
xBGP: When You Can’t Wait for the IETF and Vendors
Thomas Wirtgen
ICTEAM, UCLouvain

Louvain-la-Neuve, Belgium
thomas.wirtgen@uclouvain.be

Quentin De Coninck∗
ICTEAM, UCLouvain

Louvain-la-Neuve, Belgium
quentin.deconinck@uclouvain.be

Randy Bush
IIJ Research & Arrcus

Bainbridge Island, WA, USA
randy@psg.com

Laurent Vanbever
NSG, ETH Zürich
Zürich, Switzerland
lvanbever@ethz.ch

Olivier Bonaventure
ICTEAM, UCLouvain

Louvain-la-Neuve, Belgium
olivier.bonaventure@uclouvain.be

ABSTRACT
Thanks to the standardization of routing protocols such as BGP,
OSPF or IS-IS, Internet Service Providers (ISP) and enterprise net-
works can deploy routers from various vendors. This prevents them
from vendor-lockin problems. Unfortunately, this also slows innova-
tion since any new feature must be standardized and implemented
by all vendors before being deployed.

We propose a paradigm shift that enables network operators to
program the routing protocols used in their networks. We demon-
strate the feasibility of this approach with xBGP. xBGP is a vendor
neutral API that exposes the key data structures and functions of
any BGP implementation. Each xBGP compliant implementation
includes an eBPF virtual machine that executes the operator sup-
plied programs. We extend FRRouting and BIRD to support this
new paradigm and demonstrate the flexibility of xBGP with four
different use cases. Finally, we discuss how xBGP could affect future
research on future routing protocols.

CCS CONCEPTS
•Networks→Network protocol design; Routing protocols; Pro-
gramming interfaces; Programmable networks.

KEYWORDS
BGP; Routing; Network architecture; eBPF

ACM Reference Format:
Thomas Wirtgen, Quentin De Coninck, Randy Bush, Laurent Vanbever,
and Olivier Bonaventure. 2020. xBGP: When You Can’t Wait for the IETF
and Vendors. In Proceedings of the 19th ACM Workshop on Hot Topics in
Networks (HotNets ’20), November 4–6, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3422604.3425952

∗Quentin De Coninck is a F.R.S.-FNRS Postdoctoral researcher.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotNets ’20, November 4–6, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8145-1/20/11. . . $15.00
https://doi.org/10.1145/3422604.3425952

1 INTRODUCTION
Put yourself in the shoes of a mobile application developer who
needs to support all mobile platforms. Your application would
clearly benefit from being able to seamlessly switch from Wi-Fi to
cellular without impacting the established TCP connections. Multi-
path TCP [14] supports such handovers, but you don’t have the lux-
ury to wait until its adoption by all smartphone vendors1. Instead,
you will likely resort to integrate a QUIC library in your software
to benefit from its connection migration capabilities [23, 25].

Contrast this situation with the one of network operators whose
networks could really benefit from new network-level features
such as improved traffic engineering protocols [1], faster conver-
gence mechanisms [36], or improved DDoS protection [34]. Like
our programmer, network operators run highly heterogeneous en-
vironments, composed of a wide variety of devices types (routers,
switches, middle boxes), coming from distinct vendors, and running
distinct operating systems. This heterogeneity is actually necessary,
not only to avoid vendor lock-in [9], but also for increased reliability
(bugs or vulnerabilities tend not to affect all OSes at once).

Unlike our programmer, though, network operators often need
the entire network to support the features (not only the endpoints)
and, as such, have no alternative but to wait for the required features
to be: (𝑖) standardized by the IETF; (𝑖𝑖) implemented by all vendors;
(𝑖𝑖𝑖) widely tested; and (𝑖𝑣) widely deployed in their network. The
standardization process alone often takes years. As an illustration,
Fig. 1 depicts the delay between the moment the IETF working
group responsible for the BGP routing protocol (IDR) started to
work on a new feature and its actual RFC publication. This delay
includes the time required to document two independent and inter-
operable implementations as required by the IETF working group.
We see that the median delay before RFC publication is 3.5 years,
and that some features required up to ten years before being stan-
dardized. Even worse, this delay ignores the time elapsed between
the initial idea and its first adoption by the working group.

Of course, this is not a new story. Frustrated by these delays
and the difficulty to innovate in networks, researchers have argued
for Software-Defined Networks (SDN) [30] for more than a decade.
Instead of relying on a myriad of distributed protocols and features,
SDN assumes that switches and routers expose their forwarding
tables through a standardized API. This API is then used by logically
centralized controllers to “program” routers and switches.
1Multipath TCP is supported by third-party applications on iOS since 2017. The Multi-
path TCP implementation in the Linux kernel is not yet integrated in the mainline
kernel and thus not yet adopted by all Android smartphones.

Session 1: Network Modeling and Experimentation HotNets ’20, November 4–6, 2020, Virtual Event, USA

1

https://doi.org/10.1145/3422604.3425952
https://doi.org/10.1145/3422604.3425952

0 2 4 6 8 10
Standardization Delay (Years)

0.0

0.5

1.0

CD
F

Figure 1: Delay between the publication of the first IETF
draft and the published version of the last 40 BGP RFCs.

