in MANet. A WMN goes further than MANet as it is au-

tomatically self-organized and self-configured, which is an interesting feature for a

low-cost, reliable, and easy manageable solution. Conventional clients (e.g., laptop,

desktop, phone, etc.) can either connect the mesh network via a wired network

(e.g., ethernet), directly connected to a mesh router, or either connect the mesh

cloud with their wireless network interface.

The most common architecture is the infrastructured/backbone WMN, as il-

lustrated in Fig. 2.1. Respectively, wired and radio links are displayed as solid

and dashed lines. It includes two types of routers, the so-called backbone mesh

4

2.1. General overview 5

Backbone mesh routers
Wired Internet Backbone

Routing clients

Non-routing
wireless client

Non-routing
wired client

Mesh gateway

Mesh router

Wireless client

Wired client

Wireless connection

Wired connection

Figure 2.1: Infrastructured/backbone WMN example.

routers and also router acting as gateway providing an Internet access to the net-

work. These wireless routers form the core by building the meshed, self-configured,

WMN backbone. Conventional clients can directly communicate with mesh routers.

If the wireless standard (e.g., IEEE 802.11 [wif07], WiMAX [wim04], etc.) used

by the backbone differs from the one used for the client connectivity, clients must

communicate with a base station connected to the mesh network with an Ethernet

connection.

Mesh routers and gateways are installed at fixed positions (e.g., roof of houses

for instance). The backbone is a permanent infrastructure. However new routers

can be readily added without modifying those already installed, since they use radio

communication.

Clients, unlike mesh routers, have a high mobility. WMNs clients can leave and

join at any time. In Fig. 2.1, two groups of clients are introduced. The non-routing

mesh clients do not participate in the routing process of the backbone WMN. They

are limited to establish a direct communication (wired or wirelessly) to a single

mesh router only, as in conventional communication between a wireless client and its

access point. The routing mesh clients are able to construct their own subnetwork,

2.2. Routing protocol families 6

by connecting not only mesh routers but also other routing mesh clients. This

provides peer-to-peer networks among the end-users. Theses clients are not only

passive nodes but need to to perform routing and self-configuration functionalities

as well as providing end-user applications to customers.

2.2 Routing protocol families

Routing protocols are essential in a MANet, as it allows communication between two

non-directly connected devices. The routing problem consists of finding an optimal

path through the network according to some performance criterion. Nodes have

initially no knowledge about the network topology. The main idea is that each node

broadcasts its presence and forwards other’s presence. After a certain time, a node

knows enough information on the whole topology to reach any node in the network.

Routing protocols can be classified according the way they discover the network

and how they construct their routing table. Below, we give a brief overview of the

three main routing protocol classes.

2.2.1 Proactive

Proactive routing protocols [AWD04] construct the routing table before even needing

it by distributing periodically the topology throughout the network. At any time, it

can identify the current status of each node of the network. This has the advantage

of minimizing the delay when a route is needed. The main drawback is that if the

network is not stable (e.g., high mobility) the amount of data exchanged requires a

large network bandwidth.

2.2.2 Reactive

Reactive routing protocols [AWD04] are developed to overcome the limitation of

pro-active routing protocols. It constructs the routing table when node asks for a

route. A node does not know the current network topology. Rather, it finds a route

on demand by flooding route-request (control) packets. Reactive protocols have

smaller control traffic overhead than pro-active protocols. However, these protocols

can have larger delays due to the fact that a route needs to be discovered before

data can be actually sent.

2.3. Routing protocols 7

2.2.3 Hybrid

Hybrid routing protocols [AWD04] mix both of above mentioned protocols. It acts

as a proactive protocol in a limited zone around the node and becomes reactive

beyond that zone.

2.3 Routing protocols

Below, we give an overview of some popular routing protocols that can be used with

WMN.

2.3.1 BATMAN

Better Approach To Mobile Ad-hoc Networking [NALW08] (BATMAN) relies on

simple message exchanging, originator message (OGM), to measure a route quality.

The information about the entire topology is not stored in each single node but

spreads across the whole network. Each node stores and perceives information

about the best next-hop towards all other nodes. The algorithm does not try to find

a path to the destination, but rather forwards the packets to the next-hop which is

on the best way to the destination.

BATMAN detects neighbors and distant nodes by sending and forwarding broad-

cast packets (OGM) using UDP. An originator message contains few information,

such as an originator (synonym to a BATMAN node) address, a sequence num-

ber, and a Time-To-Live (TTL) to avoid loops. An OGM advertises an originator

existence and is used for link quality and path detection.

Fig. 2.2 represents the OGMs flooding strategy by showing each message ex-

changed when a new originator joins (node A) the network. The flooding strategy

can be decomposed in three steps:

1. Every time interval, an OGM is broadcasted to all the node’s neighbors.

In Fig. 2.2, Node A broadcasts its presence (arrival in the network) by sending

an OGM to all its neighbors (nodes B and D), i.e., sending it to the broadcast

address.

2. Received originator messages are forwarded to all nodes of the mesh cloud,

until there is no need to re-broadcast them. In Fig. 2.2, Node B forwards the

OGM received by A to node C. Each node is aware of the node A’s presence.

2.3. Routing protocols 8

A

B C

D

(1)

(3)

(1)

(3)

(2)

Figure 2.2: BATMAN – example of flooding OGM when a new node (A) joins, each
number representing a step

3. A node considers a specific link to be bidirectional for a specific point in

time if the reply (re-broadcast) of the self initiated OGM has been received

from the corresponding link neighbor. In Fig. 2.2, when node A receives the

self originated OGM from nodes B and D, it knows that the links to these

neighbors are bidirectional.

A bidirectional link allows symmetric communication between nodes. BATMAN

protocol ensures that a route consists of bidirectional links only.

BATMAN is based on sequence numbers. Each originator numbers its OGMs

to avoid repeated messages. Those sequence numbers are recorded in a dedicated

Sliding Window. The amount of sequence number recorded in the window, which

contains always the set of recently received originator messages, is used as a metric

to choose a path over another.

Once a node has received an originator message from another node, some infor-

mation must be updated: the counter of recently received sequence number, and

the sliding window must be purged to represent the upper and lower bound of the

value’s range. Upon these updates, each node must perform the best neighbor rank-

ing algorithm, to find a route for a destination, as follows: The link from which

the most in-window OGM sequence number has been received is said to be the new

best link to the originator of the OGM. The chosen neighbor is then stored in the

routing table as the next-hop for this originator. This means that the next-hop for a

destination, is the neighbor from which the node has received the most information,

i.e., the most in-window sequence numbers received for a destination. Thus, the

2.3. Routing protocols 9

path chosen is not always the shortest but the most “reliable”, where there is less

packet loss.

In addition to broadcasting originator’s presence, OGM can also carries infor-

mation about a gateway to a network or a host connected to this originator. This is

performed by attaching one or several Host Network Announcement (HNA) header

extension to the originator message. If a node provides an Internet access, it must

provide some information about its available bandwidth. So that individual node

on the network can decide which Internet gateway to use.

When a node receives an OGM with an HNA extension, the route is added,

similarly as for originator, to the routing table and the next-hop is the best ranking

neighbor for the originator. In case of not receiving an OGM from a known originator

for a given of time, the route is considered invalid and removed from the routing

table.

2.3.2 AODV

Ad-hoc On Demand Distance Vector [PBRD03, LH98](AODV) is a distance vector

algorithm. However, unlike classic Distance Vector routing, AODV is a reactive

protocol. It requests a route when needed and does not require to maintain routes

that are not used in active communications.

AODV is a loop-free algorithm: by avoiding the count-to-infinity problem, it of-

fers a quick convergence when changes occur in the network. The count-to-infinity

problem is the situation where nodes update each other in a loop. The use of desti-

nation sequence numbers guarantees the avoidance of this count-to-infinity problem.

When a link failure occurs, only the affected nodes are immediately warned so that

they are able to invalidate all routes using the lost link.

AODV defines three types of control messages (over UDP) to maintain routes:

Route Request (RREQ) message is emitted by a node when a route to a desti-

nation is needed (e.g., if the route is expired, unknown or invalid).

Route Reply (RREP) message is unicasted in response to a RREQ.

Route Error (RRER) message is broadcasted, when a link failure occurs, to

notify other nodes of the lost link.

When a route to a new destination is needed, a node broadcasts a RREQ to

all its neighbors. The RREQ propagates through the network, until it reaches the

2.3. Routing protocols 10

A

B

C

D E

RREQ to all

(src:A,dest:E)

RREQ to all

(src:A,dest:E)

RREQ to all

(src:A,dest:E)

RREQ to all

(src:A,dest:E)

RREQ to all

(src:A,dest:E)

RREQ to all

(src:A,dest:E)

RREP to A

(dest:E,seq:31)

RREP to A

(dest:E,seq:31)

RREP to A

(dest:E,seq:31)

Figure 2.3: AODV – Route request example.

destination itself or a node with a “fresh enough” route to the destination. A “fresh

enough” route is a valid route entry with more recent information than the one

contained in the RREQ. The route is then made available to the originator of the

RREQ by sending back a RREP.

Each node monitors the link status to its neighbors by sending periodically Hello

messages (over UDP). A link is considered as broken if no Hello message was received

within a given time. When a link is lost, a RERR is used to indicate to the affected

nodes the destinations that are no longer reachable. To be able to perform this

reporting mechanism, each node must maintain a precursor list of nodes that are

likely to use this link as a next hop towards each destination.

AODV, in addition to enable unicast routing, is able to perform multicast rout-

ing, but it will not be covered in this document [PBRD03].

Fig. 2.3 presents a scenario in which node A wants to connect node E. It

forwards a RREQ packet to its connected mesh routers (nodes B and C). When a

node receives it, it first checks its own routing table and if it has a “fresh enough”

route to the destination, it replies with a RREP message. In this example, we

assume that no node has a “fresh enough” route to the destination. Therefore, the

node A broadcasts a RREQ to all its neighbors, and waits for a RREP. If the reply

is not received within a certain amount of time, the node must rebroadcast the

RREQ or assume that the destination is not reachable after a certain number of

retransmission. When an intermediate node receives a RREQ and does not have

a route to the destination (nodes B, C and D). It rebroadcasts the RREQ. The

intermediate node also creates a reverse route to the originator that will be used if

2.3. Routing protocols 11

the node receives a RREP back to the node. This route has a lifetime much lower

than an actual route entry. When the RREQ reaches a router having a “fresh” route

to the destination (node E), a RREP is generated by this router and unicasted to

the requesting node (node A). While forwarding the reply, a route is created and

when the RREP reaches the originator node, there exists a route to the destination.

When a node detects a link failure, it first invalidates all routing entries which

next hop is the incriminated neighbor. It then generates an RERR to all the nodes

that are actively using each of these routes, informing them that these routes are no

longer valid. These route errors may either be broadcasted or unicasted, depending

on the number of nodes concerned by this link failure.

2.3.3 OLSR

Optimized Link State Routing [CJ03, Tø04, A. 09] (OLSR) is a table-driven proactive

routing protocol. It was originally developed for MANet but can also be used in

wireless mesh network. OLSR uses a link state scheme in an optimized manner

to diffuse topology information. Unlike classic link state algorithm, it provides

an efficient flooding mechanism for controlling traffic by reducing the number of

required transmission and, consequently, preserve bandwidth. This mechanism is

called MultiPoint Relaying.

OLSR uses flooding of Hello and Topology Control (TC) messages, respectively,

to discover and diffuse topology information throughout the network. Each node

computes the next hop destination for all nodes according to this information, pro-

viding that the shortest path is chosen. To avoid infinite loops, each packet is

identified by a sequence number stored by each forwarding node. If a node receives

a packet with a lower or equal sequence number than the last retransmitted packet,

the packet is considered as a duplicate and is silently discarded.

The goal of MultiPoint Relaying is to restrict the set of nodes retransmitting a

packet from all neighbor nodes to a subset of those. The size of this subset depends

on the size of the network. This concept is achieved by selecting Multipoint Relays

(MPR) from all possible directly connected neighbors. A node selects its MPRs

such that there exists a path to all its 2-hop neighbors via a selected MPR.

Fig. 2.4 and Fig. 2.5 show a flooding scenario, with and without a MPR set,

initiated by the central node. Each arrow shows a single transmission of the same

message. In Fig. 2.4, there are 24 retransmissions, while in Fig. 2.5 there are only

2.3. Routing protocols 12

Figure 2.4: OLSR – Broadcasting packet
in a wireless mesh network originated
from the center node.

Figure 2.5: OLSR – Broadcasting packet
in a wireless mesh network from the cen-
ter using a selection of MPRs (repre-
sented in black).

four retransmissions. The classical way of broadcasting messages leads to a much

higher number of retransmissions than with a MPR selection. Nevertheless the same

result is achieved in the two possible ways, i.e., all nodes have received at least one

version of the transmitted message.

OLSR nodes can be multi-homed, i.e., they can run OLSR on multiple communi-

cation interfaces using multiple identifiers. Each node with multiple interfaces must

announce periodically information describing its interfaces configuration to other

nodes in the network. This is accomplished through flooding a Multiple Interface

Declaration (MID) message using the MPR flooding mechanism. A MID message

essentially consists of a list of interfaces addresses on which a node runs OLSR.

When adding a route to a node in the routing table, OLSR will add routes to all

addresses contained in the MID message, using the same next hop.

Hello messages have other advantages than only detecting neighbors. They are

also used to achieve link-sensing, two-hop detection and MPR selection signaling. A

Hello message is composed of all known links and neighbors. A node must perform

link-sensing on each interface, in order to detect links between the node interface

and the neighbor interface. The two-hop neighbor detection is achieved by listing

and storing all neighbors contained in a received Hello message from a symmetric

neighbor. This database containing all nodes reachable via a symmetric neighbor

is used for MPR calculation. After performing selection of MPR, nodes mark their

2.3. Routing protocols 13

selected MPR in Hello message.

Based on the constructed symmetric neighbor list, topology information can be

disseminated through the network using the multipoint relaying algorithm. This is

done using TC messages. TC messages are flooded on a regular interval, but are also

generated when changes are detected in the network. A TC message consists of a list

of neighbor addresses and an advertised neighbor sequence number (ANSN). The

ANSN is a sequence number associated with a node advertised neighbor set. It is not

increased every TC generation, but represents the “freshness” of the information,

i.e., a high ANSN. This means that ANSN is increased when a change in a node

advertised neighbor set is detected.

Upon the reception of a TC message, information about the known topology

must be updated. If this information has changed, then the route calculation algo-

rithm must be performed and the routing table is recalculated. Therefore the routing

table is only recalculated when a neighbor appears or disappears, when there is a

two-hop neighbor change or when there is a MID change. To construct this table,

OLSR performs a standard shortest path algorithm. If a node contains interfaces

which do not participate in the OLSR MANet, it must inject external route infor-

mation in the OLSR network. This is achieved by periodically issuing to all nodes

a Host Network Association (HNA) message, containing sufficient information for

any node to update the routing table information.

2.3.4 MeshDV

MeshDV [IF05, Rou08] is a cross-layer IPv6 hybrid routing protocol. Cross-layer

means that information is shared between different communication layers from the

OSI model. Routes between WMRs are established via a proactive approach, while

a reactive routing protocol is used to manage client mobility and reduce routing

table. The protocol is separated in two different sections, one to construct routes

between each WMRs and another to obtain on-demand routes between clients and

to manage clients mobility.

Packets sent between two clients associated on two different WMRs are encap-

sulated in an IPv6 tunnel between these two WMRs. This approach avoids keeping

state in the WMRs along the path. Furthermore, when a client moves, only the

WMRs at the edge must update information. WMRs along the path do not need

to make update, while continuing to relay packets.

2.3. Routing protocols 14

2.3.4.1 Routing protocol inside the backbone

The routing protocol must maintain a routing table containing an entry for each

WMRs identified by its IPv6 address. To achieve the construction of this routing

table, each WMR sends periodically its routing table to all is neighbors via a Route

Update (RU) message. This proactive route computation is performed using a Dis-

tance Vector approach. The metric used within MeshDV is a cross-layer one. This

metric is based on the transmission rate information obtained from the Data Link

layer (MAC layer).

RU messages may be sent via two different ways. The first one consists of sending

the whole routing table, while the second one consists of sending only recently

changed routing entries. These two ways are called respectively Full Dump and

Partial Dump. In order to maintain consistency in the network each WMR must

send periodically a Full Dump of its routing table. This is known as Periodic Route

Update. Between two Periodic Route Updates, some changes might occur in the

network. When these changes are consequent, it is not possible to wait for the next

Periodic Route Update. So, when a node detects an important change, it must send

a Partial Dump to announce the event. However, if the Partial Dump announces

more than 60% of the total number of routing entries in the routing table, a Full

Dump must be sent instead.

MeshDV tries to aggregate updates in the network by setting a minimal time

between two RU. This is interesting when there exists a flapping (up and down

frequently) link in the network because it is not efficient to send an RU message

each time a single change occurs.

MeshDV allows distinction between changes, i.e., when important changes (e.g.,

broken link, new router, etc.) occurs a Partial Dump is sent, while non important

changes are not announced until next Periodic Route Update.

