
xBGP: When You Can’t Wait 
for the IETF and Vendors
Thomas Wirtgen, Quentin De Coninck, Randy Bush, Laurent Vanbever and 
Olivier Bonaventure

1



BGP enables routing on the Internet

2

eBGP

eBGP

eBGP

iBGP

iBGPiBGP

iBGP

iBGP iBGP

iBGP

iBGP
iBGP

iBGP

AS 1

AS 2

AS 3

iBGP iBGP



BGP enables routing on the Internet

3

BGP must be standardized to 
support network of multiple 
BGP implementations

eBGP

eBGP

eBGP

iBGP

iBGPiBGP

iBGP

iBGP iBGP

iBGP

iBGP
iBGP

iBGP

AS 1

AS 2

AS 3

iBGP iBGP



Agenda

● The Weaknesses of the Current Routing Paradigm
● xBGP: a Paradigm Shift
● Adding a new feature with xBGP
● Uses Cases

4



Example of rejected feature: Geo-location TLV

5draft-raszuk-idr-bgp-pr-05

AS 2
AS 3

AS 1

P



Example of rejected feature: Geo-location TLV

6draft-raszuk-idr-bgp-pr-05

AS 3

AS 1

AS 2

P

BGP UPDATE
P via AS2

Adds GeoLoc



Example of rejected feature: Geo-location TLV

7draft-raszuk-idr-bgp-pr-05

AS 3

AS 1

AS 2

P

BGP UPDATEP via AS2
from Lat: 50.66866
Long: 4.621535

BGP UPDATE

P via AS2

from Lat: 50.66866

Long: 4.621535

BGP UPDATE
P via AS2

Adds GeoLoc



Example of rejected feature: Geo-location TLV

8draft-raszuk-idr-bgp-pr-05

AS 3

AS 1

AS 2

P

BGP UPDATEP via AS2
from Lat: 50.66866
Long: 4.621535

BGP UPDATE

P via AS2

from Lat: 50.66866

Long: 4.621535

BGP UPDATE
P via AS2

Adds GeoLoc

Removes 
GeoLoc



Example of rejected feature: Geo-location TLV

9

AS 1

draft-raszuk-idr-bgp-pr-05

AS 3

BGP UPDATE
P via AS2

BGP UPDATEP via AS2
from Lat: 50.66866
Long: 4.621535

BGP UPDATE
P via AS1 AS2

AS 2

P

BGP UPDATE

P via AS2

from Lat: 50.66866

Long: 4.621535

Adds GeoLoc

Removes 
GeoLoc



The Need of Programmable Routers

Routers vendors receive a lot of feature requests



The Need of Programmable Routers

11

Routers vendors receive a lot of feature requests

“I would like feature A”

“I would like features A, B & C”

“I would like feature C”



The Need of Programmable Routers

12

Routers vendors receive a lot of feature requests

“I would like feature A”

“I would like features A, B & C”

“I would like feature C”

“What about feature S ?”



The Need of Programmable Routers

13

Routers vendors receive a lot of feature requests

“I would like feature A”

“I would like features A, B & C”

“I would like feature C”

“What about feature S ?”

Small networks do not 
have enough impact to 
convince OS vendors



Problem #1: Networks evolve, as do routing protocols

14

The evolution is complex:
1. Standardization by the IETF (3.5 years in average for BGP)
2. Implementation on the vendor OS
3. Update routers of networks



Problem #2: Large networks use diverse routers

Vendors do not propose the same set of extensions on their routers

The configuration of these routers differs as well

15

Vendor A Vendor B

OS Vendor A OS Vendor B

routing-options {
  router-id 1.1.1.1;
  autonomous-system 65001;
}

protocols {
  bgp {
    group Session-to-R1 {
      type external;
      neighbor 1.1.1.2 {
      peer-as 65002;
    }
  }
}

router bgp 65001
  bgp router-id 1.1.1.1
  neighbor 1.1.1.2 remote-as 65002
  

Simple Juniper configuration file

Simple Cisco configuration file



Agenda

● The Weaknesses of the Current Routing Paradigm
● xBGP: a Paradigm Shift
● Adding a new feature with xBGP
● Uses Cases

16



xBGP: toward a paradigm shift

xBGP proposes a common interface to dynamically update 
any BGP implementation.

Network operators can program their routers directly with plugins.

17

AS 1
One plugin is injected 
for each router of the 
network 



xBGP forces routers to follow the same rules

Each router adds xBGP on top of its implementation

With xBGP, routers expose a common API.

