xBGP: When You Can't Wait for the IETF and Vendors

Thu, 11/19/2020 - 14:29 by Thomas Wirtgen

Abstract

Thanks to the standardization of routing protocols such as BGP, OSPF or IS-IS, Internet Service Providers (ISP) and enterprise networks can deploy routers from various vendors. This prevents them from vendor-lockin problems. Unfortunately, this also slows innovation since any new feature must be standardized and implemented by all vendors before being deployed.

We propose a paradigm shift that enables network operators to program the routing protocols used in their networks. We demonstrate the feasibility of this approach with xBGP. xBGP is a vendor neutral API that exposes the key data structures and functions of any BGP implementation. Each xBGP compliant implementation includes an eBPF virtual machine that executes the operator supplied programs. We extend FRRouting and BIRD to support this new paradigm and demonstrate the flexibility of xBGP with four different use cases. Finally, we discuss how xBGP could affect future research on future routing protocols.

Authors
Thomas Wirtgen, Quentin De Coninck, Laurent Vanbever, Randy Bush and Olivier Bonaventure
Source
Proceedings of the 19th ACM Workshop on Hot Topics in Networks (HotNets '20), pages 1-7, Virtual Event, USA, November 2020. Association for Computing Machinery.
Keywords
BGP, eBGP, Network Architecture, Routing
Full text
pdf   (2.31 MB)
Slides
pdf   (1.89 MB)
Cite it
BibTex
Copyright
See here

IEEE Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

ACM Copyright Notice: Copyright 1999 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page or intial screen of the document. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Springer-Verlag LNCS Copyright Notice: The copyright of these contributions has been transferred to Springer-Verlag Berlin Heidelberg New York. The copyright transfer covers the exclusive right to reproduce and distribute the contribution, including reprints, translations, photographic reproductions, microform, electronic form (offline, online), or any other reproductions of similar nature. Online available from Springer-Verlag LNCS series.