Upon reception of a Route Update message, each WMR must update its local

routing table if necessary. If an entry is not refreshed for a certain amount of time,

it is considered as not participating in the WMN any more. The node detecting

this event sets the corresponding metric to infinite and schedules an RU message,

Partial or Full dump, depending on the amount of concerned routing entries. If

a node detects a broken link with one of its one-hop neighbor, each route entries

which used this node as next-hop is removed from the routing table. A WMR can

2.3. Routing protocols 15

act as a gateway to other networks. To announce a gateway capability, a flag is set

in the RU message header. The default gateway corresponds to the one which has

the best route.

Sequence numbers are used inside Route Update message and are used to deter-

mine if the received route is interesting. Sequence number value also corresponds to

a route status, e.g. a valid route has an even sequence number while a broken route

has an odd sequence number.

2.3.4.2 Client management protocol

The client management protocol uses two different tables, the first one is the Local

Client Table, which lists the directly associated clients, the second one is the Foreign

Client Table. It lists the foreign clients that are requested by a local client. Several

message types are used to manage clients:

Client Request (CREQ) message is used to locate foreign client on the WMN. If

a node receives a CREQ and does not know the requested client, it forwards

the request to its neighbors. Otherwise, it acknowledges the message with an

ACK message.

Acknowledgement (ACK) message is used to either acknowledge a CREQ or a

CWIT message.

Client Withdraw (CWIT) message is used to inform a WMR, that a requested

client as moved. This message must also be acknowledged.

Client Error (CERR) message is used to inform a WMR, that it has a wrong

information about a client location.

Once a WMR has discovered a new client’s IPv6 address, it must check whether

the client was previously associated to another WMR. If the client was not formerly

associated with another WMR, the WMR adds the corresponding entry in the Local

Client Table. Otherwise, it must first ensure that the former WMR has detected

the client’s departure by sending a CWIT message and, after receiving the acknowl-

edgement, adds the client entry in the table. The WMR receiving a CWIT message

or detecting a leaving client must remove the corresponding client from its Local

Client Table.

2.4. Comparison 16

A

B

C

D

c1

c2

pckt(dst:c2)

CREQ(seq,s:A,d:c2)

CREQ(seq,s:A,d:c2)

CREQ(seq,s:A,d:c2)

ACK(seq,d:c2)

ACK(seq,d:c2)

Figure 2.6: MeshDV – CREQ example.

If a WMR needs to locate a foreign client, it sends a CREQ message to all other

WMRs. Fig. 2.6 illustrates a client request, where c1 and c2 are client nodes and

others are WMR. The CREQ is initiated by node A, when it receives a packet from

c1 addressed to c2. Node A does not know the foreign client c2 because it is not

present in its Local Client Table and in its Foreign Client Table. A CREQ must then

be created and flooded through the WMR network. If a WMR receives a CREQ

message it looks for the requested address in its Local Client Table. If the WMR

finds it, it acknowledges the sender via a ACK message. Otherwise, it forwards the

message to its neighbors (node B). In Fig. 2.6, node D acknowledges the initiator

of the CREQ, node A, via an ACK message. If the originator of the CREQ receives

an ACK message, it can add the client in its Foreign Client Table. A Foreign Client

Table entry is removed when the route has not been used for a certain amount of

time or by the reception of a CERR message. A CERR message is emitted when a

WMR receives a packet for a client that are not in its Local Client Table.

2.4 Comparison

So far, we have seen the functionalities of various WMN routing protocols. Tab. 2.1

shows the properties that those protocols share or not have by comparing their

theoretical results.

As it can be seen from Tab. 2.1, none of theses protocols specify any special

security measures, nor Quality of Service (QoS) support. However, those protocols

2.4. Comparison 17

BATMAN AODV OLSR MeshDV

Family - reactive proactive hybrid
Distributed ✓ ✓ ✓ ✓

Loop free - ✓ ✓ ✓

MANet ✓ ✓ ✓ -
WMN ✓ ✓ ✓ ✓

Security - - - -
Multicast - ✓ - -
IPv6 - - - ✓

QoS - - - -

Table 2.1: Comparison between WMN routing protocols.

can readily be modified to include preexistent cryptographic coding protocols (e.g.,

IPSec, etc.). Therefore, allowing one to:

1. Protect the mesh cloud against malicious nodes, by authenticating each of

them.

2. Ensure the confidentiality of communications.

3. Ensure the integrity of the network, by avoiding malicious message to be in-

jected (e.g., TC messages in OLSR, RREP in AODV, etc.).

All protocols are distributed, therefore do not depend on a centralized node and

thus can quickly react to topology changes.

OLSR is the only proactive routing protocols in this study. It has also the most

in common with traditional wired routing protocols, such as, OSPF and IS-IS. OLSR

is the most used protocol in WMN. Being a proactive protocol, OLSR uses power

and network resources in order to propagate data about possibly unused routes.

As said in Sec. 2.2.1, if too many changes occur causing a non-stable network,

proactive routing protocols will exchange non negligible amount of data. On the

other hand, as each node knows the whole topology, delays are minimized when a

route is acquired. Being a link state routing protocol, each OLSR node needs to

compute optimal path in the network, requiring a large amount of CPU, depending

on the size of the network and on the embedded hardware. By using MPRs to

broadcast topology information, OLSR removes some redundancy, which may lead

to problems if the network has a high packet loss rate.

The main advantage of AODV is the inherent property of all reactive protocols:

routes are established on demand. So the bandwidth used to exchange control data

2.5. Conclusion 18

is lower than OLSR. However, multiple RREP in response to a single RREQ can

lead to a heavy control overhead. Delays also depend on the amount of time between

a RREQ and the first RREP received, which can be important depending on the size

of the network. Another advantage of AODV is that destination sequence number

are used to find the latest route to the destination. However, this can lead to

inconsistent routes, if some intermediate nodes, with invalid topology information,

response to a RREQ.

BATMAN is the most recent developed protocol, and is still a work under

progress. BATMAN does not have elements of classical routing protocols and, con-

sequently it cannot be classified in a routing protocol family. However, its main

advantage is its simplicity, as it relies on a simple message. As BATMAN is still

under development, it has several flaws that needs to be corrected:

1. BATMAN does not contains any loop avoidance mechanism, nor any loop

detection.

2. BATMAN does not aggregate messages into packets, this may lead to a sig-

nificant cost in the link-layer technologies (with an important per-frame over-

head).

3. BATMAN convergence is exponential in the diameter of the network in the

presence of packet loss.

MeshDV is an hybrid protocol as it is both proactive and reactive. It is designed

to take full advantage of WMNs’ architecture. It is able to form a mesh backbone

integrating clients’ mobility management. MeshDV is an IPv6 only network, and

takes information inside the data link layer to perform route selection. Nevertheless

there are still problems on the mobility management. If a client moves during a

communication and if the WMR association changes. The old WMR, where the

client was connected, does not know that the client has moved. This may lead to

losses of packets. This is due to the fact that MeshDV relies on the data link layer

which takes some time to detect changes.

2.5 Conclusion

Routing protocols behaviors are very disparate, depending on the network state some

protocols may react in a better way that others. Choosing the right protocols for a

2.5. Conclusion 19

network is not very simple, one may try classic protocols such as OLSR and AODV,

that are standardized by the IETF. Other could choose more recent protocols such

as BATMAN, that encounter a tremendous growth over the last years and may give

better result that others. And finally, one could choose MeshDV which deals with

client movement, which is very interesting for every WMNs.

Chapter 3

Monitoring

T
he main goal of network management is to ensure the quality of services the

networks provides. To achieve this, the network maintainer must monitor and

control the different connected elements in the network.

We are especially interested in one aspect of the network management: network

monitoring. This aspect is concerned by analyzing the behavior and the status of the

network nodes that automatically generates the topology. Accuracy and efficiency

in the monitoring is therefore essential and critical for various functions of network

management.

To implement the network monitoring part, three architecture are possible (a

combination may also be envisaged):

The management plane is based on queries pooling (queries on each nodes) to

monitor the network.

The control plane implements the routing protocols to listen to the messages

exchanged between the routing protocols nodes.

The data plane supports packet-forwarding functionality, such as destination-

based forwarding, filtering, and tunneling, in order to analyze the existing

state of the network.

The control plane and the management plane are two related notions as they

achieve the same goal: an accurate network state monitoring. On the other hand the

data plane mechanism is based on probing to obtain an accurate network state. The

most common probing technique is to execute ping between two pairs of nodes to

20

3.1. Related works and existing solutions 21

verify the status of the route between them. A well known data plane management

software is the Cisco IOS IP Service Level Agreements (SLAs) [ips09]. It allows

the network maintainer to perform measurement such as delay jitter, congestion,

availability of path, etc.

As we have seen in Chap. 2, there exist several completely different routing

protocols families. Theses protocols have disparate behaviors and, thus, it is difficult

to deploy a monitoring system handling all the possible protocols.

In this work, we choose to develop an OLSR (see Chap. 2, Sec. 2.3.3) monitoring

tool. The main reason is that OLSR is currently widely used and well tested. It

is highly portable [A. 09], i.e., it exists implementations on the three main OS:

Windows, Mac OS X and Linux.

3.1 Related works and existing solutions

Monitoring and analyzing of routing protocols have become areas of research re-

cently. In wired networks, numerous studies appeared on the subject of OSPF

monitoring [SGG+02, SG04, SIG+02], in which Shaikh et al. described a couple of

techniques to achieve a good tracking of the OSPF topology. This work has been en-

tended to protocols such as BGP and there are more commercial products products

used by ISPs to perfom this monitoring [Pac09].

In the wireless mesh network domain, lot of works has been achieved. Sailhan

et al. present monitoring system of self-organized sub-systems [SFQ+07]. The key

idea is to use a cluster-based hierarchical structure, maintaining monitoring data

in a distributive manner. The distributed structure is then used to propagate and

aggregate the monitoring data, resulting in a reduced bandwidth usage.

Gupta et al. study the issue of efficient monitoring in WMN, mostly the impact

of the monitoring overhead in the user data traffic [GMCN08]. They observe that

it is crucial to have the appropriate technique (i.e., the right frequency, the right

monitoring manner, etc) for an application in order to maintain the balance between

minimizing bandwidth consumption and measurement data accuracy.

Naudts et al. describe a planning tool to help rescue teams by deploying a

WMN [NBB+07]. To offer a real-time overview of the network, they implemented,

as done by Sailhan et al. [SFQ+07], a distributed way to gather data, based on

existing probing techniques.

3.2. Objectives 22

Nanda and Kotz describe, as Naudts et al. [NBB+07], a solution providing a

communication infrastructure in a real environment [NK08]. They describe Mesh-

Mon a solution, where mesh nodes, embedded in each emergency vehicle, form the

wireless mesh backbone. Mesh-Mon is not, as previous existing studies, a centralized

solution. Nodes are designed to actively cooperate, predict, diagnose and resolve

network problems in a scalable manner.

3.2 Objectives

Wireless mesh network monitoring requires a trade-off between accuracy of real-

time information and measurement overhead. Network monitoring may introduce

overheads, which can interfere with the end user data flows and thus decrease the

network performance.

We want to design a WMN monitoring system that meet the following objectives:

Provide real-time and efficient monitoring of routing protocols behaviors

This tracking can be used to identify problems and troubleshoot them. It

can also be used to validate the configuration of the routing protocol. And it

allows the maintainer to visualize the network topology.

Limit the amount of monitoring messages

The monitoring tool has to provide a maximum amount of information on the

network status, while minimizing the network resource usage.

Accurately validate the network state viewed by the routing protocol

As explained in Chap. 2, Sec. 2.1, WMNs have highly dynamic characteristics.

Sometimes, routing protocols do not represent accurately the topology, due to

this dynamic problem. We thus need a tool that accurately represents the

topology to identify problems that are not covered within routing protocols.

In the following we discuss the recent work that has been done about these three

objectives.

3.2.1 Real-time topology monitoring

Having a good real-time topology monitoring is the central part of each possible

network monitoring. Such real-time monitoring could be used to:

3.2. Objectives 23

1. Easily identify problems and their sources, e.g., operators could quickly iden-

tify a link that is flapping (i.e., up and down constantly) and then troubleshoot

it.

2. Accurate presentation of the network topology viewed by routing protocols.

3. Validation of the routing protocol configuration, for maintenance or traffic

engineering.

Such an objective has already been discussed in the case of the OSPF rout-

ing protocol [SGG+02, SG04]. Two different approaches to solve this problem: a

proactive one (management plane) and a passive one (control plane).

Theses two solutions involve a special device storing information about the cur-

rent and past network status. We call this device the topology server. This device

is the central piece of information and thus must be reliable and robust, ensuring

that information is always available.

3.2.1.1 The Management plane approach

This solution involves communicating with each routers via the SNMP protocol

[CFSD90]. SNMP is a simple way to monitor all types of network. The SNMP

MIB defines public variables that can be read remotely. These variables contain

information such as the available memory on the node, the default route, etc. SNMP

allows one to define TRAPs, that are triggered upon changes. A SNMP TRAP is a

message which is initiated by a node and sent to the requested system, so that when

a change occurs, e.g., a neighbor is up or down, a TRAP is sent to the management

station. A TRAP message is sent as an UDP datagram.

With these two mechanisms (TRAPS and queries), the topology server can

keep track of the topology. To achieve this, the topology server must register for

TRAPs and query all nodes to construct the entire topology. Fig. 3.1 shows the net-

work architecture of such a solution. Each arrow corresponds to a possible SNMP

query/TRAP. The number of queries is thus proportional to the number of nodes

in the network. As SNMP runs on top of UDP, the queries are not reliable and we

need thus to support acknowledgment messages to avoid this issue.

To be able to query and configure TRAPs on routers (all black dots in Fig. 3.1),

the topology server must have information about them, e.g., IP addresses mainly. It

must then run a network discovery procedure, which is used to discover all routers in

3.2. Objectives 24

topology server

Figure 3.1: Network Architecture with active monitoring.

the network. This process starts with a single router configured as a seed. The pro-

cess extracts OSPF variables from the router’s MIB, e.g., neighbors OSPF routers,

interfaces, the OSPF area, etc., and then restarts the process with the newly dis-

covered routers until there are no more routers to discover.

3.2.1.2 The control plane approach

This solution is quite simple: a special node is added to the network and does not

interfere with previously existing nodes, i.e., it runs the routing protocol, but does

not announce itself as an OSPF router. Its only assignment is to listen the routing

protocol packets and forward them (or inform about changes) to the topology server.

Fig. 3.2 shows the network architecture in case of packet sniffing, the white node

represents the listening node. Compared to the previous solution (Fig. 3.1), less

bandwidth is used to retrieve information. To increase reliability, we can add as

many special nodes as we want. However there is an obvious trade-off between

reliability and bandwidth usage.

This approach only works if the routing protocol is link state, e.g., that each

node knows the whole topology.

3.2.1.3 Evaluation

Shaikh et al. evaluate their two approaches, in terms of two operational issues

[SGG+02, SG04]:

The ease of deployment

In the control plane approach, there must be a physical link between OSPF

routers and the listening node. So it must be simpler to deploy the manage-

ment plane approach, as it only requires a simple box: the topology server.

3.2. Objectives 25

topology server

Figure 3.2: Network Architecture with passive monitoring.

The overhead

In the management plane approach, all routers have to respond to SNMP

queries. They need also to generate TRAPs when the topology changes, e.g.,

when a new OSPF node is up each router generates a SNMP TRAP. On the

other hand, the control plane approach quietly listens to the network and sends

messages only when there is a change. The latter solution is then better in

terms of generated overheads.

Finally, Shaikh et al. confront the two approaches in terms of reliability and

timeliness. The informing process can be divided in two parts: the generation of

the herald message and its propagation. The latter is the major component of the

total delay before the change reaches the server. The propagation mainly depends

on the path taken by the message from the source of the change to the server. Since

OSPF messages are flooded, they take the shortest path from the source to the

server, while TRAP messages take the minimum weighted path to reach the server.

The latter path, may thus, not be the path with minimum delay or the minimum

number of hops.

Simulations compare the two approaches in terms of the four points discussed

above. The simulations show that the superiority of the control plane approach,

mainly in terms of reliability and robustness even in face of drastic network condi-

tions. The main issue with the management plane approach is the lack of reliability

of SNMP TRAPs. On the other hand OSPF messages are flooded from a reliable

manner, which ensures that they always reach the server. In addition this flooding

provides multiple paths increasing the robustness of the information. This robust-

ness provides that they reach the server even if the network is in a transient state,

provided that the network remains connected, while the normal forwarding of mes-

3.2. Objectives 26

sages could fail.

3.2.1.4 In the OLSR case

Based on this research, we need to decide whether the management plane or the

control plane approach is the best to monitor OLSR behavior. We can review the

comparisons made above within the case of OLSR:

The ease of deployment

In WMN, we are in a wireless world, so there is no problem to include the lis-

tening nodes. We can easily include them anywhere in the network, providing

that they can reach the topology server in some way.

The overhead

As this is our second monitoring objective (see Sec. 3.2.2), the overhead needs

to be extremely low. Compared to wired networks, wireless networks are highly

dynamic and changes can occur very often. The management pane approach

generates a lot of TRAPs, for each change, depending on the monitoring con-

figuration, in the worst configuration possible it generates n TRAPs for a n

nodes topology. While the control plane approach only sends one message for

each change and can combine several changes in a single message, allowing a

limited overhead. The latter solution is thus the better one.

The other comparisons (i.e., reliability and timeliness) remain valid for OLSR,

as it is a Link-State routing protocol, as OSPF.