While SDNhas enabled countless new research [12, 24], it has not
been widely adopted. While many various factors can explain this,
one of the main hurdles is that deploying SDN requires a complete
network overhaul, both at the control-plane level, to deploy scalable
and robust logically centralized controllers, and at the data-plane
level, to deploy SDN-capable network devices. We believe SDN
went “too far” to enable network programmability.

In this paper, we argue for a much lighter weight and practical
approach to network programmability by allowing easy extension
of the distributed routing protocols themselves. Our new approach,
which we call xBGP, is inspired by the recent success of extended
Berkeley Packet Filter (eBPF) in the Linux kernel. eBPF is an in-
kernel Virtual Machine (VM) which supports a custom instruction
set. Thanks to eBPF, programmers can easily (and securely) deploy
new programs that can access a subset of the kernel functions
and memory [17]. Similarly, in xBGP, distributed routing protocols
expose an API and an in-protocol VM with a custom instruction set
to access and modify the intrinsic protocol functions and memory.
Thanks to this API and the VM, the same code can be executed on
different implementations of a given routing protocol. Note that
the instructions set and the in-protocol VM would still need to
be adopted and implemented by each vendor, but this would be a
one-off effort, instead of a per-feature effort.

Of course, opening up distributed routing protocols to exter-
nal programs opens the door to many (research) questions: Which
instructions set should we offer? How to implement this instruction
set efficiently—so as to minimize the overhead or What about the
correctness and the security of these extensions? We start to answer
these questions in this paper in the context of BGP because this
protocol plays a key role in ISP and data center networks, support-
ing both Internet access and value-added services. We make two
main contributions.

First, we introduce our vision of xBGP that consists of three core
elements. The first is the xBGP API. It defines a set of functions that
expose the key features and data structures that are supported by
any BGP implementation. The second is a set of insertion points.
These identify the specific locations in a BGP implementationwhere
user-provided bytecodes (xBGP programs) can be attached. The
third is an eBPF Virtual Machine Manager that actually executes
these bytecodes at runtime.

Second, we showcase the practicality of xBGP by adding sup-
port for it to two distinct BGP implementations (FRRouting [35]
and BIRD [13]) and by implementing four use cases: (𝑖) a reim-
plementation of route reflection; (𝑖𝑖) a new attribute that encodes
geographical coordinates; (𝑖𝑖𝑖) route origin validation; and (𝑖𝑣) an

extension that restricts paths inside data centers to be valley-free.
Each use case involves the same xBGP bytecode running on both
FRRouting and BIRD. We further show that the overhead of xBGP
is within 20%, which is very reasonable given the flexibility benefits.
In one use case, our extension was even faster than the native code
thanks to a more optimized datastructure.

Similarly to what OpenFlow [30] achieved, we believe that pro-
grammable distributed routing protocols have the potential to open
up many promising avenues for research, while being fundamen-
tally more practical and deployable. We discuss several of these in
Section 4.

2 XBGP: OVERVIEW
We now provide an overview of xBGP and its prototype imple-
mentation libxbgp. In a nutshell, xBGP is a software layer that
enables to expand a BGP implementation with user-supplied pro-
grams. Similarly to eBPF, xBGP programs are compiled to a specific
instruction set, can call functions specified in the xBGP API and
are attached to specific insertion points in the BGP implementation.
Whenever these code points are reached, the corresponding xBGP
programs (if any) are executed using the xBGP virtual machine.
API The xBGP API defines a set of functions enabling xBGP pro-
grams to access key BGP data structures. The xBGP API leverages
the fact that all BGP implementations must adhere to the protocol
specification [32] which defines, among others, the abstract data
structures that each BGP implementation must maintain. We illus-
trate the three main data structures in Fig. 2 (in blue). Incoming BGP
update messages first pass through an import filter before being
installed in the Adj-RIB-In. Valid BGP routes are then stored in the
Loc-RIB. This Loc-RIB is used by the BGP Decision process together
with the router’s RIB to select the best path towards each prefix.
The routes selected to be sent are stored in the Adj-RIB-Out. They
are filtered by the export filters attached to each session before
being advertised to a peer. The xBGP API exposes simple functions
(e.g. get, set or write_buf) to access each of these structures.
Insertion points As their names indicate, the xBGP insertion
points correspond to specific code locations in a BGP implemen-
tation from where xBGP programs can be called. These insertion
points correspond to specific operations that are performed during
the processing of BGP messages, enabling xBGP programs to mod-
ify the router’s behavior. These insertion points are represented
using green circles in Fig. 2. Other insertion points might be defined
to support other types of BGP extensions.
Virtual Machine An xBGP implementation includes user space
eBPF virtual machines that are controlled by a manager. The vir-
tual machine manager attaches bytecode with an associated virtual
machine to one specific insertion point exposed by the host imple-
mentation. libxbgp provides several helper functions that ease the
development of xBGP programs.
Example As an illustration, we consider how to expand a BGP
implementation to support a new BGP attribute, GeoLoc, that stores
the geographic location (i.e., longitude and latitude) of where the
BGP route was learned. Among others, this attribute can be used
to adapt router decisions, e.g., by filtering away routes that are
more than 𝑥 kilometers away. Supporting such an attribute has
been discussed within the IETF but was not standardized [7]. Yet,

Session 1: Network Modeling and Experimentation HotNets ’20, November 4–6, 2020, Virtual Event, USA

