Safe Update of Hybrid SDN Networks

Fri, 10/11/2013 - 18:53 by Stefano Vissicchio

Abstract

Software Defined Networking (SDN) promises to bring un- paralleled flexibility, fine-grained control, configuration sim- plification and no vendor lock-in. The introduction of SDN in an existing network, however, must be incremental in most cases, for both technical and economical reasons. During the transition, operators have to manage hybrid networks, where SDN and traditional protocols coexist.
In this paper, we show that the simultaneous presence of SDN and traditional routing protocols can create forwarding anomalies that ultimately defeat the purpose of deploying SDN. We devise techniques to adapt traffic flows to network dynamics, update routing policies and incrementally deploy SDN in hybrid networks, while avoiding those anomalies. We assess the applicability of our approach by extensive simulations. By adding support for manageability and evolv- ability, our techniques make hybrid networks not only a means for transition but also an interesting design point that can merge advantages of SDN and traditional paradigms.

Authors
Stefano Vissicchio, Laurent Vanbever, Luca Cittadini, Geoffrey Xie and Olivier Bonaventure
Type
Technical Report
Source
2013.
Keywords
hybrid SDN, OpenFlow, IGP, update, reconfiguration
Notes
Also available at http://hdl.handle.net/2078.1/134360
Full text
pdf   (494.76 KB)
Cite it
BibTex
Copyright
See here

IEEE Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

ACM Copyright Notice: Copyright 1999 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page or intial screen of the document. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Springer-Verlag LNCS Copyright Notice: The copyright of these contributions has been transferred to Springer-Verlag Berlin Heidelberg New York. The copyright transfer covers the exclusive right to reproduce and distribute the contribution, including reprints, translations, photographic reproductions, microform, electronic form (offline, online), or any other reproductions of similar nature. Online available from Springer-Verlag LNCS series.