We thus choose the control plane approach to carry out the real-time topology

monitoring.

3.2.2 Limit the amount of monitoring messages

WMN is known to be capacity limited [AWW05, JS03], as it is affected by many

factors, such as: network topology, traffic patterns, node density, etc. In the case of

WMN monitoring, we care about the user traffic, and as it is capacity limited, we

do not want to interfere with it.

To avoid such inconvenience, we want to limit as much as we can the overhead. In

Sec. 3.2.1, we discussed the way to acquire the network topology, we chose a solution

by already taking into account the need to limit the overhead. Nevertheless, we can

go further and try to limit even more the monitoring overheads.

3.2. Objectives 27

Gupta et al. discussed the impact of the monitoring overhead in the case of the

management plane approach (see Sec. 3.2.1.1), in WMN on the forwarding of user

data and a threshold-based monitoring [GMCN08]. They also evaluate the impact

the impact of the frequency of reporting the monitoring data on the end-user’s

performance.

The threshold-based monitoring objective is to report data to the topology server

only when a given event occurs. This allows one to reduce the monitoring traffic.

An other way to not decrease the performance of the network is to report data at

an appropriate frequency. Frequency is an important parameter in each monitoring

framework. Reporting data at a high frequency allows us to maintain an accurate

image of the network. However, this approach suffers from high monitoring over-

heads. On the other hand, if a lower frequency is used, the overheads vanish, but the

image of the network is not as accurate as with a higher frequency. The frequency

should be selected appropriately to not decrease the desired functionality.

Gupta et al. demonstrate that even a small amount of monitoring overheads can

cause a large degradation on the end’s user performances [GMCN08]. Even if this

result is based on the management plane approach, it increases the need to limit as

much a possible the overhead. To evaluate the impact of the monitoring frequency,

the authors performed two tests: One with each node reporting data every second

and another every ten seconds. The simulation results showed that the accuracy is

high, as expected, when the data are sent every second. Nevertheless, the accuracy

drops a little when nodes report every ten seconds, but is still reasonable. And as

expected, reporting data every ten seconds achieves slightly better performance in

terms of end-to-end delay, throughput, and packets loss than the other case.

3.2.3 Validate network state viewed by Routing protocols

In Chap. 2, Sec. 2.3, we detailed several WMN routing protocols. However, nowa-

days, hundreds of proposed routing protocols, some of them being standardized and

used for many years (OLSR, AODV).

As these protocols are running on top of a highly dynamic network, they could

not represent the accurate state of the network. This could be caused by:

1. The architecture of the routing protocol, that is not designed to perform well

on different situations.

3.3. Characteristics to monitor 28

2. An erroneous configuration of the routing protocol, causing its bad perfor-

mance. E.g., if the time between OLSR Hello messages is too high, then due

to the low reliability of the wireless link layer, these messages could be lost

and so, the link will be unusable.

A tool is then needed to validate this network state viewed by the routing pro-

tocols. We do not discuss this validation as in Chap. 4 a tool to cover a network

topology with paths to validate its state is entirely dedicated.

This tool is based on the data plane approach monitoring. It can give more

information than just validate the topology. About paths, it can give information

about: the current average delay, the congestion level, etc.

3.3 Characteristics to monitor

In addition to the three main objectives listed in Sec. 3.2, an efficient monitoring

needs a lot of useful information to be provided. We describe main characteristics

of WMNs that can be measured, in addition to regular monitoring characteristics

(e.g., as in basic network monitoring).

Theses characteristics can be retrieved from difference ways, the simplest being

the use of SNMP, with a monitoring frequency and a threshold-based monitoring

as in Sec. 3.2.2. But a more efficient way is to do as in [SFQ+07], where Sailhan et

al. auto-create clusters of node that share information about monitoring and then

combine these informations to send it to the topology server.

List of connected clients

Routers in a WMNs may be heavily requested by clients (i.e., it has a lot

of connected clients). It could be interesting to know the number of clients

connected to a WMR. From this information the network maintainer can re-

organize the network topology to be more efficient.

Signal-to-Noise Ratio (SNR)

The SNR is an information of the noise in the channel between nodes. It

gives an overview of the link quality and capacity. A low SNR means that two

WMR are too far from each other, so that the link quality is very low.

3.4. Conclusion 29

Packets loss

In regular wired networks packets loss are due to congestion. In WMNs, a

packet can be lost due to other aspects, as connectivity loss (i.e., low SNR), a

moving client, etc. It could be interesting to know the loss causes.

Average delay/load on each link

Link capacity can vary in time, it can then be interesting to have a temporal

overview of the delay/load compared to the current link capacity.

Monitor much important nodes

Gateways are always crucial, thus we need more informations about them than

other nodes.

Traffic proportion by nodes

This is related to the previous item. To be able to balance, in terms of pro-

portion of traffic, more efficiently the network, we could monitor the amount

of data transiting in each nodes.

From theses monitor characteristics, the network maintainer can take useful

actions to resolve the underlined issues. Some action could also be taken within the

monitoring tool, as Traffic Engineering. E.g, the metric of a link can be changed,

manually or dynamically with Tomogravity [Var96].

3.4 Conclusion

Overheads are a key topic in wireless monitoring, we need to deal with it. We chose

a simple way to acquire the current topology: sniffing the routing protocol messages.

In addition to give an accurate state of the network, it avoid using too much message

and thus increase the overhead. We also talked about the monitoring frequency, a

well-chosen frequency allows to retrieve an accurate state of the network while not

interfering with the client traffic.

We also discussed about the impossibility to routing protocol to sometimes not

accurately represent the topology, especially in the case of WMNs. To deal with

this issue, we define, in the following chapter, a new theory: the topology coverage.

Chapter 4

Topology coverage

I
n this chapter we present a tool to confirm the current network status. This tool

is based on the data plane approach to monitoring (see Chap. 3).

We define a network status as a set of link status. Therefore, to validate a

network status we need to confirm, one by one, each link of this set. A link status

is valid if it is functioning, i.e., packet can successfully pass through it. Hence, a

network status is said to be valid if each of its link is.

4.1 Graph theory

From the graph theory we can extract one notion: the path decomposition [Don80].

A path decomposition of a graph G = (V,E), a collection of edges E and vertices V ,

is a list of paths such that each edge appears in exactly one path of the list. From

this notion derives two concepts closely related: the {Pl}-decomposition [Pyb96,

MqCh06] and the (a, b)-decomposition [TR], that takes into account a path length

constraint.

The graphs considered in these two problems are finite, connected and undi-

rected. The length of a path is defined by its number of hops. The set of edges and

vertices of a graph G are denoted respectively as E(G) and V (G).

We can define the {Pl}-decomposition and the (a, b)-decomposition as follows:

Definition 1 ({Pl}-decomposition)

The {Pl}-decomposition of a graph G = (V,E) is a partition of E(G) into paths Pl

of length l − 1.

30

4.1. Graph theory 31

Figure 4.1: The P4-decomposition for
an exact cover of the graph.

Figure 4.2: The (2,4)-decomposition
for an exact cover of the graph.

Definition 2 ((a, b)-decomposition)

Given 2 integers a ≤ b, an (a, b)-decomposition of a graph G = (V,E) is a partition

of E(G) into paths of length between a and b.

There are only few differences between these two decompositions. The (a, b)-

decomposition allows variable length paths, while the other allows only fixed path

length. As a result, the {Pl}-decomposition can be viewed as a particular case of

the (a, b)-decomposition, being in fact a (l − 1, l − 1)-decomposition.

Fig. 4.1 and Fig. 4.2 show examples of a {P4}-decomposition and a (2,4)-

decomposition, respectively, of the same graph.

Differences are significant, between the two figures, mainly because the {Pl}-

decomposition is dependent of the number of edges. We can readily see that the

parity of l determines which graph can or can not be decomposed:

Proposition 1

A graph G of size m (m = ∣E(G)∣) can be {Pl}-decomposed if and only if l and m

parity is opposite.

In Fig. 4.1, we can see that the graph has 17 edges, if it had a even number of

edges then it would have been impossible to find the decomposition. However, the

(2,4)-decomposition is still possible even if one edge is added or removed.

4.2. The topology coverage problem 32

On the other hand, an (a, b)-decomposition can be trivial. Indeed, if we consider

problems with a = 1, then the decomposition admits a trivial solution by simply

taking one path per edge.

Pyber shows that every connected graph on n vertices can be covered by at

most n/2 +O(n2/4) paths [Pyb96]. Ming-qing and Chang-hong show that a {P3}-

decomposition of a graph with order n and size m, if it exists, can be computed

with a polynomial time algorithm O(nm) [MqCh06].

Teypaz and Rapine conjecture that the (a, b)-decomposition problem on an un-

specified graph is NP-complete if a is greater than three [TR]. They also show

that if a graph is not traversable, the minimum (a, b)-decomposition problem is

NP-complete. A graph is traversable if all its arcs can be traced in exactly one

movement without lifting a pencil.

4.2 The topology coverage problem

From the notions explained in Sec. 4.1, we can derive a new problem: the topology

coverage problem.

Definition 3 (Topology coverage problem)

Let G be a network topology graph, we define the topology coverage problem as the

minimal (2, b)-decomposition of G.

The topology coverage problem is an adaptation of the (a, b)-decomposition

problem such that:

1. The number of paths is as small as possible so that we avoid to overload nodes,

2. We cover only useful links in the networks, i.e., link that carry data,

3. We avoid trivial solutions, i.e., no simple one-hop paths, because among other

things, they are already tested by the routing protocol.

From item 3, we limit the length of paths to be ∈ [2,∞[.

Recall from Sec. 4.1, that the minimal (a, b)-decomposition cannot be found with

a polynomial time algorithm. This issue leads us to consider a relaxed problem.

4.2. The topology coverage problem 33

A

B C

D

E1

1

1

3

1

4

A B C D E

A − B B B B

B A − C C C

C B B − D E

D C C C − C

E C C C C −

Figure 4.3: Shortest path forwarding – example topology and corresponding for-
warding tables. Each row of the table give the next-hop to reach a node.

4.2.1 A relaxed problem

To find a relaxed topology coverage problem, we chose to consider only a limited

set of possible paths to cover the graph.

We build this set of possible paths based on the IP behavior: the shortest path

forwarding. The shortest path forwarding is based on the weight of each edge of

the graph. Based on this approach, each router compute the shortest path for each

route of the network, i.e., each other nodes.

Once a router has the information about the path trough the network it can build

its routing table. The routing table contains information about the next-hop, i.e.,

the neighboring router, where it needs to forward the packet to join a destination.

This allows the IP packets to follows fixed paths to join a destination.

This shortest path forwarding induces a limitation of the links (edges of the

network graph) usage, as it exists only one path between each node of the network.

There is no need for the topology coverage problem to cover non-used links. In fact

some of the paths may be used by network maintainer to configure or control one

node, etc. However, the major part of the traffic only pass through paths used by

the shortest path forwarding.

Based on that information, we define our limited set of paths to be the possible

routes in the network. For a n nodes topology, there are n − 1 paths from one node

to the others, so a total of n(n − 1) possible routes.

The All-Pairs Shortest Paths algorithm (APSP) is used to compute the set

of possible routes in the network. There exists several implementations, e.g., the

Floyd-Warshall algorithm [Flo62] that have a time complexity of O(n3).

This problem simplification has two advantages: it simplifies the overall compu-

tation complexity and respects item 2 from the problem objectives.

4.2. The topology coverage problem 34

Fig. 4.3 shows one example of the shortest path forwarding and the interest of

using a limited set of paths. The routing tables are build upon one of the many

possible routing protocols (OSPF, OLSR, etc.). In the figure, links A ↔ D and

D ↔ E to are not used to forward packets. Let us take the example of the path

from A to D. To join D, A has several possibilities, but the least costly path is to

join D through B and D, where the total path cost is thee. The simple path, taking

the link, between A and D cost more, it has a cost of four. This shows that all links

in the network are not useful, some of them might not be used, therefore, there is

no interest to test their status.

We could choose a source routing approach instead of the shortest path forward-

ing. In this case, packets define their path through the network. This allows more

flexibility in the coverage, as it is possible to build all possible paths. With this

solution, we can compute the coverage of the topology graph and then introduce it

to the network environment, without taking care of the network restriction. How-

ever, source routing is considered harmful by Internet Service Providers (ISPs), as

it allows anyone to partially or completely specify the route a packet takes through

the network. Therefore, the source routing is deactivated almost everywhere. This

is the case for the IPv4 protocol but also for its successor: IPv6. The latter was

designed to contains a source routing header extension (RH 0), however the severity

of the source routing threat is considered to be sufficient to warrant the deprecation

of the header extension [ASNN07].

An other simplification could be to not limit the problem to disjoint paths, and

allow the algorithm to over-cover some edges, i.e., edges belonging to more than one

path of the decomposition. Nevertheless, we want to have a minimal over-coverage

of edges, i.e., we do not want to congest links inside the network.

From these simplifications we can reformulate the topology coverage problem to

be this time a computational problem and not a graph problem anymore.

Definition 4 (Topology coverage problem - computational)

Let G = (V,E) be a network topology graph, where E(G) is defined by useful links,

and Φ a set of feasible paths of this graph G such that some edges e ∈ E(G) belong

to at least one path of Φ.

The topology coverage problem is to find the minimum subset Φ′ of Φ such that

every edge e from E(G), belonging to at least one path of Φ, belongs to at least one

path of the Φ′ subset.

4.3. A typical test 35

In this case, we want to find the best possible solution among the set of all

possible solutions to a search problem. In the following section we explain the

algorithm to solve this optimization problem.

4.3 A typical test

In the previous section we defined the goal of the topology coverage problem but

we did not explain how to execute the validation of a network state. As said in

Definition 4, the problem is to find a subset of paths. We need to test each path in

the subset in order to validate the current network state.

To test a path, we execute an ICMP Request/Reply [Pos81], also called ping, from

the node starting the path to the ending node. As pings are based on IP packets,

they follow the shortest forwarding path. Therefore, they respect the intermediate

passage of the paths.

We only consider undirected graphs, pings tests links in both direction. First,

in one direction, with the ICMP Request to the destination node and second, back,

with the ICMP Reply message to the requesting node. It may happen in some cases

that the reply does not follow the same path as the request. E.g, it is the case when

the equal-cost multi-path (ECMP) routing [Hop00] is used. The ECMP routing is a

strategy where the choice of the next-hop to a single destination is based on multiple

best paths. Best paths are defined by the same metric cost. To avoid such unwanted

issue, we chose to make the hypothesis that we are in a network that does not use

such strategy.

To understand how ping test works, let us look at an example based on Fig. 4.3.

If we choose to test the path: A ↔ B ↔ C ↔ D, a ping is executed between node

A and D. Following their routing table, the ping packet passes through B and C

before reaching D, and goes back to A following the same path.

In order to validate the state of the network, all paths of the subset must be

validated. The device that computes the subset must give to each node that starts a

path in the subset one or more destination to be probed (depending on the number

of paths starting at each node). Upon the reception of the request, each node starts

pinging its destination nodes. Pings results can be the following:

Everything OK

In this case, the reply is received meaning that the path is fully functional in

4.4. Centralized Algorithm 36

both direction.

Timeout

This means that there was no reply to the ping (the cause is mainly the loss

of the ping) and means that maybe one link is not up or is congested.

Destination Unreachable

This means that the current routing table, on this node or along the path,

does not match the topology graph given as parameters to the algorithm.

Destination Down

This means that the route is still valid but the node is down.

The two latter results are extracted from an ICMP message. If a middle router

detect that the destination of the ping is unreachable or down, it sends back a Type

3 ICMP message. When a ping fails, the result is sent back to the ping request

server to be further analyzed.

4.4 Centralized Algorithm

A trivial algorithm could be to enumerate all possible subsets and select the best

of them, i.e., the one with the smallest possible paths. The problem with such a

solution is that it is NP-complete and thus not practicable.

A better solution would be to use an heuristic search methods [RN03], such as

A* or Greedy Best-first search. Of course these algorithms do not always give the

best solution, nevertheless, providing a good heuristic, it will give a solution close

to the best one.

We choose to implement a Greedy Best-first search like algorithm, as it gives a

simple way to prune unwanted paths during the search process.

Algo 4.4.1 defines our implementation of the topology coverage problem. It

contains two external procedures:

AllCovered return true if the current set of paths is a terminal state, i.e., a state

where each edge is covered.

H is the heuristic function that gives the cost of the current set of paths.

The cost of the current set of path, of course, depends on the heuristic, but must

follow some rules. The cost must always be greater or equal to zero and when the

4.4. Centralized Algorithm 37

Algorithm 4.4.1 The topology coverage algorithm.

Require: graph, a graph representation of a network topology
Require: routes, a set of possible routes in the graph, subject to ∀r ∈ routes :

2 ≤ Length(r) ≤∞
Ensure: paths, a set of paths, subject to ∀p ∈ paths ∶ p ∈ routes, representing the

coverage of the graph
1: paths← {}
2: while not AllCovered(graph, paths) do
3: min←∞
4: path← ∅
5: for all p ∈ routes do
6: cost←H(graph, paths ∪ {p})
7: if cost <min then
8: path← p
9: min← cost

10: end if
11: end for
12: paths← paths ∪ {path}
13: routes← routes/{path}
14: end while
15: return paths

current set of path is terminal (i.e., AllCovered returns true) the cost must be

exactly zero.