2

BGP Loc-RIB

 Peer[y]

BGP Msgs
from Peer[x]

BGP Msgs
to Peer[y]

Best route(s)
towards each

prefix

All
acceptable

routes

BGP Decision
Process

BGP Adj-RIB-Out

FIB

Control plane

Data plane

RIB

Export
filters

1

libxbgp

Virtual
Machine
Manager

Helper
functions

GeoLoc extension

VM

get_arg
peer_info
add_attr

xBGP API

xBGP API

xBGP API

xBGP API

BGP Neighbors

VM

get_attr
peer_info
get_xtra

VM

peer_info
set_attr
get_attr
get_xtra

VM

peer_info
get_xtra
write_buf
bpf_htonl

 Peer[x]

BGP Adj-RIB-In

Import
filters

xBGP API

2
3

5
4

Figure 2: An xBGP compliant implementation exposes the abstract BGP data structures defined in RFC4271 through a generic
API and uses libxbgp’s VirtualMachineManager to attach the bytecode that implements extensions to specific insertion points
(green circles). The four bytecodes in this example support a simple GeoLoc BGP attribute. For each bytecode, we provide the
set of helper functions used to retrieve data from the host implementation.

several ISPs reportedly use iBGP filters [37] to achieve the same
effect. Using iBGP filters is risky, though as doing so can lead to
permanent oscillations [37].

Adding support for the GeoLoc attribute is easy with xBGP, and
can be done with only four simple extensions. The first one adds
GeoLoc attribute to BGP routes. It is attached to the BGP_RECEIVE_
MESSAGE 1○ insertion point. It mainly uses three functions of the
xBGP API. First, it uses peer_info to query the BGP neighbors
table and determine the type of the eBGP session. Then, it retrieves
the contents of the received BGP update in network byte order with
get_arg. Finally, it attaches the new GeoLoc attribute using the
add_attr function. The second bytecode is attached to the BGP_
INBOUND_FILTER 2○ insertion point. This bytecode also uses peer_
info, retrieves the router coordinates from the router configura-
tion using the get_xtra function and manipulates the attributes
with get_attr and set_attr. The bytecode attached to the BGP_
OUTBOUND_FILTER 4○ also retrieves the neighbor information and
the attribute. Finally, the fourth bytecode is attached to the BGP_
ENCODE_MESSAGE 5○ insertion point. In addition to the xBGP API
function already described, it uses write_buf to write the BGP
GeoLoc attribute over an iBGP session.

2.1 xBGP meets actual BGP implementations
To demonstrate the feasibility of xBGP, we have made two different
open-source implementations xBGP-compliant by integrating a
generic libxbgp in both FRRouting [35] and BIRD [13].
Adding the xBGP API Implementing the API induced a total of
400 and 589 additional lines of code on BIRD and FRRouting, re-
spectively. The difference between the two is due to the internal

representation of the BGP data structures in memory. The xBGP
functions that deal with BGPmessages and attributes always manip-
ulate them in network byte order (the neutral xBGP representation),
performing the translation to the storage format used by the imple-
mentation if required. FRRouting uses an internal representation
that is different from our neutral one. We thus had to implement
several functions to do the conversion between the two representa-
tions. Another difference is the handling of BGP attributes. BIRD
includes a flexible API to manage BGP attributes. xBGP simply
extends this API. FRRouting does not include such an API, and we
had to implement one to be able to manipulate BGP attributes in
BGP updates.
Integrating libxbgp This library, implemented as 432 lines of
header code, consists of two parts: (𝑖) extension utilities; and (𝑖𝑖)
the Virtual Machine Manager (VMM).

First, libxbgp provides generic utility functions. Aside from ac-
cess to xBGP data structures, extension code may require additional
persistent storage. For instance, an extension could need to keep
track of the dedicated attributes it sends and receives to update its
behavior. The xBGPAPI includes suchmemory allocation functions.
An extension code has its own dedicated memory space and it can-
not directly access the memory of other extension codes or the host
implementation. This isolation is guaranteed by the eBPF virtual
machine that we use. This ensures that orthogonal extensions will
not interfere with each other. Extension code belonging to the same
xBGP program can, however, share a dedicated persistent memory
space available through helper functions defined by libxbgp. Other

Session 1: Network Modeling and Experimentation HotNets ’20, November 4–6, 2020, Virtual Event, USA

3

generic helper functions are also defined, such as the manipulation
of IP addresses and functions to print debug messages2.

Second, libxbgp includes the VMM. This key xBGP component
allows injecting extension code at any insertion point and exposing
the xBGP API to the underlying eBPF virtual machines. In practice,
the VMM is initialized with a manifest containing the extension
bytecodes and the points where they must be inserted. Different
extension codes can be attached to the same insertion point, and
the manifest defines in which order they are executed. The manifest
also lists the different xBGP API functions that the bytecode uses.

The VMM is in charge of executing the right extension code
according to the state of the host implementation. This layer acts as
a multiplexer. To include xBGP operations, the BGP implementation
calls the VMM to execute the associated extension codes.

