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Agenda

● The Weaknesses of the Current Routing Paradigm
● xBGP: a Paradigm Shift
● Adding a new feature with xBGP
● Uses Cases
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The Need of Programmable Routers

Routers vendors receive a lot of feature requests
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Routers vendors receive a lot of feature requests

“I would like feature A”

“I would like features A, B & C”

“I would like feature C”

“What about feature S ?”

Small networks do not 
have enough impact to 
convince OS vendors



Problem #1: Networks evolve, as do routing protocols
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The evolution is complex:
1. Standardization by the IETF (3.5 years in average for BGP)
2. Implementation on the vendor OS
3. Update routers of networks



Problem #2: Large networks use diverse routers

Vendors do not propose the same set of extensions on their routers

The configuration of these routers differs as well
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Vendor A Vendor B

OS Vendor A OS Vendor B

routing-options {
  router-id 1.1.1.1;
  autonomous-system 65001;
}

protocols {
  bgp {
    group Session-to-R1 {
      type external;
      neighbor 1.1.1.2 {
      peer-as 65002;
    }
  }
}

router bgp 65001
  bgp router-id 1.1.1.1
  neighbor 1.1.1.2 remote-as 65002
  

Simple Juniper configuration file

Simple Cisco configuration file



Agenda

● The Weaknesses of the Current Routing Paradigm
● xBGP: a Paradigm Shift
● Adding a new feature with xBGP
● Uses Cases

16



xBGP: toward a paradigm shift

xBGP proposes a common interface to dynamically update 
any BGP implementation.

Network operators can program their routers directly with plugins.
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AS 1
One plugin is injected 
for each router of the 
network 



xBGP forces routers to follow the same rules

Each router adds xBGP on top of its implementation

With xBGP, routers expose a common API.
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Plugin

Can be seen as 
POSIX norms

Vendor A Vendor B

OS Vendor A OS Vendor B
+ xBGP + xBGP
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Structure of xBGP
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Demonstrating the programmability of xBGP

xBGP requires a little adaptation on the host BGP implementation

We have adapted both FRRouting and BIRD to be xBGP compliant

27

FRRouting (LoC) BIRD Routing (LoC)

Modification to the codebase 30 10

Insertion Points 73 66

Plugin API 624 415

libxbgp 3004 + dependencies

User Space eBPF VM 2776



Use Cases

1. Re-implementation of route reflectors (295 LoC)
2. Expressive filters

● Route Origin Validation (126 LoC)
● Valley Free path check (81 LoC)

3. GeoTags attribute as MED alternative (261 LoC)
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Valley Free path check
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Valley Free path check
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MyRouterCli > show ip bgp

BGP Routing table information for VRF default
Router identifier 192.168.254.5, local AS number 1

  Network           Next Hop         Metric    LocPref  Weight    Path
* >Ec 192.168.10.0/24   192.168.255.20   0   100  0  100 200 i
*  ec  192.168.10.0/24   192.168.255.4    0   100  0  100 200 i
* >Ec 192.168.254.3/32  192.168.255.4    1   100  0  100 200 i
*  ec  192.168.254.3/32  192.168.255.20   0   100  0  100 200 i
* >Ec 192.168.254.4/32  192.168.255.20   0   100  0  100 200 i 

RFC7938 Use of BGP for Routing in Large-Scale Data Centers



Valley Free path check
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Where are these routes 
sourced from ?

RFC7938 Use of BGP for Routing in Large-Scale Data Centers



Valley Free path check with xBGP
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One plugin + one topology manifest 
for all routers !CFG+

(81 LoC)
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Valley Free path check with xBGP
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uint64_t valley_free_check(args_t *args UNUSED) {
 /* variable declaration omitted  */
 attr = get_attr_from_code(AS_PATH_ATTR_CODE);
 peer = get_src_peer_info();
 if (!attr || !peer) return FAIL;

 my_as = peer->local_bgp_session->as;
 as_path = attr->data;
 as_path_len = attr->len;

 while (i < as_path_len) {
   i++; /* omit segment type  */
   segment_length = as_path[i++];
   for (j = 0; j < segment_length - 1; j++) {
     curr_as = get_u32(as_path + i);
     i += 4;
     if (!valley_check(next_as, curr_as)) return PLUGIN_FILTER_REJECT;
   }
 }
 next();
 return FAIL;
}
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Retrieve data from the  host implementation
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Valley Free path check with xBGP
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Retrieve data from the  host implementation

Main processing of the plugin

The route is rejected if such a pair exists



Conclusion

xBGP proposes a new methodology to upgrade routing protocols

xBGP provides new opportunities with other routing protocols

From a monolithic to a modular approach

The next steps:
Standardizing the API + the VM
New use cases

See https://www.pluginized-protocols.org/xbgp for the latest updates 
and the source code

43

https://www.pluginized-protocols.org/xbgp
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Comparison with native code
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Comparison with native code
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Native code 
uses a slower 
data structure

Lower is better
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x 100



Old slides
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BGP enables routing on the Internet 
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xBGP: toward a paradigm shift

Extending a protocol is complex.

Why not offer operators the opportunity to program/update their own 
extensions?
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AS 1
“Here is your plugin”


