MPR+SP: Towards a Unified MPR-based MANET Extension for OSPF

Tue, 09/04/2012 - 11:55 by Juan Antonio Cordero

Abstract

Heterogeneous networks combining both wired and wireless components – fixed routers as well as mobile routers – emerge as wireless mesh networks are being deployed. Such heterogeneity is bound to become more and more present in the near future as mobile ad hoc networking becomes a reality. While it is possible to cope with heterogeneity by employing different routing protocols for the fixed / wired part and for the wireless / ad hoc part of the network, this may lead to sub-optimal performance, e.g. by way of longer routing paths due to these routing protocols sharing prefixes and ”connecting” the network only at distinct gateways between the two routing domains. Thus, the establishment of a single unified routing domain, and the use of a single routing protocol, for such heterogeneous networks is desired. OSPF is a natural candidate for this task, due to its wide deployment, its modularity and its similarity with the popular ad hoc routing protocol OLSR. Multiple OSPF extensions for MANETs have therefore been specified by the IETF. This paper introduces a novel OSPF extension for operation on ad hoc networks, MPR+SP, and compares it with the existing OSPF extensions via simulations, which show that MPR+SP outperforms prior art.

Authors
Juan Antonio Cordero, Thomas Clausen and Emmanuel Baccelli
Source
In 44th Hawaii International Conference on System Sciences (HICSS), 2011.
Cite it
BibTex
Copyright
See here

IEEE Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

ACM Copyright Notice: Copyright 1999 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page or intial screen of the document. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Springer-Verlag LNCS Copyright Notice: The copyright of these contributions has been transferred to Springer-Verlag Berlin Heidelberg New York. The copyright transfer covers the exclusive right to reproduce and distribute the contribution, including reprints, translations, photographic reproductions, microform, electronic form (offline, online), or any other reproductions of similar nature. Online available from Springer-Verlag LNCS series.