Then, the VMM proceeds as follows. It first checks if there are
attached extension bytecodes to the called xBGP operation. If not,
the VMM executes the default function provided by the implemen-
tation. Otherwise, it runs the first extension code mentioned in
the manifest. Two outcomes are possible. First, the extension code
provides a result for the operation and the VMM returns the output
to the caller. Second, the extension code delegates the outcome to
another one by calling a special next() function. In that case, the
VMM checks that there are remaining execution codes in the or-
dered queue. If there are, the VMM runs the next extension code in
its virtual machine. Otherwise, the behavior of the xBGP operation
falls back to the default function provided by the BGP implemen-
tation. For instance, two extensions can inject code to the BGP_
RECEIVE_MESSAGE operation to process their own dedicated BGP
attribute, calling next() once they are done. While running exten-
sion codes, the VMM also monitors their execution and stops them
in case of error. In this case, it falls back to the default function and
notifies the host implementation of the error.
Technical challengesWhile adding the xBGP API and integrating
libxbgp, we also encountered some technical issues that were in-
teresting. To successfully use the xBGP API, data must be available
when the function is called. Some data in the host implementation
were not available when the insertion point was called to execute
the extension code. For example, in FRRouting, export filters are ap-
plied on a set of peers sharing the same type of outbound policies.
This set in not passed to the code checking the outbound poli-
cies but is required to implement the helper function get_peer_
info. We wrote 5 extra lines of code to retrieve the set of peers
before calling the insertion point. Also, some data structures are
not flexible enough to fully support the xBGP API. For example, the
function add_attr adds a new attribute to a BGP route. However,
the internals of the host BGP implementation do not allow adding
unsupported attributes that are not defined by any standard (e.g.,
ORIGINATOR_ID). We rewrote this part of the host implementation
to support it. To address those issues, we had to add 30 and 10 lines
of code to FRRouting and BIRD respectively.

Each API function is called with a context of execution. This
context is hidden within the extension code but visible in the host
BGP implementation. This makes it possible to control which ex-
tension code has called the function. The context is also used to
retrieve variables that cannot be directly used inside the extension

2Go to https://www.pluginized-protocols.org/xbgp to find the libxbgp documentation.

code. For example, if an extension code needs to allocate extra mem-
ory (either ephemeral or not) the VMM can allocate the requested
memory in the right memory space thanks to the context informa-
tion, without requiring cooperation from the extension code. The
ephemeral memory is also automatically freed when the extension
code terminates its execution. Similarly, the context enables helper
functions to access data structures which are out of the extension
code’s scope. For instance, a dedicated helper function enables an
extension to add a new route to the RIB. When setting an inser-
tion point, the BGP implementation can pass a set of arguments.
While some are visible inside the extension code, others are not.
The RIB function leverages such hidden arguments to access the
data structure while being transparent to the extension code.
Related Works The architecture of routing protocol implementa-
tions such as XORP was designed with extensibility in mind [19],
but it does not expose a vendor-neutral API. We previously added
eBPF to the FRRouting implementation [40], but the proposed eBPF
programs could only be used inside this implementation. Transport
protocols researchers have proposed using extension codes to dy-
namically extend transport protocols like STP [31] or QUIC [10].
These proposals focused on extending a particular implementation
of a protocol. xBGP goes one important step further by enabling
very different implementations to execute the same xBGP program.
In parallel to our work, CoreBGP [39] proposed to structure BGP
implementations as a small core that implements the BGP Finite
State Machine and a set of plugins that implement the entire BGP
logic. It would be interesting to evaluate whether CoreBGP can
support xBGP.

3 USE CASES
In addition to the GeoLoc attribute described in the previous section,
we illustrate the benefits of xBGP by considering four different use
cases implemented using extension code.

3.1 Filtering Routes Based on IGP Costs
Since the xBGP API provides access to the data structures main-
tained by a BGP implementation, network operators can leverage
it to implement new filters. As a simple example, consider an ISP
having worldwide presence that wants to announce to its peers
the routes that it learned in the same continent as the advertising
BGP router. This policy can be implemented by tagging routes with
BGP communities on all ingress routers and then filtering them
on export. While frequently used [11], this solution is imperfect.
Consider an ISP having two transatlantic links terminated in Lon-
don (UK) and Amsterdam (The Netherlands). This ISP has a strong
presence in Europe and two links connect UK to other European
countries. If these two links fail, packets between Germany and
London will need to go through Amsterdam, the USA and then
back in UK. When such a failure occurs, the ISP does not want to
advertise the routes learned in UK to its European peers. With BGP
communities, it would continue to advertise these routes after the
failure.

Using the xBGP API, the operator could implement this policy
as follows. First, configure the IGP cost of the transatlantic links
at a high value, say 1000 to discourage their utilization. Second,

Session 1: Network Modeling and Experimentation HotNets ’20, November 4–6, 2020, Virtual Event, USA

4

https://www.pluginized-protocols.org/xbgp

uint64_t export_igp(bpf_full_args_t *args UNUSED) {
struct ubpf_nexthop *nexthop = get_nexthop(NULL);
struct ubpf_peer_info *peer = get_peer_info();
if (peer->peer_type != EBGP_SESSION) {
next(); // Do not filter on iBGP sessions

} if (nexthop->igp_metric <= MAX_METRIC) {
next(); // the route is accepted by this filter;

} // next filter will decide to export route
return FILTER_REJECT;

}

Listing 1: An export filter rejecting BGP routes having a too
large IGP nexthop metric.

