Unleashing traffic engineering for IPv6 multihomed sites

Fri, 05/11/2007 - 00:13 by Olivier Bonaventure

Abstract

Internet connectivity takes a strategic importance for a growing number of companies. Therefore, for reliability and performance reasons, many Internet service providers and corporate networks connect to at least two providers, a practice called multihoming. However, the current multihoming mechanism contributes to the explosive growth of the Internet routing tables. This growth has major implications for routers on storage requirements, protocol overhead and stability, and forwarding performance. As a consequence, the traditional way to be multihomed in IPv4 is prevented in the next generation IPv6 Internet. Many approaches for IPv6 multihoming were proposed, with little consideration for traffic engineering aspects. The aim of the thesis is to bridge this gap.

The thesis investigates the way to best provide traffic engineering for IPv6 multihomed sites. It first demonstrates that Host-Centric multihoming, the foreseen approach for IPv6 multihoming, is the most promising in terms of fault-tolerance and traffic engineering capabilities. Compared to traditional multihoming approaches, our simulation results show that Host-Centric IPv6 multihomed sites are able to obtain lower delays by leveraging the path diversity that underlies the Internet. Unfortunately, no traffic engineering mechanism is available for this multihoming approach. Therefore, this thesis next presents a technique to effectively use the multiple interdomain paths that exist between multihomed sites. The proposed mechanism allows the multihomed sites to control how their flows are distributed over the links with their providers. The mechanism is able to take into account complex and very dynamic routing policies. Finally, the thesis proposes the use of synthetic coordinates as a scalable and efficient way to help hosts in selecting the interdomain paths with the lowest delays. Experimental results with real measurements show that this mechanism allows sites to avoid all paths with really bad delays, and to most often select the lowest delay path.

Authors
Cédric de Launois
Type
PhD thesis
Source
Université catholique de Louvain, October 2005.
Full text
pdf   (3.97 MB)
Cite it
BibTex
Copyright
See here

IEEE Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

ACM Copyright Notice: Copyright 1999 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page or intial screen of the document. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Springer-Verlag LNCS Copyright Notice: The copyright of these contributions has been transferred to Springer-Verlag Berlin Heidelberg New York. The copyright transfer covers the exclusive right to reproduce and distribute the contribution, including reprints, translations, photographic reproductions, microform, electronic form (offline, online), or any other reproductions of similar nature. Online available from Springer-Verlag LNCS series.