4.4.1 Algorithm behavior

Fig. 4.5 depicts the temporal search evolution of the algorithm, for a very simple

case. We can see that the algorithm is a tree search.

The algorithm works as follows: first, it starts with an empty set of paths (root

of the tree in Fig. 4.5). At each step it generates the successors of the set, i.e., takes

one of the path in routes and generates a new set containing one more element. It

then evaluates the cost (line 6) of each set and continues the computation with the

less costly one. It then checks whether or not it is a solution (line 2). If it is, the

algorithm ends returning the current set of paths. Otherwise, the algorithm repeats

the computation step until a solution is reached.

As the depth of the tree is not infinite, the depth is lower or equal to the number

of paths in routes. Consequently, the algorithm will always finish. In the worst case

the solution comes when all routes are chosen to cover the graph.

Fig. 4.5 shows exactly the computation steps for a simple graph (see Fig. 4.4)

with four possible paths of length greater than 2. The possible paths are: p1 ∶= n1 ↔

4.4. Centralized Algorithm 38

n0 ↔ n3, p2 ∶= n3 ↔ n0 ↔ n4, p3 ∶= n2 ↔ n0 ↔ n3 and p4 ∶= n1 ↔ n2 ↔ n4. In this

case there are four children to the root of the tree. From the evaluation of the cost,

it chooses the second child to continue the computation as it has the minimal cost.

In Fig. 4.5, the costs are randomly chosen, nevertheless in real cases it depends on

the heuristic used. The computation continues until the cost reach zero, the node of

the tree at this time is a solution. It is interesting to notice the pruning that is done

at each level in the tree. At the first level, the algorithm prunes tree subtrees, two

at the second level, etc. The amount of pruning depends on the node level degree,

e.g., at level i there are i − 1 subtrees pruned. This allows the complexity of the

algorithm to be polynomial and not exponential, if we traverse the whole tree to

find a solution.

n0

n1

n2

n3

n4

2 1

12

5

1.5 5

Figure 4.4: Example topol-
ogy graph with four possible
route.

{}

{p1}

H = 4

{p2}

{p2, p1}

H = 3

{p2, p3}

H = 3

{p2, p4}

{p2, p4, p1}

H = 2

{p2, p4, p3}

{p2, p4, p3, p1}

H = 0

H = 1

H = 2

H = 2

{p3}

H = 3

{p4}

H = 4

Figure 4.5: Algorithm search example for Fig. 4.4.

4.4.2 Algorithm complexity

The true algorithm complexity is hard to define, as it mainly depends on the heuristic

used to compute the solution. However, for the worst case scenario where the

solution is all the possible routes, we can specify the complexity.

For a graph G of order n (= ∣V (G)∣) and size m (= ∣E(G)∣), we define r to be the

number of routes used to cover a graph: r = ∣routes∣ = ∣Φ′∣ ≤ ∣Φ∣ = n(n − 1).

The complexity of the algorithm depends of the complexity of the procedures:

Terminal and H. Their time complexity is O(m) as they must travel through all

edges to check whether each edge is covered.

4.4. Centralized Algorithm 39

In Algo 4.4.1, we see that the while loop, line 2 to 14, is executed at worst

r + (r − 1) + (r − 2) + . . .+ 2+ 1 times. It depends on the complexity of the ‘for’ loop

which is the number of element in routes. At each step, The elements in routes

decrease by one. r+(r−1)+(r−2)+ . . .+2+1 can be factored as 1
2(r

2 + r) ≤ O(r2).

Thus, in the worst case, the time complexity of the algorithm is O(mr2) ≤ O(mn4).

4.4.3 Possible heuristics

In this section we will look at possible heuristics for the topology coverage problem.

A good heuristic is essential to give the best results from search problems. However,

finding the best possible solution, i.e., the smallest possible path set, is not our only

goal. We need to care about the over-coverage of edges, as we discussed in Sec. 4.2.

Two heuristics candidates can be:

hbasic tries to limit the number of paths by counting the number of edges not yet

covered.

hovercover tries to, in addition to limiting the number of paths, limiting the over-

coverage of edges.

The goal of these two heuristics are different, the first one only cares about

quickly finding a solution, while the latter, tries to avoid nodes overloading and

congestion.

The first heuristic is admissible as it does not over-estimate the cost to reach

the goal. On the other hand, the second heuristic over-estimates the cost, as it

counts the number of edges over-covered. In this case, the algorithm is not optimal

anymore. It is not a real problem, we do not need optimal solutions, we need to find,

in an acceptable time, a satisfying solution. A satisfying solution will not over-cover

the edges, so we need to control this parameter.

4.4.4 Evaluation

The following section describes the simulations and the results obtained by imple-

menting algorithm 4.4.1.

Sec. 4.4.4.1 discusses the different tools used to generate topologies and the

underlining topology models. And Sec. 4.4.4.2 shows the results obtained with the

algorithm.

4.4. Centralized Algorithm 40

The algorithm was implemented in Python [pyt09]. Python is a high level inter-

preted programming language. The syntax is minimalist while the available libraries

are comprehensible. We used the NetworkX library [Hag08], which is a package for

the creation, manipulation, and study of the structure, dynamics, and functions of

complex networks. Especially this package contains a good implementations of a

graph structure and algorithms such as the All-Pairs shortest path and the Floyd-

warshall algorithms [Flo62], used to compute routes in the network.

The simulator source code is available in Appendix B.

The setup for the simulations are computers with Intel Core 2 Quad CPU Q6600

@ 2.40GHz with 2GB DDR2. These computers runs the CentOS distribution of

GNU/Linux, with Python 2.4.3.

4.4.4.1 Topology models

In this section we explain Waxman, the model that is used to simulate algorithm 4.4.1.

This model belongs to the Random graph generators family.

Random graph generators

The concept of random graph was first introduced by Erdös and Rényi in 1959 [ER59].

The basic idea of random models (sometimes called pure random models) is that a

graph can be built completely randomly to model networks. The Erdös-Rényi (ER)

random graph is very simple: it associates a constant probability to the creation of

a link between any pair of nodes.

The Waxman random graph [Wax88] is a small variant of the ER model. This

generator assigns coordinates to nodes onto the coordinate plane. In the Waxman

model, the probability to create edges is a function of the Euclidian distance between

nodes.

Random graph generators do not explicitly attempt to reflect the structure of

real networks [Quo09]. Nevertheless, they are attractive for their simplicity and are

commonly used to study networking problems.

4.4.4.2 Results

In this section we evaluate the effectiveness of algorithm 4.4.1 among the different

topology models, presented in Sec. 4.4.4.1. We study the influence of several param-

4.4. Centralized Algorithm 41

200 400 600 800

200

400

Number of edges

N
u

m
b

er
o
f

p
a
th

s

hbasic hovercover

Figure 4.6: Waxman – Number of paths
used to cover a graph when the number
of edges varies and the number of nodes
is fixed.

200 400 600 800

0

200

400

Number of edges

N
u

m
b

er
o
f

ov
er

-c
ov

er
ed

ed
g
es

hbasic hovercover

Figure 4.7: Waxman – Number of edges
covered by at least 2 paths, i.e., over-
covered, when the number of nodes is
fixed.

eters of the algorithms: the number of nodes, the number of edges and the cluster

size.

The Waxman parameters used to generate topologies are: α = 0.15, β = 0.2 and

m = 2.

We first evaluate the effectiveness of algorithm 4.4.1 at properly cover the topol-

ogy.

Coverage ability

The most important result to evaluate in the case of this algorithm is its capacity

to cover correctly the topology graph. The different criteria for a good coverage are

the following:

1. A minimal number of paths should be used.

2. An acceptable computation time.

3. Edges should not be too much over-covered.

4. The number of probes sent by each node should be limited, i.e., we do not

want to overload a node with tests requests.

Fig. 4.6 and Fig. 4.7 show results for the two possible heuristics, hovercover and

hbasic. Fig. 4.7 shows that, as expected, the number of over-covered edges is 0 or

heavily limited for the hovercover heuristic. On the other hand, the hbasic presents

4.4. Centralized Algorithm 42

poor results, indeed, almost every edge is over-covered. However, the two heuristics

show both the same results in Fig. 4.6. They generate, on average, the same number

of paths for similar topologies. In addition to that, it seems that the number of paths

is almost equal to half the number of edges.

As the two heuristics give the same number of paths it should be interesting to

be able to determine which one is the best heuristic to use. As explained before, the

hbasic heuristic gives worse results than hovercover, in terms of over-coverage. Fig. 4.8

shows the mean amount of times edges are over-covered with the hbasic heuristic.

As it can be seen, on average, the edges are not too over-covered, the maximum

is 1.6 paths through an edge, which is acceptable as this does not overload links.

In addition, this means that edges will be tested twice, which does not seem to be

a bad thing, if one test fails, the other may still succeed. If that case happens,

we can hypothesize that the link has a problem but is still functional. However,

other results show that the maximum times an edge is over-covered with the hbasic

heuristic may be 25, which is too much. This may cause congestion if the tests are

made simultaneously and may cause false results for the tests if one or more are

dropped due to this congestion.

0 50 100 150 200 250

1

1.2

1.4

1.6

Number of nodes

M
ea

n
ti

m
es

ed
g
es

a
re

ov
er

-c
ov

er
ed

scattered data mean value

Figure 4.8: Waxman – Average number
of paths per edges with the hbasic heuris-
tic.

0 50 100 150 200 250

10

20

Number of nodes

M
a
x

p
a
th

s
st

a
rt

in
g

a
t

a
n

o
d

e

hbasic hovercover

Figure 4.9: Waxman – Maximum num-
ber of different measurement paths
starting at each node.

Fig. 4.9 shows the differences between the two heuristics in terms of overloading.

We can see that hovercover gives better results, it gives fewer tests attributions than

the other. This means that routers will less be overloaded by tests request, at most a

router will have to do 10 tests at a time, 10 ping tests (see Sec. 4.3) seems acceptable

4.4. Centralized Algorithm 43

in a 250 nodes network.

Computation time

0 50 100 150 200 250

0

1

2

3

⋅104

Number of nodes

T
im

e
[s
e
c
]

hbasic hovercover

Figure 4.10: Waxman – Average compu-
tation time w.r.t. the number of nodes.

200 400 600 800

0

2,000

4,000

6,000

Number of edges
C

o
m

p
u

ti
n

g
ti

m
e
[s
e
c
]

hbasic hovercover

Figure 4.11: Waxman – Average compu-
tation time w.r.t. the number of edges
(n = 120).

Another point to consider is the computation complexity. Fig. 4.10 and Fig. 4.11

show the evolution of the computation time in function of the number of nodes in

the network, and the number of edges. We can see that more time to compute the

coverage is required when there are more edges in the network. When there are more

nodes there are much more possible routes in the network, for a n nodes topology,

0 50 100 150 200 250

0

1

2

Number of nodes

A
P

S
P

co
m

p
u

ta
ti

o
n

ti
m

e
[s
e
c
]

Figure 4.12: Waxman – Average All-
Pairs Shortest Paths computation time
w.r.t. the number of nodes.

4.5. Decentralized Algorithm 44

there are
n(n−1)

2 possible routes. So the algorithm needs to browse through all theses

possible routes to find the best successor. There are only few differences between

the two heuristics. It is interesting to notice that for n = 250 the computation time

is almost, in the two cases, equals to 2000 seconds. Half an hour is too long to

compute a coverage, we do not have this time before testing, as the network may

have changed [WJL03].

A last element to confirm is the All-Pairs Shortest Paths algorithm time com-

plexity, see Fig. 4.12, we can see that its computation time is negligible compared

to the coverage algorithm.

4.5 Decentralized Algorithm

Early simulation results (see Sec. 4.4.4.2) of algorithm 4.4.1, showed a tendency to

be time greedy when the number of nodes is larger than 150. We thus need to

modify it, in order to make it usable in real situations.

4.5.1 Graph partitioning

A solution to the time greediness of algorithm 4.4.1 is to partition the graph into

clusters. The graph partitioning problem [KL70] consists in dividing the graph into

pieces, such that all the pieces have about the same size and there are few connections

between them. Graph partitioning is known to be NP-complete, but can be solved

in polynomial time with fast heuristics [GJ79], that work well in practice. Fig. 4.13

and Fig. 4.14 show an example of graph partitioning into several clusters in the case

of a regular Manhattan topology and a completely random topology. The dashed

lines define the separation between clusters. For the Manhattan case, there are 25

nodes, thereby a cluster zone inherits from one more node than the others. On

the random graph, the interesting thing to see is that the number of cuts, i.e., the

number of edges from one cluster to another, is minimal. The maximal cuts is 5,

while still keeping a good repartition of nodes into the clusters.

4.5.2 Parallel computation & Leader election

Upon the creation of partitions, we want to apply a load balanced version of algo-

rithm 4.4.1 to perform a parallel computation on a smaller edge set (the edges of

the cluster).

4.5. Decentralized Algorithm 45

Figure 4.13: Partitionning of a 25
nodes manhattan grid into 3 parts.

Figure 4.14: Partitionning of a 24
nodes random topology into 5 parts.

We need first to compute this cluster edge set, because graph partitioning does

not care about edge repartition into clusters, it only cares about nodes repartition.

There are a couple of ways to compute this edge set, based on a graph partitioning:

1. Randomly associate border edges to one of the two connected cluster.

2. By computing the number of edges in one cluster and associate a border edge

to the cluster with the smallest number of edges.

We can define a subgraph as a graph whose vertex set is defined by the partition

algorithm, i.e., its cluster nodes, and whose edge set is defined as above.

In order to compute a cluster coverage, we need, for each cluster, to elect a

leader. A leader is the node that will compute the cluster coverage. In Fig. 4.13

and Fig. 4.14, they are respectively 3 and 5 leaders (diamond shape in figures), each

running algorithm 4.4.1 on its associated subgraph. The leader can be elected based

on several criteria:

1. Randomly.

2. Its current load, e.g., we do not want to overload a gateway or a crucial node.

3. Its computational skills, if the algorithm is time consuming, we prefer to exe-

cute it on a node with a fast CPU.

algorithm 4.5.1 represents the decentralized algorithm of the topology coverage

problem. The algorithm depends on a single node that controls the computation.

The procedures are:

4.5. Decentralized Algorithm 46

Algorithm 4.5.1 The decentralized topology coverage algorithm.

Require: graph, a graph representation of a network topology
Require: routes, a set of possible routes in the graph, subject to ∀r ∈ routes :

2 ≤ Length(r) ≤∞
Ensure: paths, a set of paths, subject to ∀p ∈ paths ∶ p ∈ routes, representing the

coverage of the graph
1: paths← {}
2: clusters← PartitionAlgorithm(graph)
3: leaders← LeaderElection(clusters)
4: for all leader ∈ leaders do
5: p←DistributeWork(leader, clusters[leader], routes)
6: paths← paths ∪ {p}
7: end for
8: return paths

PartitionAlgorithm executes a partition algorithm on the graph. For simplicity,

we want it to return a set of subgraphs.

LeaderElection elects each cluster leader.

DistributeWork parallelizes the algorithm computation. It can be implemented in

any way, e.g., the Parallel Virtual Machine (PVM). PVM is designed to allow

a network of computers/devices to be used as a single distributed parallel

processor. It takes three parameters: the leader itself, the possible routes in

the network and the subgraph (clusters[clusters]) linked to it.

To improve the computation time, a leader, when it receives the information,

can try to limit the set of possible routes by only selecting those passing trough its

cluster. And finally, one executes algorithm 4.4.1, with input: the restricted set of

routes and the cluster graph.

4.5.3 Algorithm complexity

The complexity of this algorithm is difficult to define, as it depends on the parallel

computation of algorithm 4.4.1 (seen Sec. 4.4).

As said before, the graph partitioning can be done in polynomial time, Kernighan

and Lin showed that it can be done in O(n2) [KL70], where n is the number of node

in the graph. The leader election, meanwhile, can also be done in a polynomial

time, depending on the strategy chosen.

4.5. Decentralized Algorithm 47

4.5.4 Possible heuristics

The two heuristic, detailed in Sec. 4.4.3, can be used with algorithm 4.4.1, neverthe-

less, with the decentralized algorithm, we may need to limit the length of the paths.

Because, we cannot limit the size of the paths to the diameter of the subgraph, as

paths lying inside the cluster may not cover each edges of it. We cannot remove

path, because, we do not know, in advance, if the path will be used to cover the

graph. Furthermore, each leader does not have information on the other cluster

coverage and as we do not want to over-cover edges, we need to limit the length of

the paths.

For the decentralized topology coverage algorithm, we can use hbasic−limit and

hovercover−limit which are the same version as the heuristic depicted before.

The hovercover−limit heuristics can be construct as follows (similarly for the hbasic

heuristic):

hovercover−limit(state) = hovercover(state) +mean paths length(state)

In this case, we add the mean path length to the cost of a solution. So the algorithm

solution will contains small paths.

Again, as said in Sec. 4.4.3, these heuristics are not admissible. However, we

do not need optimal solutions, we need to find, in an acceptable amount of time,

a satisfying solution. In this case the solution is to find a solution that do not

over-cover too much edges.

4.5.5 Evaluation

The following section describes the simulations and the results obtained by imple-

menting algorithm 4.5.1.

Sec. 4.5.5.1 discusses the different tools used to generate topologies and the

underlining topology models. And Sec. 4.5.5.2 shows the results obtained with the

algorithm.