VM1

L1 L2

Upstream Downstream

VM2

DUT

Figure 3: Experimental setup. Routers establish iBGP (Route
Reflectors) or eBGP (Origin Validation) sessions on links L1
and L2 according to the tests shown in Fig. 4.

implement a simple export filter that checks the IGP cost of the nex-
thop before announcing a route. The complete source code of such
a filter is shown in Listing 1. It is attached to the BGP_OUTBOUND_
FILTER insertion point. If the IGP cost to the BGP nexthop dis-
tance is acceptable, the filter calls the special function next(). This
informs the VMM to execute the next bytecode attached to the
insertion point. If the extension code is the last to be executed, the
insertion point falls back to the native code. To reject the route,
the extension code returns the special value FILTER_REJECT to the
host implementation.

3.2 BGP Route Reflection
We now evaluate the performance penalty of using extension code
versus native code. For this, we implement BGP Route Reflection [3],
i.e., the support for the ORIGINATOR_ID and CLUSTER_LIST BGP
attributes entirely as an extension code.

We use a simple network composed of three routers (upstream,
Device Under Test (DUT) and downstream) running in different
VMs on the same laptop as depicted in Fig. 3. The upstream and
downstream routers use FRRouting v7.3.1. The DUT acts as a route
reflector. The upstream router is first fed with IPv4 BGP routes from
a recent RIPE RIS snapshot of June 2020. The upstream router sends
all its routes over an iBGP session to the DUT that reflects them to
the downstream router.

We measure the delay between the announcement of the first
prefix by the upstream router and the reception of the last prefix of
the BGP table on the downstream router. We then report the relative
performance impact between the native implementation on both
FRRouting and BIRD and our extension code. The blue boxplots
in Figure 4 show that on average over 15 runs, our extension code
is less than 20% slower than native code on both FRRouting and
BIRD.

xFRRouting xBIRD
Implementation Under Test (724k routes)

−10

0

10

20

30

Re
la

tiv
e

Pe
rfo

rm
an

ce
 Im

pa
ct

 (%
)

Route Reflectors
Origin Validation

Figure 4: Performance impact of extension bytecode versus
native code.

L10 L11

T20 T21 T22 T23

L12 L13

S1 S2Level 0

Level 2

Level 1

Figure 5: A simple data center.

3.3 BGP in data centers
Although BGP was designed as an interdomain routing protocol,
it is now widely used as an intradomain routing protocol in data
centers [26]. This is mainly because BGP scales better since it does
not rely on flooding in contrast with OSPF or IS-IS. Another benefit
of BGP is its ability to support a wide range of configuration knobs
and policies. However, BGP suffers from several problems that
forced datacenter operators to tweak their BGP configurations [26].
These tweaks make BGP configurations complex and more difficult
to analyze and validate [4]. To illustrate this complexity, let us
consider the data center shown in Fig. 5. Routers 𝑆1 and 𝑆2 are
the Spine routers, 𝐿10 . . . 𝐿13 the leaf routers and 𝑇20 . . .𝑇23 the
top-of-the rack routers. In such a data center, there is no direct
connection between the routers at the same level of the hierarchy.
Data center operators usually want to avoid paths that include a
valley (e.g. 𝐿10 → 𝑆1 → 𝐿11 → 𝑆2). To achieve this, they run
eBGP between routers, but configure the same AS number on 𝑆1
and 𝑆2 (even if these routers are not directly connected). Similarly,
𝐿10 and 𝐿11 (resp. 𝐿12 and 𝐿13) use the same AS number. With
this configuration, when 𝑆2 receives a BGP update with an AS-Path
through 𝑆1, it recognizes its AS number and rejects the route. This
automatically blocks paths that include a valley and also helps to
prevent path hunting.

Unfortunately, using the same AS number on separate routers
can cause problems. First, operators can no longer look at the AS
Paths to troubleshoot routing problems since different routers use
the same AS number. Second, by prohibiting valley-free paths, the
operator implicitly agrees to partition the network when multiple
failures occur. Consider again Figure 5. If the links 𝐿10 − 𝑆1 and
𝐿13 − 𝑆2 fail, then the only possible path between 𝐿10 and 𝐿13 is

Session 1: Network Modeling and Experimentation HotNets ’20, November 4–6, 2020, Virtual Event, USA

5

𝐿10 → 𝑆2 → 𝐿12 → 𝑆1 → 𝐿13. If the same AS number is used
on 𝑆1 and 𝑆2, this path will never be advertised.

With xBGP, the network operator can use different AS numbers
for his/her routers and implement specialized filters on the spine
and leaf routers. For example, if 𝑆1 and 𝑆2 are both connected to
transit providers and can reach the same prefixes, then 𝐿10 should
never reach 𝑆2 via 𝑆1 and 𝐿11. However, this path should remain
valid if the final destination is a prefix attached below 𝐿13.

To implement such a filter, we load a manifest containing every
eBGP session from a router of level 𝑖 to a router of level 𝑖 + 1 in
a pair having the following form: (𝐴𝑆𝑙𝑖 , 𝐴𝑆𝑙 (𝑖+1)). For each route,
the filter checks each consecutive pair of the AS-Path. If a pair of
this manifest is included in the AS-Path, the filter rejects the route
since it is not valley free.

