Increasing the Coverage of a Cooperative Internet Topology Discovery Algorithm

Tue, 04/03/2007 - 11:01 by Benoit Donnet

Abstract

Recently, Doubletree, a cooperative algorithm for large-scale topology discovery at the IP level, was introduced. Compared to classic probing systems, Doubletree discovers almost as many nodes and links while strongly reducing the quantity of probes sent. This paper examines the problem of the nodes and links missed by Doubletree. In particular, this paper's first contribution is to carefully describe properties of the nodes and links that Doubletree fails to discover. We explain incomplete coverage as a consequence of the way Doubletree models the network: a tree-like structure of routes. But routes do not strictly form trees, due to load balancing and routing changes. This paper's second contribution is the Windowed Doubletree algorithm, which increases Doubletree's coverage up to 16% without increasing its load. Compared to classic Doubletree, Windowed Doubletree does not start probing at a fixed hop distance from each monitor, but randomly picks a value from a range of possible values.

Authors
B. Donnet, B. Huffaker, T. Friedman and kc claffy
Source
Proc. IFIP/TC6 Networking, Atlanta, USA, May 2007.
Full text
pdf   (600.49 KB)
Slides
pdf   (2.22 MB)
Cite it
BibTex
Copyright
See here

IEEE Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

ACM Copyright Notice: Copyright 1999 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page or intial screen of the document. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Springer-Verlag LNCS Copyright Notice: The copyright of these contributions has been transferred to Springer-Verlag Berlin Heidelberg New York. The copyright transfer covers the exclusive right to reproduce and distribute the contribution, including reprints, translations, photographic reproductions, microform, electronic form (offline, online), or any other reproductions of similar nature. Online available from Springer-Verlag LNCS series.