Central Control Over Distributed Routing (Extended Version)

Sat, 07/04/2015 - 17:25 by Stefano Vissicchio

Abstract

Centralizing routing decisions offers tremendous flexibility, but sacrifices the robustness of distributed protocols.
In this paper, we present \emph{Fibbing}, an architecture that \review{R2.1}{achieves both flexibility and robustness} through central control over distributed routing.
Fibbing introduces fake nodes and links into an underlying link-state routing protocol, so that routers compute their own forwarding tables based on the augmented topology. Fibbing is expressive, and readily supports flexible load balancing, traffic engineering, and backup routes. Based on high-level forwarding requirements, the Fibbing controller computes a compact augmented topology and injects the fake components through standard routing-protocol messages. Fibbing works with any unmodified commercial routers speaking OSPF. Our experiments also show that it can scale to large networks with many forwarding requirements, introduces minimal overhead, and quickly reacts to network and controller failures.

Authors
Stefano Vissicchio, Olivier Tilmans, Laurent Vanbever and Jennifer Rexford
Type
Technical Report
Source
2015.
Full text
pdf   (1.28 MB)
Cite it
BibTex
Copyright
See here

IEEE Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

ACM Copyright Notice: Copyright 1999 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page or intial screen of the document. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Springer-Verlag LNCS Copyright Notice: The copyright of these contributions has been transferred to Springer-Verlag Berlin Heidelberg New York. The copyright transfer covers the exclusive right to reproduce and distribute the contribution, including reprints, translations, photographic reproductions, microform, electronic form (offline, online), or any other reproductions of similar nature. Online available from Springer-Verlag LNCS series.