3.4 Validating BGP Prefix Origins
The interdomain routing system is regularly affected by disruptions
caused by invalid BGP advertisements due to manual errors and
other problems. Examples include the AS7007 incident in 1997, the
announcement of a more specific prefix covering the YouTube DNS
servers by Pakistan Telecom in 2008 or the BGP prefixes leaked by
Google in 2017 that disrupted connectivity in parts of Asia. These
problems and many similar ones were caused by configuration
errors.

To cope with these (mainly manual) errors, network operators
and the IETF developed three types of solutions. First, they en-
hanced the address registries to include cryptographically signed
certificates that associate IP prefixes to origin ASes. This is the basis
for the Routing Public Key Infrastructure (RPKI) [27]. Thanks to the
RPKI, an operator can verify whether 𝐴𝑆𝑥 is a valid originator for
prefix 𝑝1. Second, the SIDR working group developed techniques
to allow a router to query the RPKI to validate the origin of the
routes that it receives [22]. The work on validating the origin of
prefixes started in 1999 [29], the first RFC was adopted in 2012.
It is slowly being deployed [8, 33]. This approach is now being
extended to also use the RPKI to validate other elements such as
the AS-Path [2]. The third long-term solution, which should also
cope with malicious BGP hijacks, will be to extend BGP to carry
digital signatures inside the BGP messages [28]. This extension is
far from being deployed.

To evaluate the performance of our prefix origin validation, we
use the same testbed as in Section 3.2 except that we use eBGP
sessions for links L1 and L2. Our DUT does not implement the
RPKI-Rtr protocol [6, 38] but loads a file that considers 75% of the
injected prefixes as valid. For this test, our extension code checks
the validity of the origin of each prefix but does not discard the
invalid ones.

Figure 4 compares our extension codes running on BIRD and
FRRouting to their native implementations. On BIRD, our prefix
validation extension code provides similar performance as BIRD’s
native code. Surprisingly, on FRRouting, our extension is 10% faster
than the native code. A closer look at FRRouting’s source code
revealed that it browses a dedicated trie for validated ROAs (Route
Origin Authorization) each time a prefix needs to be checked. Our
extension uses a hash table as in BIRD to retrieve the validated
ROAs.

4 FUTURE RESEARCH DIRECTIONS
Although this paper focused on BGP, our methodology of defin-
ing a minimal vendor-neutral API that exposes the key functions
and datastructures of any implementation could be applied to any
routing protocol. Combined with eBPF, such an API would enable
network operators to program their routing protocols by inject-
ing xBGP programs that are executed by the eBPF virtual machine.
This programmability could help network innovators innovate with
existing distributed routing protocols as Software Defined Network-
ing lead to the development of programmable switches.

From a high-level perspective, xBGP allows the classic separation
of mechanism from policy [20], with the base BGP code dealing
with transport, OS data structures, etc. and the xBGP extensions
providing the policy. With xBGP, a BGP implementation becomes
like a micro-kernel operating system that exposes a simple but
powerful API that supports a variety of user supplied programs.

From a system’s viewpoint, there are different directions to ex-
tend xBGP. First, xBGP should be applicable to BGP implementa-
tions written in safer languages than C/C++ [15, 16, 21]. Second,
eBPF should be compared with other Virtual Machines [18, 41] by
considering performance but also isolation and safety constraints.
The safety of the xBGP programs will be an important concern
for network operators. It would be useful to develop automated
verification techniques that allow to validate the safety of these
xBGP programs.

From a deployment viewpoint, network operators will only ben-
efit from xBGP once it has been integrated in several commercial
BGP implementations. Our open-source libxbgp could be a starting
point for this integration, but we expect that commercial vendors
will first want an approved IETF specification of xBGP before com-
mitting to such an implementation effort. This could require some
years of discussion. The same applies to other existing routing
protocols.

From a research viewpoint, it would be much more interesting
to design new protocols by assuming that they would expose a
vendor-neutral API that allows extending them. This change of
paradigm would force us to focus our efforts on designing a small
set of truly extensible functions instead of adding new features on
top of each other. The specification of such protocols would likely
need to be different from today’s informal specifications. A fully
formal specification of xBGP or a new extensible routing protocol
could be a long-term goal.

In this paper, we have assumed that xBGP interacts with a fixed
dataplane to retrieve routes from the RIB and push entries to the
forwarding tables. As the dataplane becomes more and more pro-
grammable [5], it becomes possible to imagine a completely new
network layer protocol implemented in P4. xBGP could then inter-
act with the new dataplane by pushing P4 programs.

Software artefacts
To enable other researchers to reproduce and extend our work,
we release all the source code of xBGP, our modified eBPF virtual
machine and our modifications to BIRD and FRRouting on https:
//www.pluginized-protocols.org/xbgp.

Session 1: Network Modeling and Experimentation HotNets ’20, November 4–6, 2020, Virtual Event, USA

6

https://www.pluginized-protocols.org/xbgp
https://www.pluginized-protocols.org/xbgp

REFERENCES
[1] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao. 2002. Overview and

Principles of Internet Traffic Engineering. RFC 3272 (Informational). https:
//doi.org/10.17487/RFC3272

[2] Alexander Azimov, Eugene Bogomazov, Randy Bush, Keyur Patel, and Job Sni-
jders. 2020. Verification of AS_PATH Using the Resource Certificate Public Key
Infrastructure and Autonomous System Provider Authorization. Internet-Draft
draft-ietf-sidrops-aspa-verification-04. Internet Engineering Task Force. https:
//datatracker.ietf.org/doc/html/draft-ietf-sidrops-aspa-verification-04 Work in
Progress.