The same simulation environment was used as in Sec. 4.4.4. To implement the

graph partition algorithm we use METIS [Kar08] graph partitioning software.

4.5.5.1 Topology models

In Sec. 4.4.4.1, we simulated on only one topology model: the Waxman model.

To obtain accurate results, we chose to simulate over a large number of possible

4.5. Decentralized Algorithm 48

Figure 4.15: Manhattan
topology.

Figure 4.16: Fully con-
nected topology.

Figure 4.17: Hypercube
topology (n = 3).

topology models. As if the algorithm is valid for all models, we can assume that the

algorithm is valid for a real-world topology.

Topology models can be characterized into several families: regular networks,

random, structural and degree-based generators.

Regular networks

A Manhattan topology (Fig. 4.15), is a graph in which the vertices are placed on a

grid and the neighboring vertices are connected by an edge.

A fully connected topology (Fig. 4.16), also called a full mesh topology, requires

that all nodes are connected to all other nodes. For a n nodes topology, there are
n(n−1)

2 links.

An hypercube (Fig. 4.17) is n-dimension analogue of a square (n = 2) and a cube

(n = 3). An hypercube is sometimes called a n-cube. For a n-dimension hypercube,

there are 2n vertices and 2n−1n edges.

There are other possible structures, such as the star topology, the tree topology,

the ring topology, etc. Regular topologies are often used in analytic studies of

algorithmic performance because their structure makes them tractable.

Random graph generators

We already talked about random graph generators in Sec. 4.4.4.1. However, other

models exists such as the Doar-Leslie model [DL93], which is a variation of the

Waxman Model. It allows one to specify a desired average node degree.

Structural generators

Structural generators [TGJ+02] are a more interesting class of generators than pure

random graph generators. They were designed to model the hierarchical structure

of the Internet (as it is a collection of interconnected routing domains). They build

the graph by connecting smaller components together.

4.5. Decentralized Algorithm 49

The top-down hierarchical topology [bri07] is one approach to generate hierarchi-

cal topologies. It generates first an AS-level topology, according to different models,

such as a random graph generators. Next, it generates a router-level topology in-

side each AS. And finally, it uses an edge connection mechanism to interconnect

router-level topologies, dictated by the connectivity of the AS-level topology.

Degree-based generators

Degree based-generators [TGJ+02] differs from structural generators, as their idea

is that network can be characterized by power laws. Degree-based generators are

concerned by local properties, i.e., properties of individual nodes within a network.

In particular, the local property of most importance is the node degree.

The Barabási-Albert (BA) [AB00] topology generator was the first degree-based

generator. The idea behind the BA model is that it takes into account of the

preferential attachment aspect. It preferentially attaches new nodes to existing well-

connected nodes, leading to the incremental growth of nodes and the links between

them.

The Generalized Linear Preference (GLP) [BT02] model focuses on matching

characteristic path lengths and clustering coefficients. A probabilistic method is

used to recursively add nodes and links while preserving the selected power law

properties.

Generator tools

The are several topology generators available to the research community. Some

of them, only using few of the models depicted before. Regular topologies come

directly from the NetworkX [Hag08] python package. For generating the other

topology models, we need to use these tools:

1. The Boston University Representative Internet Topology gEnerator (BRITE)

[bri07] for the Waxman model, the BA model, the top-down hierarchical topol-

ogy model and the GLP model.

2. The iGEn generator [Quo09] for the Waxman model.

3. The Georgia Tech Internetwork Topology Models (GT-ITM) [gti00] for the

Waxman model, the Doar-Leslie model and the Random model.

4.5. Decentralized Algorithm 50

4.5.5.2 Results

As in Sec. 4.4.4.2, we generate 15 different graphs to execute the algorithm for each

different parameter set.

To be consitant with previous evaluation of Algo 4.4.1, we only present in this

section results (especially figures) for the random graph generators family. Results

for the other families are presented in Appendix A.

Computation time

The first thing to evaluate is the time to compute the coverage. As it was a main

drawback of the previous algorithm, we do not that this algorithm suffer from the

same issue.

hovercover hbasic hovercover−limit
q1 q2 q3 q1 q2 q3 q1 q2 q3

Waxman BRITE 30.1 32.7 37.5 48.2 64.6 135.4 42.3 56.6 74.2
Waxman iGen 54.5 115.3 188.5 52.4 84.2 163.1 38.9 78.3 195.5
Manhattan 48.6 51.4 52.7 38.6 41.6 42.7 41.4 42.1 45.0
Hypercube 53.6 54.9 57.1 72.6 75.2 77.9 73.7 75.1 79.9
Hierarchical 67.1 71.0 74.8 66.0 70.5 80.6 62.0 66.2 71.1
GLP 42.1 56.9 79.9 169.8 227.1 345.7 80.9 139.7 244.9
Full mesh 147.4 155.5 166.0 131.4 137.4 150.7 99.3 102.6 114.4
BA 34.4 40.6 54.9 73.4 134.7 174.3 47.1 91.6 139.6

Table 4.1: Coverage time percentiles – 25th percentile (q1), median (q2) and 75th
percentile (q3) in seconds for all possible topologies with all possible heuristics with
a cluster size of 20 nodes for a total number of nodes of 250.

Tab. 4.1 gives the average time to compute the coverage of the network. We

consider the coverage of network being the time to compute all its clusters in parallel.

Therefore, the average coverage computation time is the average cluster coverage

computation time. It is easier to visualize the differences in Fig. 4.18 which displays

box-plots for each possible topology models, when the hovercover heuristic is used.

The lower bound of the box-plot is the 25th percentile, the red line is the median,

the upper bound is the 75th percentile, and points out of the box are outlier (an

observation that is numerically distant from the rest of the data).

Compared to the result in Fig. 4.10 where it takes on average 2000 seconds to

compute, here it takes, on average for all topologies, less for the same number of

nodes.

The parameters used for the different topology models (if any) are:

4.5. Decentralized Algorithm 51

50

100

150

Topology models

C
o
m

p
u

ta
ti

o
n

ti
m

e
[s
e
c
]

W
a
x

m
a
n

M
a
n

h
a
tt

a
n

H
y

p
er

cu
b

e

H
ie

ra
rc

h
ic

a
l

G
L

P

F
u

ll
m

es
h

B
A

Figure 4.18: Coverage time box-plot for
each topology models (hovercover).

0 100 200 300

0

50

100

Computation time [sec]

P
er

ce
n
ta

g
e

%

hbasic−limit hovercover−limit

hovercover

Figure 4.19: Computation time cumula-
tive distribution (all models together).

1. Waxman BRITE and Waxman iGen: α = 0.15, β = 0.2 and m = 2.

2. Hierarchical top-down: Waxman with α = 0.15, β = 0.2 and m = 2 is used to

generate AS-level topologies of size m = 10 nodes.

3. GLP: p = 0.45, β = 0.64 and m = 1.

There are not much differences between hovercover and hbasic heuristics. How-

ever, hovercover−limit gives sometimes higher time to compute (in the GLP topology).

GLP topologies have much higher number of edges to cover per cluster. As the

hovercover−limit tries to find small paths that do not over-cover, it will go deeper in

the search tree to find the solution and then take much time to compute.

We can see in Tab. 4.1 that Waxman iGen gives worst results than Waxman

BRITE, the reason is that the latter use a fixed number of edges while the first

allows more flexibility and generate on average more edges. The result is thus

normal: we saw in Sec. 4.4.4.2 that the number of edges influences strongly the

computation time.

The computation time seems reasonable. It takes on average less than 100

seconds to cover the graph. Depending on the routing protocol configuration, e.g.

the time between two hello messages, there may be no changes within this time

frame.

The only issue is for the full mesh topology and the GLP topology where it takes

more than 100 seconds on average to compute the whole coverage.

4.5. Decentralized Algorithm 52

The full mesh case is caused by its number of edges, as we saw in Sec. 4.4.4.2, it

mainly cause the algorithm to be time greedy. For a 250 nodes network a full mesh

topology contains 31125 edges, while for a Waxman topology there are approxima-

tively 1000 edges. However, the issue cannot be taken into account, as in reality it

is nearly impossible to find a 250 nodes full mesh network.

For the GLP topology, the issue is due to the fact that hovercover−limit and

hbasic−limit are not able to easily find a limited amount of paths to cover the graph.

The GLP topology is disparate, it is composed by a small center which is heavily

connected, the border nodes are connected to one center node by a single link. As

the possible paths are small, the algorithm with the two heuristics takes too much

small paths causing it to go deeper in the search tree, an thus taking more time to

compute.

Fig. 4.19 gives interesting results, it shows the cumulative distribution of the

algorithm computation time for all topology models together. In the case of the

algorithm running with the hovercover heuristic, almost 80 percent of the solutions

are found within 100 seconds. However, hbasic−limit and hovercover−limit gives the same

result at different computation time, respectively, 150 and 112 seconds. hovercover

show better behavior in terms of computation time, all the solutions are found within

200 seconds.

Coverage quality and algorithms comparison

The main evaluation of this algorithm is the quality of the coverage. It is hoped

that this algorithm will have the same behavior as the centralized one.

It is interesting to look at the differences between the centralized and the decen-

tralized algorithms. Fig. 4.20 and Fig. 4.21 show this difference, the same simulation

parameter is used in both cases (Waxman iGen and hovercover). In fact the differ-

ences are minimal. In Fig. 4.20, they both give approximatively the same result.

However, the only notable difference, is the over-covering of edges. In the cen-

tralized algorithm, hovercover give a very good result, an edge being almost never

over-covered. With the decentralized algorithm, it gives less good performance, in

the worst case, one edge of a 250 nodes network is covered with 10 paths. This is

still acceptable, because: ICMP packets are very small and all tests are not per-

formed simultaneously. This behavior can be explained by the fact that there are

no information about the covering shared by the clusters leaders. Therefore, they

4.5. Decentralized Algorithm 53

0 50 100 150 200 250

0

200

400

Number of nodes

N
u

m
b

er
o
f

p
a
th

s
Centralized algorithm

Decentralized algorithm

Figure 4.20: Waxman – Number of
paths used to cover (hovercover), compar-
ison of the two algorithms.

0 50 100 150 200 250

5

10

Number of nodesM
a
x
.

N
b

r.
o
f

p
a
th

co
v
er

in
g

ea
ch

ed
g
es

Centralized algorithm

Decentralized algorithm

Figure 4.21: Waxman – Maximum
number of path covering each edges
(hovercover), comparison of the two algo-
rithms.

might chose a path where a edge is already covered by an other leader.

0 50 100 150 200 250

1.4

1.6

1.8

2

2.2

Number of nodes

M
ea

n
p

a
th

s
st

a
rt

in
g

a
t

ea
ch

n
o
d

e

hovercover, m = 20

Figure 4.22: Waxman – Average number
of different paths starting at each node.

0 50 100 150 200 250

5

10

Number of nodes

M
a
x

p
a
th

s
st

a
rt

in
g

a
t

ea
ch

n
o
d

e

Centralized algorithm

Decentralized algorithm

Figure 4.23: Waxman – Maximum num-
ber of different paths starting at each
node, comparison of the two algorithms.

What are the main differences with the centralized algorithm? First the over-

loading of request of nodes. In the case of algorithm 4.5.1, Fig. 4.22 and Fig. 4.23

show us the influence of this algorithm in the nodes overloading. We can see that

the average number of paths starting at each node is slightly always the same. There

are on average 2 paths starting from each node, which is acceptable, as there are not

4.5. Decentralized Algorithm 54

0 50 100 150 200 250

1.5

2

Number of nodes

A
v
.

N
b

r
o
f

p
a
th

s
co

v
er

in
g

o
n

e
li

n
k

hovercover, m = 20

Figure 4.24: Waxman – Average number
of times each edges is over-covered.

0 50 100 150 200 250
0

50

100

150

200

Number of nodes

N
u

m
b

er
o
f

p
a
th

s

hovercover, m = 20

Figure 4.25: Waxman – Number of
paths used to cover the topology graph.

much differences between one and two queries. On the other hand the maximum

number of paths starting at a node is, for a 250 nodes topology, equal to 12. The

result is neither better or worst compared to the centralized algorithm.

Fig. 4.25 gives the amount of paths we need to cover a Waxman topology graph

with the hovercover heuristic. We can see that there is a constant coefficient of

proportionality between the number of path and the number of nodes.

As said before, an important parameter to observe, is the over-coverage of edges.

We do not want to over-cover edges, as it will result in a congestion of this links at

the network level. Fig. 4.24 shows the average over-coverage of edges, that we can

expect with the decentralized algorithm. We can see that links are slightly covered

by only one path at most. This is a good result, it shows that this important

parameter is respected.

The results are similar for the other topology families, see Appendix A, Sec. A.2.

Cluster size

Another parameter to evaluate is the influence of the cluster size. We only evaluate

the cluster size on the Waxman model.

A priori, when the cluster size is small, the computation time should be very

small, as the edges set is small. However, the coverage should be bad, as clusters

do not have information about others, e.g., they can take paths that are already

over-covered. The opposite should happen for large clusters, in this case it should

behave as algorithm 4.4.1.

4.5. Decentralized Algorithm 55

0 50 100 150 200 250

0

50

100

Number of nodes

M
ea

n
ti

m
e

to
co

m
p

u
te

(s
e
c
)

m = 10 m = 20

m = 40

Figure 4.26: Waxman – Average compu-
tation time w.r.t. the number of nodes
for cluster size ∈ [10,20,40] nodes with
hovercover.

2 3 4 5 6 7 8 9 10 11

0

0.1

0.2

Path length

P
ro

b
a
b

il
it

y

m = 10 m = 20

m = 40

Figure 4.27: Waxman – Path length dis-
tribution for cluster sizes ∈ [10,20,40]
nodes with hovercover.

Fig. 4.26 and Fig. 4.27 give an idea of the importance of the cluster size. In

Fig. 4.26, we see that there is a difference of more than 100 seconds to compute a

solution between a cluster of 10 nodes and cluster of 40 nodes. This is because in

clusters of 10 nodes there are fewer possible routes than in the other case, approx-

imatively 8224 routes against 33851 for a 250 nodes topology. And also, because

there are fewer edges to cover. These two reasons lead to a computation time that

is smaller for small clusters size.

Another thing to evaluate is the path length distribution. When the cluster size is

small, the length of the paths used may be too small. Fig. 4.27 shows the path length

distribution for different cluster sizes. We can see that there is an equal repartition

of path lengths, i.e., that the probability of finding a path length of 2 is equivalent

to the probability of finding a longer path. Conversely, in algorithm 4.4.1, there is

a really bad repartition of path length when the hovercover is used, approximatively

80% of path of length of 2 are used. Which is not what we aspire.

To conclude with the evaluation of the cluster size, we can say that a cluster

size of 20 nodes is a good compromise between time complexity and path length

distribution.

Heuristics evaluation

We have seen for algorithm 4.4.1 in Sec. 4.4.4.2, that heuristic hovercover has a better

4.5. Decentralized Algorithm 56

behavior than hbasic. Nevertheless for the decentralized algorithm, we defined two

new heuristics. We need to evaluate them, in order to decide which is the best one.

0 50 100 150 200 250
0

100

200

300

Number of nodes

N
u

m
b

er
o
f

p
a
th

s

hbasic−limit hovercover−limit

hovercover

Figure 4.28: Waxman – Comparison of
the number of paths when the three
heuristics are used.

0 50 100 150 200 250
0

20

40

60

Number of nodes
M

a
x

p
a
th

s
st

a
rt

in
g

a
t

ea
ch

n
o
d

e

hbasic−limit hovercover−limit

hovercover

Figure 4.29: Waxman – Comparison of
the Maximum number of paths starting
at each node when the three heuristics
are used.

0 50 100 150 200 250

5

10

Number of nodes

M
a
x

N
b

r
o
f

p
a
th

s
co

v
er

in
g

o
n

e
li

n
k

hbasic−limit hovercover−limit

hovercover

Figure 4.30: Waxman – Comparison of
the Maximum number of paths covering
each edge when the three heuristics are
used.

2 3 4 5 6 7 8 9 10 11

0

0.2

0.4

0.6

0.8

Path length

P
ro

b
a
b

il
it

y

hbasic−limit hovercover−limit

hovercover

Figure 4.31: Waxman – Length distri-
bution of path used to cover the graph.

Fig. 4.28 shows the average number of paths used to cover a Waxman topology.

In this case the hovercover heuristic gives much better results than the two other

heuristics. This is a special case because on Fig. A.5 in Appendix A, which shows

4.6. Conclusion 57

the same result but for a top-down topology, the differences between the heuristics

are not so pronounced. In the first case, the number of edges is larger than in the

other case, this cause that the two limited heuristics, hbasic−limit and hovercover−limit,

choose smaller paths which result in a larger number of path in the results. However,

when the number of edges is smaller, the differences between the heuristics are

limited.

Fig. 4.29 and Fig. 4.30 show respectively the maximum number of paths starting

at each node and the maximum over-coverage of each edge. We can see, and it is also

valid for previous figures, that there are not much differences between hovercover−limit

and hbasic−limit. It is interesting to notice that for the full mesh topology (see Fig. A.4

in Appendix A), there are no more similitudes between hovercover−limit and hbasic−limit

but in this case hovercover−limit and hovercover have the same behavior.

