Stroboscope: Declarative Network Monitoring on a Budget
Thu, 02/22/2018 - 12:07 by Olivier Tilmans
Abstract
For an Internet Service Provider (ISP), getting an accurate picture of how its network behaves is challenging. Indeed, given the carried traffic volume and the impossibility to control end-hosts, ISPs often have no other choice but to rely on heavily sampled traffic statistics, which provide them with coarse-grained visibility at a less than ideal time resolution (seconds or minutes).
We present Stroboscope, a system that enables fine-grained monitoring of any traffic flow by instructing routers to mirror millisecond-long traffic slices in a programmatic way. Stroboscope takes as input high-level monitoring queries together with a budget and automatically determines: (i) which flows to mirror; (ii) where to place mirroring rules, using fast and provably correct algorithms; and (iii) when to schedule these rules to maximize coverage while meeting the input budget.
We implemented Stroboscope, and show that it scales well: it computes schedules for large networks and query sizes in few seconds, and produces a number of mirroring rules well within the limits of current routers. We also show that Stroboscope works on existing routers and is therefore immediately deployable.
- Authors
- Olivier Tilmans, Tobias Bühler, Ingmar Poese, Stefano Vissicchio and Laurent Vanbever
- Source
proceedings of NSDI'18 , April 2018.
- Full text
- (690.52 KB)
- Slides
- (2.98 MB)
- Cite it
- BibTex
- Copyright
- See here
IEEE Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
ACM Copyright Notice: Copyright 1999 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page or intial screen of the document. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.
Springer-Verlag LNCS Copyright Notice: The copyright of these contributions has been transferred to Springer-Verlag Berlin Heidelberg New York. The copyright transfer covers the exclusive right to reproduce and distribute the contribution, including reprints, translations, photographic reproductions, microform, electronic form (offline, online), or any other reproductions of similar nature. Online available from Springer-Verlag LNCS series.