Encouraging Reproducibility in Scientific Research of the Internet

Tue, 02/19/2019 - 14:36 by Olivier Bonaventure

Abstract

Reproducibility of research in Computer Science (CS) and in the field of networking in partic- ular is a well-recognized problem. For several reasons, including the sensitive and/or proprietary nature of some Internet measurements, the networking research community pays limited attention to the of reproducibility of results, instead tending to accept papers that appear plausible.
This article summarises a 2.5 day long Dagstuhl seminar on Encouraging Reproducibility in Scientific Research of the Internet held in October 2018. The seminar discussed challenges to improving reproducibility of scientific Internet research, and developed a set of recommendations that we as a community can undertake to initiate a cultural change toward reproducibility of our work. It brought together people both from academia and industry to set expectations and formulate concrete recommendations for reproducible research. This iteration of the seminar was scoped to computer networking research, although the outcomes are likely relevant for a broader audience from multiple interdisciplinary fields.

Authors
Vaibhav Bajpai, Olivier Bonaventure, kc Claffy and Daniel Karrenberg
Source
October 2018.
Full text
pdf    (1.29 MB)
Cite it
BibTex
Copyright
See here

IEEE Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

ACM Copyright Notice: Copyright 1999 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page or intial screen of the document. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Springer-Verlag LNCS Copyright Notice: The copyright of these contributions has been transferred to Springer-Verlag Berlin Heidelberg New York. The copyright transfer covers the exclusive right to reproduce and distribute the contribution, including reprints, translations, photographic reproductions, microform, electronic form (offline, online), or any other reproductions of similar nature. Online available from Springer-Verlag LNCS series.