Regarding hovercover, the results are different, in Fig. 4.29 and Fig. 4.30, it

gives good results. In this latter case, for a Manhattan topology (see Fig. A.1

in Appendix A), the hovercover heuristic gives much worse result than the other

heuristics. It seems that is continue to grow when the number of nodes is greater

than 250. This result is not present in the degree-based topology family, see Fig. A.1

in Appendix A, in this case, the hovercover heuristic gives always best results.

Fig. 4.31 gives the probability to use a fixed length of path to cover the graph.

The result is obvious, as we designed hovercover−limit and hbasic−limit to limit the

length of paths, it is normal to find that the distribution for these two heuristics is

concentrated into small path lengths. This is not expected as it results in a larger

number of paths used to cover the graph (see Fig. A.5).

Based on these results, it is difficult to conclude on the fact that one heuristic

is better than the other. As it can vary from topologies, the best way is to try

hovercover−limit and hovercover and use the one giving the best results. Nevertheless,

the hovercover heuristic seems to be the best compromise, as its only problem is the

over-coverage of edges, we can hypothesize that for small size networks that it is not

a problem anymore.

4.6 Conclusion

The topology coverage problem is hard to compute, to simplify it we introduce

simplifications such as a limitation of possible path used to cover the graph and

4.6. Conclusion 58

the use of an heuristic based algorithm. This algorithm is, however, not good

enough, due to time consumption. Based on this flaw, we design an other algorithm,

it decentralize and parallelize the centralized algorithm. The topology coverage

becomes a set of cluster coverage. This improvement also increases the quality of

the algorithm, taking now a respectable amount of time to compute, while still

keeping desired behaviors.

Chapter 5

A practical application

N
ow that the monitoring objectives are defined (see Chap. 3, Sec. 3.2) and

fully described, we can start the implementation of a practical application for

verifying the theory validity. Due to the limited size of our testbed, we do not test

in details all the functionalities, we rather focus on the behavior of the program in

presence of a known case.

5.1 Testbed

A network testbed is a platform for experimentation like a sandbox in software

engineering but, in our case, for developing network projects. In this section we

discuss the hardware at our disposal and the network environment, i.e., the position

of each nodes.

5.1.1 Material

The testbed is composed of Accton MR3201A nodes, see Fig. 5.1. The Accton

MR3201A is officially supported by the Open Mesh project [ope08]. It is cheap, less

than $50, and elegant, it is a mini-router (small dimension).

From a technical point of view, it is based on the Atheros AR2315 chipset. It

is composed of a 32MB DRAM, 8MB Flash, one 2dbi antenna and one Ethernet

port. Thanks to the Atheros chipset, the Accton MR3201A has the possibility to

create several virtual wireless interfaces, to transmit and receive data. The wireless

interfaces are IEEE 802.11b/g compliant, with an output power of 60MW.

59

5.2. Architecture & roles 60

Figure 5.1: The Accton MR3201A router.

5.1.2 Environment

Fig. 5.2 depict the locations of the nodes into a real environment: the Reaumur

building, 2, place Sainte Barbe, 1348 Louvain-la-Neuve (Belgium). The environment

is a three-floor building, the nodes positions do not aim at efficiently covering the

building.

The environment contains nine nodes, seven of them are simple routers.

5.137.144.5 is a Gateway and is directly connected to the topology server, it

announces the route: 10.168.2.0/24 through OLSR HNAs. The sniffer is connected

via Ethernet to 5.137.147.105. It is configured to send information to 10.168.2.4

which is the address of the topology server.

5.2 Architecture & roles

The architecture has already been defined in the monitoring objective in Chap. 3,

Sec. 3.2. The components are: the sniffer, the topology server, the leader and the

pinger. We describe in details the desired behavior of each of these components.

5.2. Architecture & roles 61

Ground floor

1st floor

2nd floor

5.137.144.5
5.137.147.105

5.131.120.34 5.131.128.248

5.137.146.157
5.131.118.54

5.137.146.133

5.131.122.12

Routers

Sniffer
Gateway

Figure 5.2: Testbed – Routers and Sniffer positioning in the Reaumur building.

5.2.1 The sniffer

The sniffer component listens to the network routing protocol (in our case OLSR)

and forwards changes to the topology server. To be efficient we prefer to aggregate

changes into a single message rather than sending a message every time a change

occur.

Shaikh et al. already defined several message types for possible changes in the

network [SG04]. The three important ones are:

Messages about a router

They define the state of routers, the messages are: RTR UP and RTR DOWN.

There is one parameter to the messages, the router id, i.e., its main IP address.

Messages about an adjacency

They define the state of links in the network the messages are:

1. ADJACENCY UP and ADJACENCY DOWN, similarly as messages for

a router. In this case, the parameters are the routers id that are connected

on both end of the link.

2. ADJACENCY COST CHANGE, if the link cost changes. This message

take one more parameter than the previous one: the current cost of the

link.

5.2. Architecture & roles 62

3. ALL ADJACENCIES DOWN, defines that all links connected to a node

are down. The only parameter is the down router id.

Messages about a prefix

In OLSR nodes can define HNAs, which can be announced and withdrawn, the

messages are: ROUTE ANNOUNCED and ROUTE WITHDRAWN. Their

parameters are: the prefix, the mask of the network and the router id where

the route is attached.

The sniffer creates such messages based on information obtained from the routing

protocol listening.

5.2.2 The topology server

As it name suggests, it maintains information about the current and past topology.

It is directly connected to the sniffer and, thus, processes the messages described in

the previous section. In addition to maintaining the topology, the network main-

tainer should be able to visualize the topology, therefore, it needs to contains a

visualization module. Objective 3 described a tool to validate the network view of

the routing protocol (see Sec. 3.2). In Chap. 4, we explained the validation algo-

rithm (see algorithm 4.5.1 in Sec. 4.5). This algorithm must be implemented within

the topology server, and thus must implement the following procedures:

PartitionAlgorithm implements the cluster decomposition of the graph. It re-

turns a set of clusters. A cluster is defined by its set of nodes and edges.

LeaderElection elects a leader for each cluster. The possible implementations of

this procedure are already been discussed in Sec. 4.5.

DistributeWork contacts the leader and gives him the work that needs to be done,

i.e., covering its cluster with paths.

5.2.3 The leader

As explained in previous section, a leader must cover its cluster with paths. It must

also implement algorithm 4.4.1. The leader component should be implemented on

every nodes participating in the routing protocol, as, depending on the election

implementation, every node may be selected as leader. When the coverage path

set is available (after the execution of the algorithm), the leader needs to test all

5.3. Configuration 63

the paths. Therefore, it contacts all nodes that start a path in the set, and gives

it one or several destinations to ping, depending on the number of paths starting

at this node. Upon the reception of all ping results, the leader sends compressed

information back to the topology server.

5.2.4 The pinger

The pinger component must be implemented on all routers of the network. The

pinger behavior is very simple and can be decomposed in three events:

1. It receives the target(s) to ping.

2. It executes a number of pings (depending on the query) to targets.

3. It sends back information about whether the target(s) was(were) successfully

pinged or not. In addition to gives this binary result, it also sends information

about the Round-Trip delay Time (RTT) of all successful pings.

5.3 Configuration

5.3.1 The routers

5.3.1.1 Base configuration

Originally, the routers were configured with the default firmware [ope08], which is

based on the ROBIN distribution [Ans09] of OpenWrt [ope09], a Linux distribution

for embedded devices.

ROBIN means ROuting Batman INside mesh network, and thus was based on

the BATMAN routing protocol. Recently the maintainers of ROBIN added the

support of OLSR.

ROBIN contains components that are not needed for a testbed, e.g., a cap-

tive portal. However it contains also desirable characteristics, mainly the auto-

configuration (plug & play) of nodes.

For these two reasons, we modified the ROBIN distribution to create a lighter

version. The routers of the testbed use a self-made distribution of OpenWrt, match-

ing the desired characteristics.

5.3. Configuration 64

5.3.1.2 Hardware & software Limitations

The algorithms of Chap. 4, were originally implemented in Python (see Sec. 4.4.4).

However the Python library is too large for the Accton router. Several Python

replacement possibilities are available, nevertheless, we chose to port the algorithms

in Ruby [rub09]. Ruby is composed of several packages, which allow us to only

select the required ones, and thus save memory, while the entire Python library

is contained on a single package. In addition to a reduced memory footprint, the

ruby language is similar to Python. Even if Ruby and Python have a very different

syntax, they is similar in varying respects, allowing to easily port the implemented

algorithm to Ruby.

The main components present in our self-made distribution are:

● OpenWrt SVN r14135 (last changes: 2009-01-21)

● OLSR 0.5.6-r2

● Ruby 1.8.6-p36

5.3.1.3 Interfaces configuration

The routers are configured to have three interfaces, two of them are virtual. The

interfaces are configured as follows:

ath0 The routing protocol wireless interface. The routers are pre-configured with

a Class A IPv4 address: 5.0.0.0/8. This is a router constructor choice. The

prefix 5/8 is currently defined as unallocated by the IANA. The router final

IPv4 address is constructed from its MAC address. This is simply done by

this bash script:

hex2dec() {

MAC=$(ifconfig eth0 | grep HWaddr | awk ’{print $5}’)

let x=0x$(echo ${MAC} | cut $1)

echo $x

}

echo 5.$(hex2dec -c10-11).$(hex2dec -c13-14).$(hex2dec -c16-17)

Code 1: ath0 IP address computation.

The router runs OLSR on this interface. The ath0’s IP address is thus the

router’s identifier inside the OLSR routing protocol.

5.3. Configuration 65

ath1 The wireless access point (AP) interface, used for wireless client connections.

A prefix /25 is allocated for all wireless clients. The IP address of this interface

is computed as for ath0:

echo 10.$(hex2dec -c13-14).$(hex2dec -c16-17).1

Code 2: ath1 IP address computation.

eth0 The ethernet interface, used for one wired client connection or as a connection

to a network. In the latter case, the router is considered as a Gateway. If the

interface allows a wired client, a /25 prefix is also allocated for this interface

and the IP address is the same as ath1 but ending with .128.

5.3.1.4 Behavior configuration

There are several possible configurations for each router, in which the interfaces may

or not be used. The configurations are:

Wireless AP

The router acts as an access point, and allocates addresses to clients via DHCP.

In this case the ath1 /25 prefix must be announced by OLSR. All the routers

enable the Wireless AP configuration which broadcast the same wireless ES-

SID with the same security. This Allows handover from one Wireless AP to

another.

Gateway

The router retrieves or manually configures the connected network prefix and

mask, and announces it within OLSR.

Wired DHCP Server

The router acts as a wired DHCP server for the client. In this case the eth0

/25 prefix must be announced within OLSR.

These configurations may be combined, except the Gateway and the Wired

DHCP Server combination.

5.3.1.5 OLSR configuration

Code 3 contains the main part of the OLSR configuration of each nodes. This

configuration comes from the ROBIN distribution.

5.4. Implementation 66

1 Interface "ath0"

2 {
3 HelloInterval 2.0

4 HelloValidityTime 108.0

5 TcInterval 4.0

6 TcValidityTime 324.0

7 HnaInterval 18.0

8 HnaValidityTime 108.0

9 }

Code 3: Part of the OLSR configuration.

The configuration options are defined by interfaces, here on the one running

OLSR: ath0. As their names suggest it, the *Interval options define the interval

between two generations and transmissions of messages. The *ValidityTime op-

tions set the validity time to be announced in messages generated by the host on its

interface.

5.3.2 The sniffers

The sniffers also contains a self-made OpenWrt distribution. There are two ways for

a sniffer to connect the topology server:

1. By connecting the testbed Wireless APs.

2. By connecting the wired interface of a router, providing that it is configured

as a Wired DHCP Server.

5.4 Implementation

This implementation is not a ready-to-sell program. It is a prototype that allows us

to evaluate the behavior of our algorithm in a real environment.

As the testbed contains only eight routers, we do not implement the partition

algorithm.

In this implementation we simplify some parts, that are explained in Sec. 5.2.

For example we do not implement the changes messages for the sniffer. As the

network is really small, sending the whole graph at each time does not consume to

much bandwidth. For that we use Ruby XML/RPC implementation, that allows

one to send objects through the network.

In addition to Ruby, the binaries and libraries used for the implementation are:

5.4. Implementation 67

ruby-gnome2 0.16.0-10 is the Ruby binding for Gtk, it is used to display the

topology and informations on the screen.

ruby-pcap 1.8.6 / libpcap 0.9.8 are the libraries used to capture and analyze

network traffic.

ruby-xmlrpc 1.8.6 allows to create and connect an XML/RPC server. It supports a

very nice way to create and call a remote procedure and is easy to use:

1 s = XMLRPC::Server.new 8080

2 s.add_handler("server.add") do |a,b|

3 a + b

4 end

Code 4: ruby-xmlrpc example: server side.

At line 1 an XML/RPC server is created on port 8080. At line 2, a procedure is

added to the server with two parameters a and b, the result of the procedure

is a+b.

The client side is the following:

1 server = XMLRPC::Client.new "server_ip", "/", 8080

2 res = server.call "server.add", 4, 5

3 puts "4 + 5 = #{res}"

Code 5: ruby-xmlrpc example: client side.

At line 1, the server with server_ip IP address is connected on port 8080.

At line 2, the remote procedure server.add is called with the parameters 4

and 5.

tcpdump 3.9.0 [MG09] is a packet sniffer, it allows one to intercept several types

of packet being transmitted or received over the attached network.

The source-code of all the different part can be found in Appendix B.

5.4.1 Application Programming Interface (API)

Each part of the whole program defines one procedure, available via XML/RPC. These

procedures are:

5.4. Implementation 68

monitord.commit(graph)

Sends graph to the topology server.

leader.eval(cluster,routes)

Evaluate the status of the cluster, returns a dictionary of results.

pingd.ping(list,num)

Execute a ping, num times, for each destination in list. Returns a dictionary

of results, the delays for successful pings or a value ≤ 0 for unsuccessful ones.

5.4.2 Details & functionalities

In this section we review the implementation of all the part of the whole program.

From each component detailed in Sec. 5.2 result a binary as part of the whole

implementation. The binaries are: sniffd, monitor, leaderd and pingd.

The source code of this practical implementation is available in Appendix B.

The only shared component between all binaries is the representation of the

topology graph: the Graph class. This class is serializable (it contains only one

class variable: the graph adjacency array), so that a Graph object can be sent over

XML/RPC.

5.4.2.1 The sniffd

There were some unresolved issues with ruby-pcap: it was not able to sniff OLSR

packets from the network. To resolve this problem we use in parallel tcpdump and

ruby-pcap, as in:

tcpdump -s0 -i mon0 -w - | ruby -C/usr/lib/sniffd/ sniffd.rb

Code 6: tcpdump with sniffd.rb.

In this script, we launch tcpdump to listen to the mon0 interface and write all

the packets to STDOUT. We launch also a ruby script called sniffd.rb that behaves

as in Code 7.

First it opens STDIN and read all packets tcpdump writes (line 4). To collect only

OLSR traffic, ruby-pcap contains a filtering. This filtering is configured at line 5,

it limits the library to only handle UDP packets whose source and destination ports

are 698, which is the default configuration of OLSR.

5.4. Implementation 69

1 require ’olsr’

2 require ’pcap’

3

4 capture = Pcap::Capture.open_offline(’-’) # open STDIN

5 capture.setfilter ’udp port 698’ # capture OLSR packets

6 olsr = Olsr.new

7 capture.each do |pkt|

8 olsr.each pkt.udp_data do |info|

9 ...

10 end

11 end

Code 7: sniffd.rb main behavior.

From this, we designed a Ruby plugin: ruby-olsr. This plugin is implemented

in C, and handle the OLSR traffic. Its goal is to transform OLSR messages into a

simple structure to be easily handled in the Ruby environment. The structure used

is an Hash (or dictionary), at line 8 the dictionary is the info variable, formated as

follows:

info = {’ADDR’ => {’networks’ => { ’PREFIX’ => ’MASK’, ...}, ↩
’neighbors’ => {’ADDR’ => COST, ...}}, ...}

Code 8: Formating of the ruby-olsr output.

Where the uppercase keywords vary from one OLSR message to another.

A Graph object, that represents the network topology, is maintained. Once, a

packet has been received, the graph is updated, and if it changed, the changes are

forwarded to the topology server, see Code 9.

1 Thread.new do

2 begin

3 s = XMLRPC::Client.new server, ’/’, 34587

4 s.call ’sniffd.commit’, graph

5 rescue Exception => e

6 $log.error "Error while commiting to the topology server: #{e}"

7 end

8 end

Code 9: sniffd.rb commit of a graph to the topology server.

The operation is very simple, thanks to Ruby. First, the connection is established

with the topology server (line 3) by creating a new XMLRPC object. To commit the

graph, the sniffd.commit procedure is called remotely (line 4), it takes only one

parameters: the Graph object.

5.4. Implementation 70

5.4.2.2 The monitor

The monitor is composed of two components:

display.rb contains the Display class, and as its name suggests, takes care of

the display of the topology and messages. To properly display the topology,

we use the neato binary from Graphviz [EGH]. neato generates a spring-

layout version of a graph, which is very interesting if we want to display it.