18

Plugin

Can be seen as 
POSIX norms

Vendor A Vendor B

OS Vendor A OS Vendor B
+ xBGP + xBGP



Agenda

● The Weaknesses of the Current Routing Paradigm
● xBGP: a Paradigm Shift
● Adding a new feature with xBGP
● Uses Cases

19



Structure of xBGP

20

My 
GeoLoc 
Plugin

RFC 4271 BGP Workflow



Structure of xBGP

21

My 
GeoLoc 
Plugin

RFC 4271 BGP Workflow



Structure of xBGP

22

Decoding GeoLoc

Take the nearest router

Serializing GeoLoc

My GeoLoc Plugin

RFC 4271 BGP Workflow



Structure of xBGP

23

Decoding GeoLoc

Take the nearest router

Serializing GeoLoc

My GeoLoc Plugin

RFC 4271 BGP Workflow



Structure of xBGP

24

Decoding GeoLoc

Take the nearest router

Serializing GeoLoc

My GeoLoc Plugin

libxBGP

RIB
BGP Neighbor Sessions
This router Geo 
Coordinates
...

Internal data structure

RFC 4271 BGP Workflow



Structure of xBGP

25

Decoding GeoLoc

Take the nearest router

Serializing GeoLoc

My GeoLoc Plugin

libxBGP

RIB
BGP Neighbor Sessions
This router Geo 
Coordinates
...

Internal data structure

RFC 4271 BGP Workflow



Agenda

● The Weaknesses of the Current Routing Paradigm
● xBGP: a Paradigm Shift
● Adding a new feature with xBGP
● Uses Cases

26



Demonstrating the programmability of xBGP

xBGP requires a little adaptation on the host BGP implementation

We have adapted both FRRouting and BIRD to be xBGP compliant

27

FRRouting (LoC) BIRD Routing (LoC)

Modification to the codebase 30 10

Insertion Points 73 66

Plugin API 624 415

libxbgp 3004 + dependencies

User Space eBPF VM 2776



Use Cases

1. Re-implementation of route reflectors (295 LoC)
2. Expressive filters

● Route Origin Validation (126 LoC)
● Valley Free path check (81 LoC)

3. GeoTags attribute as MED alternative (261 LoC)

28



Use Cases

1. Re-implementation of route reflectors (295 LoC)
2. Expressive filters

● Route Origin Validation (126 LoC)
● Valley Free path check (81 LoC)

3. GeoTags attribute as MED alternative (261 LoC)

29



Valley Free path check

30

S1

L10 L11

S2

L12 L13

T20 T21 T22 T23

Level 0

Level 1

Level 2



Valley Free path check

31

S1

L10 L11

S2

L12 L13

T20 T21 T22 T23

Level 0

Level 1

Level 2



Valley Free path check

32

S1

L10 L11

S2

L12 L13

T20 T21 T22 T23

Level 0

Level 1

Level 2



Valley Free path check

33

S1

L10 L11

S2

L12 L13

T20 T21 T22 T23

Level 0

Level 1

Level 2



Valley Free path check

34

S1

L10 L11

S2

L12 L13

T20 T21 T22 T23

Level 0

Level 1

Level 2



Valley Free path check

35

S1

L10 L11

S2

L12 L13

T20 T21 T22 T23

Level 0

Level 1

Level 2



Valley Free path check

36

AS 
001

AS 
100

AS 
100

AS 
001

AS 
100

AS 
100

AS 
200

AS 
200

AS 
200

AS 
200

Level 
0

Level 
1

Level 
2

MyRouterCli > show ip bgp

BGP Routing table information for VRF default
Router identifier 192.168.254.5, local AS number 1

  Network           Next Hop         Metric    LocPref  Weight    Path
* >Ec 192.168.10.0/24   192.168.255.20   0   100  0  100 200 i
*  ec  192.168.10.0/24   192.168.255.4    0   100  0  100 200 i
* >Ec 192.168.254.3/32  192.168.255.4    1   100  0  100 200 i
*  ec  192.168.254.3/32  192.168.255.20   0   100  0  100 200 i
* >Ec 192.168.254.4/32  192.168.255.20   0   100  0  100 200 i 

RFC7938 Use of BGP for Routing in Large-Scale Data Centers



Valley Free path check

37

AS 
001

AS 
100

AS 
100

AS 
001

AS 
100

AS 
100

AS 
200

AS 
200

AS 
200

AS 
200

Level 
0

Level 
1

Level 
2

MyRouterCli > show ip bgp

BGP Routing table information for VRF default
Router identifier 192.168.254.5, local AS number 1

  Network           Next Hop         Metric    LocPref  Weight    Path
* >Ec 192.168.10.0/24   192.168.255.20   0   100  0  100 200 i
*  ec  192.168.10.0/24   192.168.255.4    0   100  0  100 200 i
* >Ec 192.168.254.3/32  192.168.255.4    1   100  0  100 200 i
*  ec  192.168.254.3/32  192.168.255.20   0   100  0  100 200 i
* >Ec 192.168.254.4/32  192.168.255.20   0   100  0  100 200 i 

Where are these routes 
sourced from ?