[3] T. Bates and R. Chandra. 1996. BGP Route Reflection An alternative to full mesh
IBGP. RFC 1966 (Experimental). https://doi.org/10.17487/RFC1966

[4] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David Walker.
2017. Network configuration synthesis with abstract topologies. In Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 437–451.

[5] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87–95.

[6] R. Bush and R. Austein. 2013. The Resource Public Key Infrastructure (RPKI)
to Router Protocol. RFC 6810 (Proposed Standard). https://doi.org/10.17487/
RFC6810

[7] Enke Chen, Naiming Shen, and Robert Raszuk. 2016. Carrying Geo Coordinates in
BGP. Internet-Draft draft-chen-idr-geo-coordinates-02. Internet Engineering Task
Force. https://datatracker.ietf.org/doc/html/draft-chen-idr-geo-coordinates-02
Work in Progress.

[8] Taejoong Chung, Emile Aben, Tim Bruijnzeels, Balakrishnan Chandrasekaran,
David Choffnes, Dave Levin, Bruce M Maggs, Alan Mislove, Roland van Rijswijk-
Deij, John Rula, et al. 2019. RPKI is Coming of Age: A Longitudinal Study of RPKI
Deployment and Invalid Route Origins. In Proceedings of the Internet Measurement
Conference. 406–419.

[9] Guy Davies. 2004. Designing and Developing Scalable IP Networks. John Wiley &
Sons.

[10] Quentin De Coninck, François Michel, Maxime Piraux, Florentin Rochet, Thomas
Given-Wilson, Axel Legay, Olivier Pereira, and Olivier Bonaventure. 2019. Plug-
inizing quic. In Proceedings of the ACM Special Interest Group on Data Communi-
cation. 59–74.

[11] Benoit Donnet and Olivier Bonaventure. 2008. On BGP communities. ACM
SIGCOMM Computer Communication Review 38, 2 (2008), 55–59.

[12] Nick Feamster, Jennifer Rexford, and Ellen Zegura. 2014. The road to SDN:
an intellectual history of programmable networks. ACM SIGCOMM Computer
Communication Review 44, 2 (2014), 87–98.

[13] Ondřej Filip, Martin Mareš, Ondřej Zajíček, and Jan Matějka. 2019. The BIRD
Internet Routing Daemon. https://bird.network.cz/.

[14] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. 2013. TCP Extensions
for Multipath Operation with Multiple Addresses. RFC 6824 (Experimental).
https://doi.org/10.17487/RFC6824 Obsoleted by RFC 8684.

[15] Tomonori Fujita et al. [n.d.]. GoBGP. ([n. d.]). https://github.com/osrg/gobgp.
[16] Tomonori Fujita et al. [n.d.]. RustyBGP: BGP implementation in Rust. ([n. d.]).

https://github.com/osrg/rustybgp.
[17] Brendan Gregg. 2019. BPF Performance Tools. Addison-Wesley Professional.
[18] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman,

Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the
web up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 185–200.

[19] Mark Handley, Eddie Kohler, Atanu Ghosh, Orion Hodson, and Pavlin Radoslavov.
2005. Designing extensible IP router software. In Proceedings of the 2nd conference
on Symposium on Networked Systems Design & Implementation-Volume 2. 189–202.

[20] Per Brinch Hansen. 1970. The nucleus of a Multiprogramming System. Commun.
ACM 13, 4 (1970), 238–241. https://doi.org/10.1145/362258.362278

[21] Nicholas Hart, Charalampos Rotsos, Vasileios Giotsas, Nicholas Race, and David
Hutchison. 2019. 𝜆BGP: Rethinking BGP programmability. In IEEE/IFIP Network
Operations and Management Symposium.

[22] G. Huston and G. Michaelson. 2012. Validation of Route Origination Using the
Resource Certificate Public Key Infrastructure (PKI) and Route Origin Authoriza-
tions (ROAs). RFC 6483 (Informational). https://doi.org/10.17487/RFC6483

[23] Jana Iyengar and Martin Thomson. 2020. QUIC: A UDP-Based Multiplexed and
Secure Transport. Internet-Draft draft-ietf-quic-transport-31. IETF Secretariat.
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-31.txt http://www.
ietf.org/internet-drafts/draft-ietf-quic-transport-31.txt.

[24] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Esteve
Rothenberg, Siamak Azodolmolky, and Steve Uhlig. 2014. Software-defined
networking: A comprehensive survey. Proc. IEEE 103, 1 (2014), 14–76.