The interface, in addition to displaying the topology, allows one to display

problems on paths, e.g., useful when the coverage result fails, etc. For a

better understanding of changes, monitor displays also newly up links/nodes

in green, for a fixed period of time. For down links it displays them in red.

monitor.rb contains two threads: one for the reception of graphs from sniffd and

one for the connections to leaders. Upon the reception of a graph, it places it

in a PQueue object. The PQueue object is interesting as it suspends the current

thread when the pop procedure is called. So, in the second thread, the first

operation is to call the pop procedure to retrieve the previous graph. After

this, two operations must be performed:

1. The computation of the possible routes in the graph (limiting paths to

paths of length greater or equal to 2).

2. The leader election.

Here, as we have a limited testbed, we run the leader script on the topology

server, so that the leader is always localhost.

After these two computations, information is sent to the leader via the remote

leader.eval (via XML/RPC) procedure that takes two parameters: the cluster

(here the whole topology graph) and the possible routes.

When new informations are available, e.g., a graph, results from the leader,

etc, are displayed by the display.rb module.

5.4.2.3 The leaderd

The leaderd behavior is the following:

5.4. Implementation 71

1. When monitor calls its procedure leader.eval, it calls the implementation

of the coverage algorithm (see Algo 4.4.1, in Chap. 4, Sec. 4.4), resulting in a

set of paths.

2. For each path in the paths set, it contacts the pingd daemon of each node

starting a path, and gives it the destination to ping. For more accurate result,

it performs five pings for each destination, and compute the average RTT of

successful pings.

3. The summary is sent back to the monitor client.

5.4.2.4 The pingd

The pingd daemon is quite simple, it is implemented in C and defines a remote

procedure via XML/RPC: pingd.ping. The important point to notice is that the

ping timeout is set at 1 second and that the client must wait for the ping to be

executed to receive data.

The pingd client is also simple, to test the path from src to dst, a client must

do in Ruby:

1 server = XMLRPC::Client.new "5.130.104.5", "/RPC2", 8080

2 result = server.call("pingd.ping", [’www.google.com’, ↩
3 ’130.104.1.1’], 3)

Code 10: pingd Ruby client example.

The first operation to do is to connect the XML/RPC pingd server (line 1). At

line 2, it calls the remote procedure pingd.ping to execute 3 pings to two destina-

tions (www.google.com and 130.104.1.1).

The procedure returns a dictionary of delays for each destination, such as in

Code 11. The 0 result means that the destination was not reached within 1 second.

{"www.google.com" => [0, 3456, 1432], "130.104.1.1" => [3986, ↩
4512, 6789]}

Code 11: Example results from the pingd.ping procedure.

5.5. Review & tests 72

5.5 Review & tests

Now that we have designed and implemented the monitoring application on our

testbed, we can evaluate the behavior of the network by doing some tests. These

tests do not aim to fully evaluate the accurate state of the network. However, we

can observe the evolution of the topology according to several possible cases:

Node down

Nodes may need to be rebooted, e.g., to update software, etc. The monitoring

tool needs to quickly represent the changes in the topology.

Packet loss

Nodes may suffer from congestion. We simulate a 70% packet loss on a single

node.

Delay

It is possible, due to the mobility of nodes and the possibility to have interfer-

ences in the wireless connectivity, that the delay may increase. We simulate a

100ms and 1000ms delay on a single node.

In the following section, we explain the results obtained when these three cases

appends.

The traffic control (tc) [Hub03] tool is used for the congestion and delay tests.

It allows one to manipulate traffic control settings in the Linux kernel, by applying

traffic shaping, scheduling, policing and dropping.

5.5.1 Evaluation

Before performing tests, we must make sure that the monitoring program success-

fully represents the topology. The physical topology was detailed in Sec. 5.1.2, the

monitoring program gives us the state of the network in Fig. 5.3. We can see that

all nodes are represented and they are fully connected (in fact almost a full mesh

topology). This is due to the fact that we placed nodes randomly and do not care

about a good space utilization and coverage.

It is also interesting to notice that the two nodes that are the farthest of each

other are connected, 5.131.118.54 and 5.137.144.5, but not 5.137.147.105 and

5.131.118.54, this is surely due to perturbation, as in the building there are others

functional AP and wireless devices.

5.5. Review & tests 73

Figure 5.3: State of the testbed view by
the application.

Figure 5.4: State after the reboot of one
node.

As the graphical representation of the network seems to be accurate, we now

discuss the tests.

5.5.2 Node down

In this test, we simulate the most common change in networks, a node going down.

The cases can be multiple:

1. Reboot for maintenance.

2. Problem with or failure of the power supply.

3. Wireless interferences resulting in the node becoming isolated.

From the topology state, see Fig. 5.3, we simulate the reboot of node

5.131.122.12. We observe the following timing (the nodes and the topology server

have the same clock synchronization):

State Time

Beginning of the reboot 11:06:20
Observation of the down state 11:08:18
Observation of the re-up state 11:11:53

Table 5.1: Node down simulation: timing.

5.5. Review & tests 74

There are approximatively 118 seconds between the rebooting and the observa-

tion of the change by the monitoring tool. This result can be explained based on

the OLSR configuration of the routers, see Sec. 5.3.1.5.

The HelloValidityTime configuration defines the time, in second, between the

reception of the last Hello message and the detection of a down neighbor. This

means that if a node is unavailable, its neighbors are still sending TC messages

containing it, during the next 108 seconds. The other 10 seconds are likely due

to delays of messages, as 5.131.122.12 is relatively far from the sniffer (there are

separated by two floors).

We can observe also that there are approximatively 333 seconds between the

reboot time and the reappearance of the node. This can be explained by the

TcValidityTime configuration of the OLSR configuration. This configuration de-

fines the validity time to be announced in TC messages generated by this host, here

324 seconds. Therefore, when the router reboots, it need to wait this amount of

time before its neighbors accept its new TC messages.

5.5.3 Packet loss

We simulate a 70% packet loss on node 5.131.120.34, this means that 70% of

packets that go through this node are dropped. The tc command executed to apply

this feature is:

tc qdisc add dev ath0 root netem loss 70%

Code 12: Command to apply a 70% packet loss on a node.

We can see the result of this simulation on Fig. 5.5. This simulation is interesting

to see if the implementation of the coverage algorithm is functional. As most of the

Hello messages still pass, the routing protocol may not see the difference.

The topology contains only few paths of length greater than 2. In Fig. 5.5, 3

paths are used to cover the graph. All those paths pass through node 5.131.120.34.

We can see that the ping tests failed on all the paths, with a success rate of 80%

in the best case (on a sample of 5 ping tests). This is the result expected by this

simulation, as those paths are used within the routing protocol but not functional.

A way to avoid this routing protocol issue is to reconfigure it by putting a smaller

HelloValidityTime. In this case the routing protocol may detect the loss of Hello

packets.

5.5. Review & tests 75

Figure 5.5: State after the simulation of
70% packet loss.

Figure 5.6: State after the simulation of
an increasing of 1000ms in the delay on
one node.

5.5.4 Delay

The last test is similar to the previous one, we simulate a increase in the delay of

all packet passing through a node.

tc qdisc add dev ath0 root netem delay 1000ms

Code 13: Command to apply an increase of 1000ms delay on packets passing through
a node.

Results for the 1000ms delay in node 5.131.120.34 can be viewed in Fig. 5.6.

In this case, the interesting part is to see how much ping have failed. Two paths are

used to cover (they both contain the node) the graph and both result in a 100% loss

of the ping tests. The same correction to the OLSR configuration, as for the packet

loss test, can be made in order to eradicate this problem, i.e., the decreasing of the

HelloValidityTime configuration.

Results for the 1000ms delay in node 5.131.128.248 can be viewed in Fig. 5.7.

It shows the evolution of pings RTT delay. At approximatively 400 seconds the delay

in node 5.131.128.248 is increased by 100ms. Results after 400 seconds confirm

that the probing technique works as it shows an increase of approximatively 100ms

in the probing delays.

5.6. Conclusion 76

100 200 300 400 500 600
0

0.5

1

⋅105

start increase

Probe time [sec]

M
ea

n
p

in
g

R
T

T
[¹
s
e
c
]

Figure 5.7: Probing delay evolution
when an increase of 100ms delay is ap-
plied (at 400sec).

5.6 Conclusion

In this chapter, we have tested an application developed to meet our three objectives.

We also test this application with possible WMN bad behavior. It comforts ourselves

in the assumption that we made, in Chap. 3, about the behavior of routing protocols

in WMNs. Even though, we cannot conclude that their are fully respected, as a

larger testbed would be useful to completely validate our solution.

Chapter 6

Conclusion and future work

T
he main objective of this thesis was to develop a way for WMN maintainer to

be aware of problems, in order to be able to solve them. At the end of the

work, we think this objective is fulfilled. The topology coverage can indeed detect

issues in a network, even when routing protocols cannot.

The dynamic character of WMNs involves that we need to take it into account

in the objectives decision. Before deciding the main objectives we decided to limit

ourselves to the monitoring of OLSR, which is the most commonly used in WMN.

We defined three main objectives.

The first one is to provide real-time and efficient monitoring of routing proto-

cols behaviors, this is the basis of all network monitoring. The solution chosen

to solve this objective is to include a special node in the network that listens to

the exchanged messages, in order to build its own view of the topology. Some re-

search [SGG+02, SG04], on OSPF, shows that this solution to be the best available

for link state routing protocols, which is the case of OLSR.

Our second objective is to limit the amount of monitoring messages. Of course

the available bandwidth on wireless devices is smaller than in wired router. To avoid

interference with the WMNs client traffic, while still keeping an efficient monitoring

of the network, the amount of message must be small. Small enough such that

we minimize the bandwidth consumption while we have enough information on the

network status. To avoid monitoring overhead, there is only one solution: playing

77

Conclusion and future work 78

with the monitoring frequency. A high frequency allows one to have an almost per-

fect view of the state of the network, but it also increase the bandwidth usage. A

small frequency allows one to limit interferences, however, the network image is not

accurate.

Our last objective was the main part of this thesis: accurately validating the net-

work state viewed by the routing protocol. Due to the highly dynamic characteristic

of the WMNs, routing protocols may not accurately view the topology. They may

take path where issues arise, such as a link where the nodes are far from each other,

i.e., where the loss rate is high. We propose a new theory: the topology coverage. Its

goal is to provide a way to tests links in order to detect failure, or malfunctioning

path, etc. From the graph theory we defined our topology coverage problem. This

problem is to find a subset of path from a set of possible route through the network.

This subset has to cover the topology, i.e., each links needs to be covered by at

least one path of the subset. From this problem we firstly define one centralized

algorithm. This algorithm is based on simple heuristic informed search algorithm.

The idea is to start from an empty set of path and increase its size with the set

of possible route until a coverage is found. We simulate several cases in order to

validate this algorithm. The algorithm works good but has a major flaw: it is time

greedy. For a large-scale network, it takes too much time to compute the coverage

of the graph. As WMNs are dynamic we want to design an algorithm such that no

or less changes my happen between while the computation.

Because of this flaw, we defined another algorithm, this time not purely central-

ized but almost distributed. It cannot be considered as a distributed algorithm as it

still depends on a single node to do a simple computation: the graph partitioning.

This algorithm is in fact a decentralized way of computing the coverage. The graph

is partitioned in cluster, such that, in each cluster, a node (called the leader) runs

the centralized algorithm in order to cover its own cluster. As the time greediness

of the centralized algorithm is caused by the highly number of nodes and edges in

the network, a smaller cluster coverage takes a smaller time. We evaluate this latter

algorithm based on different possible topologies. As a result of the cluster coverage,

the time is effectively decreased. It now takes an acceptable amount of time to cover

the graph. The cluster size has also an impact on the quality and the rapidity of

the algorithm. If the cluster size is small, a solution will quickly be found, however

6.1. Further work 79

the path used will be too small, resulting on a bad coverage. The cluster size must

then be taken with care, we define a 20 nodes cluster size to be a good trade-off

between quality and speed. We, finally, evaluate the algorithm ability of coverage,

and we conclude that it has almost the same characteristic behavior as the central-

ized algorithm, without the time computation problem.

We define a practical implementation of these objectives. This application has

not the goal to fully test the expected behavior of the network, but it is a start

for an heavy battery of tests. The main outcome of the tests is the validation of

third objective expected. When the network is changing, we simulate a 70% packet

loss on a node, the routing protocol does not detect the failure and keeps using

the malfunctioning links. However, the coverage algorithm allows us to detect the

failure and to remedy, e.g., by moving the incriminated node.

6.1 Further work

There might be several topics where the topology coverage can be improved. Over-

loading is a big issue in the algorithm. Even though it is not too important, it must

be problematic on most sensible nodes, such as a Gateway. It could be interesting

to develop an heuristic taking into account this type of issues, by, e.g., have the

possibility to give a cost at each node, in order to give more attribution to the ones

that have a small cost, etc.

Another improvement of the algorithm is of course making it purely distributed,

such that the cluster partitioning and leader election are done automatically.

One of the objective of this work was not to build a commercial application

but to build the foundation of possible WMN monitoring systems. The objective is

fulfilled and so this contribution could be a good starting point for further work on

this subject.

Bibliography

[A. 09] A. Tønnesen and T. Lopatic and H. Gredler and B. Petrovitsch and A.

Kaplan and S.-O. Tücke and others. OLSR – an ad-hoc wireless mesh

routing daemon, 2009. http://www.olsr.org.

[AB00] R. Albert and A.-L. Barabási. Topology of Evolving Networks: Local

Events and Universality. Physical Review Letters, 85(24):5234–5237,

December 2000.

[Ans09] A. Anselmi. ROBIN - Open Source Mesh Network Project, 2009.

http://www.blogin.it.

[ASNN07] J. Abley, P. Savola, and G. Neville-Neil. Deprecation of Type 0 Routing

Headers in IPv6. RFC 5095, Internet Engineering Task Force, December

2007.

[AWD04] M. Abolhasan, T. Wysocki, and E. Dutkiewicz. A review of routing

protocols for mobile ad hoc networks. Ad Hoc Networks, 2:1–22, January

2004.

[AWW05] I. F. Akyildiz, X. Wang, and W. Wang. Wireless mesh networks: a

survey. Computer Networks, 47(4):445–487, March 2005.

[bri07] BRITE: Boston University Representative Internet Topology gEnerator,

2007. http://www.cs.bu.edu/brite/.

[BT02] T. Bu and D. Towsley. On distinguishing between Internet power-law

topology generators. In Proc. IEEE INFOCOM, June 2002.

[CFSD90] J. D. Case, M. Fedor, M. L. Schoffstall, and J. Davin. Simple Network

Management Protocol (SNMP). RFC 1157, Internet Engineering Task

Force, 1990.

80

http://www.olsr.org
http://www.blogin.it
http://www.cs.bu.edu/brite/

Bibliography 81

[CJ03] T. H. Clausen and P. Jacquet. Optimized Link State Routing Protocol

(OLSR). RFC 3626, Internet Engineering Task Force, October 2003.

[DL93] M. Doar and I. M. Leslie. How bad is naive multicast routing? In Proc.

IEEE INFOCOM, March 1993.

[Don80] A. Donald. An upper bound for the path number of a graph. Journal

of Graph Theory, 4(2):189–201, 1980.

[EGH] J. Ellson, E. Gansner, and Y. Hu. Graphviz - Graph Visualization

Software. http://www.graphviz.org.

[ER59] P. Erdos and A. Renyi. On Random Graphs. I. In Pub. Math. Debrecen,

volume 6, pages 290–297, 1959.

[Flo62] R. W. Floyd. Algorithm 97: Shortest path. Communications of the

ACM, 5(6):345, 1962.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability : A Guide

to the Theory of NP-Completeness (Series of Books in the Mathematical

Sciences). W. H. Freeman, January 1979.

[GMCN08] D. Gupta, P. Mohapatra, and C. Chen-Nee. Efficient monitoring in

wireless mesh networks: Overheads and accuracy trade-offs. Proc. IEEE

Mobile Ad Hoc and Sensor Systems (MASS), October 2008.

[gti00] Modeling Topology of Large Internetworks, 2000. http://www.cc.

gatech.edu/projects/gtitm/.

[Hag08] Aric Hagberg. NetworkX v0.99, 2008. http://networkx.lanl.gov/.

[Hop00] C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2992,

Internet Engineering Task Force, November 2000.

[Hub03] B. Hubert. Linux Advanced Routing and Traffic Control, 2003. http://

www.lartc.org.

[IF05] L. Iannone and S. Fdida. MeshDV: A Distance Vector mobility-tolerant

routing protocol for Wireless Mesh Networks. In Proc. IEEE Workshop

on Multi-hop Ad hoc Networks (RealMAN), July 2005.

http://www.graphviz.org
http://www.cc.gatech.edu/projects/gtitm/
http://www.cc.gatech.edu/projects/gtitm/
http://networkx.lanl.gov/
http://www.lartc.org
http://www.lartc.org

Bibliography 82

[ips09] Cisco IOS IP Service Level Agreements (SLAs), 2009. http://

www.cisco.com/en/US/products/ps6602/products_ios_protocol_

group_home.html.

[JS03] J. Jun and M. L. Sichitiu. The nominal capacity of wireless mesh net-

works. IEEE Wireless Communications, 10(5):8–14, October 2003.

[Kar08] G. Karypis. Metis - Family of Multilevel Partitioning Algorithms, 2008.

http://glaros.dtc.umn.edu/gkhome/views/metis.

