On Link Estimation in Dense RPL Deployments

Tue, 08/28/2012 - 17:30 by Olivier Bonaventure

Abstract

The Internet of Things vision foresees billions of
devices to connect the physical world to the digital world. Sensing
applications such as structural health monitoring, surveillance or
smart buildings employ multi-hop wireless networks with high
density to attain sufficient area coverage. Such applications need
networking stacks and routing protocols that can scale with
network size and density while remaining energy-efficient and
lightweight. To this end, the IETF RoLL working group has
designed the IPv6 Routing Protocol for Low-Power and Lossy
Networks (RPL). This paper discusses the problems of link quality estimation and neighbor management policies when it comes
to handling high densities. We implement and evaluate different
neighbor management policies and link probing techniques in
Contiki’s RPL implementation. We report on our experience
with a 100-node testbed with average 40-degree density. We show
the sensitivity of high density routing with respect to cache sizes
and routing metric initialization. Finally, we devise guidelines for
design and implementation of density-scalable routing protocols.

Authors
Sébastien Dawans, Simon Duquennoy and Olivier Bonaventure
Source
Proceedings of the International Workshop on Practical Issues in Building Sensor Network Applications (IEEE SenseApp 2012), Florida, USA, October 2012.
Full text
pdf   (368.35 KB)
Cite it
BibTex
Copyright
See here

IEEE Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

ACM Copyright Notice: Copyright 1999 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page or intial screen of the document. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Springer-Verlag LNCS Copyright Notice: The copyright of these contributions has been transferred to Springer-Verlag Berlin Heidelberg New York. The copyright transfer covers the exclusive right to reproduce and distribute the contribution, including reprints, translations, photographic reproductions, microform, electronic form (offline, online), or any other reproductions of similar nature. Online available from Springer-Verlag LNCS series.