[25] Adam Langley, Janardhan Iyengar, Jeff Bailey, Jeremy Dorfman, Jim Roskind,
Joanna Kulik, Patrik Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton,
Victor Vasiliev, Alistair Riddoch, Wan-Teh Chang, Zhongyi Shi, Alyssa Wilk,
Antonio Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, and Ian
Swett. 2017. The QUIC Transport Protocol: Design and Internet-Scale Deploy-
ment. In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication - SIGCOMM ’17. ACM Press, Los Angeles, CA, USA, 183–196.
https://doi.org/10.1145/3098822.3098842

[26] P. Lapukhov, A. Premji, and J. Mitchell (Ed.). 2016. Use of BGP for Routing in Large-
Scale Data Centers. RFC 7938 (Informational). https://doi.org/10.17487/RFC7938

[27] M. Lepinski and S. Kent. 2012. An Infrastructure to Support Secure Internet
Routing. RFC 6480 (Informational). https://doi.org/10.17487/RFC6480

[28] M. Lepinski (Ed.) and K. Sriram (Ed.). 2017. BGPsec Protocol Specification. RFC
8205 (Proposed Standard). https://doi.org/10.17487/RFC8205

[29] Charles Lynn. 1999. X.509 Extensions for Authorization of IP Addresses, AS Numbers,
and Routers within an AS. Internet-Draft draft-clynn-bgp-x509-auth-00. Internet
Engineering Task Force. https://psg.com/draft-clynn-bgp-x509-auth-00.txt
Work in Progress.

[30] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
enabling innovation in campus networks. ACM SIGCOMM Computer Communi-
cation Review 38, 2 (2008), 69–74.

[31] Parveen Patel, Andrew Whitaker, David Wetherall, Jay Lepreau, and Tim Stack.
2003. Upgrading Transport Protocols using Untrusted Mobile Code. ACM SIGOPS
Operating Systems Review 37, 5 (2003), 1–14.

[32] Y. Rekhter (Ed.), T. Li (Ed.), and S. Hares (Ed.). 2006. A Border Gateway Protocol
4 (BGP-4). RFC 4271 (Draft Standard). https://doi.org/10.17487/RFC4271

[33] Andreas Reuter, Randy Bush, Italo Cunha, Ethan Katz-Bassett, Thomas C Schmidt,
and Matthias Wählisch. 2018. Towards a rigorous methodology for measuring
adoption of RPKI route validation and filtering. ACM SIGCOMM Computer
Communication Review 48, 1 (2018), 19–27.

[34] Jared M Smith and Max Schuchard. 2018. Routing around congestion: Defeating
DDoS attacks and adverse network conditions via reactive BGP routing. In 2018
IEEE Symposium on Security and Privacy (SP). IEEE, 599–617.

[35] The Linux Foundation. 2017. FRRouting. https://frrouting.org/.
[36] Jean-Philippe Vasseur, Mario Pickavet, and Piet Demeester. 2004. Network recov-

ery: Protection and Restoration of Optical, SONET-SDH, IP, and MPLS. Elsevier.
[37] Stefano Vissicchio, Luca Cittadini, and Giuseppe Di Battista. 2014. On iBGP

routing policies. IEEE/ACM Transactions on Networking 23, 1 (2014), 227–240.
[38] MatthiasWählisch, Fabian Holler, Thomas C Schmidt, and Jochen H Schiller. 2013.

RTRlib: An Open-Source Library in C for RPKI-based Prefix Origin Validation. In
Presented as part of the 6th Workshop on Cyber Security Experimentation and Test.

[39] Jordan Whited. 2019. CoreBGP. https://github.com/jwhited/corebgp.
[40] Thomas Wirtgen, Cyril Dénos, Quentin De Coninck, Mathieu Jadin, and Olivier

Bonaventure. 2019. The Case for Pluginized Routing Protocols. In 27th Interna-
tional Conference on Network Protocols (ICNP). IEEE, 1–12.

[41] Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G Neumann, Robert Norton,
and Michael Roe. 2014. The CHERI capability model: Revisiting RISC in an age
of risk. In 2014 ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA). IEEE, 457–468.

Session 1: Network Modeling and Experimentation HotNets ’20, November 4–6, 2020, Virtual Event, USA

7

https://doi.org/10.17487/RFC3272
https://doi.org/10.17487/RFC3272
https://datatracker.ietf.org/doc/html/draft-ietf-sidrops-aspa-verification-04
https://datatracker.ietf.org/doc/html/draft-ietf-sidrops-aspa-verification-04
https://doi.org/10.17487/RFC1966
https://doi.org/10.17487/RFC6810
https://doi.org/10.17487/RFC6810
https://datatracker.ietf.org/doc/html/draft-chen-idr-geo-coordinates-02
https://bird.network.cz/
https://doi.org/10.17487/RFC6824
https://doi.org/10.1145/362258.362278
https://doi.org/10.17487/RFC6483
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-31.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-31.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-31.txt
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.17487/RFC7938
https://doi.org/10.17487/RFC6480
https://doi.org/10.17487/RFC8205
https://psg.com/draft-clynn-bgp-x509-auth-00.txt
https://doi.org/10.17487/RFC4271
https://frrouting.org/
https://github.com/jwhited/corebgp

	Abstract
	1 Introduction
	2 xBGP: Overview
	2.1 xBGP meets actual BGP implementations

	3 Use cases
	3.1 Filtering Routes Based on IGP Costs
	3.2 BGP Route Reflection
	3.3 BGP in data centers
	3.4 Validating BGP Prefix Origins

	4 Future Research Directions
	References

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20201016103140
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 474
 343

 Fixed
 Up
 3.6000
 0.0000

 Both
 4
 AllDoc
 4

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 7
 6
 7

 1

 HistoryList_V1
 qi2base