RFC7938 Use of BGP for Routing in Large-Scale Data Centers



Valley Free path check with xBGP

38

One plugin + one topology manifest 
for all routers !CFG+

(81 LoC)

AS 
001

AS 
101

AS 
102

AS 
002

AS 
103

AS 
104

AS 
201

AS 
202

AS 
203

AS 
204

Level 0

Level 1

Level 2



Valley Free path check with xBGP

39

AS 
001

AS 
101

AS 
102

AS 
002

AS 
103

AS 
104

AS 
201

AS 
202

AS 
203

AS 
204

Level 
0

Level 
1

Level 
2

uint64_t valley_free_check(args_t *args UNUSED) {
 /* variable declaration omitted  */
 attr = get_attr_from_code(AS_PATH_ATTR_CODE);
 peer = get_src_peer_info();
 if (!attr || !peer) return FAIL;

 my_as = peer->local_bgp_session->as;
 as_path = attr->data;
 as_path_len = attr->len;

 while (i < as_path_len) {
   i++; /* omit segment type  */
   segment_length = as_path[i++];
   for (j = 0; j < segment_length - 1; j++) {
     curr_as = get_u32(as_path + i);
     i += 4;
     if (!valley_check(next_as, curr_as)) return PLUGIN_FILTER_REJECT;
   }
 }
 next();
 return FAIL;
}



Valley Free path check with xBGP

40

AS 
001

AS 
101

AS 
102

AS 
002

AS 
103

AS 
104

AS 
201

AS 
202

AS 
203

AS 
204

Level 
0

Level 
1

Level 
2

uint64_t valley_free_check(args_t *args UNUSED) {
 /* variable declaration omitted  */
 attr = get_attr_from_code(AS_PATH_ATTR_CODE);
 peer = get_src_peer_info();
 if (!attr || !peer) return FAIL;

 my_as = peer->local_bgp_session->as;
 as_path = attr->data;
 as_path_len = attr->len;

 while (i < as_path_len) {
   i++; /* omit segment type  */
   segment_length = as_path[i++];
   for (j = 0; j < segment_length - 1; j++) {
     curr_as = get_u32(as_path + i);
     i += 4;
     if (!valley_check(next_as, curr_as)) return PLUGIN_FILTER_REJECT;
   }
 }
 next();
 return FAIL;
}

Retrieve data from the  host implementation



Valley Free path check with xBGP

41

AS 
001

AS 
101

AS 
102

AS 
002

AS 
103

AS 
104

AS 
201

AS 
202

AS 
203

AS 
204

Level 
0

Level 
1

Level 
2

uint64_t valley_free_check(args_t *args UNUSED) {
 /* variable declaration omitted  */
 attr = get_attr_from_code(AS_PATH_ATTR_CODE);
 peer = get_src_peer_info();
 if (!attr || !peer) return FAIL;

 my_as = peer->local_bgp_session->as;
 as_path = attr->data;
 as_path_len = attr->len;

 while (i < as_path_len) {
   i++; /* omit segment type  */
   segment_length = as_path[i++];
   for (j = 0; j < segment_length - 1; j++) {
     curr_as = get_u32(as_path + i);
     i += 4;
     if (!valley_check(next_as, curr_as)) return PLUGIN_FILTER_REJECT;
   }
 }
 next();
 return FAIL;
}

Retrieve data from the  host implementation

Main processing of the plugin



Valley Free path check with xBGP

42

AS 
001

AS 
101

AS 
102

AS 
002

AS 
103

AS 
104

AS 
201

AS 
202

AS 
203

AS 
204

Level 
0

Level 
1

Level 
2

uint64_t valley_free_check(args_t *args UNUSED) {
 /* variable declaration omitted  */
 attr = get_attr_from_code(AS_PATH_ATTR_CODE);
 peer = get_src_peer_info();
 if (!attr || !peer) return FAIL;

 my_as = peer->local_bgp_session->as;
 as_path = attr->data;
 as_path_len = attr->len;

 while (i < as_path_len) {
   i++; /* omit segment type  */
   segment_length = as_path[i++];
   for (j = 0; j < segment_length - 1; j++) {
     curr_as = get_u32(as_path + i);
     i += 4;
     if (!valley_check(next_as, curr_as)) return PLUGIN_FILTER_REJECT;
   }
 }
 next();
 return FAIL;
}

Retrieve data from the  host implementation

Main processing of the plugin

The route is rejected if such a pair exists



Conclusion

xBGP proposes a new methodology to upgrade routing protocols

xBGP provides new opportunities with other routing protocols

From a monolithic to a modular approach

The next steps:
Standardizing the API + the VM
New use cases

See https://www.pluginized-protocols.org/xbgp for the latest updates 
and the source code

43

https://www.pluginized-protocols.org/xbgp


Backup slides

44



Comparison with native code

45

Lower is better

Time xBGP - Time Native

Time Native
x 100



Comparison with native code

46

Lower is better

Time xBGP - Time Native

Time Native
x 100



Comparison with native code

47

Native code 
uses a slower 
data structure

Lower is better

Time xBGP - Time Native

Time Native
x 100



Old slides

48



BGP enables routing on the Internet 

49



xBGP: toward a paradigm shift

Extending a protocol is complex.

Why not offer operators the opportunity to program/update their own 
extensions?

50

AS 1
“Here is your plugin”


