Data Centre Networking with Multipath TCP

Thu, 09/02/2010 - 07:24 by Olivier Bonaventure

Abstract

Recently new data center topologies have been proposed that offer higher aggregate bandwidth and location independence by creating multiple paths in the core of the network. To effectively use this bandwidth requires ensuring different flows take different paths, which poses a challenge. Plainly put, there is a mismatch between single-path transport and the multitude of available network paths. We propose a natural evolution of data center transport from TCP to multipath TCP. We show that multipath TCP can effectively and seamlessly use available bandwidth, providing improved throughput and better fairness in these new topologies when compared to single path TCP and randomized flow-level load balancing. We also show that multipath TCP outperforms laggy centralized flow scheduling without needing centralized control or additional infrastructure.

Authors
Costin Raiciu, Christopher Pluntke, Sébastien Barré, Adam Greenhalgh, Damon Wischik and Mark Handley
Source
Ninth ACM Workshop on Hot Topics in Networks (HotNets-IX), Monterey, California, US, October 2010.
Full text
pdf   (172.73 KB)
Cite it
BibTex
Copyright
See here

IEEE Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

ACM Copyright Notice: Copyright 1999 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page or intial screen of the document. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Springer-Verlag LNCS Copyright Notice: The copyright of these contributions has been transferred to Springer-Verlag Berlin Heidelberg New York. The copyright transfer covers the exclusive right to reproduce and distribute the contribution, including reprints, translations, photographic reproductions, microform, electronic form (offline, online), or any other reproductions of similar nature. Online available from Springer-Verlag LNCS series.