[KL70] B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Par-

titioning Graphs. The Bell system technical journal, 49(1):291–307,

February 1970.

[LH98] T. Larsson and N. Hedman. Routing Protocols in Wireless Ad-hoc

Networks - A Simulation Study. Master’s thesis, Lule̊a University of

Technology, Stockholm, Sweden, 1998.

[MG09] L. MG. tcpdump/libpcap, 2009. http://www.tcpdump.org.

[MqCh06] Z. Ming-qing and L. Chang-hong. Path Decomposition of Graphs with

Given Path Length. Acta Mathematicae Applicatae Sinica (English Se-

ries), 22(4):633–638, october 2006.

[NALW08] A. Neumann, C. Aichele, M. Lindner, and S. Wunderlich. Better Ap-

proach To Mobile Ad-hoc Networking (B.A.T.M.A.N.). Internet Draft

(Work in progress) draft-wunderlich-openmesh-manet-routing-00, Inter-

net Engineering Task Force, April 2008.

[NBB+07] D. Naudts, S. Bouckaert, J. Bergs, A. Schoutteet, C. Blondia, I. Mo-

erman, and P. Demeester. A wireless mesh monitoring and planning

tool for emergency services. In Proc. IEEE Workshop on End-to-End

Monitoring Techniques and Services, May 2007.

[NK08] S. Nanda and D. Kotz. Mesh-Mon: A Multi-Radio Mesh Monitoring and

Management System. IEEE Computer Communications, 31(8):1588–

1601, May 2008.

[ope08] Open-Mesh Network, 2008. http://www.open-mesh.com.

http://www.cisco.com/en/US/products/ps6602/products_ios_protocol_group_home.html
http://www.cisco.com/en/US/products/ps6602/products_ios_protocol_group_home.html
http://www.cisco.com/en/US/products/ps6602/products_ios_protocol_group_home.html
http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.tcpdump.org
http://www.open-mesh.com

Bibliography 83

[ope09] OpenWrt - Wireless Freedom, 2009. http://openwrt.org.

[Pac09] Packet Design Inc. Route Explorer, 2009. http://www.packetdesign.

com/products/rex.htm.

[PBRD03] C. E. Perkins, E. M. Belding-Royer, and S. R. Das. Ad hoc On-Demand

Distance Vector (AODV) Routing. RFC 3561, Internet Engineering

Task Force, July 2003.

[Pos81] J. Postel. Internet Control Message Protocol. RFC 792, Internet Engi-

neering Task Force, September 1981.

[Pyb96] L. Pyber. Covering the edges of a connected graph by paths. J. Comb.

Theory Ser. B, 66(1):152–159, January 1996.

[pyt09] Python Programming Language, 2009. http://www.python.org.

[Quo09] B. Quoitin. iGen - Topology generation through network design heuris-

tics, 2009. http://www.info.ucl.ac.be/˜bqu/igen/.

[RN03] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.

Pearson Education, 2003.

[Rou08] P-E. Le Roux. MeshDV. Technical Report 2.0, University Paris 6, Pierre

et Marie Curie, France, January 2008.

[rub09] Ruby Programming Language, 2009. http://www.ruby-lang.org.

[SFQ+07] F. Sailhan, L. Fallon, K. Quinn, P. Farell, S. Collins, D. Parker,

S. Ghamri-Doudane, and Y. Huang. Wireless Mesh Network Mon-

itoring: Design, Implementation and Experiments. In Proc. IEEE

Distributed Autonomous Network Management workshop (DANMS),

November 2007.

[SG04] A. Shaikh and A. Greenberg. OSPF Monitoring: Architecture, Design

and Deployment Experience. In Proc. USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI), March 2004.

[SGG+02] A. Shaikh, M. Goyal, A. Greenberg, R. Rajan, and K.K. Ramakrishnan.

An OPSF Topology Server: Design and Evaluation. IEEE Journal on

Selected Areas in Communications (JSAC), 20(4):746–755, May 2002.

http://openwrt.org
http://www.packetdesign.com/products/rex.htm
http://www.packetdesign.com/products/rex.htm
http://www.python.org
http://www.info.ucl.ac.be/~bqu/igen/
http://www.ruby-lang.org

Bibliography 84

[SIG+02] A. Shaikh, C. Isett, A. Greenberg, M. Roughan, and J. Gottlieb. A

Case Study of OSPF Behavior in a Large Enterprise Network. In Proc.

ACM SIGCOMM Internet Measurement Workshop (IMW), November

2002.

[TGJ+02] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Will-

inger. Network Topology Generators: Degree-Based vs. Structural. In

In Proc. ACM SIGCOMM, Augustus 2002.

[TR] N. Teypaz and C. Rapine. Graph decomposition into paths under

length constraints. BQR INPG ’Optimisation du transport de fret par

l’utilisation de plateformes logistiques’.

[Tø04] A. Tønnesen. Implementing and extending the Optimized Link State

Routing Protocol. Master’s thesis, UniK University Graduate Center,

University of Oslo, Norway, August 2004.

[Var96] Y. Vardi. Network Tomography: Estimating Source-Destination Traffic

Intensities from Link Data. Journal of the American Statistical Associ-

ation, 91(433):365–377, 1996.

[Wax88] B. M. Waxman. Routing of Multipoint Connections. IEEE Journal on

Selected Areas in Communications, 6(9):1617–1622, December 1988.

[wif07] IEEE Standard for Information technology - Telecommunications and

information exchange between systems - Local and metropolitan area

networks - Specific requirements - Part 11: Wireless LAN Medium Ac-

cess Control (MAC) and Physical Layer (PHY) Specifications. Technical

report, 2007.

[wim04] IEEE Standard for Information technology - Telecommunications and

information exchange between systems - Local and metropolitan area

networks - Specific requirements - Part 16: Air Interface for Fixed

Broadband Wireless Access Systems. Technical report, 2004.

[WJL03] D. Watson, F. Jahanian, and C. Labovitz. Experiences With Moni-

toring OSPF on a Regional Service Provider Network. In ICDCS ’03:

Bibliography 85

Proceedings of the 23rd International Conference on Distributed Com-

puting Systems, page 204, Washington, DC, USA, 2003. IEEE Computer

Society.

Appendix A

Decentralized Algorithm:

Evaluation

T
his appendix contains complementary figures for the evaluation of the dis-

tributed algorithm 4.5.1, in Chap. 4, Sec. 4.5.5.2.

The figures are here for information, they are not fully described.

A.1 Heuristics evaluation

To evaluate which heuristic is the best one, we need to compare them. The following

sections display simulation results for three topology families.

We can see that there are few or no differences between the heuristic hbasic−limit

and hovercover−limit, as they try to limit the path length used. hovercover gives good

results in each family, excepted for the max number of paths for each edges. This

behavior is normal, as it do not limit the path length, it has no information about

the other clusters and thus may chose one path that contains an edge already covered

in another cluster.

A.1.1 Regular networks

86

A.1. Heuristics evaluation 87

0 50 100 150 200 250

4

6

8

10

12

Number of nodes

M
a
x

N
b

r
o
f

p
a
th

s
co

v
er

in
g

o
n

e
li

n
k

hbasic−limit hovercover−limit

hovercover

Figure A.1: Manhattan – Comparison of
the Maximum number of paths covering
each edge when the three heuristics are
used.

0 50 100 150 200 250
0

10

20

30

Number of nodes

M
a
x

p
a
th

s
st

a
rt

in
g

a
t

ea
ch

n
o
d

e

hbasic−limit hovercover−limit

hovercover

Figure A.2: Hypercube – Comparison of
the Maximum number of paths starting
at each node when the three heuristics
are used.

0 50 100 150 200 250

0

200

400

Number of nodes

N
u

m
b

er
o
f

p
a
th

s

hbasic−limit hovercover−limit

hovercover

Figure A.3: Full mesh – Comparison
of the number of paths when the three
heuristics are used.

0 50 100 150 200 250

10

20

30

Number of nodes

M
a
x

p
a
th

s
st

a
rt

in
g

a
t

ea
ch

n
o
d

e

hbasic−limit hovercover−limit

hovercover

Figure A.4: Full mesh – Comparison of
the Maximum number of paths starting
at each node when the three heuristics
are used.

A.1. Heuristics evaluation 88

A.1.2 Structural generators

0 50 100 150 200 250
0

100

200

300

Number of nodes

N
u

m
b

er
o
f

p
a
th

s

hbasic−limit hovercover−limit

hovercover

Figure A.5: Hierarchical Top-Down –
Comparison of the number of paths
when the three heuristics are used.

0 50 100 150 200 250

5

10

15

20

Number of nodes

M
a
x

p
a
th

s
st

a
rt

in
g

a
t

ea
ch

n
o
d

e

hbasic−limit hovercover−limit

hovercover

Figure A.6: Hierarchical Top-Down –
Comparison of the Maximum number of
paths starting at each node when the
three heuristics are used.

0 50 100 150 200 250

5

10

Number of nodes

M
a
x

N
b

r
o
f

p
a
th

s
co

v
er

in
g

o
n

e
li

n
k

hbasic−limit hovercover−limit

hovercover

Figure A.7: Hierarchical Top-Down –
Comparison of the Maximum number of
paths covering each edge when the three
heuristics are used.

2 3 4 5 6 7 8 91011121314151617

0

0.2

0.4

0.6

0.8

Path length

P
ro

b
a
b

il
it

y

hbasic−limit hovercover−limit

hovercover

Figure A.8: Hierarchical Top-Down –
Length distribution of path used to cover
the graph.

A.1. Heuristics evaluation 89

A.1.3 Degree-based generators

0 50 100 150 200 250

0

200

400

Number of nodes

N
u

m
b

er
o
f

p
a
th

s

hbasic−limit hovercover−limit

hovercover

Figure A.9: BA – Comparison of the
number of paths when the three heuris-
tics are used.

0 50 100 150 200 250

0

50

100

150

Number of nodes

M
a
x

p
a
th

s
st

a
rt

in
g

a
t

ea
ch

n
o
d

e

hbasic−limit hovercover−limit

hovercover

Figure A.10: GLP – Comparison of the
Maximum number of paths starting at
each node when the three heuristics are
used.

0 50 100 150 200 250

10

20

Number of nodes

M
a
x

N
b

r
o
f

p
a
th

s
co

v
er

in
g

o
n

e
li

n
k

hbasic−limit hovercover−limit

hovercover

Figure A.11: GLP – Comparison of
the Maximum number of paths covering
each edge when the three heuristics are
used.

2 3 4 5 6 7

0

0.5

Path length

P
ro

b
a
b

il
it

y

hbasic−limit hovercover−limit

hovercover

Figure A.12: GLP – length distribution
of path used to cover the graph.

A.2. Coverage quality 90

A.2 Coverage quality

The main evaluation of the algorithm is to measure the ability to cover the topology

graph. The behavior is very similar to the one developed in Chap. 4, Sec. 4.5.5.2.

A.2.1 Regular networks

0 50 100 150 200 250

3

4

5

6

Number of nodes

M
a
x

p
a
th

s
st

a
rt

in
g

a
t

ea
ch

n
o
d

e

hovercover, m = 20

Figure A.13: Manhattan – Maximum
number of different paths starting at
each node.

0 50 100 150 200 250

1.5

2

Number of nodes

A
v
.

N
b

r
o
f

p
a
th

s
co

v
er

in
g

o
n

e
li

n
k

hovercover, m = 20

Figure A.14: Hypercube – Average num-
ber of times each edges is over-covered.

0 50 100 150 200 250

2

3

Number of nodes

M
ea

n
p

a
th

s
st

a
rt

in
g

a
t

ea
ch

n
o
d

e

hovercover, m = 20

Figure A.15: Full mesh – Average num-
ber of different paths starting at each
node.

0 50 100 150 200 250

1.5

2

2.5

Number of nodes

A
v
.

N
b

r
o
f

p
a
th

s
co

v
er

in
g

o
n

e
li

n
k

hovercover, m = 20

Figure A.16: Full mesh – Average num-
ber of times each edges is over-covered.

A.2. Coverage quality 91

A.2.2 Structural generators

0 50 100 150 200 250

1.5

2

Number of nodes

M
ea

n
p

a
th

s
st

a
rt

in
g

a
t

ea
ch

n
o
d

e

hovercover, m = 20

Figure A.17: Hierarchical Top-Down –
Average number of different paths start-
ing at each node.

0 50 100 150 200 250
3

4

5

6

Number of nodes

M
a
x

p
a
th

s
st

a
rt

in
g

a
t

ea
ch

n
o
d

e

hovercover, m = 20

Figure A.18: Hierarchical Top-Down
– Maximum number of different paths
starting at each node.

0 50 100 150 200 250
1

1.5

2

2.5

Number of nodes

A
v
.

N
b

r
o
f

p
a
th

s
co

v
er

in
g

o
n

e
li

n
k

hovercover, m = 20

Figure A.19: Hierarchical Top-Down –
Average number of times each edges is
over-covered.

0 50 100 150 200 250
0

100

200

Number of nodes

N
u

m
b

er
o
f

p
a
th

s

hovercover, m = 20

Figure A.20: Hierarchical Top-Down –
Number of paths used to cover the topol-
ogy graph.

A.2. Coverage quality 92

A.2.3 Degree-based generators

0 50 100 150 200 250

1.4

1.6

1.8

2

2.2

Number of nodes

M
ea

n
p

a
th

s
st

a
rt

in
g

a
t

ea
ch

n
o
d

e

hovercover, m = 20

Figure A.21: BA – Average number of
different paths starting at each node.

0 50 100 150 200 250

4

6

8

Number of nodes

M
a
x

p
a
th

s
st

a
rt

in
g

a
t

ea
ch

n
o
d

e

hovercover, m = 20

Figure A.22: GLP – Maximum number
of different paths starting at each node.

0 50 100 150 200 250

1

1.5

Number of nodes

A
v
.

N
b

r
o
f

p
a
th

s
co

v
er

in
g

o
n

e
li

n
k

hovercover, m = 20

Figure A.23: GLP – Average number of
times each edges is over-covered.

0 50 100 150 200 250
0

100

200

Number of nodes

N
u

m
b

er
o
f

p
a
th

s

hovercover, m = 20

Figure A.24: BA – Number of paths
used to cover the topology graph.

Appendix B

A practical application &

simulation: Source code

The source code is available and fully described in the CD-ROM provided with this

document.

93

	1 Introduction
	1.1 Objectives
	1.2 Chapter overview

	2 Wireless Mesh Network
	2.1 General overview
	2.2 Routing protocol families
	2.2.1 Proactive
	2.2.2 Reactive
	2.2.3 Hybrid

	2.3 Routing protocols
	2.3.1 BATMAN
	2.3.2 AODV
	2.3.3 OLSR
	2.3.4 MeshDV
	2.3.4.1 Routing protocol inside the backbone
	2.3.4.2 Client management protocol

	2.4 Comparison
	2.5 Conclusion

	3 Monitoring
	3.1 Related works and existing solutions
	3.2 Objectives
	3.2.1 Real-time topology monitoring
	3.2.1.1 The Management plane approach
	3.2.1.2 The control plane approach
	3.2.1.3 Evaluation
	3.2.1.4 In the OLSR case

	3.2.2 Limit the amount of monitoring messages
	3.2.3 Validate network state viewed by Routing protocols

	3.3 Characteristics to monitor
	3.4 Conclusion

	4 Topology coverage
	4.1 Graph theory
	4.2 The topology coverage problem
	4.2.1 A relaxed problem

	4.3 A typical test
	4.4 Centralized Algorithm
	4.4.1 Algorithm behavior
	4.4.2 Algorithm complexity
	4.4.3 Possible heuristics
	4.4.4 Evaluation
	4.4.4.1 Topology models
	4.4.4.2 Results

	4.5 Decentralized Algorithm
	4.5.1 Graph partitioning
	4.5.2 Parallel computation & Leader election
	4.5.3 Algorithm complexity
	4.5.4 Possible heuristics
	4.5.5 Evaluation
	4.5.5.1 Topology models
	4.5.5.2 Results

	4.6 Conclusion

	5 A practical application
	5.1 Testbed
	5.1.1 Material
	5.1.2 Environment

	5.2 Architecture & roles
	5.2.1 The sniffer
	5.2.2 The topology server
	5.2.3 The leader
	5.2.4 The pinger

	5.3 Configuration
	5.3.1 The routers
	5.3.1.1 Base configuration
	5.3.1.2 Hardware & software Limitations
	5.3.1.3 Interfaces configuration
	5.3.1.4 Behavior configuration
	5.3.1.5 OLSR configuration

	5.3.2 The sniffers

	5.4 Implementation
	5.4.1 Application Programming Interface (API)
	5.4.2 Details & functionalities
	5.4.2.1 The sniffd
	5.4.2.2 The monitor
	5.4.2.3 The leaderd
	5.4.2.4 The pingd

	5.5 Review & tests
	5.5.1 Evaluation
	5.5.2 Node down
	5.5.3 Packet loss
	5.5.4 Delay

	5.6 Conclusion

	6 Conclusion and future work
	6.1 Further work

	Bibliography
	A Decentralized Algorithm: Evaluation
	A.1 Heuristics evaluation
	A.1.1 Regular networks
	A.1.2 Structural generators
	A.1.3 Degree-based generators

	A.2 Coverage quality
	A.2.1 Regular networks
	A.2.2 Structural generators
	A.2.3 Degree-based generators

	B A practical application & simulation: Source code

